
Flow Control StatementsFlow Control Statements

Flow Control Statements 6-1

Introductory VHDL Methodology

After completing this module, you will be able

ObjectivesObjectives

Write an ‘if/else’ conditional statement
Write an ‘if/else if’ conditional statement
Write a ‘case’ conditional statement
Use the default ‘else’ or ‘others’ clause

Flow Control Statements 6-2

Use the default else or others clause
Detect and avoid conditions where latches may be
inferred
Write ‘for loop’ statements for repetitive operations

architecture RTL of ENTITY_1 is
. . .
begin

concurrent statements ;
. . .

process
begin

case () is
when…

. . .
end case ;

end process ; An if/else

Language StructureLanguage Structure

Flow Control Statements 6-3

end process ;
. . .
. . .

process
begin

if (sel = “00”) then
. . .

else….
end if ;

end process ;
...

end architecture RTL ;

An if/else,
case or loop
statement
must be within
a process

process
begin
if (boolean expression) then
sequential statements;

d if

process
begin
if (boolean expression) then

If / Else StatementsIf / Else Statements
The if / else statement allows operations to be performed based
on certain conditions
It has three basic forms

Flow Control Statements 6-4

end if ;

process
begin
if (boolean expression) then
sequential statements ;
else
sequential statements ;
end if ;

(p)
sequential statements ;
elsif (boolean expression) then
sequential statements ;
elsif (boolean expression) then
sequential statements ;
end if ;

process (A, B, C, D, Sel)
begin
If (S l “00”) th

Z

D
C

B
A

Sel

D

If / Elsif Example and RulesIf / Elsif Example and Rules
1. The first condition found to

be true will be executed
2. Conditions can overlap
3. The first condition of an if

/elsif has priority

Flow Control Statements 6-5

If (Sel = “00”) then
Z <= A ;

elsif (Sel = “01”) then
Z <= B ;

elsif (Sel = “10”) then
Z <= C ;

elsif (Sel = “11”) then
Z <= D ;

end if;
end process ;

D

C

B

A
Z

Late arriving signal ?

process (…)
begin
case (selector expression) is
when .. . =>

process (...)
begin
case (selector expression) is
when ... =>

Case StatementCase Statement
The case statement allows operations to be performed
based on the value of a single expression, as indicated by
the “selector expression”

Flow Control Statements 6-6

sequential statements ;
when ... =>

sequential statements ;
when ... =>

sequential statements ;
end case ;
. . .
end process ;

sequential statements ;
. . .
when others =>

sequential statements ;
end case ;
. . .
end process ;

1. All possible conditions must be specified
2. No conditions can overlap
3. All range specifications must be of a discrete type

Z

D
C

B
A process (A, B, C, D, Sel)

begin
case Sel is

when “00” => Z <= A ;
when “01” => Z <= B ;

Case Examples and RulesCase Examples and Rules

Flow Control Statements 6-7

D

Sel

when 01 Z B ;
when “10” => Z <= C ;
when “11” => Z <= D ;

end case ;
. . .
end process ;

Is this sufficient for
std_logic?

Case statements are preferable for
LUT architectures given that most
synthesis tools will produce a mux,
or similarly minimal logic level
structure

process (A, B, C, D, Sel)
begin
If (Sel <=3) then

Z <= A ;
elsif (Sel <= 5) then

D

C

Relational Operator

Overlapping ConditionsOverlapping Conditions
If condition overlap, then if/else if statement is
necessary

Flow Control Statements 6-8

elsif (Sel 5) then
Z <= B ;

elsif (Sel <= 7) then
Z <= C ;

elsif (Sel <= 9) then
Z <= D ;

end if;
end process ;

B

A
Z

‘Assignment’ Operator

process (…)
begin
if (x = 12 to 14) then sequential statements ;
. . .

Specifying RangesSpecifying Ranges
If a range is to specified as a condition of a case or
if/else statement, it must be of a discrete type

Flow Control Statements 6-9

case (selector expression) is
when 0 to 7 => sequential statements ;
when 4.3 to 7.7 => sequential statements ;
when “1000” | “1010” => sequential statements ;
when “1000” to “1010” => sequential statements ;
. . .
end process ;

A conditional signal assignment is effectively a concurrent
form of the if / else statement

architecture ...
begin

process (A,B, Sel)
begin

if (Sel = ‘1’) then
Z <= A;

l

architecture ...
begin

Z <= A when Sel = ‘1’

Conditional Signal AssignmentConditional Signal Assignment

Flow Control Statements 6-10

Both statements produce the same results in simulation
and synthesis. However, the latter does make the code
less verbose

else
Z <= B;

end if ;
end process ;

end architecture ;

Z <= A when Sel = 1
else B ;

end architecture ;

architecture ...
b i hit t

Selected Signal AssignmentSelected Signal Assignment
A selected signal assignment is effectively a concurrent
form of the case statement
The same rules exist as for the case statement:
(1) All conditions must be specified
(2) No conditions may overlap

Flow Control Statements 6-11

begin
process (A,B, Sel)
begin

case (Sel) is
when ‘1’ => Z <= A ;
when ‘0’ => Z <= B ;

end case ;
end process ;

end architecture ;

architecture...
with Sel select

Z <= A when ‘1’,
B when ‘0’ ;

end architecture ;

process
variable COUNT : integer := 0;

begin
for index in 0 to 15 loop

The loop variable ‘index’ is
not declared and is not

Loop StatementsLoop Statements
Loop statements can be constructed for any repetitive
operation. There are different forms, each having a
different method of control. We shall examine the “for
loop”

Flow Control Statements 6-12

for index in 0 to 15 loop
COUNT := COUNT + 1 ;

end loop ;

visible outside the loop. It
is treated as a constant

With each loop iteration, it
successively assumes the
discrete values indicated
in the range

process (A, B_bus)
begin
for I in 7 downto 0 loop

C_bus (I) <= A and B_bus (I) ;
end loop ;

process (A, B_bus)
begin
for I in 7 downto 0 loop

C_bus (I) <= A and B_bus (I) ;
end loop ;

A
C bus (0)

Using Loop StatementsUsing Loop Statements

For synthesis, a loop is
“unrolled” or logic resulting
from each loop iteration is
synthesized
For execution (simulation),

Flow Control Statements 6-13

A

B_bus (0)
A

..

.
B_bus (1)

B_bus (7)

_ ()

C_bus (1)

C_bus (7)

(),
loop statements provide a
very flexible tool for
behavioral modeling
Loop statements are also
used extensively in
subprograms (functions
and procedures)

type User_Cond is (Rst, Wait, Jump, Fetch, Load) ;
Op_State : User_Cond ;
. . .
process (…)
begin

Bonus:

As presently

Review QuestionsReview Questions
In the notes section of your handout, write the
corresponding case statement for the following
if / elsif expression, and complete the sensitivity list

Flow Control Statements 6-14

begin
If Op_State = Rst then

Q_Out <= “0000” ;
elsif (Op_State = Jump) then

Q_Out <= Data_Addr ;
elsif (Op_State = Load) then

D_Reg <= Data_Stored ;
else D_Reg <= New_Data ;

end if ;
end process ;

p y
written, both the
case and if/else will
produce unwanted
additional logic,
what is it and how
can it be avoided?

type User_Cond is (Rst, Wait, Jump, Fetch, Load) ;
Op_State : User_Cond ;
. . .
process (Op_state, Data_Addr, Data_Stored, New_Data)

begin
case (Op_State) is

when Rst => Sig1 <= “0000” ;
when Jump => Sig1 <= Data_Addr ;
when Load => Sig2 <= Data_Stored ;
when others => Sig2 <= New_Data ;

Sensitivity
determined by

which signals are
read within the

process

AnswersAnswers

Flow Control Statements 6-15

end case ;
end process ;

Both Sig1 and Sig2 are not covered in each branch of the conditional
statement; this produces a latch on both outputs. The default
assignment to Sig2 does not prevent this because if an earlier branch
condition is true, the later branch is never reached
Solution: Either cover both signals in each branch, or create separate
processes for each output

