Qutline

*MIPS introduction with simple examples

MIPS

*MIPS (Microprocessor without Interlocked Pipeline Stages

is a RISC microprocessor architecture developed B3vTechnologies

*R2000 was the first commercial MIPS CPU used in O&@s 2100 & SGI

*MIPS designs are currently primarily used in many etded systems

MIPS

« Cisco Router (MIPS R4600)

* Laser Printers

MIPS

*MIPS CPU are available in soft-IP Cores (SynthesizbDL)

*MIPS cores are usually found fabricated by othenganies (NEC, Toshiba,

IDT, etc.)

MIPS MIPS

) *General-purpose registers ISA
*General-purpose registers ISA

Name |Number Use Callee must preserve?
*Load/Store ISA $zero |30 constant 0 M,
operands of arithmetic instructions must be in register fat | §1 assembler temporary -
*Register size is 32 bits fv0-$w1 | 5253 |Walues for function returns and exprassion evaluation | no
«In MIPS, 32 bits are calledword (Rl #787 | functionjsrguments e
) .) $10-$7 | §5-515 |temporaries no
*Uses two characters following a dollar sign to repreagegister §s0_4s7 | §16923 saved temporaries yos
$s0, $s1, . registers that correspond to variables in high-lemagjliage $18-$19 | $24-525 temporaries no
program $k0-$k1 | $26-527 reserved for OS kernel no
$t0, $t1, ..temporary registers used to hold any intermediatetsesul $gp | 528 global pointer yes
Will see some more notations and special purpose eegjist Ssp |$29 |stack pointer Vi
$fp 530 frame pointer yes
fra |31 return address MAA,
5 6
C Assignment using Registers Complex Structures: Arrays
«Contains a number of elements instead of a sielglment
C Assignment statement f = (g + h) — (i +j); «Can be 1-dimensional or 2-dimensional
Compiler associates program variables with registers «Arrays are kept in memory due to register sizeatéitions. Array stored starting bhse
address

Variables f, g, h, i, and j can be assigned to regi$s0, $s1, $s2, $s3, and $s4 _ _ _
«Arithmetic operation on an array element

What is the compiled MIPS assembly code? load array element into register
Operation with 3 operands Comments *Data transfer instruction® access a word in memo#y Need to supply memory address
add $t07 $51’ $s2 # register $t0 contains g+h 3 n;o Address of third data element is 2
add $t1, $s3, $s4 # register $t1 contains I+ = Contents of Memory[2] is 10
0 1
sub $s0, $t0, $t1 # f gets $t0 - $t1 Address Darn
Processor Memory
I—, COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALRIGHTS RESERVED

7 8

Data from Memory to Register

Data transfer instruction: load

Format Iw register to be loadedonstantregister used to access memory
Memory address formed by adding constant portiehcamtents of second register
Example Iw $t0, 8($s3) # $t6 Mem[8+$s3]

Compiling an assignment when an operand isin memory
Assume A is an array of 100 words.
Compiler associated variables g and h with registers g $s2

Base address of array is in $s3. The statement g A[B]#+MIPS assembly code?

Iw $t0, 32($s3) # $t6& A[8], Why constant is 32?
add $s1, $s2, $t0 #9=h+ A[8]

Byte Addressing

Most architectures address individual bytes

Address of a word matches address of one of thgeslwithin the word
Words start at addresses that are multiple ofMIPS (alignment restriction)
MIPS uses Big Endian (address of leftmost byte iedvemldress)

Actual MIPS addresses are shown in figure

100

Byte address of third word is 8

10

101 A[8] is 9 element in array, with each element 4 bytes
! Leftmost byte of A[8] is located 32 bytes awaynfro
Address Data base address (8 *4)
Processor Memory

Iw $t0, 32($s3)

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALRIGHTS RESERVED

10

Addressing Objects: Endianess and Alignment

» Big Endian address of most significant byte = word address
(xx00 = Big End of word)

— IBM 360/370, Motorola 68k, MIPS, Sparc

« Little Endian address of least significant byte = word address
(xx00 = Little End of word)

— Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

mshb Isb
Addr A =12345679§ Addr
0000 | 12 78 | 0000
0001 | 34 56 | 0001
0002 | 56 34 | 0002
0003 | 78 12 | 0003
big endian little endian

11

Data from Register to Memory

Data transfer instruction: store

Format sw register to be storedffse{base registgr
Memory address formed by adding offset and contefitsise register
Example sw $t0, 48($s3) # $tB Mem[48+$s3)]

Compiling using Load and Store

Assume A is an array of 100 words.

Compiler associated variables h with register $s2

Base address of array is in $s3. The statement A[b2} A[8]; MIPS assembly code?

lw $t0, 32($s3) # $t6- A[8]
add $t0, $s2, $t0 # $t6- h + A[8]
sw $t0,48($s3) # $t8> Mem[48+$s3]

12

Another example: Variable Array Index Spilling Registers

Assume A is an array of 100 words.
Compiler associated variables g, h, and i with register®s?, and $s4 *Programs have more variables than machines haveamsgist

Base address of array is in $s3. The statement g A[lj; MIPS assembly code? «Compiler tries to

Need to load A[i] into register, need its address »keep most frequently used variables in registers

To get address, need to multiply i by 4 to getetftsf element i from base >place rest in memory

address (byte addressing issues) >use loads and stores to move variables between registérmemory
=iy o - .

ari=aiva *Spilling variables

add $t1, $s4, $s4 # B 2% process of putting less commonly used variables (@etheeded later)

add $t1, $t1, $t1 # St 4% into memory

add $t1, $t1, $s3 # $& base + offset

Iw $t0,0($t1) # $t0& Mem[0+$t1]

add $s1, $s2, $t0 #g=h+A[]

13 14

