Chapter 7
Large and Fast: Exploiting
Memory Hierarchy

Memories: Review

DRAM (Dynamic Random Access Memory):

— value is stored as a charge on capacitor that must be periodically
refreshed, which is why it is called dynamic

— very small — 1 transistor per bit — but factor of 5 to 10 slower than
SRAM

— used for main memory
SRAM (Static Random Access Memory):

— value is stored on a pair of inverting gates that will exist indefinitely
as long as there is power, which is why it is called static

— very fast but takes up more space than DRAM — 4 to 6 transistors
per bit

— used for cache

Speed cPu Size Cost ($/bit)

Fastest Smallest Highest

Memory

Slowest Memory Biggest Lowest

Memory Hierarchy

« Users want large and fast memories...
— expensive and they don't like to pay...
« Make it seem like they have what they want...
— memory hierarchy
— hierarchy is inclusive, every level is subset of lower level
— performance depends on hit rates

CPU

!
Block of data
(unit of data copy) Increasing distance

| Level 1 from the CPU in

access time

Levels in the Level 2
Data are transferred memory hierarchy

Leveln

Size of the memory at each level

Locality

Locality is a principle that makes having a memory hierarchy a
good idea

If an item is referenced then because of

— temporal locality: it will tend to be again referenced soon

— spatial locality: nearby items will tend to be referenced soon
— why does code have locality — consider instructiot data?

Hit and Miss

« Focus on any two adjacent levels — called, upper (closer to CPU)
and lower (farther from CPU) — in the memory hierarchy,
because each block copy is always between two adjacent levels

e Terminology:

— block: minimum unit of data to move between levels

— hit: data requested is in upper level

— miss: data requested is not in upper level

— hit rate: fraction of memory accesses that are hits (i.e., found at
upper level)

— miss rate: fraction of memory accesses that are not hits

¢ miss rate = 1 — hit rate

— hit time: time to determine if the access is indeed a hit + time to
access and deliver the data from the upper level to the CPU

— miss penalty: time to determine if the access is a miss + time to
replace block at upper level with corresponding block at lower level
+ time to deliver the block to the CPU

Caches

» By simple example
— assume block size = one word of data

X4 X4
o ><1 Reference; to X,
causes miss so
Xn-2 Xn-2 it is fetched from
memory
Xn-1 Xn-1
X2 X2
n 4
X3 X3
a. Before the reference to Xn b. After the reference to Xn

e |[ssues:
— how do we know if a data item is in the cache?
— ifitis, how do we find it?
— if not, what do we do?

» Solution depends on cache addressing scheme...

Direct Mapped Cache

Addressing scheme in direct mapped cache:
— cache block address = memory block address mod cache size (unique)
— if cache size = 2™, cache address = lower m bits of n-bit memory address
— remaining upper n-m bits kept kept as tag bits at each cache block
— also need a valid bit to cache
recognize valid entry

000
001
010
011
100
101

o
=
=

111

S
2

P

o { 9 N

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Simplest Cache: Direct Mapped

4-Block Direct

Block Cache d Cach
Address Memory Index apped ~ache
0000,,.0 (:E
! 2
Z] —
3
o0, A4 « Block Size = 32/64 Bytes
)
6 — Cache Block 0 can be occupied by data from
g_ memory block 0, 4, 8, 12
1000, DR
— Cache Block 1 can be occupied by data
10 from memory block 1, 5, 9, 13
1 [
1100,,12
13}

T
15

Simplest Cache: Direct Mapped

Block Main Cache 4-Block Direct
Address Memory Index Mapped Cache
(::])- oo
oofo] 2 LTI
3
= Memory block address
oxfio] ¢ [T " ——

* index determines block in cache
¢ index = (address) mod (# blocks)

¢ If number of cache blocks is power of 2,
then cache index is just the lower n bits of
memory address [n = log,(# blocks)]

Simplest Cache: Direct Mapped w/Tag

Direct Mapped Cache
Block Main cache

Address Memory index —data__ tag

11

WNFRO

» tag determines which memory block occupies
cache block

» tag bits = lefthand bits of address
e hit: cache tag field = tag bits of address
» miss: tag field = tag bits of addr.

Accessing Cache

« Example:
(0) Initial state: (1) Address referred 10110 (/7iss):
Index V Tag Data Index V Tag Data
000 N 000 N
001 N 001 N
010 N 010 N
011 N 011 N
100 N 100 N
101 N 101 N
110 N 110 Y 10 Men(10110)
111 N 111 N

(2) Address referred 11010 (miss): (3) Address referred 10110 (Aif):
Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 Y 11 Mem(11010) 010 Y 11 Men(11010)
011 N 011 N

100 N 100 N to CPU
101 N 101 N

110 Y 10 Menm(10110) 110 Y 10 Mem(10110)
111 N 111 N

(4) Address referred 10010 (/7iss):

Index V Tag Data
000
001
010
011
100
101
110
111

10 Men(10010)

10 Men(10110)

z2<z2z2zz2<zZ22z2

MIPS style:

Direct Mapped Cache

Address showing, bit, positions
3130.-4131211 ..210
[]

offset|
20 10

Tag Data

Index

Index Valid Tag Data
0
1
2

1021
1022
1023

20 32

(

’Cache with 1024 1-word blocks: byte offset
(least 2 significant bits) is ignored and
next 10 bits used to index into cache

Cache Read Hit/Miss

Cache read hit: no action needed
Instruction cache read miss:

1. Send original PC value (current PC — 4, as PC has already been
incremented in first step of instruction cycle) to memory

2. Instruct main memory to perform read and wait for memory to
complete access — stall on read

3. After read completes write cache entry

4. Restart instruction execution at first step to refetch instruction
Data cache read miss:

— Similar to instruction cache miss

— Toreduce data miss penalty allow processor to execute instructions
while waiting for the read to complete until the word is required — stall
on use (why won't this work for instruction misses?)

Cache Write Hit/Miss

Write-through scheme

on write hit: replace data in cache and memory with every write hit
to avoid inconsistency

on write miss: write the word into cache and memory — obviously no
need to read missed word from memory!

Write-through is slow because of always required memory write

« performance is improved with a write buffer where words are stored
while waiting to be written to memory — processor can continue
execution until write buffer is full

« when a word in the write buffer completes writing into main that buffer
slot is freed and becomes available for future writes

« DEC 3100 write buffer has 4 words

Write-back scheme
— write the data block only into the cache and write-back the block to

main only when it is replaced in cache
more efficient than write-through, more complex to implement

Direct Mapped Cache: Taking Advantage
of Spatial Locality

e Taking advantage of spatial locality with larger blocks:
Address showing bit positions
31...16 15--4 3210

" 16 J12 J2Byte
Hit Tag + offset Data
Index Block offset
16 bits 128 bits
V Tag Data
| 4K
entries
16 d32 32 32 32
(=
Mux
32

Cache with 4K 4-word blocks: byte offset (least 2 significant bits) is ignored,
next 2 bits are block offset, and the next 12 bits are used to index into cache

Direct Mapped Cache: Taking Advantage of
Spatial Locality

» Cache replacement in large (multiword) blocks:
— word read miss: read entire block from main memory
— word write miss: cannot simply write word and tag! Why?!

— writing in a write-through cache:

« if write hit, i.e., tag of requested address and and cache entry are
equal, continue as for 1-word blocks by replacing word and writing
block to both cache and memory

« if write miss, i.e., tags are unequal, fetch block from memory, replace
word that caused miss, and write block to both cache and memory

« therefore, unlike case of 1-word blocks, a write miss with a multiword
block causes a memory read

Direct Mapped Cache: Taking Advantage
of Spatial Locality

Miss rate falls at first with increasing block size as expected,
but, as block size becomes a large fraction of total cache size,
miss rate may go up because

— there are few blocks

— competition for blocks increases

— blocks get ejected before most of their words are accessed
(thrashing in cache) “*

35%

30%

25% [

20%

15% \

9
ST ’\0*—?
006 L1 i

4 16 64 256

Block size (bytes) 1KB
Miss rate vs. block size for :°/¢.
various cache sizes *64KB
256 KB

Miss rate

Example Problem

« How many total bits are required for a direct-mapped each
with 128 KB of data and 1-word block size, assuming-ai8
address?

¢ Cache data = 128 KB = 217 bytes = 215 words = 215 blocks
¢ Cache entry size = block data bits + tag bits + valid bit
=32+ (32-15-2) + 1 =48 bits
e Therefore, cache size = 215 x 48 bits = 215 x (1.5 x 32) bits
= 1.5 x 220 bits = 1.5 Mbits
— data bits in cache = 128 KB x 8 = 1 Mbits
— total cache size/actual cache data = 1.5

Example Problem

How many total bits are required for a direct-mapped eawfth 128
KB of data and 4-word block size, assuming a 32-litess?

Cache size = 128 KB = 217 bytes = 215 words = 23 blocks
Cache entry size = block data bits + tag bits + valid bit
=128 +(32-13-2-2) + 1 = 144 bits
Therefore, cache size = 213 x 144 bits = 213 x (1.25 x 128) bits
= 1.25 x 220 bits = 1.25 Mbits
— data bits in cache = 128 KB x 8 = 1 Mbits
— total cache size/actual cache data = 1.25

Improving Cache Performance

¢ Use split caches for instruction and data because there is more

spatial locality in instruction references:

Block size in Instruction Data miss Effective combined
Proaram words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
|spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Miss rates for gcc and spice in a MIPS R2000
with one and four word block sizes

« Make reading multiple words (higher bandwidth) possible by
increasing physical or logical width of the system...

Improving Cache Performance by
Increasing Bandwidth

* Assume:
— cache block of 4 words
1 clock cycle to send address to memory address buffer (1 bus trip)
— 15 clock cycles for each memory data access
1 clock cycle to send data to memory data buffer (1 bus trip)

Proce Memcry Memory Memcry Memory
ssor bank 0 bank 1 bank 2 bank 3

Interleaved memory units
compete for bus

CPU CPU
T TT TT TT

¢ @
Memory | Memory Memory Memory
‘ pank penk 2 hank s

b. Wide memory organization ¢. Interleaved memory organization

4 word wide memory and bus 4 word wide memory only

1+ 1*15 +1*1 = 17 cycles 1 +1*15 + 4*1 = 20 cycles

a. One-word-wide
memory organization - -
Miss penalties
1+ 4*15 + 4*1 = 65 cycles

Performance

« Simplified model assuming equal read and write miss penalties:
— CPU time = (execution cycles + memory stall cycles) x cycle time
— memory stall cycles = memory accesses X miss rate x miss penalty

» Therefore, two ways to improve performance in cache:
— decrease miss rate
— decrease miss penalty
— what happens if we increase block size?

Example Problems

Assume for a given machine and program:
— instruction cache miss rate 2%

— data cache miss rate 4%

— miss penalty always 40 cycles

— CPI of 2 without memory stalls

— frequency of load/stores 36% of instructions

1. How much faster is a machine with a perfect cabheriever misses?

2. What happens if we speed up the machine by rediisi6Gf| to 1
without changing the clock rate?

3. What happens if we speed up the machine by dguitsiclock rate, but
if the absolute time for a miss penalty remains same?

Solution Solution (cont.)

e CPl without stall = 1

¢ Assume instruction count = |)
. . _ _ e« CPlwithstall=1+ 1.376 = 2.376 (clock has not changed so

¢ Instruction miss cycles =1 x 2% x 40 = 0.8 x | stall cycles per instruction

e Data miss cycles = | x 36% x 4% x 40 = 0.576 x | remains same)

e So, total memory-stall cycles = 0.8 x | + 0.576 x | = 1.376 x |
— in other words, 1.376 stall cycles per instruction))
« Therefore, CPI with memory stalls = 2 + 1.376 = 3.376 = CPIwith stall / CPI without stall

* Assuming instruction count and clock rate remain same for a =2.376
perfect cache and a cache that misses: » Performance with a perfect cache is better by a factor of 2.376

CPU time with stalls / CPU time with perfect cache
=3.376/2=1.688
« Performance with a perfect cache is better by a factor of 1.688

« CPU time with stalls / CPU time with perfect cache

Solution (cont.)

With doubled clock rate, miss penalty = 2 x 40 = 80 clock cycles

Stall cycles per instruction = (I x 2% x 80) + (I x 36% x 4% x 80)
=2.752 x|

So, faster machine with cache miss has CPI =2 + 2.752 = 4.752

CPU time with stalls / CPU time with perfect cache

= CPI with stall / CPI without stall

=4.752/2=2.376

Performance with a perfect cache is better by a factor of 2.376

