PIC Serial Communication Modules

Synchronous Serial Port (SSP Module) {clock signal is required}

- Serial Peripheral Interface (SPI)
- Inter Integrated Circuit (IIC -> I2C) Serial Interface

Asynchronous Communication Modules (clock signal is not required)

- Universal Asynchronous Receiver Transmitter (UART)

Parts of an RS-232 Frame

- A frame transmits a single character and is in general composed of:
 - 1) A start bit (always logic 0)
 - 2) Data bits (5, 6, 7, or 8 of them)
 - 3) A parity bit (optional, even or odd parity)
 - 4) A stop bit (always logic 1)

UART

- A *Universal Asynchronous Receiver-Transmitter* (UART) is used for serial communications usually via a cable.
- The UART generates signals with the same timing as the RS-232 standard used by the Personal Computer's COM ports.
- The UART input/output uses 0V for logic 0 and 5V for logic 1.
- The RS-232 standard (and the COM port) use +12V for logic 0 and -12V for logic 1.
- To convert between these voltages levels we need an additional integrated circuit (such as Maxim's MAX232).

RS232 Level Converter

PIC & MAX232 Connection

UART

Bit Time and Baud Rate

- The *bit time* (units of time) is the time from the start of one serial data bit value to the start of another.
- The inverse of the bit time is the *baud rate* (units of frequency, Hz however the units are normally omitted).
- RS-232 baud rates are integer multiples and sub-multiples of 9600 (Hz).

Synchronization Point

- RS-232 idles at a logic 1.
- A frame always starts with either an idle-to-start-bit or a stopbit-to-start-bit transition.
- Either way, the frame always starts with a logic 1 to logic 0 transition.
- The UART looks for $1\rightarrow 0$ for the start of the first frame and then looks for $1\rightarrow 0$ after 9.5BT for the start of each subsequent frame.

UART

Timing Accuracy

- Since the transmitter and receiver keep track of time independently between clock recovery synchronization points, the combined inaccuracy of the transmitter and receiver's clocks can not be too large.
- For RS-232 communication, this combined inaccuracy is about 5%.
- Usually, an RC oscillator is too inaccurate and a crystal is required.

UART

Sampling Points

- The synchronization point is at the start of the frame (always a 1 to 0 transition).
- The 8 received data values are sampled 1.5BT, 2.5BT, ..., 8.5BT after the synchronization point (BT = bit time).
- The stop bit is sampled 9.5BT after the synchronization point (if it is not a logic 1, this is a *framing error*).

UART

TXSTA - TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D
bit 7			,				bit 0

CSRC: Clock Source Select bit (for Synchronous mode only)

TX9: 9-bit Transmit Enable bit

1 = Selects 9-bit transmission

0 = Selects 8-bit transmission

TXEN: Transmit Enable bit

1 = Transmit enabled

0 = Transmit disabled

SYNC: USART Mode Select bit

1 = Synchronous mode

0 = Asynchronous mode

BRGH: High Baud Rate Select bit (For Asynchronous mode

only)

1 = High speed

0 = Low speed

TRMT: Transmit Shift Register Status bit

1 = TSR empty 0 = TSR full

TX9D: 9th bit of transmit data. Can be parity bit.

PIC UART

Follow these steps when setting up an Asynchronous <u>Transmission</u>:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE. (Optional)
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

Tx pin (RB2) must be output port

UART

RCSTA - RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x	
SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	
bit 7							bit 0	

SPEN: Serial Port Enable bit

1 = Serial port enabled

0 = Serial port disabled

RX9: 9-bit Receive Enable bit

1 = Selects 9-bit reception
0 = Selects 8-bit reception

SREN: Single Receive Enable bit (Synchronous mode only)

CREN: Continuous Receive Enable bit (in Asynchronous mode)

1 = Enables continuous receive

0 = Disables continuous receive

ADEN: Address Detect Enable bit (for Asynchronous 9-bit mode only)

FERR: Framing Error bit (read RCREG register and receive next valid byte to clear)

1 = Framing error

0 = No framing error

OERR: Overrun Error bit

1 = Overrun error (Can be cleared by clearing bit CREN)

0 = No overrun error

RX9D: 9th bit of received data (Can be parity bit)

UART Transmit Block

PIC UART Module

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ch	PIR1	PIR1 EEIF CMIF RCIF TXIF — CCP1IF TMR2							TMR1IF
18h RCSTA SPEN RX9 SREN CREN ADEN FERR OERR 19h TXREG USART Transmit Data Register						OERR	RX9D		
8Ch	PIE1	EEIE CMIE RCIE TXIE - CCP1IE TMR2IE TMR1							TMR1IE
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D
99h	SPBRG	Baud Rate (aud Rate Generator Register						

Baud rate calculation

$$BRGH = 0$$

Desired Baud Rate =
$$\frac{Fosc}{64(x+1)}$$

$$9600 = \frac{16000000}{64(x+1)}$$

$$x = 25.042$$

Calculated Baud Rate =
$$\frac{16000000}{64(25+1)}$$
 = 9615

$$Error = \frac{(Calculated \ Baud \ Rate - Desired \ Baud \ Rate)}{Desired \ Baud \ Rate}$$

$$=\frac{9615-9600}{9600}\ =\ 0.16\%$$

Baud rate calculation

TXSTA - TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	
bit 7		•					bit 0	

BRGH = 0 (Low Speed)

Baud Rate = FOSC/(64(X+1)); x = value to write to SPBRG Reg

BRGH = 1 (High Speed)

Baud Rate = FOSC/(16(X+1))

PIC USART Module

Follow these steps when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If an OERR error occurred, clear the error by clearing enable bit CREN.

Rx pin (RB1) must be input port

UART Receive Block

PIC UART Module

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0Ch	PIR1	EEIF CMIF RCIF TXIF — CCP1IF TMR2IF							TMR1IF
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D
1Ah	RCREG	USART Receive Data Register							
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D
99h	SPBRG	Baud Rate Generator Register							