Outline

•Computer generations and technology

•Cost of Integrated Circuits

Computer Generations

Generation	Dates	Technology	Principal new Product
1	1950-1959	Vacuum Tubes	Commercial Electronic Computer
2	1960-1968	Transistors	Cheaper Computers
3	1969-1977	Integrated Circuit	Minicomputer
4	1978-?	LSI and VLSI	PC and workstations
Fig. 1.29 Page 42			

Each generation is about 8-10 years long except the fourth

Technology

Year	Technology used	Relative Performance/Unit Cost
1951	Vacuum Tube	1
1965	Transistor	35
1975	Integrated Circuit (IC)	900
1995	VLSI	2,400,000
Eig. 1.12 Dags 22		

Fig. 1.13 Page 22

Transistor	On/Off switch controlled by electricity
IC	combine dozens to hundreds of transistors into a single chip
VLSI	Very-Large Scale Integrated circuit (millions of transistors)

Growth in DRAM Capacity

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

•Example of increased integration

1

At The Beginning: Silicon

- •Substance found in sand
- •Does not conduct electricity well
- •Apply special chemical process to obtain
 - ✓ Conductors of electricity
 - ✓ Insulators from electricity
 - ✓ Conduct or insulate under special conditions (transistors)

At The Beginning: Silicon

Chip Manufacturing Process

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

Yield = % of good dies from the total number of dies on the wafer In Fig. Yield = 6/20 = 30% (X means a bad die)

5

Cost of Integrated Circuits

Refer to exercises 1.48-1.53 on pages 48-49

Cost per die = Cost per wafer / (Dies per wafer * yield)

Dies per wafer = Wafer area / Die area Approximation (why?) Yield = 1/(1+(Defect per area * Die area/2))² Empirical based on observation of yields

Manufacturing Pentium chips

Cost of Integrated Circuits

Example

Manufacturing a wafer costs \$1500 #of defects/cm² = 2.5 Wafer radius = 10 cm

Case A: dies are 1 cm * 1 cm

die area = 1 cm² Dies per wafer = Pi * R² / Die area = $3.14 * 10^2 / 1 = 314$ (an integer) Yield = $1/(1 + \frac{1}{2} (2.5) (1.0))^2 = 0.198$ Cost per die = Cost per wafer / (Dies per wafer * yield) = 1500 / (314 * 0.198) = \$24.13

Case B: dies are 2 cm * 2 cm

Die area = 4 cm² Dies per wafer = $3.14 * 10^2/4 = 78.5 \rightarrow 78$ (integer) Yield = 0.0278Cost per die = 1500/(78 * 0.0278) = \$691.75

What do you observe here? How does die area affect

cost per die?

10

Manufacturing Pentium chips

Fig. 1.16 & 1.17

Pentium Pro die 5.5 million transistors Cache is only 1 million transistors

Die area is 306 mm^2

Pentium Pro packaged with an external cache with 31 million transistors (Fig. 1.19)

COPYRIGHT 1998 MORGAN KAUFMANN PUBLISHERS, INC. ALL RIGHTS RESERVED

Manufacturing Pentium chips

Fig. 1.16 & 1.17

Pentium Pro die

5.5 million transistors

Cache is only 1 million transistors

Die area is 306 mm²

Pentium Pro packaged with an external cache with 31 million transistors (Fig. 1.19)

13

Manufacturing Pentium chips

