
Chapter 7
Large and Fast: Exploiting 

Memory Hierarchy

• DRAM (Dynamic Random Access Memory):
– value is stored as a charge on capacitor that must be periodically

refreshed, which is why it is called dynamic

– very small – 1 transistor per bit – but factor of 5 to 10 slower than 
SRAM 

– used for main memory

• SRAM (Static Random Access Memory):
– value is stored on a pair of inverting gates that will exist indefinitely

as long as there is power, which is why it is called static

– very fast but takes up more space than DRAM – 4 to 6 transistors 
per bit

– used for cache

Memories:  Review
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• Users want large and fast memories…
– expensive and they don’t like to pay…

• Make it seem like they have what they want…
– memory hierarchy

– hierarchy is inclusive, every level is subset of lower level
– performance depends on hit rates
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• Locality is a principle that makes having a memory hierarchy a 
good idea

• If an item is referenced then because of
– temporal locality:  it will tend to be again referenced soon

– spatial locality:   nearby items will tend to be referenced soon

– why does code have locality  – consider instruction and data?



Hit and Miss

• Focus on any two adjacent levels – called, upper (closer to CPU) 
and lower (farther from CPU) – in the memory hierarchy, 
because each block copy is always between two adjacent levels

• Terminology: 
– block: minimum unit of data to move between levels
– hit: data requested is in upper level
– miss: data requested is not in upper level
– hit rate: fraction of memory accesses that are hits (i.e., found at 

upper level)
– miss rate: fraction of memory accesses that are not hits

• miss rate = 1 – hit rate

– hit time: time to determine if the access is indeed a hit + time to 
access and deliver the data from the upper level to the CPU

– miss penalty: time to determine if the access is a miss + time to 
replace block at upper level with corresponding block at lower level 
+ time to deliver the block to the CPU

• By simple example
– assume block size = one word of data

• Issues:
– how do we know if a data item is in the cache?
– if it is, how do we find it?
– if not, what do we do?

• Solution depends on cache addressing scheme…
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• Addressing scheme in direct mapped cache:
– cache block address = memory block address mod cache size (unique)

– if cache size = 2m, cache address = lower m bits of n-bit memory address
– remaining upper n-m bits kept kept as tag bits at each cache block

– also need a valid bit to 

recognize valid entry
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Simplest Cache: Direct Mapped
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– Cache Block 0 can be occupied by data from
memory block 0, 4, 8, 12 

– Cache Block 1 can be occupied by data 
from memory block 1, 5, 9, 13
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• Block Size = 32/64 Bytes



Simplest Cache: Direct Mapped
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• index determines block in cache
• index = (address) mod (# blocks)
• If number of cache blocks is power of 2, 

then cache index is just the lower n bits of 
memory address [ n = log2(# blocks) ]

tag index

Memory block address

Simplest Cache: Direct Mapped w/Tag
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• tag determines which memory block occupies 
cache block

• tag bits = lefthand bits of address

• hit: cache tag field = tag bits of address

• miss: tag field ≠ tag bits of addr.
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Accessing Cache

• Example:                  

Index  V  Tag   Data
000  N         
001  N
010  N
011  N
100  N
101  N
110  N
111  N

Index  V  Tag   Data
000  N         
001  N
010  N
011  N
100  N
101  N
110  Y  10 Mem(10110)
111  N

(0) Initial state: (1) Address referred 10110 (miss):

Index  V  Tag   Data
000  N         
001  N
010  Y  11 Mem(11010)
011  N
100  N
101  N
110  Y  10 Mem(10110)
111  N

(2) Address referred 11010 (miss):

Index  V  Tag   Data
000  N         
001  N
010  Y  11 Mem(11010)
011  N
100  N
101  N
110  Y  10 Mem(10110)
111  N

(3) Address referred 10110 (hit):

Index  V  Tag   Data
000  N         
001  N
010  Y  10 Mem(10010)
011  N
100  N
101  N
110  Y  10 Mem(10110)
111  N

(4) Address referred 10010 (miss):

to CPU



• MIPS style:

Direct Mapped Cache

Address (showing bit positions)

20 10

Byte 
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30       13 12 11       2 1 0
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Cache with 1024 1-word blocks: byte offset
(least 2 significant bits) is ignored and 
next 10 bits used to index into cache

Cache Read Hit/Miss

• Cache read hit: no action needed
• Instruction cache read miss:

1. Send original PC value (current PC – 4, as PC has already been 
incremented in first step of instruction cycle) to memory

2. Instruct main memory to perform read and wait for memory to 
complete access – stall on read

3. After read completes write cache entry
4. Restart instruction execution at first step to refetch instruction

• Data cache read miss:
– Similar to instruction cache miss
– To reduce data miss penalty allow processor to execute instructions 

while waiting for the read to complete until the word is required – stall 
on use (why won’t this work for instruction misses?)

• Write-through scheme
– on write hit: replace data in cache and memory with every write hit 

to avoid inconsistency
– on write miss: write the word into cache and memory – obviously no 

need to read missed word from memory!
– Write-through is slow because of always required memory write

• performance is improved with a write buffer where words are stored 
while waiting to be written to memory – processor can continue 
execution until write buffer is full

• when a word in the write buffer completes writing into main that buffer 
slot is freed and becomes available for future writes

• DEC 3100 write buffer has 4 words

• Write-back scheme
– write the data block only into the cache and write-back the block to 

main only when it is replaced in cache
– more efficient than write-through, more complex to implement

Cache Write Hit/Miss

• Taking advantage of spatial locality with larger blocks:

Direct Mapped Cache: Taking Advantage 
of Spatial Locality
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Cache with 4K 4-word blocks: byte offset (least 2 significant bits) is ignored, 
next 2 bits are block offset, and the next 12 bits are used to index into cache



Direct Mapped Cache: Taking Advantage of 
Spatial Locality

• Cache replacement in large (multiword) blocks:
– word read miss: read entire block from main memory

– word write miss: cannot simply write word and tag! Why?!
– writing in a write-through cache:

• if write hit, i.e., tag of requested address and and cache entry are 
equal, continue as for 1-word blocks by replacing word and writing 
block to both cache and memory

• if write miss, i.e., tags are unequal, fetch block from memory, replace 
word that caused miss, and write block to both cache and memory

• therefore, unlike case of 1-word blocks, a write miss with a multiword 
block causes a memory read

• Miss rate falls at first with increasing block size as expected,
but, as block size becomes a large fraction of total cache size,
miss rate may go up because 
– there are few blocks

– competition for blocks increases
– blocks get ejected before most of their words are accessed 

(thrashing in cache)

Direct Mapped Cache: Taking Advantage 
of Spatial Locality
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Example Problem
• How many total bits are required for a direct-mapped cache 

with 128 KB of data and 1-word block size, assuming a 32-bit 
address?

• Cache data = 128 KB = 217 bytes = 215 words = 215 blocks
• Cache entry size = block data bits  + tag bits + valid bit

= 32 + (32 – 15 – 2) + 1 = 48 bits

• Therefore, cache size = 215 ×××× 48 bits =  215 ×××× (1.5 ×××× 32) bits 
= 1.5 ×××× 220 bits = 1.5 Mbits
– data bits in cache = 128 KB ×××× 8 = 1 Mbits
– total cache size/actual cache data = 1.5

Example Problem

• How many total bits are required for a direct-mapped cache with 128 
KB of data and 4-word block size, assuming a 32-bit address?

• Cache size = 128 KB = 217 bytes = 215 words = 213 blocks
• Cache entry size = block data bits  + tag bits + valid bit

= 128 + (32 – 13 – 2 – 2) + 1 = 144 bits

• Therefore, cache size = 213 ×××× 144 bits =  213 ×××× (1.25 ×××× 128) bits 
= 1.25 ×××× 220 bits = 1.25 Mbits
– data bits in cache = 128 KB ×××× 8 = 1 Mbits
– total cache size/actual cache data = 1.25



• Use split caches for instruction and data because there is more 
spatial locality in instruction references:

• Make reading multiple words (higher bandwidth) possible by 
increasing physical or logical width of the system…

Improving Cache Performance

Program
Block size in 

words
Instruction 
miss rate

Data miss 
rate

Effective combined 
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Miss rates for gcc and spice in a MIPS R2000 
with one and four word block sizes

• Assume:
– cache block of 4 words

– 1 clock cycle to send address to memory address buffer (1 bus trip) 
– 15 clock cycles for each memory data access

– 1 clock cycle to send data to memory data buffer (1 bus trip)

Improving Cache Performance by 
Increasing Bandwidth
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Performance

• Simplified model assuming equal read and write miss penalties:
– CPU time = (execution cycles + memory stall cycles) x cycle time

– memory stall cycles = memory accesses x miss rate x miss penalty

• Therefore, two ways to improve performance in cache:
– decrease miss rate

– decrease miss penalty 
– what happens if we increase block size?

Example Problems

• Assume for a given machine and program:
– instruction cache miss rate 2%
– data cache miss rate 4%
– miss penalty always 40 cycles
– CPI of 2 without memory stalls
– frequency of load/stores 36% of instructions

1. How much faster is a machine with a perfect cache that never misses?
2. What happens if we speed up the machine by reducing its CPI to 1

without changing the clock rate?
3. What happens if we speed up the machine by doubling its clock rate, but 

if the absolute time for a miss penalty remains same?



Solution

1.
• Assume instruction count = I
• Instruction miss cycles = I ×××× 2% ×××× 40 = 0.8 ×××× I
• Data miss cycles = I ×××× 36% ×××× 4% ×××× 40 = 0.576 ×××× I
• So, total memory-stall cycles = 0.8 ×××× I + 0.576 ×××× I = 1.376 ×××× I

– in other words, 1.376 stall cycles per instruction
• Therefore, CPI with memory stalls = 2 + 1.376 = 3.376
• Assuming instruction count and clock rate remain same for a 

perfect cache and a cache that misses:
CPU time with stalls / CPU time with perfect cache
= 3.376 / 2 = 1.688

• Performance with a perfect cache is better by a factor of 1.688

Solution (cont.)

2.
• CPI without stall = 1
• CPI with stall = 1 + 1.376 = 2.376 (clock has not changed so 

stall cycles per instruction 
remains same)

• CPU time with stalls / CPU time with perfect cache
= CPI with stall / CPI without stall 
= 2.376

• Performance with a perfect cache is better by a factor of 2.376

Solution (cont.)

3.
• With doubled clock rate, miss penalty = 2 ×××× 40 = 80 clock cycles
• Stall cycles per instruction = (I ×××× 2% ×××× 80) + (I ×××× 36% ×××× 4% ×××× 80)

= 2.752 ×××× I
• So, faster machine with cache miss has CPI = 2 + 2.752 = 4.752
• CPU time with stalls / CPU time with perfect cache

= CPI with stall / CPI without stall 
= 4.752 / 2 = 2.376

• Performance with a perfect cache is better by a factor of 2.376


