198 461 Microcontrollers

1st Semester 2017

Course Webpage

http://gear.kku.ac.th/~watis/courses/198461/198461.html

Past issues in computer controlled applications

- Many real-world applications require computer to control their operations
- Computer is complex machine consisting of CPU, memory, I/O, etc.
- Computation power, cost, size, power consumption may not match requirement (usually over qualify)

Course Objective and Grading Policy

Course Objectives

- To gain knowledge in microcontroller theory
- To gain experience in designing microcontroller applications
- To familiarize students with well-accepted uCs among designers

Grading Policy

- * 40% Lab Report (in group of 2 students)
- * 30% Term Project (in group of 2 students)
 - 10% Report (group)
 - 10% Functional Correctness (group)
 - 10% Presentation (individual)
- * 15% Midterm Practical Examination (Software)
- * **15%** Final Practical Examination (Hardware + Software)

Sewing Machine: A case study

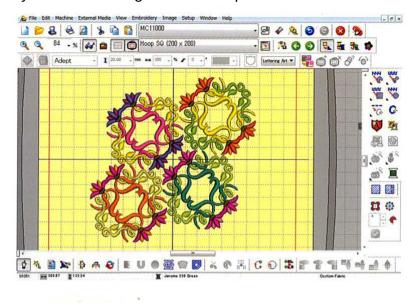
- Invented since 1791
- Has been involving with everyone until now
- So, what?

- Persons who operate it must be well-trained
- Producing high quality work requires lots of experience

Sewing Machine: A case study

Until recently, a new kind of sewing machine has emerged

Sewing Machine: A case study

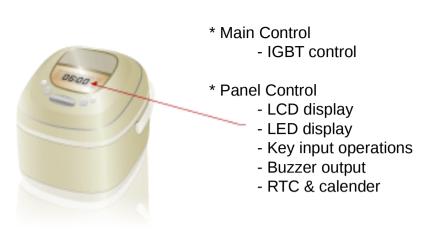

With help from microprocessor

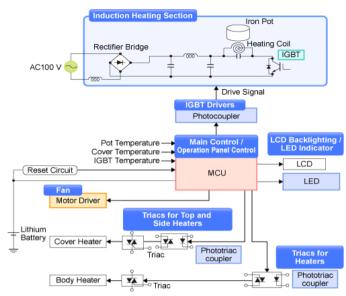
- But how can we cramp uP circuit board in a tiny space?
- We need something occupies much less space, but powerful enough to control the machine - > It's microcontroller that we need!

Sewing Machine: A case study

Everyone can be as good as an experienced seamstress

Examples of computer controlled application

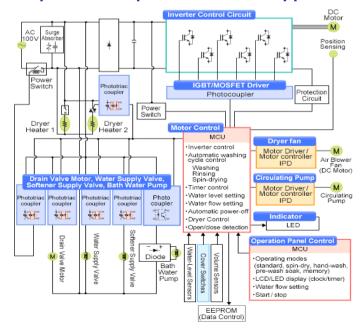




Main objective is to make them intelligent appliances

Examples of computer controlled application (1)

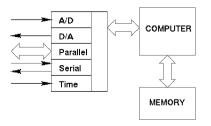
Examples of computer controlled application (1)

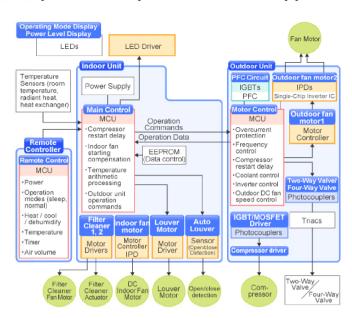

Note: This block diagram serves only as an application example and may not be identical to the specifications o products and boards shown in the photographs.

Examples of computer controlled application (2)

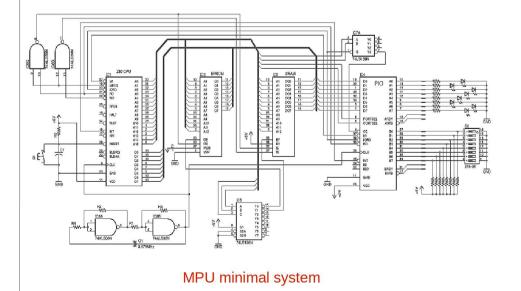
- * Panel Control
 - LCD driver
 - LED driver
- * Motor Control
 - Vector engine
 - PMD motor control

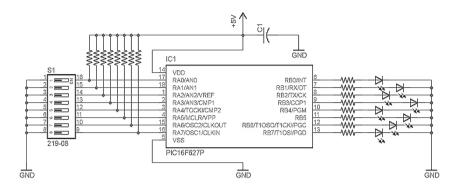
Examples of computer controlled application (2)


Examples of computer controlled application (3)


Microcontroller

- A microcontroller (also MCU or μ C) is a computer-on-a-chip.
- It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness.
- Microcontrollers may not implement an external address or data bus
- Microcontroller integrates additional elements such as readonly and read-write memory, and input/output interfaces.

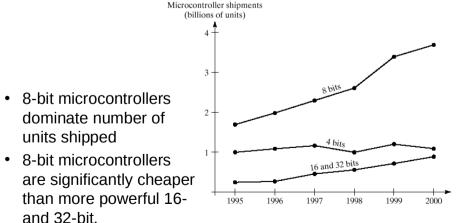

MICROCONTROLLER


Examples of computer controlled application (3)

Microcontroller vs microprocessor

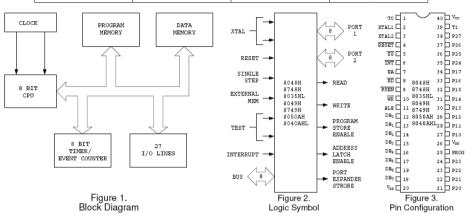
Microcontroller vs microprocessor

uC minimal system


Programming Environments

- Originally, microcontrollers were only programmed in assembly language
- Later, high-level programming languages such as C become more popular
- Recent microcontrollers integrated with on-chip debug circuitry accessed by In-circuit emulator via JTAG enables a programmer to debug the software of an embedded system with a debugger.
- Some microcontrollers have begun to include a built-in high-level programming language interpreter for greater ease of use.

Commonly integrated units are:


- Central processing unit ranging from 4-bit processors to complex 16- or 32-bit processors
- Discrete input and output bits
- Serial input/output such as serial ports (UARTs)
- Other serial communications interfaces like I²C, Serial Peripheral Interface and Controller Area Network
- Peripherals such as timers and watchdog
- Volatile memory (RAM) for data storage
- ROM, EPROM, [EEPROM] or Flash memory for program and operating parameter storage
- Clock generator often an oscillator for a quartz timing crystal, resonator or RC circuit
- many include analog-to-digital converters

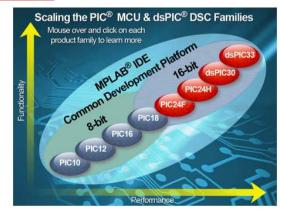
Microcontroller Usage

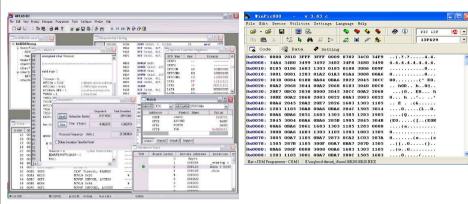
Intel 8048 Families: The first microcontroller

Device	Internal	RAM Standby		
8050AH	4K x 8 ROM	256 x 8 RAM	yes	
8049H	2K x 8 ROM	128 x 8 RAM	yes	
8048H	1K x 8 ROM	64 x 8 RAM	yes	
8040AHL	none	256 x 8 RAM	yes	
8039HL	none	128 x 8 RAM	yes	
8035HL	none	64 x 8 RAM	yes	
8749H	2K x 8 EPROM	128 x 8 RAM	yes	
8748H	1K x 8 EPROM	64 x 8 RAM	yes	

Popular microcontrollers

- MCS-51 from Intel
- AT89 series (Intel 8051 architecture) from Atmel
- 68HCxx series from Motorola (Freescale)
- PIC from Microchip
- Z8 from Zilog
- ST-7 from STMicroelectronics
- LPC series from Phillips
- MSP430 from Texas Instrument


Intel 8048 Families: The first microcontroller


PIC microcontrollers

- Available in many product families (8-bit, 16-bit, RF-applications, DSP)
- Easy migration across product families
- Simple programming model (~30 instructions)
- Made in Thailand ***

uC for this course

- We start with low-end PIC 16F628 and then move to mid-end 16F877
- Then, proceed to the cost-effective 12F625 (8-pin uC) for term project
- Software tools are:
 - 1. MPLAB-IDE from Microchip (Freeware) Editor + Assembler + Simulator
 - 2. WinPIC-800 (Freeware)

PIC 16F628 Overview

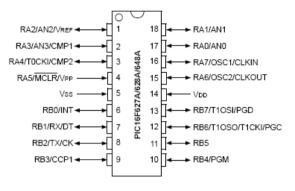
Special Features:

- Internal and external oscillator options:
 - Precision internal 4 MHz oscillator factory calibrated to ±1%
 - Low-power internal 48 kHz oscillator
 - External Oscillator support for crystals and resonators
- Power-saving Sleep mode
- Watchdog Timer with independent oscillator for reliable operation
- Low-voltage programming
- In-Circuit Serial Programming[™] (via two pins)
- Programmable code protection
- Brown-out Reset / Power-on Reset
- Power-up Timer and Oscillator Start-up Timer
- Wide operating voltage range (2.0-5.5V)
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - 40 year data retention

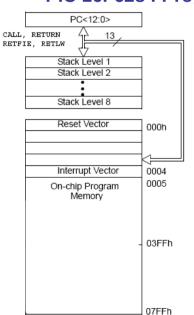
PIC 16F628 Overview

High-Performance RISC CPU:

- 8-bit CPU core
- Operating speeds from DC 20 Mhz
- Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- 35 single-word instructions:
 - All instructions single cycle except branches


PIC 16F628 Overview

Peripheral Features:


- 16 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Selectable internal or external reference
 - Comparator outputs are externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Timer1: 16-bit timer/counter with external crystal/clock capability
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module:
 - 16-bit Capture/Compare
 - 10-bit PWM
- Addressable Universal Synchronous/Asynchronous Receiver/Transmitter USART/SCI

PIC 16F628 Overview

	Device	Program Memory	Data Memory		1/0	ССР			Timers	
	Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(PWM)	USART	Comparators	8/16-bit	
ľ	PIC16F627A	1024	224	128	16	1	Υ	2	2/1	
Γ	PIC16F628A	2048	224	128	16	1	Υ	2	2/1	
	PIC16F648A	4096	256	256	16	1	Υ	2	2/1	

PIC 16F628 : Program Memory Organization

- The PIC16F628A has a 13-bit PC capable of addressing an 8K x 14 program memory space.
- The first 2K x 14 (0000h-07FFh) for the PIC16F628A is physically implemented.
- Accessing a location above these boundaries will cause a wraparound within the first 2K x 14 space
- The Reset vector is at 0000h and the interrupt vector is at 0004h

PIC Architecture (8-bit uC)

- separate code and data spaces (Harvard architecture)
- a small number of fixed length instructions
- most instructions are single cycle execution (4 clock cycles), with single delay cycles upon branches and skips
- a single accumulator (W)
- All RAM locations function as registers as both source and/or destination of math and other functions
- a hardware stack for storing return addresses
- a fairly small amount of addressable data space (typically 256 bytes), extended through banking
- data space mapped CPU, port, and peripheral registers

PIC 16F628 : Data Memory Organization

• The data memory is partitioned into four banks, which contain the General

Purpose Registers (GPRs) and the Special Function Registers (SFRs).

- The SFRs are located in the first 32 locations of each bank.
- There are GPRs implemented as static RAM in each bank.
- GPRs are user space
- SFRs are used mostly for controlling on-chip peripherals

GPRs Addresses

	PIC16F627A/628A			
Bank0	20-7Fh			
Bank1	A0h-FF			
Bank2	120h-14Fh, 170h-17Fh			
Bank3	1F0h-1FFh			

Indirect addr. (1)	00h	Indirect addr.(1)	80h	Indirect addr.(1)	100h	Indirect addr.(1)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	J,	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh		8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh		8Fh		10Fh		18Fh
T1CON	10h		90h		- other and		
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				 User can access only one
CCPR1L	15h		95h				Oser can access only one
CCPR1H	16h		96h				memory bank at a time
CCP1CON	17h		97h				memory bank at a time
RCSTA	18h	TXSTA	98h				 Choosing memory bank
TXREG	19h	SPBRG	99h				Choosing memory bank
RCREG	1Ah	EEDATA	9Ah				is called "bank switching"
- 10///22	1Bh	EEADR	9Bh				is called ballk switching
	1Ch	EECON1	9Ch				
	1Dh	EECON2(1)	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		ADh	General	120h		
General		General	AUII	Purpose			
Purpose		Purpose		Register 48 Bytes	14Fh		
Register		Register 80 Bytes		100000000000000000000000000000000000000	150h		
80 Bytes		Su Dyles					
2 2 2 2 2	6Fh		EFh		16Fh		1EFh
	70h	75000000	F0h	accesses	170h	accesses	1F0h
16 Bytes		accesses 70h-7Fh		70h-7Fh		70h-7Fh	
438	7Fh	run-ren:	FFh		17Fh	s.west.it	1FFh
Bank 0	4,000	Bank 1	C-CCO.	Bank 2		Bank 3	T MAN

PIC Architecture (cont'd)

Unlike most other CPUs, there is <u>no distinction</u> between "memory" and "register" space because the RAM serves the job of both memory and registers, and the RAM is usually just referred to as the <u>register file</u> or simply as the registers.

Example of Applications

- Classical control applications
- Wireless sensor network
- Automobile ECU
- Agritronics (Agriculture + Electronics)

Example of Applications

Term Project: Intelligent light control switch

- In modern buildings, light controller is a mandatory equipment
- Required basic functions are:
 - Light on/off switch
 - Light dimming
- Some allows users a convenient control via remote control
- Some are automatically turned on when dark
- But none has all above functions!!!

It's time to engineer such a thing

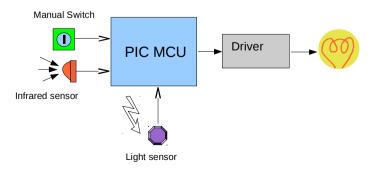
Term Project: Intelligent light control switch

- You are going to design an intelligent light control whose features are:
- Able to turn incandescent bulb on/off by pushing a switch
- Able to turn the bulb on/off via remote control
- Able to dim the light via remote control
- Programmable in 2 modes
 - Light sensing mode

auto turn on in low light and turn off in bright light or

• Timer mode

turn on/off at present time



Term Project: Intelligent light control switch

