
1

Outline

•Representing Instructions in the Computer

•Conditional and unconditional branches

2

Instructions in the Computer
•Map register names into numbers

•$to to $t7 map to 8 � 15 (in decimal)

•$s0 to $s7 map to 16 � 23 (in decimal)

•Instruction add $t0, $s1, $s2 What is the machine language in decimal?

•Each segment is a field

•First and last field (0, 32): imply add (lookup back cover of book for complete codes)

•Second field (17): first source operand ($s1) Third field (18): second source operand ($s2)

•Fourth field (8): destination operand ($t0) Fifth field (0): unused

•Layout of instruction is called instruction format

•All MIPS instructions are 32 bits long (simplicity favors regularity)

0 17 18 8 0 32

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

3

MIPS Fields

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op: operation code

rs: first register source operand

rt: second register source operand

rd: register destination operand

shamt: shift amount (will not use it within chapter 3)

funct: Function. Selects specific variant of operation

How many operations? How many functions within an operation?

4

MIPS Fields
Instructions are divided into three types: R, I and J.

•Every instruction starts with a 6-bit opcode.
•R-type instructions specify 3 registers, a shift amount field, and a function field
•I-type instructions specify two registers and a 16-bit immediate value
•J-type instructions follow the opcode with a 26-bit jump target

5

MIPS Fields

Different kinds of instructions formats for different kinds of instructions

Previous format is R-type (register-type) or R-format

I-type used by Data transfer instructions

op rs rt address

6 bits 5 bits 5 bits 16 bits

rt changes to mean destination register

Implication of 16 bit address field? Offset restricted to ±215 = ± 32,768 bytes

lw $t0, 32 ($s3) What is machine language in decimal?

35 19 8 32

6 bits 5 bits 5 bits 16 bits
6

COPYRIGHT 1998 MORGAN KAUFMANN

PUBLISHERS, INC. ALL RIGHTS RESERVED

Back cover of Textbook

MIPS machine language
and instruction formats

7

COPYRIGHT 1998 MORGAN KAUFMANN

PUBLISHERS, INC. ALL RIGHTS RESERVED

Back cover of Textbook

MIPS operands and
assembly language

8

From High-level to Machine Language
A[300] = h + A[300];

Assume $t1 has the base of the array A, and $s2 corresponds to h

Assembly

lw $t0, 1200 ($t1) # $t0  A[300]

add $t0, $s2, $t0 # $t0  h + A[300]

sw $t0, 1200 ($t1) # A[300]  h + A[300]

Machine code in decimal
address

op rs rt rd shamt funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

9

What we know so far

Fig. 3.6 page 121

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

10

Stored-Program Concept
Two key principles

•Instructions are represented as numbers

•Programs can be stored in memory to be read or written just like
numbers

Processor

Accounting program

(machine code)

Editor program

(machine code)

C compiler

(machine code)

Payroll data

Book text

Source code in C

for editor program

Memory

Stored-Program concept

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

11

Decision Making: Branches

Decision making: if statement, sometimes combined with goto and labels

beq register1, register2, L1(beq: Branch if equal)

Go to the statement labeled L1 if the value in register1 equals the value
in register2

bne register1, register2, L1(bne: Branch if not equal)

Go to the statement labeled L1 if the value in register1 does not equal
the value in register2

beq and bne are termed Conditional branches

12

Compiling an If statement

If (i == j) go to L1;

f = g + h;

L1: f = f-i;

f, g, h, i, and j correspond to five registers $s0 through $s4.

beq $s3, $s4, L1 #go to L1 if i equals j

add $s0, $s1, $s2 # f = g+h (skipped if i equals j)

L1: sub $s0, $s0, $s3 # f = f –i (always executed)

Instructions must have memory addresses

Label L1 corresponds to address of sub instruction

13

Compiling an if-then-else
if (i == j) f = g + h; else f = g-h;

Same variable/register mapping as previous example

bne $s3, $s4, Else # go to Else if i != j

add $s0, $s1, $s2 # f = g + h (skipped if i != j)

j Exit # go to Exit (unconditional branch)

Else: sub $s0, $s1, $s2 # f = g-h (skipped if i equals j)

Exit:

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

i == j?

f = g+h f = g-h

Else:

Exit:

Yes No

