Signals & Data-Types

Introductory VHDL Methodology

Signals & DataTypes 3.1

Objectives

After completing this module, you will be able to...

+ Declare ports and signals using appropriate data-types
+ Define all possible values for each data-type

+ Declare ‘array’ for composite data-types

+ Assign to ‘array’ or ‘scalar’ object

+ Create and use ‘enumerated’ data-types

Signals & DataTypes 3.2

Data-Types

+ Data-types are very important in VHDL. A given data-
type allows only values within its range to be
applied. Each object (signal, variable, constant) or
port must have its type defined when declared

+ VHDL is considered to be a strongly typed language.
Connected signals must be of the same type

+ The wide range of data-types available provides both
flexibility in hardware modeling and built-in error
checking to ensure signal compatibility in large and
complex models. This checking exists for behavioral
simulation, not RTL/gate level implementation

Signals & DataTypes 3.3

Signals & Data-Types 3.4

Standard Data Types
in package STANDARD

Range of Values

Integer -2,147,483,647 to +2,147,483,647
Real -1.0E+38to +1.0E+38
Boolean (TRUE, FALSE)
Character Defined in package STANDARD
Bit ‘0,1
Bit_vector Array with each element of type bit
Time Fs, ps, ns, us, ms, sec, min, hr
String Array with each element of type character
Natural 0 to the maximum integer value in the implementation
Positive 1 to the maximum integer value in the implementation

Signals & DataTypes 35

Signals & Ports

signal abus, bbus : bit_vector (3 downto 0);
signal int_a, int_b : integer;
signal real_a, real_b : real;

begin
abus <= bbus; ‘/
abus <=int_a; x
real_a <=real_b; 4

int_b <=real_b; x

+ Data-types must match on signal assignments

Signals & DataTypes 3.6

Scalar Data-Types

+ Scalar data-types are single values
—In VHDL, this class includes:
- Bit
— Boolean
- Integer
— Real
— Physical
— Character
— Std_logic (Std_ulogic’

— Enumerated

Signals & Data Types 3.7

Integer & Real

signal A:integer range Oto7;

e integer isrange.. ..
e 9 9 signal B :integer range 15 downto O ;

Type integer allows for flexible, readily intuitive quantities and values in our
models. Itis essential to specify the range of any object of type integer,
otherwise the language requires that synthesis tools generate a minimum 32
bit implementation

type real isrange ... |type CAPACITY isrange -25.0t025.0;

signal Sig_1: CAPACITY :=3.0;

Type real allows us to utilize floating point values and operations in our
models. Since the range of real numbers is unlimited, we declare our type
with the intended range of real values (Real Values are not synthesizable)

Signals & DataTypes 39

Std_logic (Std_ulogic)

+ Type Std_logic was developed from the MVL (Multi-Value Logic)
system and provides for more detailed hardware modeling

+ It supports different signal strengths, don't-care conditions and
bussed structures with tri-state drivers

+ (Defined in package std_logic_1164)

type std_ulogic is (‘U’; - Uninitialized

X Forcing Unknown
Forcing Zero
Forcing One
High Impedance
- Weak Unknown

-- Weak Zero Note: type bit is
- Weak One limited to (0", ‘1").
-- Don’t Care)

Signals & DataTypes 311

Bit & Boolean

architecture BEHAVE of MUX is
signal A,B,Sel, Z: bit ;
begin
if Sel="1" then
Z<=A;

type bitis (‘0’,‘1"); elsez<:a;

endif ...

Type bit is helpful and concise for modeling hardware, but does
not provide for high-impedance, unknown, don’t care, etc.

if Sel if F
type boolean is (false, true); | bothyield boolean result

Type boolean is useful for modeling at the more abstract level.
All relational operations return a value of type boolean

Signals & DataTypes 3.8

Physical

+ Physical types are used to quantify real world physical
concepts and amounts, such as mass, length, time, etc

+ A physical type must be defined in terms of its primary
unit, any secondary units must be multiples of the

primary

WPe time is range Time is a pre-defined physical type in
units VHDL, itis important in our models
fs; for cell delays and other time based
ps = 1000 fs: parameters

ns = 1000 ps; constant Tpd : time := 3ns;

us = 1000 ns; .

ms = 1000 us; Z<=Aafter Tpd ;

Signals & DataTypes 310

Std_logic Vs. Std_ulogic

+ Both Std_logic and Std_ulogic contain the same set of same
possible values. The difference is in implementation, the u in ulogic
means unresolved

+ If we are using std_logic, and we wish to drive two or more signals
to a common output, we may write a resolution function to indicate
which driver is actually applied to the output

+ Std_ulogic offers no such capability, but does provide a built-in
means of error checking for inadvertent wire-o-ring of outputs

signal A,B,C,Res_Out: std_logic ;
signal Out_1 : std_ulogic ;

Out_1<= Res_Out <=
out_1 Res_Out <=

Out:l <= Res_Out<=C;

A A
. E_ou'_l . 3 oo
C C

Signals & DataTypes 312

Std_logic Vs. Std_ulogic

signal a, b, z : std_ulogic;

signal abus : std_ulogic_vector , (3 downto 0);
signal res_z: std_logic;

signal res_zbus : std_logic_vector , (3 downto 0);

begin
z<=g; v res_z <=a; v
= a; v
res_z<=a; res_z <=b; v
a<=res_z; x
res_zbus <= abus; v zZ<=a x
abus <= res_zbus; x z<=b; x
Signals & Daa Types 313
Enumerated

+ Enumerated types offer perhaps the most flexibility in abstract
hardware modeling. User defined enumerated types allow values
that are immediately recognizable and intuitively relevant to the
operation of the model

+ This capability makes our code more readable when describing
state machines and complex systems

type My_Stateis (RST, LOAD, FETCH, WAIT, SHIFT) ;

signal STATE, NEXT_STATE : My_State ;

case (STATE) is

when LOAD =>...

if COND_A and COND_B then
NEXT_STATE <= FETCH;

else NEXT_STATE <= WAIT;

Signals & DataTypes 315

Arrays

+ Arrays are groups of elements, all of the same type!

| type WORD is array (3 downto 0) of std_logic ; |

signal B_bus: WORD ;

B_bus
What are the
possible
values for — > 1

each element

fh - index position
of the array?

signal B_bus: DATA;

type DATAIs array (3 downto 0) of integer range Oto 9 ;]

+ Remember to specify the integer range, to limit width of
synthesized module

Signals & Data-Types 317

Signal Resolution

+ A single output may not have multiple drivers, to model
abussed (tri-state) output, use a conditional signal
assignment and data_type std_logic

|signa| A,B,C,Res_Out : std_logic ; |

Res_Out <= Awhen EnO = ‘1" else ‘Z’;
Res_Out <= B when Enl =1’ else ‘Z
Res_Out <= C when En2 = ‘1"else ‘'Z';

EnO

A
Enl

B Res_Out
En2

C

Signals & Data-Types 314

Composite Data-Types

+ Composite Data_types are groups of elements in the
form of an array or record

— (Bit_vector and Std_logic_vector are pre-defined composite
types)

‘ signal A_word : bit_vector (3 downto 0):= “0011" ; ‘

+ This represents four bit elements grouped together
into an array. However, there is no pre-defined LSB or
MSB interpretation, therefore this would not be read
as 3,‘3,o0r"“3"

Signals & DataTypes 316

Array Assignments

+ When assigning arrays, the following rules apply
1. The arrays must be the same type
2. The arrays must be the same length
3. The assignment is positional, from left to right!

signal My_BusA, My_BusB: bit_vector (3 downto0);
signal My_BusC : bit_vector (0to3);

My_BusA
3 2 1 O My_BusB<=My_BusA; 3 2 1 0

My_BusC <= My_BusA ;
3 2 1 0 0 1 2 3
My_BusB Inadvertent bit-swap? My_BusC

Signals & DataTypes 318

Records

type OPCODE is record

PARITY : bit;

ADDRESS : std_logic_vector (0to 3);
DATA_BYTE : std_logic_vector (7 downto 0);

NUM_VALUE : integer range O to 6; Records are groups of
STOP_BITS : bit_vector (1 downto 0); e!emenis, that may be of
end record ; different types

signal TX_PACKET, RX_PACKET : OPCODE;

[L[TT]]

PARITY[«———ADDRESS— <+——— DATA_BYTE —* [+—NUM_VALUE| STOP_BITS

TX_PACKET

Signals & DataTypes 319

Aggregates

+ Aggregates are a convenient means of grouping both
scalar and composite data-types for assignment

signal H_BYTE, L_BYTE: std_logic_vector (7 downto 0);
signal DATA : std_logic_vector (15 downto 0);

signal A, B, C,D : std_logic;

signal WORD : std_logic_vector (3 downto 0);

signal TX_PACKET, RX_PACKET : OPCODE;

(H_BYTE, L_BYTE) <= DATA;
TX_PACKET <=(‘1',“0011", “11101010",5, “ 10") ;
WORD <=(2=>‘1",3=>D, Others =>‘0") ;
DATA <= (Others =>‘1");
WORD <= (A, B,C,D);
TX_PACKET. ADDRESS <= (“0011");

The total number of elements on both sides of any assignment must match, “Others”
can be used as a default assignment, regardless of the array size

Signals & Data-Types 3.20

Review Questions
Given:

signal A_Bus, B_Bus: std_logic_vector (7 downto 0) ;
signal Data_Word : std_logic_vector (15 downto 0) ;
signal A, B, C, D, : std_logic ;

signal Nibble : std_logic_vector (3 downto 0) ;

type My_Stateis (S1, S2, S3, S4) ;

signal State, Next_State : My_State ;

signal D_Bus, E_Bus : bit_vector (0to 7) ;

Which of the following are permissible in VHDL, and
why?

A_Bus <= B_Bus;

Data_Word <= A_Bus ;

Nibble <= (A,B,C,1);

State <= “0011" ;

B_Bus <= (7=>A, 5=>B, 3=>C, Others =>'1");
Next_State <= (S1, S2) ;

Data_Word <= (Nibble, Nibble, A_Bus) ;
A_Bus <=E_Bus;

Signals & DataTypes 321

Answers

Given:

signal A_Bus, B_Bus: std_logic_vector (7 downto 0) ;
signal Data_Word : std_logic_vector (15 downto 0) ;
signal A, B, C, D, : std_logic ;

signal Nibble : std_logic_vector (3 downto 0) ;

type My_State is (S1, S2, S3, S4) ;

signal State, Next_State : My_State ;

signal D_Bus, E_Bus : bit_vector (0to 7) ;

Which of the following are permissible in VHDL, and
why?

A_Bus <= B_Bus; OK, size and type are the same

Data_Word <= A_Bus ; BAD, size mismatch, although type matches

Nibble <= (A, B,C,1); BAD, the 1 without single quotes is read as integer
State <= “0011" ; BAD, only the literals of the type ‘My_State’ are valid
B_Bus <= (7=>A, 5=>B, 3=>C, Others =>‘1"); OK, size and type match
Next_State <= (S1, S2) ; BAD, single target can only have one value
Data_Word <= (Nibble, Nibble, A_Bus) ; OK, size and type match
A_Bus <=E_Bus; BAD, type mismatch, although size matches

Signals & DataTypes 322

Summary

+ Each object and port must have its type defined

+ VHDL provides scalar and composite data-types

.

Enumerated types can be used to enhance code
readability

-

Aggregates assignments can be made for arrays and
records

+ Types on connecting signals must match

Signals & DataTypes 323

