‘ Chapter 7
Simplification of
Sequential Circuits
= Tabular Method for State Reduction
m Partitions (OC and SP)

= State Reduction Using Partition
= Choosing a State Assignment

178 220 Digital Logic Design @Department of Computer Engineering KKU.

» If two states are equivalent, we can remove

one of then and have a system with fewer
states.

» Usually, systems with fewer states are less
expensive to implement.

178 220 Digital Logie Design @Department of Computer Engincering KKU.

= Occasionally, we can tell states are equivalent by
just inspecting the state table.

A state table
q q* z

x=0 x=1] x=0 x=1

0
| ——— 0 1 (Back to the example)
A B 0 —
E|l A B| 0 1 q g ‘
x=0 x=1]| x=0 x=1

A [@ B 0 0

B E D 0 0
Reduced state table

c A D 0 1

D A B 0 1

178 220 Digital Logie Design @Department of Computer Engincering KKU.

|Tabu|ar Method for State Reduction

m A technique using a chart with one square for
each possible pairing of states.

» Enter in that square

o @ an X if those states cannot be equivalent
because the outputs are different,

o @ aV if the states are equivalent (because they
have the same output and go to the same state or
to each other for each input), and

o © otherwise the conditions that must be met for
those two states to be equivalent.

178 220 Digital Logic Design @Department of Computer Engineering KKU.

For example (from the previous state table):

In the AB square, in order for states A and B to be equivalent, they
must have the same output for both x=0 and x=1 (which they do) and must
go to equivalent states. Thus C must be equivalent to E and B must be
equivalent to D.

Those squares contain X because states A and B have a 0 output
for x=1 and states C,D and E have a 1 output.

Finally, the DE square contains \/ since both states have the
same output and the next state for each input.

B[CE,BD

cI=><P><]

pI><><] BD

El><><] 8D | V |
A B C D

178 220 Digital Logic Design @Department of Computer Engineering KKU.

moO W

CE,BD

|B
c =<
D
E

Reduced chart
with states

BD crossed out
BD N
A B C D
@
® q q* z
DE{W ° x=0 x=1 [x=0 x=1

o0 w >

>
v
A__B C_ D

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example “a T :

x=0 x=1|x=0 x=1

A
B E G
C C G 0 0
D A C 1 1
E E D 0 0
F A B 0 0

B | EF,BG G E c 1 1

C|BG,CF| CE

D

E|EFBD| DG DG

F N AE,BG | AC,BG AE,BD

G AF

A B C D E F

178 220 Digital Logic Design @Department of Computer Engincering KKU.

| Example (CONT.)

B
C \ CE
D >
E - VDG | VDG
FI - -
G I ><[><] \ AF
A B ¢ D E
q q* z
x=0 x=1|x=0 x=1
A-F A B|O0O o0
B-C-E B DJ|O o0
D-G A Cc |1 1
178 220 Digital Logic Design @Department of Computer Engineering KKU. .
| Partitions

m For a system with 4 states; A, B, C, and D,
the complete list of partition is:
Py = (A(B)C)D) P, = (ABC)D) P; = (AB)CD) Py = (ABD)(C)
P, = (AB)O)D) Ps = (ABD)C) Fo = ACIED) P, = (acD)E)

P, = AQBD) P, = AE)(CD) ° - APXEO P, = ECD)
P, = (AD)B)C) Py = (ABC)D) p, = (ABCD)
-

®

178 220 Digital Logie Design @Department of Computer Engincering KKU.

State assignments for four states

Any partition with two blocks can be used to assign one
of the state variables. Those states in the first block

would be assigned 0 and those in the second block 1
(or vice versa).

P, through P,; meet that requirement.

P, = (AB)(CD)
Pg = (AC)(BD)
Po = (AD)(BC)
Pyp = (ABC)(D)
Pn = (ABD)(C)
P, = (ACD)(B)
P = (A)(BCD)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

An adequate state assignment

P, = (AB)(CD)

Pg = (AC)(BD)

Py = (AD)(BC)
9 9% % 9 % 9 9 &% Q9
A 0 0 A 0 0 Al O 0
B 0 1 B 0 1 B 1 1
C 1 0 C 1 1 c| O 1
D 1 1 D 1 0 D 1 0
P7 PS P7 PQ PS PQ

(@ (b) (c)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

An unsuccessful assignment

= If we try any other pair of two-block partitions, we do
not have an adequate state assignment.
P; =(AB)(CD) Py, = (ABD)(C)
Pg = (AC)(BD) p_, = (ACD)(B)
Py = (AD)(BC) p . = (A)(BCD)
P10 = (ABC)(D)

wl|>|a
o

Identical!

i
:

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Output consistent (OC)

= Another useful class of partitions for which all of the
states in each block have the same output for each of
the inputs.

= P, (=(A)B)(C)(D)) is always OC. g q z
x=0 x=1

P, = (AC) (B) (D) AlcCc A1

|:)5 = (A). (BD) (9 B D B 0

c|lA B|1

Pg = (AC) (BD) ple alo

= Knowing the block of an OC partition and the input is
enough info to determine the output (without having to
know which state within a block).

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Substitution Property (SP) Partition

= For SP partitions, knowing the block of the partition
and the input is enough info to determine the block of
the next state.

q q* z
P\ (=(ABCD)) is always SP since x=0 x=1
all states are in the same block. Al C A1
B|D B|O
*P, (=(A)(B)(C)(D)) is always SP C|A B|1
since knowing the block is the DIB Al oO
same as knowing the state.
P, = (AB) (CD)
P, = (AD) (BC)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

= If & partition other than P, is both SP and OC,
then the system can be reduced to one

having just one state for each block of that
partition.

m That should be obvious since knowing the
input and the block of the partition is all we
need to know to determine the output, since it

is OC, and to determine the next state, since
itis SP).

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Properties of Partitions

= Greater than or equal (2)

P, 2 P, iff all states in the same block of P, are
also in the same block of P.,.

P1o = (ABC)(D) = P, = (AC)(B)(D)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Properties of Partitions (cont.)

= Product

Two states are in the same block of the product
P. iff they are in the same block of poth P, and
P,.

P1,P13 ={(ACD)(B){(A)(BCD)} = (A)(B)(CD) = Py

Pafo =Pyand P,Py =P,

/ AN

Py = (A)(B)(C)(D) Py = (ABCD)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Properties of Partitions (cont.)

= Sum

Two states are in the same block of the sum Py

if they are in the same block of either P, or P,
or both.

P, + P = {(AC)(B)(D)} + {(A)(BD)(C)}
= P, = (AC)(BD)
P, +P,=P,and P, + P, = Py

/ N\
Py = (A)(B)(C)(D) Py = (ABCD)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Finding SP Partitions

= Step 1: dwmsu State udazq w1 SP Partition #
@nhgaivhld states giueglunguidsiiu

- (AB) > = P, =(AB)(C)(D)
g x=0q*x=1 (AC) > (BC), (BC) > ok = P,=(ABC)(D)
Alc b (AD)>V =~ P,=(AD)B)(C)
B|C D (BC)—+ = P,=(A)BC)D)
c|B D (BD)>(AD)>(ABD) = P.=(ABD)(C)

blC A (cp)-@BC), (AD) - P,

Step 1 produces 5 SP partitions.

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Finding SP Partitions (cont.)

m Step 2: wwasamwes SP Partitions Wavuaon
step 1 usiiindu SP Partitions lmidifaiudae

P, + P, = (ABC)(D) = P, not needed S
P, + P; = (ABD)(C) = Py E Thore
P, + P, = (ABC)(D) = P, — | ey
P, + P5 = (ABD)(C) = Pg not needed only
P, + Py =Py not needed requires
P, +P,=(ABC)(D) = P, not needed 3 sums.
P+ Pg= =Py not needed

P, + P, = (ABC)(D) = Pz = (AD)(BC) only one few SP from step 2
P; + P5 = (ABD)(C) = Ps not needed

Pyt Ps= =Py not needed

178 220 Digital Logic Design @Department of Computer Engineering KKU.

Blues are two-block and thus never produce anything new! »

| Example SP-1
(AB) - (CD) = (AB)(CD)=P,
T & (AC) > (AB)—>(CD) = (ABCD)=P,
x=0 x=1 _
W o (AD) > (BO) = (AD)(BC)=P,
B|D B (BC)— (AD) = (AD)(BC) =P,
C A B
ble a (BD)—>(AB) = =Py
(CD) - (AB) = (AB)(CD)=P,

Only step 1! No need for step 2.

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example SP-2 Step 1:

AB)—>(CD)(AD)=(ACD)—(BCE) =P,

(
q a* Z (AC)—(CE) =(ACE)(B)(D) =P,
x=0 x=1 (AD)—>(BC)—(DE) =(ADE)(BC) = P,
Al C D |0 (AE)> V =(AE)(B)(C)(D) = P,
Bl D A [0 (Bc)»(ADE) =P,
ClE D |0 @)Y =(A)BD)(C)(E) = P4
Pl B A1l (BE)(ACD) >(BCE) =Py
EIC DI com@enn @) =P,
(CE) > =(A)(B)(CE)(D) = P4
(DE)—>(BC)(AD) —>(ADE) =P,

Step 1 produces 5 SP partitions.

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example SP-2 (cont.) Step 2:

From step 1:
P,=(ACE)(B)(D)
P,=(ADE)(BC) — 2-block partition (not needed to produce new SP)
P3=(AE)(B)(C)(D)

P,=(A)(BD)(C)(E)
Ps=(A)(B)(CE)(D)
P,+ P,= (ACE)(BD) = P4;— 2-block partition (not needed)
Py+ P,= (AE)(BD)(C) = P,
P+ Pe= (ACE)(B)(D) =P,
P4+ Ps= (A)(BD)(CE) = Py
Now add pairs of these new partitions:
P,+ Pg= (ACE)(BD) =Pq
If there were new partitions of more than 2 blocks — repeat!

From this example, there are 8 nontrivial SP partitions,
of which two are 2-blcok and none are OC.

178 220 Digital Logic Design @Department of Computer Engineering KKU.

State reduction using partitions

Any partition that is both OC and SP can be used to

reduce the system to one with one state for each
block of that partition.

Just as there is always a unique largest SP partition (Py),
there is always a unique largest OC SP partition. That is the
one with the fewest blocks and thus corresponds to the
reduced system with the fewest number of states.

(Itis possible that Py is OC; but that is a combinational system, where the
output does not depend on the state.)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example OC/SP-1

There are 6 SP partitions in this example:

al T |z P, = (AB)(C)(D)
x=0 x=1 P,= (ABC)(D)
AlC D1 Ps = (AD)(B)(C)
P, = (A)(BC)(D)
B1C P19 P=@BD(C)
c|B D1 Ps= (ABD)(C)
Dlc Alo The only SP partition that is OC is P,.
/i q q* z
x=0 x=1
A-D| C A-D
Thus, this state table can be reduced to one B c AD
with 3 states (one for each block of Py). g
C B A-D

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example OC/SP-2

q q* q q* z
x=0 x=1 x=0 x=1
A [} D 0 A C D 0
B| D A |1 B| D A |1
C E D 0 C E D 0
D B A 0 D B A 1
E C D 0 E C D 0
(@ (b)

The set of SP partitions for these two state tables:
P, = (ACE)(B)(D) P, = (ADE)(BC)
P3 = (AE)(B)(C)(D) P, = (A)(BD)(C)(E)
Pg = (A)(B)(CE)(D) P¢= (ACE)(BD)
P, = (AE)(BD)(C) Pg = (A)(BD)(CE)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example OC/SP-2 (cont.)

oot In (a), P, P; and P are the only OC
ROl partitions. Since

Al C Do

R P = (ABBICID)~S

ole alo __SPu=(acaE)D)

el e o lo Ps = (A)(B)(CE)(D) = @

1 y " -

X= x=1
A-C-E| AC-E D 0
B D A-C-E 1
D B A-C-E 0

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example OC/SP-2 (cont.)

q q z In (b), Py, P3,P,, Ps, Pg and Py are the
x=0 x=1 only OC partitions. Since
Al c Do P
3
B At (AE)B)IC)ID)~Z
cle bofo <\ P
D| B Al Py V(ACE)(B)(D) < Pe
(A)(B)(CE)(D) ACE)(BD
Elc D J|o < b /()(BD)

P <_Z(A)BD)CE)
(A)(BD)A(C)(E)/()(BD)(CE)

x=0 x=1
A A B 0
B B A 1

@\\

178 220 Digital Logic Design @Department of Computer Engineering KKU.

|Choosing a state assignment

= 2 states =P,

= 3-4 states = 3 state assignments
= 5 states = 140 state assignments
= 6 states = 420 state assignments
= 7-8 states = 840 state assignments

178 220 Digital Logic Design @Department of Computer Engineering KKU.

o
o
*
N

|Examp|e

OO0 w >
» O r O

SP Partitions: P, = (AB)(CD) = can be used
P, = (AD)(B)(C)
P; = (A)(BC)(D)
P,+P,= P, = (AD)(BC) = can be used

oc: (AC)(BD)

178 220 Digital Logic Design @Department of Computer Engineering KKU.

| Example (cont.)

9u 9

UOUJ)‘.Q

0 0
0 1
1 1
1 0
g, < P1 (AB)(CD)
g, < P4 (AD)(BC)

Z =0,'0p*0,0;
D, =x
D, =0,

9u 9%

UOUJ)‘.Q

B O O
= O +» O

q, < P1 (AB)(CD)
g, < OC (AC)(BD)

z =q;

D, =x

D, =X'd,'q," + X'd,0,
+X0,'d, + X0,

o
=
o
N

Uﬂm>‘-ﬂl

» O = O
o B B O

g, < OC (AC)(BD)
q, < P4 (AD)(BC)

Z =0Qq
D, =Xq, +xq,
D,=a;

178 220 Digital Logic Design @Department of Computer Engineering KKU.

|Conc|usions

m The choice of state assignment is more an art
than a science.

» Use two-block SP partitions when possible
m When run out of those, OC partition

= And the grouping suggested by other SP
partitions (if there are any).

178 220 Digital Logic Design @Department of Computer Engineering KKU.

11

