Flow Control

Flow Control Statements

Introductory VHDL Methodology

Language Structure

begin
concurrent statements ;
process
begin
case ()is
when...

end case ;
end process ;

process
begin
if (sel =“00") then
[ElSEm
endif ;
end process ;

end architecture RTL 3

Flow Control Statements 63

architecture RTL of ENTITY_1 is

An if/else,
case or loop
statement
must be within
aprocess

Flow Control

If / Elsif Example and Rules

1. The first condition found to

be true will be executed
2. Conditions can overlap

3. The first condition of an if
lelsif has priority

process (A, B, C,D, Sel)
begin
If (Sel=“00") then

Z<=A;

elsif (Sel=%01") then
Z<=B;

elsif (Sel=*10") then
Z<=C;

elsif (Sel=*11") then
Z<=D;

end if;

end process ;

A
B
z
Cc
D
Sel
D
(o}
B
z

A

Flow Control Statements 62

After completing this module, you will be able

.

.

*

*

.

Objectives

Write an ‘iflelse’ conditional statement

Write an ‘iffelse if’ conditional statement

Write a ‘case’ conditional statement

Use the default ‘else’ or ‘others’ clause

Detect and avoid conditions where latches may be

inferred

Write ‘for loop’ statements for repetitive operations

+ Theif/ else statement allows operations to be performed based

If / Else Statements

on certain conditions

+ It has three basic forms
process
begin
if (boolean expression) then g:;ci:ss
sequgntlal statements; if (boolean expression) then
endif; sequential B
elsif (boolean expression) then
process sequential statements ;
begin elsif (boolean expression) then
if (boolean expression) then sequential statements ;
sequential statements ; end if :
else -
sequential statements ;
end if ;
Flow Control

Case Statement

+ The case statement allows operations to be performed

Flow Control Statements 66

based on the value of a single expression, as indicated by

the “selector expression”

process (...)
begin
case (selector expression) is
when.. .=>

sequential statements ;
when ... =>

sequential statements ;
when ... =

v

sequential statements ;
end case ;

end process ;

process (...)
begin
case (selector expression) is
when ... =>

sequential statements ;
when others =>

sequential statements ;
end case ;

end process ;

Flow Control

Case Examples and Rules

1. All possible conditions must be specified

2. No conditions can overlap

3. All range specifications must be of a discrete type

o0 @ >

Sel

Case statements are preferable for
LUT architectures given that most
synthesis tools will produce a mux,

or similarly minimal logic level
structure

process (A, B, C, D, Sel)

end process ;

begin

case Sel is
when “00" => Z <=A;
when “01" => Z <=B;
when “10" => Z <=C
when “11" => Z <=D;

end case;

Is this sufficient for
std_logic?

Flow Control Statements 6-0

Specifying Ranges

+ If arange is to specified as a condition of a case or
iflelse statement, it must be of a discrete type

process (...)
begin
if (x = 12 to 14) then

when 0to7 =
when 4.3t07.7 =
when “1000” | “1010" =>
when “1000” to “1010” =>

end process ;

sequential statements ;

case (selector expression) is

sequential statements ; E——"

sequential statements ;
sequential statements ; §|—|

sequential statements ; [

Selected Signhal Assignment

+ A selected signal assignment is effectively a concurrent

form of the case statement

+ The same rules exist as for the case statement:

(1) All conditions must be specified

(2) No conditions may overlap

architecture ...
begin
process (A,B, Sel)

begin *
case (Sel) is

when 1'=>Z<=A;
when 0'=>Z<=B;
end case ;
end process ;
end architecture ;

Flow Control 1

architecture...
with Sel select
Z<= A when 1
B when ‘0’;
end architecture ;

Overlapping

Conditions

+ If condition overlap, then if/else if statement is

necessary

process (A, B, C, D,

begin

If (Selk=3)) then
Z<=A;

elsif (Sel<=5) then
Z<=B;

elsif (Sel <=7) then
Z<=C;

elsif (Sel<=9) then
2&=p

end if;

end process ;

Relational Operator

A

‘Assignment’ Operator

Flow Control Statements 6-8

Conditional Signal Assignment

+ A conditional signal assignment is effectively a concurrent

form of the if / else statement

architecture ...
begin
process (A,B, Sel)
begin
if (Sel='1)) then
Z<=A; *
else
Z<=B;
end if;
end process ;
end architecture ;

architecture ...
begin
Z<=A when Sel="1
else B;
end architecture ;

+ Both statements produce the same results in simulation
and synthesis. However, the latter does make the code

less verbose

Flow Control Statements 6-10

Loop Statements

+ Loop statements can be constructed for any repetitive
operation. There are different forms, each having a
different method of control. We shall examine the “for

loop”

process
variable COUNT : integer := 0;
begin
for index in 0to 15 loop
COUNT := COUNT +1;
end loop ;

process (A, B_bus)
begin
for I'in 7 downto O loop
C_bus (I) <=A and B_bus (I) ;
end loop ;

Flow Control Statements 6-12

Using Loop Statements

process (A, B_bus)
begin
for 1in 7 downto O loop

+ For synthesis, aloop is
C_bus (I) <= A and B_bus (I) ; “unrolled” or logic resulting

end loop ; from each loop iteration is

synthesized

A :D—c bus (0 ¢ For execution (simulation),
B_bus (0) -

B_bus (1)

loop statements provide a
C_bus (1) very flexible tool for
behavioral modeling
+ Loop statements are also

A

A :Di C_bus (7) used extensively in
B_bus (7) subprograms (functions

Flow Control

and procedures)

Review Questions

¢ In the notes section of your handout, write the
corresponding case statement for the following
if / elsif expression, and complete the sensitivity list

Op_State : User_Cond ;

process (...)
begin
If Op_State = Rst then
Q_Out <= “0000" ;
elsif (Op_State = Jump) then
Q_Out <= Data_Addr ;
elsif (Op_State = Load) then

else D_Reg <= New_Data ;
endif ;
end process ;

type User_Cond is (Rst, Wait, Jump, Fetch, Load) ;

D_Reg <= Data_Stored ;

Flow Control Statements 6-14

Bonus:

As presently
written, both the
case and if/else will
produce unwanted
additional logic,
what is it and how
can it be avoided?

.

Flow Control Statements 6-15

Answers

type User_Cond is (Rst, Wait, Jump, Fetch, Load) ;
Op_State : User_Cond ;

process (Op_state, Data_Addr, Data_Stored, New_Data)
begin
case (Op_State) is
when Rst => Sigl <= “0000" ;
when Jump => Sigl <= Data_Addr ;
when Load => Sig2 <= Data_Stored ;
when others => Sig2 <= New_Data ;
end case ;
end process ;

Sensitivity
determined by
which signals are
read within the
process

Both Sigl and Sig2 are not covered in each branch of the conditional
statement; this produces a latch on both outputs. The default
assignment to Sig2 does not prevent this because if an earlier branch
condition is true, the later branch is never reached

Solution: Either cover both signals in each branch, or create separate
processes for each output

