
1

Outline

•MIPS introduction with simple examples

2

MIPS
•MIPS (Microprocessor without Interlocked Pipeline Stages)

is a RISC microprocessor architecture developed by MIPS Technologies.

•R2000 was the first commercial MIPS CPU used in DECstation 2100 & SGI

•MIPS designs are currently primarily used in many embedded systems

3

MIPS
• Cisco Router (MIPS R4600)

• Laser Printers

4

MIPS
•MIPS CPU are available in soft-IP Cores (Synthesizable HDL)

•MIPS cores are usually found fabricated by other companies (NEC, Toshiba,

IDT, etc.)

5

MIPS
•General-purpose registers ISA

•Load/Store ISA

operands of arithmetic instructions must be in registers

•Register size is 32 bits

•In MIPS, 32 bits are called a word

•Uses two characters following a dollar sign to represent a register

$s0, $s1, ..:registers that correspond to variables in high-level language
program

$t0, $t1, ..:temporary registers used to hold any intermediate results

Will see some more notations and special purpose registers

6

MIPS
•General-purpose registers ISA

7

C Assignment using Registers

C Assignment statement f = (g + h) – (i +j);

Compiler associates program variables with registers

Variables f, g, h, i, and j can be assigned to registers $s0, $s1, $s2, $s3, and $s4

What is the compiled MIPS assembly code?

add $t0, $s1, $s2 # register $t0 contains g+h

add $t1, $s3, $s4 # register $t1 contains I+j

sub $s0, $t0, $t1 # f gets $t0 - $t1

Comments
Operation with 3 operands

8

Complex Structures: Arrays

•Contains a number of elements instead of a single element

•Can be 1-dimensional or 2-dimensional

•Arrays are kept in memory due to register size limitations. Array stored starting at base
address

•Arithmetic operation on an array element

load array element into register

•Data transfer instructions � access a word in memory � Need to supply memory address

100

10

101

1

3

2

1

0

DataAddress

MemoryProcessor

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

Address of third data element is 2

Contents of Memory[2] is 10

9

Data from Memory to Register
Data transfer instruction: load

Format lw register to be loaded, constant(register used to access memory)

Memory address formed by adding constant portion and contents of second register

Example lw $t0, 8($s3) # $t0  Mem[8+$s3]

Compiling an assignment when an operand is in memory

Assume A is an array of 100 words.

Compiler associated variables g and h with registers $s1 and $s2

Base address of array is in $s3. The statement g = h + A[8]; MIPS assembly code?

lw $t0, 32($s3) # $t0  A[8], Why constant is 32?

add $s1, $s2, $t0 # g = h + A[8]

10

Byte Addressing
Most architectures address individual bytes

Address of a word matches address of one of the 4 bytes within the word

Words start at addresses that are multiple of 4 in MIPS (alignment restriction)

MIPS uses Big Endian (address of leftmost byte is word address)

100

10

101

1

12

8

4

0

DataAddress

MemoryProcessor

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

Actual MIPS addresses are shown in figure

Byte address of third word is 8

A[8] is 9th element in array, with each element 4 bytes

Leftmost byte of A[8] is located 32 bytes away from
base address (8 *4)

lw $t0, 32($s3)

11

Addressing Objects: Endianess and Alignment

• Big Endian address of most significant byte = word address
(xx00 = Big End of word)

– IBM 360/370, Motorola 68k, MIPS, Sparc

• Little Endian address of least significant byte = word address
(xx00 = Little End of word)

– Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

little endianbig endian

12
34
56
78 12

34
56
78

A = 12345678H

0000
0001
0002
0003

0000
0001
0002
0003

Addr Addr

12

Data from Register to Memory
Data transfer instruction: store

Format sw register to be stored, offset(base register)

Memory address formed by adding offset and contents of base register

Example sw $t0, 48($s3) # $t0 � Mem[48+$s3]

Compiling using Load and Store

Assume A is an array of 100 words.

Compiler associated variables h with register $s2

Base address of array is in $s3. The statement A[12] = h + A[8]; MIPS assembly code?

lw $t0, 32($s3) # $t0  A[8]

add $t0, $s2, $t0 # $t0  h + A[8]

sw $t0,48($s3) # $t0 � Mem[48+$s3]

13

Another example: Variable Array Index

Assume A is an array of 100 words.

Compiler associated variables g, h, and i with register $s1, $s2, and $s4

Base address of array is in $s3. The statement g = h + A[i]; MIPS assembly code?

add $t1, $s4, $s4 # $t1  2*i

add $t1, $t1, $t1 # $t1  4*i

add $t1, $t1, $s3 # $t1  base + offset

lw $t0,0($t1) # $t0  Mem[0+$t1]

add $s1, $s2, $t0 # g = h + A[i]

Need to load A[i] into register, need its address

To get address, need to multiply i by 4 to get offset of element i from base
address (byte addressing issues)

4* i = 2i + 2i

14

Spilling Registers

•Programs have more variables than machines have registers

•Compiler tries to

�keep most frequently used variables in registers

�place rest in memory

�use loads and stores to move variables between registers and memory

•Spilling variables

process of putting less commonly used variables (or those needed later)
into memory

