
Chapter 6
Enhancing Performance with

Pipelining

Pipelining
• Think of using machines in laundry services

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Assume 30 min. each task – wash, dry, fold, store – and that
separate tasks use separate hardware and so can be overlapped

Pipelined

Not pipelined

Pipelined vs. Single-Cycle Instruction
Execution: the Plan

Instruction
fetch

Reg ALU Data
access

Reg

8 ns
Instruction

fetch Reg ALU Data
access Reg

8 ns
Instruction

fetch

8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data
access

Reg

2 ns
Instruction

fetch Reg ALU
Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Single-cycle

Pipelined

Assume 2 ns for memory access, ALU operation; 1 ns for register access:
therefore, single cycle clock 8 ns; pipelined clock cycle 2 ns.

Pipelining: Keep in Mind

• Pipelining does not reduce latency of a single task, it
increases throughput of entire workload

• Pipeline rate limited by longest stage
– potential speedup = number pipe stages

– unbalanced lengths of pipe stages reduces speedup

• Time to fill pipeline and time to drain it – when there is
slack in the pipeline – reduces speedup

Pipelining MIPS

• What makes it hard?
– structural hazards: different instructions, at different stages, in

the pipeline want to use the same hardware resource

– control hazards: succeeding instruction, to put into pipeline,
depends on the outcome of a previous branch instruction,
already in pipeline

– data hazards: an instruction in the pipeline requires data to be
computed by a previous instruction still in the pipeline

• Before actually building the pipelined datapath and control we
first briefly examine these potential hazards individually…

• Structural hazard: inadequate hardware to simultaneously
support all instructions in the pipeline in the same clock cycle

• E.g., suppose single – not separate – instruction and data
memory in pipeline below with one read port
– then a structural hazard between first and fourth lw instructions

• MIPS was designed to be pipelined: structural hazards are easy
to avoid!

Structural Hazards

2 4 6 8 10 12 14

Instruction
fetch

Reg ALU
Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch Reg ALU
Data

access Reg

2 ns
Instruction

fetch
Reg ALU Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Pipelined

Instruction
fetch Reg ALU

Data
access Reg

2 nslw $4, 400($0)

Hazard if single memory

Control Hazards
• Control hazard: need to make a decision based on the result of a

previous instruction still executing in pipeline
• Solution 1 Stall the pipeline

Instruction
fetch

Reg ALU Data
access

Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

4 ns

Instruction
fetch

Reg ALU Data
access

Reg
2ns

Instruction
fetch

Reg ALU Data
access

Reg

2ns

2 4 6 8 10 12 14 16
Program
execution
order
(in instructions)

Pipeline stall

bubble

Note that branch outcome is
computed in ID stage with
added hardware (later…)

Control Hazards
• Solution 2 Predict branch outcome

– e.g., predict branch-not-taken :

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

Program
execution
order
(in instructions)

Instruction
fetch

Reg ALU
Data

access
Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch

Reg ALU
Data

access
Reg

2 4 6 8 10 12 14

 2 4 6 8 10 12 14

Instruction
fetch

Reg ALU
Data

access
Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)

Prediction success

Prediction failure: undo (=flush) lw

Control Hazards

• Solution 3 Delayed branch: always execute the sequentially next
statement with the branch executing after one instruction delay
– compiler’s job to find a statement that can be put in the slot
that is independent of branch outcome
– MIPS does this – but it is an option in SPIM (Simulator -> Settings)

Instruction
fetch Reg ALU

Data
access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU

Data
access Reg

2 ns

Instruction
fetch Reg ALU

Data
access Reg

2 ns

2 4 6 8 10 12 14

2 ns

(d elayed branch slot)

Program
execution
order
(in instructions)

Delayed branch beq is followed by add that is
independent of branch outcome

Data Hazards

• Data hazard: instruction needs data from the result of a previous
instruction still executing in pipeline

• Solution Forward data if possible…

Time
2 4 6 8 10

add $s0, $t0, $t1

IF ID WBEX MEM

add $s0, $t0, $t1

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBEX

IF ID MEMEX

Time
2 4 6 8 10

MEM

WBMEM

Instruction pipeline diagram:
shade indicates use –
left=write, right=read

Without forwarding – blue line –
data has to go back in time;
with forwarding – red line –
data is available in time

Data Hazards

• Forwarding may not be enough
– e.g., if an R-type instruction following a load uses the result of the

load – called load-use data hazard
Time

2 4 6 8 10 12 14

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBMEMEX

IF ID WBMEMEX

Time
2 4 6 8 10 12 14

lw $s0, 20($t1)

sub $t2, $s0, $t3

Program
execution
order
(in instructions)

IF ID WBMEMEX

IF ID WBMEMEX

bubble bubble bubble bubble bubble

With a one-stage stall, forwarding
can get the data to the sub
instruction in time

Without a stall it is impossible
to provide input to the sub
instruction in time

Reordering Code to Avoid Pipeline Stall
(Software Solution)

• Example:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t2, 0($t1)

sw $t0, 4($t1)

• Reordered code:
lw $t0, 0($t1)

lw $t2, 4($t1)

sw $t0, 4($t1)

sw $t2, 0($t1)

Data hazard

Interchanged

Pipelined Datapath

• We now move to actually building a pipelined datapath
• First recall the 5 steps in instruction execution

1. Instruction Fetch & PC Increment (IF)

2. Instruction Decode and Register Read (ID)

3. Execution or calculate address (EX)
4. Memory access (MEM)

5. Write result into register (WB)

• Review: single-cycle processor
– all 5 steps done in a single clock cycle

– dedicated hardware required for each step

• What happens if we break the execution into multiple cycles, but
keep the extra hardware?

Review - Single-Cycle Datapath “Steps”

5 516

RD1

RD2

RN1 RN2 WN

WD
Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

IF
Instruction Fetch

ID
Instruction Decode

EX
Execute/ Address Calc.

MEM
Memory Access

WB
Write Back

Zero

Pipelined Datapath – Key Idea

• What happens if we break the execution into multiple cycles, but keep the
extra hardware?
– Answer: We may be able to start executing a new instruction at each clock

cycle - pipelining

• …but we shall need extra registers to hold data between cycles –
pipeline registers

Pipelined Datapath

IF/ID

Pipeline registers

5 516

RD1

RD2

RN1 RN2 WN

WD
Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I
32

M
U
X

<<2
RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

ID/EX EX/MEM MEM/WB

Zero

64 bits

97 bits 64 bits

128 bits

wide enough to hold data coming in

Pipelined Datapath

IF/ID

Pipeline registers

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

ID/EX EX/MEM MEM/WB

Zero

64 bits

97 bits 64 bits

128 bits

wide enough to hold data coming in

Only data flowing right to left may cause hazard…, why?

Bug in the Datapath

5 516

RD1

RD2

RN1 RN2 WN

WD

Register File ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

5

Instruction I

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

32

Write register number comes from another later instruction!

IF/ID ID/EX EX/MEM MEM/WB

Corrected Datapath

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

EX/MEM MEM/WB

Zero

ID/EXIF/ID

64 bits 133 bits
102 bits 69 bits

Destination register number is also passed through ID/EX, EX/MEM
and MEM/WB registers, which are now wider by 5 bits

Pipelined Example

• Consider the following instruction sequence:

lw $t0, 10($t1)

sw $t3, 20($t4)

add $t5, $t6, $t7

sub $t8, $t9, $t10

Single-Clock-Cycle Diagram:
Clock Cycle 1

LW

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 2

LWSW

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 3

LWSWADD

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

Single-Clock-Cycle Diagram:
Clock Cycle 4

LWSWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 5

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

LWSWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 6

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

SWADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 7

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

ADDSUB

Single-Clock-Cycle Diagram:
Clock Cycle 8

5

RD1

RD2

RN1

RN2

WN

WD

Register
File

ALU

E
X
T
N
D

16 32

RD

WD

Data
Memory

ADDR

32

M
U
X

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

5

5

5

IF/ID ID/EX EX/MEM MEM/WB

Zero

SUB

Alternative View –
Multiple-Clock-Cycle Diagram

IM REG ALU DM REGlw $t0, 10($t1)

sw $t3, 20($t4)

add $t5, $t6, $t7

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7

IM REG ALU DM REG

IM REG ALU DM REG

sub $t8, $t9, $t10 IM REG ALU DM REG

CC 8

Time axis

Notes
• One significant difference in the execution of an R-type

instruction between multicycle and pipelined implementations:
– register write-back for the R-type instruction is the 5th (the last

write-back) pipeline stage vs. the 4th stage for the multicycle
implementation. Why?

– think of structural hazards when writing to the register file…
• Worth repeating: the essential difference between the pipeline

and multicycle implementations is the insertion of pipeline
registers to decouple the 5 stages

• The CPI of an ideal pipeline (no stalls) is 1. Why?
• The RaVi Architecture Visualization Project of Dortmund U.

has pipeline simulations – see link in our Additional Resources
page

• As we develop control for the pipeline keep in mind that the
text does not consider jump – should not be too hard to
implement!

Recall Single-Cycle Control – the Datapath

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

Instruction AluOp Instruction Funct Field Desired ALU control
opcode operation ALU action input
LW 00 load word xxxxxx add 0 10

SW 00 store word xxxxxx add 0 10

Branch eq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 set on less 101010 set on l ess 111

Recall Single-Cycle – ALU Control

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Recall Single-Cycle – Control Signals

Signal Name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the
Write register comes from the rt field (bits 20-16) Write register comes from the rd field (bits 15-11)

RegWrite None The register on the Write register input is written
with the value on the Write data input

AlLUSrc The second ALU operand comes from the The second ALU operand is the sign-extended,
second register file output (Read data 2) lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder
that computes the value of PC + 4 that computes the branch target

MemRead None Data memory contents designated by the address
input are put on the first Read data output

MemWrite None Data memory contents designated by the address
input are replaced by the value of the Write data input

MemtoReg The value fed to the register Write data input The value fed to the register Write data input
comes from the ALU comes from the data memory

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Effect of control bits

Deter-
mining
control
bits

Pipeline Control

• Initial design – motivated by single-cycle datapath control – use
the same control signals

• Observe:
– No separate write signal for the PC as it is written every cycle

– No separate write signals for the pipeline registers as they are written
every cycle

– No separate read signal for instruction memory as it is read every
clock cycle

– No separate read signal for register file as it is read every clock cycle

• Need to set control signals during each pipeline stage
• Since control signals are associated with components active

during a single pipeline stage, can group control lines into five
groups according to pipeline stage

Pipelined Datapath with Control I

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift
left 2

ALU
result

ALU
Zero

Add

0

1

M
u
x

0

1

M
u
x

Same control
signals as the
single-cycle
datapath

• There are five stages in the pipeline
– instruction fetch / PC increment
– instruction decode / register fetch
– execution / address calculation
– memory access
– write back

Pipeline Control Signals

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back
stage control

lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Nothing to control as instruction memory
read and PC write are always enabled

• Pass control signals along just like the data – extend each
pipeline register to hold needed control bits for succeeding stages

• Note: The 6-bit funct field of the instruction required in the EX
stage to generate ALU control can be retrieved as the 6 least
significant bits of the immediate field which is sign-extended and
passed from the IF/ID register to the ID/EX register

Pipeline Control Implementation

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Datapath with Control II

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Instruction
memory

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

Instruction
[15– 0]

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

ALU
control

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

EX

M

WB

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: before<1> EX: before<2> MEM: before<3> WB: before<4>

MEM/WB

IF: lw $10, 20($1)

000

00

0000

000

00

00
0

0

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0

Data
memory

Address

Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

M
u
x

0

1

Add Add
result

Write
register

Write
data

M
u
x

1

ALU
result

Zero

ALU
control

Shift
left 2

R
e

gW
rit

e

ALU

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: lw $10, 20($1) EX: before<1> MEM: before<2> WB: before<3>

MEM/WB

IF: sub $11, $2, $3

010

11

0001

000

00

00
0

0

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

lw
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

X

10

20

X

1

Instruction
[20– 16]

Instruction
[15– 0] Sign

extend

Instruction
[15– 11]

20

$X

$1

10

X

M
e

m
W

ri
te

MemRead

M
e

m
W

rit
e

Data
memory

Address

Address

Address

Clock 2

Clock 1

Pipelined
Execution
and
Control

• Instruction
sequence:

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Label “before<i>” means
i th instruction before
lw

Clock cycle 1

Clock cycle 2

Instruction
memory

Address

Instruction
[20– 16]

M
em

to
R

eg

Branch

ALUSrc

4

Instruction
[15– 0]

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALU
result

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

EX

M

WB

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: sub $11, $2, $3 EX: lw $10, . . . MEM: before<1> WB: before<2>

MEM/WB

IF: and $12, $4, $5

000

10

1100

010

11

00
0

1

00

0
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

Write
register

Write
data 1

ALU
result

ALU
control

Shift
left 2

R
e

gW
rit

e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: and $12, $2, $3 EX: sub $11, . . . MEM: lw $10, . . . WB: before<1>

MEM/WB

IF: or $13, $6, $7

000

10

1100

000

10

10
1

0

11

1
0

0

0

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

and
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

12

X

X

5

4

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
[15– 11]

X

$5

$4

X

12

M
e

m
W

ri
te

MemRead

M
e

m
W

rit
e

sub

11

X

X

3

2

X

$3

$2

X

11

$1

20

10

M
u
x

0

M
u
x

1

ALUOp

RegDst

ALU
control

M

WB

$3

$2

11

M
u
x

M
u
x

ALU
Address Read

data
Data

memory

10

WB

Zero

Zero

Sign
extend

Sign
extend

Data
memory

Address

Clock 3

Clock 4

Pipelined
Execution
and
Control

• Instruction
sequence:

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 3

Clock cycle 4

Instruction
memory

Address

Instruction
[20– 16]

Branch

ALUSrc

4

Instruction
[15– 0]

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALU
result

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

EX

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: or $13, $6, $7 EX: and $12, . . . MEM: sub $11, . . . WB: lw $10, . . .

MEM/WB

IF: add $14, $8, $9

000

10

1100

000

10

10
1

0

10

0
0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

ALU
control

Shift
left 2

R
e

gW
rit

e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: add $14, $8, $9 EX: or $13, . . . MEM: and $12, . . . WB: sub $11, . . .

MEM/WB

IF: after<1>

000

10

1100

000

10

10
1

0

10

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

add
Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

14

X

X

9

8

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
[15– 11]

X

$9

$8

X

14

M
e

m
W

ri
te

MemRead

M
e

m
W

rit
e

or

13

X

X

7

6

X

$7

$6

X

13

$4

M
u
x

0

M
u
x

1

ALUOp

RegDst

ALU
control

M

WB

$7

$6

13

M
u
x

M
u
x

ALU
Read
data

12

WB

11 10

10
$5

12

WB

M
em

to
R

eg

1

1

11

11

Write
register

Write
data

Zero

Zero

Data
memory

Address

Data
memory

Address

Sign
extend

Sign
extend

Clock 5

Clock 6

Pipelined
Execution
and
Control

• Instruction
sequence:

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 5

Clock cycle 6

Label “after<i>” means
i th instruction after add

Instruction
memory

Address

Instruction
[20– 16]

Branch

ALUSrc

4

Instruction
[15– 0]

0

1

Add Add
result

Registers
Write
register

Write
data

ALU
result

Shift
left 2

R
e

gW
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

Sign
extend

EX

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<1> EX: add $14, . . . MEM: or $13, . . . WB: and $12, . . .

MEM/WB

IF: after<2>

000

00

0000

000

10

10
1

0

10

0
0

0

M
u
x

0

1

Add

PC

0
Write
data

Read
data

M
u
x

1

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

Zero

ALU
control

Shift
left 2

R
e

gW
rit

e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<2> EX: after<1> MEM: add $14, . . . WB: or $13, . . .

MEM/WB

IF: after<3>

000

00

0000

000

00

00
0

0

10

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[20– 16]

Instruction
[15– 0] Sign

extend

Instruction
[15– 11]

M
e

m
W

ri
te

MemRead

M
e

m
W

rit
e

$8

M
u
x

0

M
u
x

1

ALUOp

RegDst

ALU
control

M

WB

M
u
x

M
u
x

ALU
Read
data

14

WB

13 12

12
$9

14

WB

M
em

to
R

eg

1

0

13

13

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2 Zero

Data
memory

Address

Data
memory

Address

Clock 7

Clock 8

Pipelined
Execution
and
Control

• Instruction
sequence:

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 8

Clock cycle 7

Pipelined Execution and Control

• Instruction
sequence:

WB

EX

M

Instruction
memory

Address

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

0

0

1

Add Add
result

1

ALU
result

Zero

ALU
control

Shift
left 2

R
eg

W
rit

e

M

WB

In
st

ru
ct

io
n

IF/ID EX/MEMID/EX

ID: after<3> EX: after<2> MEM: after<1> WB: add $14, . . .

MEM/WB

IF: after<4>

000

00

0000

000

00

00
0

0

00

0
0

0

1

0

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Control

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[20– 16]

Instruction
[15– 0] Sign

extend

Instruction
[15– 11]

MemRead

M
em

W
ri

te

M
u
x

M
u
x

ALU
Read
data

WB

14

14

Write
register

Write
data

Data
memory

Address

Clock 9

lw $10, 20($1)
sub $11, $2, $3
and $12, $4, $7
or $13, $6, $7
add $14, $8, $9

Clock cycle 9

Revisiting Hazards

• So far our datapath and control have ignored hazards
• We shall revisit data hazards and control hazards and

enhance our datapath and control to handle them in
hardware…

• Problem with starting an instruction before previous are finished:
– data dependencies that go backward in time – called data hazards

Data Hazards and Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution
order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of
register $2:

DM Reg

Reg

Reg

Reg

DM

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

$2 = 10 before sub ;
$2 = -20 after sub

• Have compiler guarantee never any data hazards!
– by rearranging instructions to insert independent instructions between

instructions that would otherwise have a data hazard between them,
– or, if such rearrangement is not possible, insert nops

• Such compiler solutions may not always be possible, and nops
slow the machine down

Software Solution

sub $2, $1, $3

lw $10, 40($3)
slt $5, $6, $7
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

sub $2, $1, $3

nop
nop
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

or

MIPS: nop = “no operation” = 00…0 (32bits) = sll $0, $0, 0

Hardware Solution: Forwarding

• Idea: use intermediate data, do not wait for result to be finally
written to the destination register. Two steps:

1. Detect data hazard
2. Forward intermediate data to resolve hazard

Pipelined Datapath with Control II
(as before)

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Hazard Detection
• Hazard conditions:
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

– Eg., in the earlier example, first hazard between sub $2, $1, $3 and
and $12, $2, $5 is detected when the and is in EX stage and the

sub is in MEM stage because
• EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a)

• Whether to forward also depends on:
– if the later instruction is going to write a register – if not, no need to

forward, even if there is register number match as in conditions above

– if the destination register of the later instruction is $0 – in which case
there is no need to forward value ($0 is always 0 and never overwritten)

Data Forwarding
• Plan:

– allow inputs to the ALU not just from ID/EX, but also later
pipeline registers, and

– use multiplexors and control signals to choose appropriate
inputs to ALU

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program
execution order
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Dependencies between pipelines move forward in time

Forwarding
Hardware

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data
memory

M
u
x

Forwarding
unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt
Rt
Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data
memory

EX/MEM

a. No forwarding

Registers

M
u
x

Datapath before adding forwarding hardware

Datapath after adding forwarding hardware

Forwarding Hardware with Control

PC
Instruction

memory

Registers

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Forwarding
unit

IF/ID

In
st

ru
ct

io
n

M
u
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Datapath with forwarding hardware and control wires – certain details,
e.g., branching hardware, are omitted to simplify the drawing

Note: so far we have only handled forwarding to R-type instructions…!

Called forwarding unit, not hazard detection unit,
because once data is forwarded there is no hazard!

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 sub $2, $1, $3

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

10 10

$2

$5

5

2

4

$1

$3

3

1

2

Control

ALU

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

or $4, $4, $2 and $4, $2, $5

ID/EX

sub $2, . . .

EX/MEM

before<1>

MEM/WB

add $9, $4, $2

Clock 4

4

6

10 10

$4

$2

6

2

4

$2

$5

5

2

4

Control

ALU

10

2

WB

M

WBForwarding

sub $2, $1, $3
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

• Execution
example:

Clock cycle 3

Clock cycle 4

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2 or $4, $4, $2

ID/EX

and $4, . . .

EX/MEM

sub $2, . . .

MEM/WB

after<1>

Clock 5

4

2

10 10

$4

$2

2

4

9

$4

$2

4

2

2
4

Control

ALU

10

WB

2

1

PC Instruction
memory

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

after<1>after<2> add $9, $4, $2 or $4, . . .

EX/MEM

and $4, . . .

MEM/WB

Clock 6

10

$4

$2

2

4

9

ALU

10

4

4

WB

4

1

Registers

In
st

ru
ct

io
n

IF/ID

ID/EX

4

Control

Forwarding

• Execution
example
(cont.):

sub $2, $1, $3
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 5

Clock cycle 6

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that

writes to the same register

– therefore, we need a hazard detection unit to stall the pipeline after
the load instruction

Data Hazards and Stalls

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

lw $2, 20($1)
and $4, $2, $5
or $8, $2, $6
add $9, $4, $2
Slt $1, $6, $7

As even a pipeline
dependency goes
backward in time
forwarding will not
solve the hazard

Pipelined Datapath with
Control II (as before)

PC

Instruction
memory

In
st

ru
ct

io
n

Add

Instruction
[20– 16]

M
em

to
R

eg

ALUOp

Branch

RegDst

ALUSrc

4

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Add Add
result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
eg

W
rit

e

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
em

W
rit

e

Address
Data

memory

Address

Control signals
emanate from
the control
portions of the
pipeline registers

Hazard Detection Logic to Stall

• Hazard detection unit implements the following check if to stall

if (ID/EX.MemRead // if the instruction in the EX stage is a load…
and ((ID/EX.RegisterRt = IF/ID.RegisterRs) // and the destination register

or (ID/EX.RegisterRt = IF/ID.RegisterRt))) // matches either source register

// of the instruction in the ID stage, then…
stall the pipeline

Mechanics of Stalling

• If the check to stall verifies, then the pipeline needs to stall
only 1 clock cycle after the load as after that the forwarding
unit can resolve the dependency

• What the hardware does to stall the pipeline 1 cycle:
– does not let the IF/ID register change (disable write!) – this will

cause the instruction in the ID stage to repeat, i.e., stall
– therefore, the instruction, just behind, in the IF stage must be

stalled as well – so hardware does not let the PC change
(disable write!) – this will cause the instruction in the IF stage to
repeat, i.e., stall

– changes all the EX, MEM and WB control fields in the ID/EX
pipeline register to 0, so effectively the instruction just behind the
load becomes a nop – a bubble is said to have been inserted
into the pipeline

• note that we cannot turn that instruction into an nop by 0ing all the
bits in the instruction itself – recall nop = 00…0 (32 bits) – because
it has already been decoded and control signals generated

Hazard Detection Unit

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

0

M
u
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

Datapath with forwarding hardware, the hazard detection unit and
controls wires – certain details, e.g., branching hardware are omitted
to simplify the drawing

Stalling Resolves a Hazard

• Same instruction sequence as before for which forwarding by
itself could not resolve the hazard:

lw $2, 20($1)

Program
execution
order
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

lw $2, 20($1)
and $4, $2, $5
or $8, $2, $6
add $9, $4, $2
Slt $1, $6, $7

Hazard detection unit inserts a 1-cycle bubble in the pipeline, after
which all pipeline register dependencies go forward so then the
forwarding unit can handle them and there are no more hazards

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

lw $2, 20($1)

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

before<1>

EX/MEM

before<2>

MEM/WB

or $4, $4, $2

Clock 3

2

5

2

5
00 11

$2

$5

5

2

4

$1

$X

X

1

2

Control

ALU

M

WB

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

ID/EX.MemRead

ID/EX.MemRead

M

WB

$1

$X

X

1

2

before<3>

PC Instruction
memory

Registers

M
u
x

M
u
x

M
u
x

EX WB

Data
memory

M
u
x

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

ID/EX

EX/MEM

MEM/WB

and $4, $2, $5 lw $2, 20($1) before<1> before<2>

Clock 2

1

1

X

X
11

Control

ALU

M

WBStalling

• Execution
example:

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 2

Clock cycle 3

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

$2

$5

5

2

2

2

4

WB

Hazard
detection

unit

0

M
u
xIF

/ID
W

rit
e

P
C

W
rit

e

ID/EX.RegisterRt

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5 bubble

ID/EX

lw $2, . . .

EX/MEM

before<1>

MEM/WB

Clock 4

2

2

5

5
10

11

00

$2

$5

5

2

4

Control

ALU

M

WB

bubble lw $2, . . .

PC
Instruction

memory

Registers

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

In
st

ru
ct

io
n

IF/ID

and $4, $2, $5

ID/EX

EX/MEM

MEM/WB

add $9, $4, $2

Clock 5

2

2
10 10

11

$4

$2

2

4

4

4

2

4

$2

$5

5

2

4

Control

ALU

0

WB

ID/EX.MemRead

ID/EX.MemRead

or $4, $4, $2

or $4, $4, $2

Stalling

• Execution
example
(cont.):

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 4

Clock cycle 5

Registers

In
st

ru
ct

io
n

ID/EX

4

Control

PC Instruction
memory

PC Instruction
memory

Hazard
detection

unit

0

M
u
xIF
/ID

W
rit

e

P
C

W
rit

e

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

bubble

Registers

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

In
st

ru
ct

io
n

IF/ID

add $9, $4, $2

ID/EX

and $4, . . .

EX/MEM

MEM/WB

Clock 6

4

4

2

2
10 10

$4

$2

2

4

49

$2

2

Control

ALU

10

WB
0

add $9, $4, $2 or $4, . . . and $4, . . .after<2> after<1>

after<1>

Clock 7

M
u
x

M
u
x

M
u
x

EX

M

WB

M

WB

Data
memory

M
u
x

Forwarding
unit

Forwarding
unit

EX/MEM

MEM/WB

10 10

$4

$4

$2

2

4

4

9

ALU

10

WB

44

4

1

Hazard
detection

unit

0

M
u
x

ID/EX.RegisterRt

or $4, $4, $2

ID/EX.MemRead

ID/EX.MemRead

M
u
x

IF/ID

Stalling

• Execution
example
(cont.):

lw $2, 20($1)
and $4, $2, $5
or $4, $4, $2
add $9, $4, $2

Clock cycle 6

Clock cycle 7

• Problem with branches in the pipeline we have so far is that the
branch decision is not made till the MEM stage – so what
instructions, if at all, should we insert into the pipeline following
the branch instructions?

• Possible solution: stall the pipeline till branch decision is known
– not efficient, slow the pipeline significantly!

• Another solution: predict the branch outcome
– e.g., always predict branch-not-taken – continue with next

sequential instructions
– if the prediction is wrong have to flush the pipeline behind the

branch – discard instructions already fetched or decoded – and
continue execution at the branch target

Control (or Branch) Hazards

Predicting Branch-not-taken:
Misprediction delay

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program
execution
order
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

The outcome of branch taken (prediction wrong) is decided only when
beq is in the MEM stage, so the following three sequential instructions
already in the pipeline have to be flushed and execution resumes at lw

Optimizing the Pipeline to
Reduce Branch Delay

• Move the branch decision from the MEM stage (as in our
current pipeline) earlier to the ID stage
– calculating the branch target address involves moving the

branch adder from the MEM stage to the ID stage – inputs to this
adder, the PC value and the immediate fields are already
available in the IF/ID pipeline register

– calculating the branch decision is efficiently done, e.g., for
equality test, by XORing respective bits and then ORing all the
results and inverting, rather than using the ALU to subtract and
then test for zero (when there is a carry delay)

• with the more efficient equality test we can put it in the ID stage
without significantly lengthening this stage – remember an objective
of pipeline design is to keep pipeline stages balanced

– we must correspondingly make additions to the forwarding and
hazard detection units to forward to or stall the branch at the ID
stage in case the branch decision depends on an earlier result

Flushing on Misprediction

• Same strategy as for stalling on load-use data hazard…
• Zero out all the control values (or the instruction itself) in pipeline

registers for the instructions following the branch that are already
in the pipeline – effectively turning them into nops – so they are
flushed
– in the optimized pipeline, with branch decision made in the ID stage,

we have to flush only one instruction in the IF stage – the branch
delay penalty is then only one clock cycle

PC Instruction
memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

Optimized Datapath for Branch

Branch decision is moved from the MEM stage to the ID stage – simplified drawing
not showing enhancements to the forwarding and hazard detection units

IF.Flush control zeros out the instruction in the IF/ID
pipeline register (which follows the branch)

PC
Instruction

memory

4

Registers

Sign
extend

M
u
x

M
u
x

Control

EX

M

WB

M

WB

WB

M
u
x

Hazard
detection

unit

Forwarding
unit

M
u
x

IF.Flush

IF/ID

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8

MEM/WB

EX/MEM

ID/EX

Clock 3

72 44

48 44

28

7

$1

$3

10

48

72

72

0

M
u
x

0

$4

$8

ALU
Data

memory

bubble (nop)lw $4, 50($7)

Clock 4

M
u
x

Shift
left 2

before<1>

beq $1, $3, 7 sub $10, . . . before<1>

before<2>

=

PC Instruction
memory

4

Registers

Sign
extend

M
u
x

M
u
x

Control

EX

M

WB

M

WB

WB

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

MEM/WB

EX/MEM

ID/EX

76 72

76 72

$1

$3

10

76

ALU
Data

memory

M
u
x

Shift
left 2

=

Pipelined
Branch

• Execution
example:

36 sub $10, $4, $8
40 beq $1, $3, 7
44 and $12 $2, $5
48 or $13 $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7

…
72 lw $4, 50($7)

Clock cycle 4

Clock cycle 3

Optimized pipeline with
only one bubble as a result
of the taken branch

Superscalar Architecture

• A superscalar processor executes more than one instruction during
a clock cycle by simultaneously dispatching multiple instructions to
redundant functional units on the processor.

• Each functional unit is not a separate CPU core but an execution resource
within a single CPU

Typical 5-stage pipeline Superscalar Pipeline

Pentium4 Pipeline

20-stage pipeline

