
1

Outline

•Organization overview

•Instruction Set Architecture (ISA)

•Instruction set design principles

•ISA classes

2

A Look Ahead
Chapter 3

•Overview of computer organization

�Fetch/Execute cycle

�Computer operations

�addressing modes

•Instruction set design principles

•Overview of MIPS architecture

•Stored program concept

•Learn a subset of MIPS assembly language

•Show how MIPS instructions are represented in machine language

•Contrast MIPS architecture with other X86 and PowerPC architectures

3

Organization Review

• All computers consist of five components

– Processor: (1) datapath and (2) control

– (3) Memory

– (4) Input devices and (5) Output devices

• Not all “memory” are created equally

– Cache: fast (expensive) memory are placed closer to the processor

– Main memory: less expensive memory--we can have more

• Input and output (I/O) devices have the messiest organization

– Wide range of speed: graphics vs. keyboard

– Wide range of requirements: speed, standard, cost ...

– Least amount of research (so far)

4

Summary: Computer System Components

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

• All have interfaces & organizations

5

Instruction Set Architecture

ISA design principles

•Simplicity favors regularity

•Smaller is faster

•Make the common case fast

Instruction Set Architecture of a machine is an abstraction Interface
between the hardware and the lowest-level software

•Includes anything that programmers need to know to make a binary

machine program work correctly, including

�Instructions (categories, format, ..)

�I/O devices, # of registers, memory access schemes , …

6

ISA: What must be specified?
Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

• Instruction Format or Encoding

– how is it decoded?

• Location of operands and result

– where other than memory?

– how many explicit operands?

– how are memory operands located?

– which can or cannot be in memory?

• Data type and Size

• Operations

– what are supported

• Successor instruction

– jumps, conditions, branches

7

Registers

•A storage device (in MIPS holds 32 bits, a word)

•Registers are built into the processor, in particular in the section
labeled “Data Path”

•Faster than main memory

•The basic ISA classes are distinguished by

�what kinds of registers they have

�what are the functions of the registers

8

Basic ISA Classes
Accumulator known as 1-operand machines

Use 1 register for source as well as destination operands

1-operand Add A acc ← acc + mem[A]

Load A acc ← mem[A]

Store B mem[B] ← acc

Stack known as 0-operand machines

Operands are pushed and popped off an internal stack

All other operations remove their operands from the stack and replace them
with the result

Push A push (mem[A])

Push B push (mem[B])

0-operand Add push (pop+pop)

Pop C mem[A] ← pop

9

Basic ISA Classes
General Purpose Register

Limited number of registers to store data for any purpose

Memory-Memory or Register-Memory

(arithmetic instructions can use data in memory for operands)

1-operand Add Ra, B Ra ← Ra + mem[B]

2-operand Add A,B mem[A] ← mem[A] + mem[B]

3-operand Add A,B,C mem[A] ← mem[B] + mem[C]

Load/Store (arithmetic instructions can only use data in registers)

(register-register machines)

Add Ra,Rb,Rc Ra ← Rb + Rc

Load Ra,A Ra ← mem[A]

Store Ra,B mem[B] ← Ra

10

Comparison of ISA classes

Code sequence for C = A + B for classes of instruction sets:

Stack Accumulator Register

(load-store)

Load A

Add B

Store C

Push A

Push B

Add

Pop C

Load R1,A

Load R2,B

Add R3,R1,R2

Store C,R3

11

Which ISA dominates?

General purpose registers dominate

1975-1995 all machines use general purpose registers

Advantages of registers
•registers are faster than memory

•registers are easier for a compiler to use
e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs. stack

•registers can hold variables
�memory traffic is reduced, so program is sped up

(since registers are faster than memory)
�code density improves (since register named with fewer bits than
memory location

