
Chapter 7
Large and Fast: Exploiting

Memory Hierarchy

• DRAM (Dynamic Random Access Memory):
– value is stored as a charge on capacitor that must be periodically

refreshed, which is why it is called dynamic

– very small – 1 transistor per bit – but factor of 5 to 10 slower than
SRAM

– used for main memory

• SRAM (Static Random Access Memory):
– value is stored on a pair of inverting gates that will exist indefinitely

as long as there is power, which is why it is called static

– very fast but takes up more space than DRAM – 4 to 6 transistors
per bit

– used for cache

Memories: Review

Memory

CPU

Memory

Size Cost ($/bit)Speed

Smallest

Biggest

Highest

Lowest

Fastest

Slowest Memory

• Users want large and fast memories…
– expensive and they don’t like to pay…

• Make it seem like they have what they want…
– memory hierarchy

– hierarchy is inclusive, every level is subset of lower level
– performance depends on hit rates

Memory Hierarchy

Processor

Data are transferred

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
from the CPU in

access time

Size of the memory at each level

Block of data
(unit of data copy)

Locality

• Locality is a principle that makes having a memory hierarchy a
good idea

• If an item is referenced then because of
– temporal locality: it will tend to be again referenced soon

– spatial locality: nearby items will tend to be referenced soon

– why does code have locality – consider instruction and data?

Hit and Miss

• Focus on any two adjacent levels – called, upper (closer to CPU)
and lower (farther from CPU) – in the memory hierarchy,
because each block copy is always between two adjacent levels

• Terminology:
– block: minimum unit of data to move between levels
– hit: data requested is in upper level
– miss: data requested is not in upper level
– hit rate: fraction of memory accesses that are hits (i.e., found at

upper level)
– miss rate: fraction of memory accesses that are not hits

• miss rate = 1 – hit rate

– hit time: time to determine if the access is indeed a hit + time to
access and deliver the data from the upper level to the CPU

– miss penalty: time to determine if the access is a miss + time to
replace block at upper level with corresponding block at lower level
+ time to deliver the block to the CPU

• By simple example
– assume block size = one word of data

• Issues:
– how do we know if a data item is in the cache?
– if it is, how do we find it?
– if not, what do we do?

• Solution depends on cache addressing scheme…

Caches

a. Before the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

b. After the reference to Xn

X3

Xn – 1

Xn – 2

X1

X4

Xn

X2X2

Reference to Xn

causes miss so
it is fetched from
memory

• Addressing scheme in direct mapped cache:
– cache block address = memory block address mod cache size (unique)

– if cache size = 2m, cache address = lower m bits of n-bit memory address
– remaining upper n-m bits kept kept as tag bits at each cache block

– also need a valid bit to

recognize valid entry

Direct Mapped Cache

00001 00101 01001 01101 10001 10101 11001 11101

00
0

Cache

Memory

00
1

0
1

0
01

1
1

00
1

01
1

10
1

11

Simplest Cache: Direct Mapped

Memory
4-Block Direct
Mapped CacheBlock

Address

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Cache
Index

0
1
2
3

– Cache Block 0 can be occupied by data from
memory block 0, 4, 8, 12

– Cache Block 1 can be occupied by data
from memory block 1, 5, 9, 13

0000two

0100two

1000two

1100two

• Block Size = 32/64 Bytes

Simplest Cache: Direct Mapped

Main
Memory

4-Block Direct
Mapped CacheBlock

Address

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Cache
Index

0
1
2
3

0010

0110

1010

1110

• index determines block in cache
• index = (address) mod (# blocks)
• If number of cache blocks is power of 2,

then cache index is just the lower n bits of
memory address [n = log2(# blocks)]

tag index

Memory block address

Simplest Cache: Direct Mapped w/Tag

Main
Memory

Direct Mapped Cache
Block
Address

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3

0010

0110

1010

1110

• tag determines which memory block occupies
cache block

• tag bits = lefthand bits of address

• hit: cache tag field = tag bits of address

• miss: tag field ≠ tag bits of addr.

tag

11

data
cache
index

Accessing Cache

• Example:

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Index V Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(0) Initial state: (1) Address referred 10110 (miss):

Index V Tag Data
000 N
001 N
010 Y 11 Mem(11010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(2) Address referred 11010 (miss):

Index V Tag Data
000 N
001 N
010 Y 11 Mem(11010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(3) Address referred 10110 (hit):

Index V Tag Data
000 N
001 N
010 Y 10 Mem(10010)
011 N
100 N
101 N
110 Y 10 Mem(10110)
111 N

(4) Address referred 10010 (miss):

to CPU

• MIPS style:

Direct Mapped Cache

Address (showing bit positions)

20 10

Byte
offset

Valid Tag DataIndex

0

1

2

1021

1022

1023

Tag

Index

Hit Data

20 32

31 30 13 12 11 2 1 0

Address showing bit positions

Cache with 1024 1-word blocks: byte offset
(least 2 significant bits) is ignored and
next 10 bits used to index into cache

Cache Read Hit/Miss

• Cache read hit: no action needed
• Instruction cache read miss:

1. Send original PC value (current PC – 4, as PC has already been
incremented in first step of instruction cycle) to memory

2. Instruct main memory to perform read and wait for memory to
complete access – stall on read

3. After read completes write cache entry
4. Restart instruction execution at first step to refetch instruction

• Data cache read miss:
– Similar to instruction cache miss
– To reduce data miss penalty allow processor to execute instructions

while waiting for the read to complete until the word is required – stall
on use (why won’t this work for instruction misses?)

• Write-through scheme
– on write hit: replace data in cache and memory with every write hit

to avoid inconsistency
– on write miss: write the word into cache and memory – obviously no

need to read missed word from memory!
– Write-through is slow because of always required memory write

• performance is improved with a write buffer where words are stored
while waiting to be written to memory – processor can continue
execution until write buffer is full

• when a word in the write buffer completes writing into main that buffer
slot is freed and becomes available for future writes

• DEC 3100 write buffer has 4 words

• Write-back scheme
– write the data block only into the cache and write-back the block to

main only when it is replaced in cache
– more efficient than write-through, more complex to implement

Cache Write Hit/Miss

• Taking advantage of spatial locality with larger blocks:

Direct Mapped Cache: Taking Advantage
of Spatial Locality

Address (showing bit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 32 1 0

Address showing bit positions

Cache with 4K 4-word blocks: byte offset (least 2 significant bits) is ignored,
next 2 bits are block offset, and the next 12 bits are used to index into cache

Direct Mapped Cache: Taking Advantage of
Spatial Locality

• Cache replacement in large (multiword) blocks:
– word read miss: read entire block from main memory

– word write miss: cannot simply write word and tag! Why?!
– writing in a write-through cache:

• if write hit, i.e., tag of requested address and and cache entry are
equal, continue as for 1-word blocks by replacing word and writing
block to both cache and memory

• if write miss, i.e., tags are unequal, fetch block from memory, replace
word that caused miss, and write block to both cache and memory

• therefore, unlike case of 1-word blocks, a write miss with a multiword
block causes a memory read

• Miss rate falls at first with increasing block size as expected,
but, as block size becomes a large fraction of total cache size,
miss rate may go up because
– there are few blocks

– competition for blocks increases
– blocks get ejected before most of their words are accessed

(thrashing in cache)

Direct Mapped Cache: Taking Advantage
of Spatial Locality

1 KB

8 KB

16 KB

64 KB

256 KB

256

40%

35%

30%

25%

20%

15%

10%

5%

0%

M
is

s
ra

te

64164

Block size (bytes)

Miss rate vs. block size for
various cache sizes

Example Problem
• How many total bits are required for a direct-mapped cache

with 128 KB of data and 1-word block size, assuming a 32-bit
address?

• Cache data = 128 KB = 217 bytes = 215 words = 215 blocks
• Cache entry size = block data bits + tag bits + valid bit

= 32 + (32 – 15 – 2) + 1 = 48 bits

• Therefore, cache size = 215 ×××× 48 bits = 215 ×××× (1.5 ×××× 32) bits
= 1.5 ×××× 220 bits = 1.5 Mbits
– data bits in cache = 128 KB ×××× 8 = 1 Mbits
– total cache size/actual cache data = 1.5

Example Problem

• How many total bits are required for a direct-mapped cache with 128
KB of data and 4-word block size, assuming a 32-bit address?

• Cache size = 128 KB = 217 bytes = 215 words = 213 blocks
• Cache entry size = block data bits + tag bits + valid bit

= 128 + (32 – 13 – 2 – 2) + 1 = 144 bits

• Therefore, cache size = 213 ×××× 144 bits = 213 ×××× (1.25 ×××× 128) bits
= 1.25 ×××× 220 bits = 1.25 Mbits
– data bits in cache = 128 KB ×××× 8 = 1 Mbits
– total cache size/actual cache data = 1.25

• Use split caches for instruction and data because there is more
spatial locality in instruction references:

• Make reading multiple words (higher bandwidth) possible by
increasing physical or logical width of the system…

Improving Cache Performance

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Miss rates for gcc and spice in a MIPS R2000
with one and four word block sizes

• Assume:
– cache block of 4 words

– 1 clock cycle to send address to memory address buffer (1 bus trip)
– 15 clock cycles for each memory data access

– 1 clock cycle to send data to memory data buffer (1 bus trip)

Improving Cache Performance by
Increasing Bandwidth

CPU

Cache

Bus

Memory

a. One-word-wide
 memory organization

CPU

Bus

b. Wide memory organization

Memory

Multiplexor

Cache

CPU

Cache

Bus

Memory
bank 1

Memory
bank 2

Memory
bank 3

Memory
bank 0

c. Interleaved memory organization

Miss penalties
1 + 4*15 + 4*1 = 65 cycles

1 + 1*15 +1*1 = 17 cycles

4 word wide memory and bus

1 +1*15 + 4*1 = 20 cycles

4 word wide memory only

Proce-
ssor

Memory
bank 0

Memory
bank 2

Memory
bank 3

Memory
bank 1

Bus

Interleaved memory units
compete for bus

Performance

• Simplified model assuming equal read and write miss penalties:
– CPU time = (execution cycles + memory stall cycles) x cycle time

– memory stall cycles = memory accesses x miss rate x miss penalty

• Therefore, two ways to improve performance in cache:
– decrease miss rate

– decrease miss penalty
– what happens if we increase block size?

Example Problems

• Assume for a given machine and program:
– instruction cache miss rate 2%
– data cache miss rate 4%
– miss penalty always 40 cycles
– CPI of 2 without memory stalls
– frequency of load/stores 36% of instructions

1. How much faster is a machine with a perfect cache that never misses?
2. What happens if we speed up the machine by reducing its CPI to 1

without changing the clock rate?
3. What happens if we speed up the machine by doubling its clock rate, but

if the absolute time for a miss penalty remains same?

Solution

1.
• Assume instruction count = I
• Instruction miss cycles = I ×××× 2% ×××× 40 = 0.8 ×××× I
• Data miss cycles = I ×××× 36% ×××× 4% ×××× 40 = 0.576 ×××× I
• So, total memory-stall cycles = 0.8 ×××× I + 0.576 ×××× I = 1.376 ×××× I

– in other words, 1.376 stall cycles per instruction
• Therefore, CPI with memory stalls = 2 + 1.376 = 3.376
• Assuming instruction count and clock rate remain same for a

perfect cache and a cache that misses:
CPU time with stalls / CPU time with perfect cache
= 3.376 / 2 = 1.688

• Performance with a perfect cache is better by a factor of 1.688

Solution (cont.)

2.
• CPI without stall = 1
• CPI with stall = 1 + 1.376 = 2.376 (clock has not changed so

stall cycles per instruction
remains same)

• CPU time with stalls / CPU time with perfect cache
= CPI with stall / CPI without stall
= 2.376

• Performance with a perfect cache is better by a factor of 2.376

Solution (cont.)

3.
• With doubled clock rate, miss penalty = 2 ×××× 40 = 80 clock cycles
• Stall cycles per instruction = (I ×××× 2% ×××× 80) + (I ×××× 36% ×××× 4% ×××× 80)

= 2.752 ×××× I
• So, faster machine with cache miss has CPI = 2 + 2.752 = 4.752
• CPU time with stalls / CPU time with perfect cache

= CPI with stall / CPI without stall
= 4.752 / 2 = 2.376

• Performance with a perfect cache is better by a factor of 2.376

