
Signals & DataSignals & Data--TypesTypes

Signals & Data-Types 3-1

Introductory Introductory VHDL MethodologyVHDL Methodology

After completing this module, you will be able to…

ObjectivesObjectives

Declare ports and signals using appropriate data-types
Define all possible values for each data-type
Declare ‘array’ for composite data-types
Assign to ‘array’ or ‘scalar’ object

Signals & Data-Types 3-2

Assign to array or scalar object
Create and use ‘enumerated’ data-types

DataData--TypesTypes
Data-types are very important in VHDL. A given data-
type allows only values within its range to be
applied. Each object (signal, variable, constant) or
port must have its type defined when declared

VHDL is considered to be a strongly typed language.
C t d i l t b f th t

Signals & Data-Types 3-3

Connected signals must be of the same type

The wide range of data-types available provides both
flexibility in hardware modeling and built-in error
checking to ensure signal compatibility in large and
complex models. This checking exists for behavioral
simulation, not RTL/gate level implementation

Data Types

Scalar

Integer

Real

Boolean

Array

Bit_vector

String

Std logic vector &

Enumerated

User define

Type

Composite

Array

Array of array

Record

Signals & Data-Types 3-4

Bit

Bit_vector

Physical

Natural

Positive

Std_logic & Std_ulogic

_ g _
Std_ulogic_vector Record

Standard Data Types Standard Data Types
in package STANDARDin package STANDARD

Type Range of Values
Integer -2,147,483,647 to +2,147,483,647
Real -1.0E+38 to +1.0E+38

Boolean (TRUE, FALSE)
Character Defined in package STANDARD

Signals & Data-Types 3-5

g
Bit ‘0’ , ‘1’

Bit_vector Array with each element of type bit
Time Fs, ps, ns, us, ms, sec, min, hr
String Array with each element of type character

Natural 0 to the maximum integer value in the implementation
Positive 1 to the maximum integer value in the implementation

signal abus , bbus : bit_vector (3 downto 0);
signal int_a, int_b : integer;
signal real_a, real_b : real;
…

begin

abus <= bbus;

Signals & PortsSignals & Ports

Signals & Data-Types 3-6

abus <= int_a;

real_a <= real_b;

int_b <= real_b;

…

Data-types must match on signal assignments

Scalar DataScalar Data--TypesTypes
Scalar data-types are single values
— In VHDL, this class includes:

– Bit
– Boolean
– Integer
– Real

Signals & Data-Types 3-7

– Physical
– Character
– Std_logic (Std_ulogic)
– Enumerated

type bit is (‘0’, ‘1’) ;

Type bit is helpful and concise for modeling hardware but does

architecture BEHAVE of MUX is
signal A,B,Sel, Z : bit ;
begin

if Sel = ‘1’ then
Z <= A ;

else
Z <= B ;

end if . . .

Bit & Boolean Bit & Boolean

Signals & Data-Types 3-8

type boolean is (false, true) ;

Type bit is helpful and concise for modeling hardware, but does
not provide for high-impedance, unknown, don’t care, etc.

Type boolean is useful for modeling at the more abstract level.
All relational operations return a value of type boolean

if Sel =‘1’, if F >= G..

both yield boolean result

Integer & RealInteger & Real
type integer is range . . .

Type integer allows for flexible, readily intuitive quantities and values in our
models. It is essential to specify the range of any object of type integer,
otherwise the language requires that synthesis tools generate a minimum 32
bit implementation

signal A : integer range 0 to 7;
signal B : integer range 15 downto 0 ;

Signals & Data-Types 3-9

type real is range . . .

Type real allows us to utilize floating point values and operations in our
models. Since the range of real numbers is unlimited, we declare our type
with the intended range of real values (Real Values are not synthesizable)

type CAPACITY is range -25.0 to 25.0 ;
signal Sig_1 : CAPACITY := 3.0 ;

t ti i

PhysicalPhysical
Physical types are used to quantify real world physical
concepts and amounts, such as mass, length, time, etc
A physical type must be defined in terms of its primary
unit, any secondary units must be multiples of the
primary

Signals & Data-Types 3-10

Time is a pre-defined physical type in
VHDL, it is important in our models
for cell delays and other time based
parameters

type time is range
units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us; . . .

constant Tpd : time := 3ns ;
. . .
Z <= A after Tpd ;

type std_ulogic is (‘U’ ; -- Uninitialized

Std_logic (Std_ulogic)Std_logic (Std_ulogic)
Type Std_logic was developed from the MVL (Multi-Value Logic)
system and provides for more detailed hardware modeling
It supports different signal strengths, don't-care conditions and
bussed structures with tri-state drivers
(Defined in package std_logic_1164)

Signals & Data-Types 3-11

‘X’ ; -- Forcing Unknown
‘0’ ; -- Forcing Zero
‘1’ ; -- Forcing One
‘Z’ ; -- High Impedance
‘W’ ; -- Weak Unknown
‘L’ ; -- Weak Zero
‘H’ ; -- Weak One
‘ - ‘; -- Don’t Care)

Note: type bit is
limited to (‘0’, ‘1’).

Std_logicStd_logic Vs. Vs. Std_ulogicStd_ulogic
Both Std_logic and Std_ulogic contain the same set of same
possible values. The difference is in implementation, the u in ulogic
means unresolved
If we are using std_logic, and we wish to drive two or more signals
to a common output, we may write a resolution function to indicate
which driver is actually applied to the output
Std_ulogic offers no such capability, but does provide a built-in
means of error checking for inadvertent wire-o-ring of outputs

Signals & Data-Types 3-12

signal A,B,C,Res_Out : std_logic ;
signal Out_1 : std_ulogic ;

Out_1 <= A ;
Out_1 <= B ;
Out_1 <= C ;

C
B

A

Out_1
C

B

A

Res_Out <= A;
Res_Out <= B;
Res_Out <= C;

Res_Out

Std_logicStd_logic Vs. Vs. Std_ulogicStd_ulogic
signal a, b, z : std_ulogic;
signal abus : std_ulogic_vector , (3 downto 0);
signal res_z: std_logic;
signal res_zbus : std_logic_vector , (3 downto 0);

…

begin

z <= a; res < a

Signals & Data-Types 3-13

z <= a;

res_z <= a;

a<= res_z;

res_zbus <= abus;

abus <= res_zbus;
…

res_z <= a;

res_z <= b;

z <= a;

z <= b;

signal A,B,C,Res_Out : std_logic ;

Res_Out <= A when En0 = ‘1’ else ‘Z’ ;
Res Out <= B when En1 = ‘1’ else ‘Z’ ;

Signal ResolutionSignal Resolution
A single output may not have multiple drivers, to model
a bussed (tri-state) output, use a conditional signal
assignment and data_type std_logic

Signals & Data-Types 3-14

C

B

A

Res_Out B when En1 1 else Z ;
Res_Out <= C when En2 = ‘1’ else ‘Z’ ;

Res_Out

En0

En2

En1

type My_State is (RST, LOAD, FETCH, WAIT, SHIFT) ;

EnumeratedEnumerated
Enumerated types offer perhaps the most flexibility in abstract
hardware modeling. User defined enumerated types allow values
that are immediately recognizable and intuitively relevant to the
operation of the model
This capability makes our code more readable when describing
state machines and complex systems

Signals & Data-Types 3-15

yp y_ ()
. . .
signal STATE, NEXT_STATE : My_State ;
. . . case (STATE) is

when LOAD => . . .
if COND_A and COND_B then
NEXT_STATE <= FETCH ;
else NEXT_STATE <= WAIT ;
. . .

signal A_word : bit_vector (3 downto 0) := “0011” ;

Composite DataComposite Data--TypesTypes
Composite Data_types are groups of elements in the
form of an array or record
— (Bit_vector and Std_logic_vector are pre-defined composite

types)

Signals & Data-Types 3-16

This represents four bit elements grouped together
into an array. However, there is no pre-defined LSB or
MSB interpretation, therefore this would not be read
as 3, ‘3’, or “3”

Arrays are groups of elements, all of the same type!

type WORD is array (3 downto 0) of std_logic ;

B_bus
What are the
possible

signal B_bus : WORD ;

ArraysArrays

Signals & Data-Types 3-17

Remember to specify the integer range, to limit width of
synthesized module

index position
0123values for

each element
of the array?

type DATA is array (3 downto 0) of integer range 0 to 9 ;

signal B_bus : DATA ;

signal My_BusA, My_BusB: bit_vector (3 downto 0) ;
signal My_BusC : bit_vector (0 to 3) ;

My BusA My BusA

Array AssignmentsArray Assignments
When assigning arrays, the following rules apply
1. The arrays must be the same type
2. The arrays must be the same length
3. The assignment is positional, from left to right!

Signals & Data-Types 3-18

3 012

3 012

My_BusA

My_BusB

My_BusB <= My_BusA ;
My_BusA

3 012

0 321
My_BusCInadvertent bit-swap?

My_BusC <= My_BusA ;

Records are groups of
elements, that may be of
different types

type OPCODE is record
PARITY : bit;
ADDRESS : std_logic_vector (0 to 3);
DATA_BYTE : std_logic_vector (7 downto 0);
NUM_VALUE : integer range 0 to 6;
STOP_BITS : bit_vector (1 downto 0);
end record ;
. . .
signal TX PACKET RX PACKET : OPCODE;

RecordsRecords

Signals & Data-Types 3-19

signal TX_PACKET, RX_PACKET : OPCODE;

PARITY ADDRESS DATA_BYTE NUM_VALUE STOP_BITS

. . .

T X _ P A C K E T

signal H_BYTE, L_BYTE: std_logic_vector (7 downto 0);
signal DATA : std_logic_vector (15 downto 0);
signal A, B, C, D : std_logic;
signal WORD : std_logic_vector (3 downto 0);
signal TX_PACKET, RX_PACKET : OPCODE;

(H_BYTE, L_BYTE) <= DATA ;

AggregatesAggregates
Aggregates are a convenient means of grouping both
scalar and composite data-types for assignment

Signals & Data-Types 3-20

WORD <= (A, B, C, D) ;
DATA <= (Others => ‘1’) ;

WORD <= (2 => ‘1’, 3 => D, Others => ‘0’) ;

The total number of elements on both sides of any assignment must match, “Others”
can be used as a default assignment, regardless of the array size

TX_PACKET <= (‘1’, “0011”, “11101010”,5, “ 10”) ;

TX_PACKET. ADDRESS <= (“0011”) ;

Which of the following are permissible in VHDL, and

signal A_Bus, B_Bus: std_logic_vector (7 downto 0) ;
signal Data_Word : std_logic_vector (15 downto 0) ;
signal A, B, C, D, : std_logic ;
signal Nibble : std_logic_vector (3 downto 0) ;
type My_State is (S1, S2, S3, S4) ;
signal State, Next_State : My_State ;
signal D_Bus, E_Bus : bit_vector (0 to 7) ;

Given:
Review QuestionsReview Questions

Signals & Data-Types 3-21

Which of the following are permissible in VHDL, and
why? A_Bus <= B_Bus ;

Data_Word <= A_Bus ;
Nibble <= (A, B, C, 1) ;
State <= “0011” ;
B_Bus <= (7=>A, 5=>B, 3=>C, Others => ‘1’) ;
Next_State <= (S1, S2) ;
Data_Word <= (Nibble, Nibble, A_Bus) ;
A_Bus <= E_Bus ;

signal A_Bus, B_Bus: std_logic_vector (7 downto 0) ;
signal Data_Word : std_logic_vector (15 downto 0) ;
signal A, B, C, D, : std_logic ;
signal Nibble : std_logic_vector (3 downto 0) ;
type My_State is (S1, S2, S3, S4) ;
signal State, Next_State : My_State ;
signal D_Bus, E_Bus : bit_vector (0 to 7) ;

Which of the following are permissible in VHDL, and

Given:
AnswersAnswers

Signals & Data-Types 3-22

A_Bus <= B_Bus ; OK, size and type are the same
Data_Word <= A_Bus ; BAD, size mismatch, although type matches
Nibble <= (A, B, C, 1) ; BAD, the 1 without single quotes is read as integer
State <= “0011” ; BAD, only the literals of the type ‘My_State’ are valid
B_Bus <= (7=>A, 5=>B, 3=>C, Others => ‘1’) ; OK, size and type match
Next_State <= (S1, S2) ; BAD, single target can only have one value
Data_Word <= (Nibble, Nibble, A_Bus) ; OK, size and type match
A_Bus <= E_Bus ; BAD, type mismatch, although size matches

why?

SummarySummary
Each object and port must have its type defined

VHDL provides scalar and composite data-types

Enumerated types can be used to enhance code
readability

Signals & Data-Types 3-23

eadab ty

Aggregates assignments can be made for arrays and
records

Types on connecting signals must match

