Qutline

*Organization overview
eInstruction Set Architecture (ISA)
eInstruction set design principles

*|SA classes

A Look Ahead

Chapter 3
*Overview of computer organization
» Fetch/Execute cycle
»Computer operations
»addressing modes
eInstruction set design principles
*Overview of MIPS architecture
«Stored program concept
eLearn a subset of MIPS assembly language
*Show how MIPS instructions are represented in maclanguage
«Contrast MIPS architecture with other X86 and Pd&®@architectures

Organization Review

 All computers consist of five components
— Processor: (1) datapath and (2) control
- (3) Memory
— (4) Input devices and (5) Output devices

* Not all “memory” are created equally
— Cache: fast (expensive) memory are placed closbetprbcessor
— Main memory: less expensive memory--we can have more

« Input and output (I/O) devices have the messiest argton
— Wide range of speed: graphics vs. keyboard
— Wide range of requirements: speed, standard, cost ..
— Least amount of research (so far)

Summary: Computer System Components

Proc
I
Caches
! Busses
| [:] adapters
Memory | |
|Contro|lers| | |
1/0 Devices: Disks | | | |
~ Displays ‘ Networks ’
Keyboards

« All have interfaces & organizations

Instruction Set Architecture

Instruction Set Architecture of a machine is an abstraction Interface
between the hardware and the lowest-level software

eIncludes anything that programmers need to knomake a binary
machine program work correctly, including

vInstructions (categories, format, ..)

vI/O devices, # of registers, memory access schemes

ISA design principles
«Simplicity favors regularity
*Smaller is faster

*Make the common case fast

] ISA: What must be specified?

Instruction
Fetch . .
l « Instruction Format or Encoding
- isi 2
Instruction how is it decoded*
Decode « Location of operands and result
l — where other than memory?
Operand — how many explicit operands?
Fetch — how are memory operands located?

—which can or cannot be in memory?

« Data type and Size
¢ Operations

Result — what are supported
Store) }
l » Successor instruction
Next — jumps, conditions, branches
Instruction
|

Registers

*A storage device (in MIPS holds 32 bitsyard)

*Registers are built into the processor, in paldicin the section
labeled “Data Path”

*Faster than main memory
*The basic ISA classes are distinguished by
»what kinds of registers they have

»what are the functions of the registers

Basic ISA Classes

Accumulator known as 1-operand machines
Use 1 register for source as well as destination agera

1-operand Add A ace- acc + meml[A]
Load A acc— mem[A]
Store B mem[Bk— acc

Stack known as 0-operand machines
Operands are pushed and popped off an internal stack

All other operations remove their operands from theksaind replace them
with the result

Push A push (meml[A])
Push B push (mem[B])
0-operand Add push (pop+pop)

Pop C mem[Ak— pop

Basic ISA Classes

General Purpose Register
Limited number of registers to store data for angppse
Memory-Memory or Register-Memory
(arithmetic instructions can use data in memoryofzerands)

1-operand Add Ra, B Re- Ra + mem[B]
2-operand Add A,B mem[A{- mem[A] + mem[B]
3-operand Add A,B,C mem[Ad mem[B] + mem|[C]

Load/Store (arithmetic instructions can only use data in regs
(register-register machines
Add Ra,Rb,Rc Ra- Rb+Rc
Load Ra,A Ra— mem[A]
Store Ra,B mem[B{+ Ra

Comparison of ISA classes

Code sequence for C = A + B for classes of insoaciets:

Stack Accumulator Register
(load-store)
Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C Add R3,R1,R2
Pop C Store C,R3

10

Which ISA dominates?

General purpose registers dominate
1975-1995 all machines use general purpose registers

Advantages of registers
eregisters are faster than memory

eregisters are easier for a compiler to use
e.g., (A*B) — (C*D) — (E*F) can do multiplies in anyder vs. stack

eregisters can hold variables
»memory traffic is reduced, so program is sped up
(since registers are faster than memory)
»code density improves (since register named with féitethan
memory location

11

