
Chapter 6
Enhancing Performance with 

Pipelining

Pipelining
• Think of using machines in laundry services
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Assume 30 min. each task – wash, dry, fold, store – and  that 
separate tasks use separate hardware and so can be overlapped
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Pipelined vs. Single-Cycle Instruction 
Execution: the Plan
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Assume 2 ns for memory access, ALU operation; 1 ns for register access:
therefore, single cycle clock 8 ns; pipelined clock cycle 2 ns.

Pipelining: Keep in Mind

• Pipelining does not reduce latency of a single task, it 
increases throughput of entire workload

• Pipeline rate limited by longest stage
– potential speedup = number pipe stages

– unbalanced lengths of pipe stages reduces speedup

• Time to fill pipeline and time to drain it – when there is 
slack in the pipeline – reduces speedup



Pipelining MIPS

• What makes it hard?
– structural hazards: different instructions, at different stages, in 

the pipeline want to use the same hardware resource

– control hazards: succeeding instruction, to put into pipeline, 
depends on the outcome of a previous branch instruction, 
already in pipeline

– data hazards: an instruction in the pipeline requires data to be 
computed by a previous instruction still in the pipeline

• Before actually building the pipelined datapath and control we 
first briefly examine these potential hazards individually…

• Structural hazard: inadequate hardware to simultaneously 
support all instructions in the pipeline in the same clock cycle

• E.g.,  suppose single – not separate – instruction and data 
memory in pipeline below with one read port
– then a structural hazard between first and fourth lw instructions

• MIPS was designed to be pipelined: structural hazards are easy 
to avoid!

Structural Hazards

2 4 6 8 10 12 14

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch Reg ALU
Data

access Reg

2 ns
Instruction

fetch
Reg ALU Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Pipelined

Instruction
fetch Reg ALU

Data
access Reg

2 nslw $4, 400($0)

Hazard if single memory

Control Hazards
• Control hazard: need to make a decision based on the result of a 

previous instruction still executing in pipeline
• Solution 1 Stall the pipeline
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Control Hazards
• Solution 2 Predict branch outcome

– e.g., predict branch-not-taken :
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Control Hazards

• Solution 3 Delayed branch: always execute the sequentially next 
statement with the branch executing after one instruction delay 
– compiler’s job to find a statement that can be put in the slot 
that is independent of branch outcome
– MIPS does this – but it is an option in SPIM (Simulator -> Settings)
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Data Hazards

• Data hazard: instruction needs data from the result of a previous 
instruction still executing in pipeline

• Solution Forward data if possible…
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IF ID WBEX MEM
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sub $t2, $s0, $t3
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Instruction pipeline diagram:
shade indicates use –
left=write, right=read

Without forwarding – blue line –
data has to go back in time;
with forwarding – red line –
data is available in time 

Data Hazards

• Forwarding may not be enough
– e.g., if an R-type instruction following a load uses the result of the 

load – called load-use data hazard
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Reordering Code to Avoid Pipeline Stall 
(Software Solution)

• Example:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

• Reordered code:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t0, 4($t1)

sw $t2, 0($t1)

Data hazard

Interchanged



Pipelined Datapath

• We now move to actually building a pipelined datapath
• First recall the 5 steps in instruction execution

1. Instruction Fetch & PC Increment (IF)

2. Instruction Decode and Register Read (ID)

3. Execution or calculate address (EX)
4. Memory access (MEM)

5. Write result into register (WB)

• Review: single-cycle processor
– all 5 steps done in a single clock cycle

– dedicated hardware required for each step

• What happens if we break the execution into multiple cycles, but
keep the extra hardware? 

Review - Single-Cycle Datapath “Steps”
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Pipelined Datapath – Key Idea

• What happens if we break the execution into multiple cycles, but keep the 
extra hardware?
– Answer: We may be able to start executing a new instruction at each clock 

cycle  - pipelining

• …but we shall need extra registers to hold data between cycles –
pipeline registers

Pipelined Datapath
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Pipelined Datapath

IF/ID

Pipeline registers
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Only data flowing right to left may cause hazard…, why?

Bug in the Datapath
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Destination register number is also passed through ID/EX, EX/MEM
and MEM/WB registers, which are now wider by 5 bits

Pipelined Example

• Consider the following instruction sequence:

lw $t0,  10($t1)

sw $t3, 20($t4)

add $t5,  $t6,  $t7

sub $t8,  $t9,  $t10



Single-Clock-Cycle Diagram:
Clock Cycle 1
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Single-Clock-Cycle Diagram: 
Clock Cycle 2
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Single-Clock-Cycle Diagram: 
Clock Cycle 3
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Single-Clock-Cycle Diagram: 
Clock Cycle 5
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Single-Clock-Cycle Diagram: 
Clock Cycle 6

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

SWADDSUB

Single-Clock-Cycle Diagram: 
Clock Cycle 7
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Single-Clock-Cycle Diagram: 
Clock Cycle 8
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Alternative View –
Multiple-Clock-Cycle Diagram

IM REG ALU DM REGlw $t0, 10($t1)

sw $t3, 20($t4)

add $t5, $t6, $t7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $t8, $t9, $t10 IM REG ALU DM REG

CC 8

Time axis

Notes
• One significant difference in the execution of an R-type 

instruction between multicycle and pipelined implementations:
– register write-back for the R-type instruction is the 5th (the last 

write-back)  pipeline stage vs. the 4th stage for the multicycle
implementation. Why?

– think of structural hazards when writing to the register file…
• Worth repeating: the essential difference between the pipeline 

and multicycle implementations is the insertion of pipeline 
registers to decouple the 5 stages

• The CPI of an ideal pipeline (no stalls) is 1. Why?
• The RaVi Architecture Visualization Project of Dortmund U. 

has pipeline simulations – see link in our Additional Resources 
page

• As we develop control for the pipeline keep in mind that the 
text does not consider jump – should not be too hard to 
implement!

Recall Single-Cycle Control – the Datapath
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ALU 
control

Shift 
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Address

Instruction   AluOp Instruction  Funct Field   Desired        ALU control
opcode operation                       ALU action  input
LW         00      load word    xxxxxx add         0 10

SW         00      store word   xxxxxx add         0 10

Branch eq 01      branch eq xxxxxx subtract    110

R-type     10      add          100000     add         010

R-type     10      subtract     100010     subtract     110

R-type     10      AND          100100     and         000

R-type     10      OR           100101     or          001

R-type     10      set on less  101010     set on l ess 111

Recall Single-Cycle – ALU Control

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111



Recall Single-Cycle – Control Signals

Signal Name                      Effect when deasserted Effect when asserted

RegDst The register destination number for the         The register destination number for the
Write register comes from the rt field (bits 20-16)     Write register comes from the rd field (bits 15-11)

RegWrite None                                              The register on the Write register input is written 
with the value on the Write data input

AlLUSrc The second ALU operand comes from the           The second ALU operand is the sign-extended, 
second register file output (Read data 2)                  lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder
that computes the value of PC + 4                        that computes the branch target

MemRead None Data memory contents designated by the address
input are put on the first Read data output

MemWrite None Data memory contents designated by the address
input are replaced by the value of the Write data input

MemtoReg The value fed to the register Write data input  The value fed to the register Write data input
comes from the ALU comes from the data memory

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Effect of control bits

Deter-
mining
control
bits

Pipeline Control

• Initial design – motivated by single-cycle datapath control – use 
the same control signals

• Observe:
– No separate write signal for the PC as it is written every cycle

– No separate write signals for the pipeline registers as they are written 
every cycle

– No separate read signal for instruction memory as it is read every 
clock cycle

– No separate read signal for register file as it is read every clock cycle

• Need to set control signals during each pipeline stage
• Since control signals are associated with components active 

during a single pipeline stage, can group control lines into five 
groups according to pipeline stage

Pipelined Datapath with Control I
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• There are five stages in the pipeline
– instruction fetch / PC increment
– instruction decode / register fetch
– execution / address calculation
– memory access
– write back

Pipeline Control Signals

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

Write-back 
stage control 

lines

Instruction
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Op1
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Op0
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Src Branch
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Read
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Write

Reg 
write

Mem to 
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Nothing to control as instruction memory
read and PC write are always enabled



• Pass control signals along just like the data – extend each 
pipeline register to hold needed control bits for succeeding stages

• Note: The 6-bit funct field of the instruction required in the EX 
stage to generate ALU control can be retrieved as the 6 least 
significant bits of the immediate field which is sign-extended and 
passed from the IF/ID register to the ID/EX register

Pipeline Control Implementation
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Pipelined Datapath with Control II
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• Instruction
sequence:

lw  $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
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Revisiting Hazards

• So far our datapath and control have ignored hazards
• We shall revisit data hazards and control hazards and 

enhance our datapath and control to handle them in 
hardware…



• Problem with starting an instruction before previous are finished:
– data dependencies that go backward in time – called data hazards

Data Hazards and Forwarding
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or  $13, $6,  $2
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sw $15, 100($2)

$2 = 10 before sub ;
$2 = -20 after sub

• Have compiler guarantee never any data hazards!
– by rearranging instructions to insert independent instructions between 

instructions that would otherwise have a data hazard between them,
– or, if such rearrangement is not possible, insert nops

• Such compiler solutions may not always be possible, and nops
slow the machine down

Software Solution

sub $2,  $1, $3

lw    $10, 40($3)
slt $5, $6, $7
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
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sub $2,  $1, $3

nop
nop
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

or

MIPS: nop = “no operation” = 00…0 (32bits) = sll $0, $0, 0

Hardware Solution: Forwarding

• Idea: use intermediate data, do not wait for result to be finally 
written to the destination register. Two steps:

1. Detect data hazard
2. Forward intermediate data to resolve hazard

Pipelined Datapath with Control II 
(as before)
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Hazard Detection
• Hazard conditions:
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

– Eg., in the earlier example, first hazard between sub $2, $1, $3 and 
and $12, $2, $5 is detected when the and is in EX stage and the 

sub is in MEM stage because
• EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a)

• Whether to forward also depends on:
– if the later instruction is going to write a register – if not, no need to 

forward, even if there is register number match as in conditions above

– if the destination register of the later instruction is $0 – in which case 
there is no need to forward value ($0 is always 0 and never overwritten)

Data Forwarding
• Plan:

– allow inputs to the ALU not just from ID/EX, but also later 
pipeline registers, and

– use multiplexors and control signals to choose appropriate 
inputs to ALU

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program 
execution order 
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

sub $2,  $1,  $3
and $12, $2,  $5
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sw $15, 100($2)

Dependencies between pipelines move forward in time
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Forwarding Hardware with Control

PC
Instruction 

memory

Registers

M 
u 
x

M 
u 
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data 
memory

M 
u 
x

Forwarding 
unit

IF/ID

In
st

ru
ct

io
n

M 
u 
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Datapath with forwarding hardware and control wires – certain details,
e.g., branching hardware, are omitted to simplify the drawing

Note: so far we have only handled forwarding to R-type instructions…!

Called forwarding unit, not hazard detection unit, 
because once data is forwarded there is no hazard!
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• Execution 
example:
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• Execution
example
(cont.):

sub $2, $1, $3
and $4, $2, $5
or  $4, $4, $2
add $9, $4, $2

Clock cycle 5

Clock cycle 6

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that 

writes to the same register

– therefore, we need a hazard detection unit to stall the pipeline after 
the load instruction

Data Hazards and Stalls
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As even a pipeline
dependency goes
backward in time
forwarding will not
solve the hazard
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Control II (as before)
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Hazard Detection Logic to Stall

• Hazard detection unit implements the following check if to stall

if ( ID/EX.MemRead // if the instruction in the EX stage is a load…
and ( ( ID/EX.RegisterRt = IF/ID.RegisterRs )         // and the destination register 

or  ( ID/EX.RegisterRt = IF/ID.RegisterRt ) ) )  // matches either source register

// of the instruction in the ID stage, then…
stall the pipeline

Mechanics of Stalling

• If the check to stall verifies, then the pipeline needs to stall 
only 1 clock cycle after the load as after that the forwarding 
unit can resolve the dependency

• What the hardware does to stall the pipeline 1 cycle:
– does not let the IF/ID register change (disable write!) – this will 

cause the instruction in the ID stage to repeat, i.e., stall
– therefore, the instruction, just behind, in the IF stage must be

stalled as well – so hardware does not let the PC change
(disable write!) – this will cause the instruction in the IF stage to 
repeat, i.e., stall

– changes all the EX, MEM and WB control fields in the ID/EX 
pipeline register to 0, so effectively the instruction just behind the 
load becomes a nop – a bubble is said to have been inserted 
into the pipeline

• note that we cannot turn that instruction into an nop by 0ing all the 
bits in the instruction itself – recall nop = 00…0 (32 bits) – because 
it has already been decoded and control signals generated
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Datapath with forwarding hardware, the hazard detection unit and 
controls wires – certain details, e.g., branching hardware are omitted 
to simplify the drawing

Stalling Resolves a Hazard

• Same instruction sequence as before for which forwarding by 
itself could not resolve the hazard:

lw $2, 20($1)

Program 
execution 
order 
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7
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IM Reg DM RegIM
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bubble

lw  $2, 20($1)
and $4, $2, $5
or  $8, $2, $6
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Hazard detection unit inserts a 1-cycle bubble in the pipeline, after
which all pipeline register dependencies go forward so then the 
forwarding unit can handle them and there are no more hazards
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• Execution
example:
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Clock cycle 2

Clock cycle 3

Hazard 
detection 

unit

0

M 
u 
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

$2

$5

5

2

2

2

4

WB

Hazard 
detection 

unit

0

M 
u 
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

PC
Instruction 

memory

Registers

M 
u 
x

M 
u 
x

M 
u 
x

EX

M

WB

Data 
memory

M 
u 
x

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 bubble

ID/EX

lw $2, . . .

EX/MEM

before<1>

MEM/WB

Clock 4

2

2

5

5
10

11

00

$2

$5

5

2

4

Control

ALU

M

WB

bubble lw $2, . . .

PC
Instruction 

memory

Registers

M 
u 
x

M 
u 
x

M 
u 
x

EX

M

WB

M

WB

Data 
memory

M 
u 
x

Forwarding 
unit

Forwarding 
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

EX/MEM

MEM/WB

add $9, $4, $2

Clock 5

2

2
10 10

11

$4

$2

2

4

4

4

2

4

$2

$5

5

2

4

Control

ALU

0

WB

ID/EX.MemRead

ID/EX.MemRead

or $4, $4, $2

or $4, $4, $2

Stalling
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(cont.):
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• Execution 
example
(cont.):

lw  $2, 20($1)
and $4, $2, $5
or  $4, $4, $2
add $9, $4, $2 

Clock cycle 6

Clock cycle 7

• Problem with branches in the pipeline we have so far is that the
branch decision is not made till the MEM stage – so what 
instructions, if at all, should we insert into the pipeline following 
the branch instructions?

• Possible solution: stall the pipeline till branch decision is known
– not efficient, slow the pipeline significantly!

• Another solution: predict the branch outcome
– e.g., always predict branch-not-taken – continue with next 

sequential instructions
– if the prediction is wrong have to flush the pipeline behind the 

branch – discard instructions already fetched or decoded – and 
continue execution at the branch target

Control (or Branch) Hazards



Predicting Branch-not-taken:
Misprediction delay
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Reg

The outcome of branch taken (prediction wrong) is decided only when 
beq is in the MEM stage, so the following three sequential instructions
already in the pipeline have to be flushed and execution resumes at lw

Optimizing the Pipeline to 
Reduce Branch Delay

• Move the branch decision from the MEM stage (as in our 
current pipeline) earlier to the ID stage
– calculating the branch target address involves moving the 

branch adder from the MEM stage to the ID stage – inputs to this 
adder, the PC value and the immediate fields are already 
available in the IF/ID pipeline register

– calculating the branch decision is efficiently done, e.g., for 
equality test, by XORing respective bits and then ORing all the 
results and inverting, rather than using the ALU to subtract and
then test for zero (when there is a carry delay)

• with the more efficient equality test we can put it in the ID stage 
without significantly lengthening this stage – remember an objective 
of pipeline design is to keep pipeline stages balanced

– we must correspondingly make additions to the forwarding and 
hazard detection units to forward to or stall the branch at the ID 
stage in case the branch decision depends on an earlier result

Flushing on Misprediction

• Same strategy as for stalling on load-use data hazard…
• Zero out all the control values (or the instruction itself) in pipeline 

registers for the instructions following the branch that are already 
in the pipeline – effectively turning them into nops – so they are 
flushed
– in the optimized pipeline, with branch decision made in the ID stage, 

we have to flush only one instruction in the IF stage – the branch 
delay penalty is then only one clock cycle
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Optimized Datapath for Branch

Branch decision is moved from the MEM stage to the ID stage – simplified drawing 
not showing enhancements to the forwarding and hazard detection units

IF.Flush control zeros out the instruction in the IF/ID 
pipeline register (which follows the branch)
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• Execution
example:

36 sub $10, $4, $8
40 beq $1,  $3,  7
44 and $12  $2, $5
48 or  $13  $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7

…
72 lw  $4,  50($7)

Clock cycle 4 

Clock cycle 3 

Optimized pipeline with
only one bubble as a result
of the taken branch

Superscalar Architecture

• A superscalar processor executes more than one instruction during 
a clock cycle by simultaneously dispatching multiple instructions to 
redundant functional units on the processor. 

• Each functional unit is not a separate CPU core but an execution resource 
within a single CPU 

Typical 5-stage pipeline Superscalar Pipeline

Pentium4 Pipeline

20-stage pipeline




