
Language ConceptsLanguage Concepts

Language Concepts 2-1

Introductory VHDL MethodologyIntroductory VHDL Methodology

After completing this module, you will be able to…

ObjectivesObjectives

State the VHDL design units
Write VHDL ‘entity’ & ‘architecture’ description
Build hierarchical units using instantiation
State the four stages of compilation

Language Concepts 2-2

Instantiate library macro using component declaration
Insert comments in VHDL code
Define a VHDL process
Differentiate concurrent and sequential statements

Z < A + B ;

component
ADSU8
port (

Inference Vs. InstantiationInference Vs. Instantiation
Given that synthesis and implementation are implicitly
tool and technology dependent, occasionally the need
to trade-off maximum code portability against design
optimal implementation within a target technology
must be considered

Language Concepts 2-3

Z <= A + B ;
The “+” operator
infers that a generic
Adder be built,
without consideration
of device level
optimization

Code portability is
maintained

port (…
...end component
This is in effect a direct
call to the Xilinx library
macro ADSU8. It is an 8-
bit add/subtract library
macro instantiation

Device optimization
is achieved

VHDL is composed of design
units. These consist of
primary, and any dependent

VHDL Design UnitsVHDL Design Units

Design Units

Entity

Architecture

Process

Language Concepts 2-4

secondary units
Configuration

Package

Library

The entity describes the external interface to the design
unit, along with attributes relating to the interface

entity Half_Add is

port (A, B : in std_logic ;

Carry Sum : out std logic) ;

EntityEntity

Language Concepts 2-5

Carry, Sum : out std_logic) ;

end Half_Add ; A

Carry

Sum

B

architecture My_Arch of Half_Add is Note: VHDL’93

ArchitectureArchitecture
The architecture describes the internal operation of its
associated entity. Multiple architectures can exist for
each entity, each describing one possible
implementation

Language Concepts 2-6

y_ _

begin

Sum <= A xor B ;

Carry <= A and B ;

end architecture My_Arch ;

Allows for the optional
reserved word entity
or architecture after
the reserved word end
in their respective
declarations

Example: Example: 2 2 to to 4 4 DecoderDecoder
Input Output

A1 A0 D3 D2 D1 D0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Language Concepts 2-7

A0A1D3
A0A1D2

A0A1D1

A0A1D0

•=
•=

•=

•=

Example: Example: 2 2 to to 4 4 Decoder (cont.)Decoder (cont.)
entity Decoder2to4 is

port (A0, A1 : in bit;

D0, D1, D2, D3 : out bit);

end Decoder2to4;

Language Concepts 2-8

Example: Example: 2 2 to to 4 4 Decoder (cont.)Decoder (cont.)
architecture Decoder2to4 is

begin D0 <= (not A1) and (not A0);

D1 <= (not A1) and A0;

D2 <= A1 and (not A0);

D3 <= A1 and A0;

Language Concepts 2-9

end Decoder2to4;

architecture RTL of DFF is
begin
. . .
process (Clock, Reset)
begin
if (Reset = ‘1’) then
Q <= ‘0’;
elsif (Clock’event and Clock = ‘1’)

th

ProcessProcess
The process contains
sequential statements
--that is, actions to be
executed in sequence

Each process has a
means of being

Language Concepts 2-10

then
Q <= D ;

end if ;
end process ;
. . .
end RTL;

means of being
triggered, either by
changes on signals
into the process, or
specific conditions
implied in the wait
statement

architecture RTL of DFF is
begin

process (Clock, Reset)
begin

If (Reset = ‘1’) then
Q <= ‘0’ ;

elsif (Clock’event and Clock = ‘1’) then
Q <= D ;
end if ;
d

D Q

Example: DFFExample: DFF

Language Concepts 2-11

entity DFF is
port (D, Clock : in std_logic ;

Reset : in std_logic ;
Q : out std_logic) ;

end entity DFF ;

end process ;
end architecture RTL ;

Clock
Reset

architecture Structural of REG_4 is

component DFF
port (D, Clock : in std_logic ;

Reset : in std_logic;
Q : out std_logic) ;

end component ;

begin
U3 : DFF port map (D in(3) Clk Rst Q out(3));

D_in(3)

D_in(2)

D_in(1)

Q_out(3)

Q_out(2)

Q_out(1)

DFF

DFF

DFF

U3

U1

U2

REG_4

Hierarchical RepresentationHierarchical Representation

Language Concepts 2-12

entity REG_4 is
port (D_in : in std_logic_vector (3 downto 0);

Clk, Rst : in std_logic;
Q_out : out std_logic_vector (3 downto 0)):

end REG_4;

U3 : DFF port map (D_in(3), Clk, Rst, Q_out(3));
U2 : DFF port map (D_in(2), Clk, Rst, Q_out(2));
U1 : DFF port map (D_in(1), Clk, Rst, Q_out(1));
U0 : DFF port map (D_in(0), Clk, Rst, Q_out(0));
end Structural; Clk

Rst

D_in(0) Q_out(0)DFF
U0

U1

There are two methods of associating signals with their
respective ports
Positional Association: Signals are listed in strict order of
port listing in declaration
—U1: DFF port map (D_in, Clk, Rst, Q_out) ;

component DFF
port (D Clock : in std logic ;

Signal AssociationSignal Association

Language Concepts 2-13

Named Association: Ports and signals are listed explicitly,
order independent (This is recommended)
—U1: DFF port map (D =>D_in(1), Clock =>Clk, Reset =>Rst,

Q =>Q_out(1)) ;

port (D, Clock : in std_logic ;
Reset : in std_logic ;
Q : out std_logic) ;

end component ;

architecture Structural of Top is

component Sub_A
port (A1,A2,A3 : in std_logic ;

A4 : out std_logic_vector (3 downto 0) ;
end component ;

component Sub B

entity Top is
port (I1, I2 : in std_logic;

01, 02 : out std_logic) ;
end Top ;

Signal DeclarationSignal Declaration
If internal signals are required in the structural
description, they must be explicitly declared

Language Concepts 2-14

p _
port (B1: in std_logic_vector (3 downto 0) ;

B2,B3,B4 : out std_logic ;
end component ;

signal Bus_1 : std_logic_vector (3 downto 0) ;
signal Sig_1: std_logic ;

begin
U0 : Sub_A port map (I1, I2, Sig_1, Bus_1) ;
U1 : Sub_B port map (Bus_1, Sig_1, O1, O2) ;

end Structural ;

Sub_A Sub_B

Top

I1
I2

O1
O2

Sig_1

Bus_1
A1

A2

A4

A3 B4

B3

B2

B1

architecture Xilinx_Struct of REG_4 is
component FDC

port (D : in std_logic ;
Clock, Reset : in std_logic ;
Q : out std_logic) ;

end component ;

Macro/component instantiation
from target library may be helpful
for chip level optimization!
i.e. Xilinx XC4000XL

entity REG_4 is
port (D_in : in std_logic_vector (3 downto 0) ;
Clk, Rst : in std_logic ;
Q_out : out std_logic_vector (3 downto 0)) :

end REG_4 ;

D_in(3) Q_out(3)FDC
U3

Macro InstantiationMacro Instantiation

Language Concepts 2-15

p ;
begin
U3 : FDC port map (D=>D_in(3), Clock=>Clk,
Reset=>Rst, Q=> Q_out(3)) ;

U2 : FDC port map (D=>D_in(2), Clock=>Clk,
Reset=>Rst, Q=> Q_out(2)) ;

U1 : FDC port map (D=>D_in(1), Clock=>Clk,
Reset=>Rst, Q=> Q_out(1)) ;

U0 : FDC port map (D=>D_in(0), Clock=>Clk,
Reset=>Rst, Q=> Q_out(0)) ;

end Xilinx_Struct ;

Clk
Rst

D_in(2)

D_in(1)

D_in(0)

Q_out(2)

Q_out(1)

Q_out(0)FDC

FDC

FDC
U2

U1

U0

G1 G2B
A

Z
Z A d B

Process 1

If Z = ‘1’
then

Process 2

Z

Processes are ConcurrentProcesses are Concurrent
In hardware modeling, the concept of concurrency is
essential, i.e. a logic change on signal Z, the output of the
gate G1 is seen at the input of G2 and G3 in a concurrent and
independent manner

Language Concepts 2-16

G3

Z<=A and B
...

process (Z,..)
begin

Process 3

then
...

Z

package My_Pack is

constant. . .

library IEEE;
use IEEE.std_logic_1164.all ;

PackagePackage
The VHDL design unit package is used to store data
that will be accessed by multiple modules. This
usually includes constants, data_types, sub-types,
sub-program declarations, etc

Language Concepts 2-17

. . .
function. . .
. . .
component . . .
. . .
subtype. . .

end package My_pack ;

. . .
use work.My_Pack.all ;

entity . . .

package My_Pack is

constant. . .

package body My_Pack is

function. . bv_to_integer (BV: bit_v..
declaration

Package BodyPackage Body
The package body is a dependent unit of the package.
It is used to store details of the objects declared in the
package. This includes sub-programs, algorithms, etc

Language Concepts 2-18

. . .
function (bv_to_integer..
. . .
component . . .
. . .
subtype. . .

end My_Pack ;

return integer is
variable …

begin
for index in BV'range loop
. . . .

. . .
end My_Pack ;

declaration

details

Design Unit Identifier

LibraryLibrary
Usually referred to as the work library. This is an
actual sub-directory or physical location used to store
all compiled design units
Each simulator or synthesis tool will create such a
structure

Language Concepts 2-19

Design Unit Identifier

entity HALF_ADD
entity DFF
entity REG4
Configuration CFG_REG4
. . .
architecture XILINX
architecture STRUCTURAL

Example
work
library
contents

Compilation Compilation
There are four levels of processing that may take
place for a VHDL hardware model
—Analyzation

– The design unit is checked for syntactic errors. Once finalized, it
is stored in the work directory

—Elaboration
– The design hierarchy is fleshed out (flattened) starting from the

Language Concepts 2-20

top. A unique copy of each sub-module instance is created
—Execution

– The model is simulated in discrete time steps. This is driven
primarily by events on signals that trigger processes

—Synthesis
– A netlist description of the logic is generated in either an

industry standard or vendor specific format

Compilation PathCompilation Path
Entity DFF is
port (D, Clk : in
Reset:: in
Q: out std_logic
. . .
architecture..

Language Concepts 2-21

Analyze

ElaborateExecute Synthesize

Compilation OrderCompilation Order
Because of the primary and secondary design unit
relationship and the ability to instantiate lower level
modules, the compilation process is governed by a
strict dependency order
Entities must be analyzed before corresponding
architectures

Language Concepts 2-22

Packages must be analyzed before dependent
package bodies
Any module before it is referenced by another
(Bottom -> Up)…!

- - Comments begin with two dash characters
The contin e onl till the end of the line < c r >

CommentsComments
Comments can greatly enhance the readability of the
code, provide useful documentation and make the
user’s intent absolutely clear

Language Concepts 2-23

- - They continue only till the end of the line < c r >

- - A comment on multiple lines will require the double
- - dash on each line as shown here

A_OUT <= ‘1’ ; - - Comments can begin anywhere on a line

Review QuestionsReview Questions

Where are sequential statements placed?

What must be done to make the contents of a
package visible within a given declaration?

Language Concepts 2-24

What are the necessary levels of processing for a
VHDL model for simulation? For synthesis?

How would you enter a multi-line comment?

AnswersAnswers
Where are sequential statements placed?
—Within the process

What must be done to make the contents of a package
visible within a given declaration?
—The ‘use’ clause

Language Concepts 2-25

What are the necessary levels of processing for a
VHDL model for simulation? For synthesis?
—Analyzation, Elaboration, Execution…..Synthesis

How would you enter a multi-line comment?
—Double dash ‘--’ on each line

SummarySummary

VHDL is composed of primary and secondary design
units

There is a strict dependency order for compilation

Language Concepts 2-26

VHDL contains concurrent and sequential statements

All analyzed design units are stored in the design or
work library

