
Operators & ExpressionsOperators & Expressions

Operators & Expressions 4-1

Introductory VHDL MethodologyIntroductory VHDL Methodology

ObjectivesObjectives

Write standard VHDL expressions
Infer logic and functionality using VHDL operators
Apply appropriate operators to each data-type
Reference appropriate packages for arithmetic

After completing this module, you will be able to…

Operators & Expressions 4-2

Reference appropriate packages for arithmetic
functions
Use VHDL ‘slice’ to reference sub-bus structures
Use VHDL ‘concatenation’ operator

OperatorsOperators
Logical Operator

and, or, nand, nor, xor, xnor
Relational Operator

=, /=, <, <=, >, >=
Shifting Operator

sll, srl, sra, rol, ror
Adding Operator

Operators & Expressions 4-3

Adding Operator
+, -, &

Sign Operator
+, -

Multiplying Operator
*, /, mod, rem

Miscellaneous Operator
* *, abs, not

and
or

Logical operators are pre-defined for data-types bit,
boolean and 1 dimensional arrays of bits

Z
B

A

F

Logical OperatorsLogical Operators

Operators & Expressions 4-4

nand
nor
xor
not
xnor (VHDL-93)Y <= G or (F and H) ;

Z <= A and B ;
H

G
Y

signal A_vec, B_vec, C_vec : bit_vector (7 downto 0) ;

B_vec (7)
A_vec (7)

C_vec (7)

B vec (6)
A_vec (6)

C_vec (6)
C_vec <= A_vec and B_vec ;

Logical Operations on ArraysLogical Operations on Arrays

Operators & Expressions 4-5

Rules for use on Arrays
1. Arrays must be the same type
2. Arrays must have the same length
3. Operation applied to positional
elements within array, left to right

B_vec (6)
_ ()

B_vec (5)
A_vec (5)

C_vec (5)

B_vec (0)
A_vec (0)

C_vec (0)

.

.

.

= Equality
/= Inequality
< Less than

L th l

Relational operators are pre-defined for most data-types

All Relational operations return type Boolean

signal FLAG_BIT : boolean ;
signal A, B : integer ;

Relational OperatorsRelational Operators

Operators & Expressions 4-6

<= Less than or equal
> Greater than
>= Greater than or equal

FLAG_BIT <= (A > B) ;

If A is greater than B, FLAG_BIT will be assigned true, otherwise false

Rules for use on Arrays
1. Arrays must be same type
2. Arrays may be different lengths
3. Arrays of different lengths are aligned left and
then lexically compared. (used primarily for
comparing character strings, not recommended

signal A_vec : bit_vector (7 downto 0) := “11000110” ;
signal B_vec : bit_vector (5 downto 0) := “111001” ;

Relational Operations on ArraysRelational Operations on Arrays

Operators & Expressions 4-7

comparing character strings, not recommended
for arrays that indirectly represent binary data) if (A_vec > B_vec) then

State <= Normal
else
State <= Code_Red
end if ...

In the above example, the operation will return false since the two arrays are first left
aligned, and then compared. There is no pre-defined binary or numerical inference

As a Rule, ALWAYS insure that the arrays are the same size

+ Addition
- Subtraction

signal A_num, B_num : integer range 0 to 15 ;
signal Z_num : integer range 0 to 31 ;

ArithmeticArithmetic
Arithmetic operators are pre-defined for data-types integer,
real and physical
They are not pre-defined for Arrays

Operators & Expressions 4-8

- Subtraction
* Multiplication
/ Division
abs Absolute Value
** Exponentiation

Z_num <= (A_num + B_num) ;

+ Z_num

A_num

B_num
Infers a 5 bit adder..

To accomplish arithmetic operations on arrays- in effect treating
them as binary or numerical representations, requires functions
(sub-programs) supplied by the IEEE or the tool vendor

package NUMERIC_STD is
function “+” (A,B: bit_vector) return bit_vector ;
function “+” (A: bit_vector, B: integer) return bit_vector ;
function “-” (A,B: bit_vector) return bit_vector ;

. . . .

library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.numeric_std.all ;

Arithmetic of ArraysArithmetic of Arrays

Operators & Expressions 4-9

The package numeric_std is an IEEE standard library and will
provide maximum code portability
The operator “+” is overloaded in that it refers to a different
function call, based on the left and right operand, and the return
parameter in the function declaration. Such functions will
normally be included in so-called “arithmetic packages”. The
package may require compilation into the work library. Some tools
pre-compile these packages into their own internal library

signal A_vec : std_logic_vector (7 downto 0) := “11001001” ;
signal B_vec : std_logic_vector (7 downto 0) := “11100100 ” ;
signal Z_vec : std_logic_vector (8 downto 0) ;

i l D i t i t (0 t 9)

Array Arithmetic Array Arithmetic
If the necessary functions are available and made
visible within the module , (via the “use” clause) the
compiler will automatically pass the arguments to the
sub-program, and return the result

Operators & Expressions 4-10

signal D_int : integer range (0 to 9) ;

Z_vec <= A_vec + D_int ;

Z_vec <= A_vec + B_vec ;

Otherwise the compiler would inform you that the expressions below are
undefined

signal A_vec, B_vec : std_logic_vector (7 downto 0) ;
signal Z_vec : std_logic_vector (15 downto 0) ;
signal A_bit, B_bit, C_bit, D_bit : std_logic ;
signal X_vec : std_logic_vector (2 downto 0) ;
signal Y_vec : std_logic_vector (8 downto 0) ;

ConcatenationConcatenation
The Concatenation operator (&) allows flexible
grouping of scalars and arrays into larger arrays.

Operators & Expressions 4-11

Z_vec <= A_vec & B_vec ;

X_vec <= A_bit & B_bit & C_bit ;

Y_vec <= B_vec & D_bit ;

This type of assignment uses positional association

Z <= A + B + C + D ; Z <= (A + B) + (C + D) ;

A A
+ +

Grouping OperatorsGrouping Operators
Grouping operators in a given expression can help to
guide some aspects of logic synthesis while
enhancing the readability of the code

Operators & Expressions 4-12

B
C D Z

3 logic levels

D

Z
B
C

2 logic levels

This is especially important when the target technology is LUT (Look-Up
Table) based. Each added level of logic incurs additional block and routing
delays

+++
+

+

+

signal A_vec, B_vec : std_logic_vector (7 downto 0) ;
signal Z_vec : std_logic_vector (15 downto 0) ;
signal A_bit, B_bit, C_bit, D_bit : std_logic ;

Z (15 d t 8) < A

Array SlicesArray Slices
Any group of contiguous elements within an array can
be referenced as a slice. The remaining elements are
unaffected by the assignment

Operators & Expressions 4-13

Z_vec (15 downto 8) <= A_vec ;
B_vec <= Z_vec (12 downto 5) ;
A_vec (1 downto 0) <= C_bit & D_bit ;

. . .
Z_vec (5 downto 1) <= B_vec (1 to 5) ;

The direction (ascending or descending) of the slice
must be consistent with the direction of the array as
originally declared

Review QuestionsReview Questions

signal A_Bus, B_Bus: std_logic_vector (7 downto 0) ;
signal Data_Word : std_logic_vector (15 downto 0) ;

i l A Bit B Bit C Bit td l i

Given:

What are the rules for logical operations on arrays?

What are the rules for relational operations on arrays?

Operators & Expressions 4-14

Which of the following are permissible in VHDL, and why ?

A_Bus < = B_Bus & C_bit ;
Data_Word <= A_Bus & B_Bus;
Data_Word (8 downto 0) <= A_Bus & B_Bit ;
Data_Word (4 downto 0) <= A_Bus (0 to 3) & A_Bit ;
A_Bit & B_Bit <= Data_Word(2) & Data_Word(7) ;

signal A_Bit, B_Bit, C_Bit : std_logic ;

What are the rules for logical operations on arrays?
—Size & type must match, operation applied to matching

elements (left to right)
What are the rules for relational operations on arrays?
—Type must match, if size is different, arrays are left aligned

then lexically compared

AnswersAnswers

Operators & Expressions 4-15

Which of the following are permissible in VHDL, and why ?

A_Bus < = B_Bus & C_bit ; BAD, size mismatch, type OK
Data_Word <= A_Bus & B_Bus; OK, size and type match
Data_Word (8 downto 0) <= A_Bus & B_Bit ; OK, size and type match
Data_Word (4 downto 0) <= A_Bus (0 to 3) & A_Bit ; BAD, null slice on ‘A_Bus’

A_Bit & B_Bit <= Data_Word(2) & Data_Word(7) ; OK, size and type match

SummarySummary

Not all VHDL operators are defined for each data type
Arithmetic operations on arrays require sub-programs
All relational operations return type boolean
Logical operations on arrays are performed on
matching elements within the arrays

Operators & Expressions 4-16

g y
Grouping operators helps guide logic synthesis
Contiguous groups of elements within an array can
be treated as a slice

