
The Processor: Datapath and Control

• We're ready to look at an implementation of the MIPS instruction set
• Simplified to contain only

– arithmetic-logic instructions:  add, sub, and, or, slt

– memory-reference instructions:  lw, sw

– control-flow instructions:  beq, j

Implementing MIPS

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd functshamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

• High-level abstract view of fetch/execute implementation
– use the program counter (PC) to read instruction address
– fetch the instruction from memory and increment PC
– use fields of the instruction to select registers to read
– execute depending on the instruction
– repeat…

Implementing MIPS: the 
Fetch/Execute Cycle
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Overview: Processor 
Implementation Styles

• Single Cycle
– perform each instruction in 1 clock cycle

– clock cycle must be long enough for slowest instruction; therefore,
– disadvantage: only as fast as slowest instruction

• Multi-Cycle
– break fetch/execute cycle into multiple steps

– perform 1 step in each clock cycle

– advantage: each instruction uses only as many cycles as it needs

• Pipelined
– execute each instruction in multiple steps

– perform 1 step / instruction in each clock cycle
– process multiple instructions in parallel – assembly line



• Two types of functional elements in the hardware:
– elements that operate on data (called combinational elements)

– elements that contain data (called state or sequential elements)

Functional Elements Combinational Elements

• Works as an input ⇒ output function, e.g., ALU
• Combinational logic reads input data from one register and writes 

output data to another, or same, register
– read/write happens in a single cycle – combinational element cannot 

store data from one cycle to a future one

Clock cycle

State 
element 

1
Combinational logic

State 
element 
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State 
element

Combinational logic

Combinational logic hardware units

State Elements

• State elements contain data in internal storage, e.g., registers
and memory

• All state elements together define the state of the machine
– What does this mean? Think of shutting down and starting up again…

• Flipflops and latches are 1-bit state elements, equivalently, 
they are 1-bit memories

• The output(s) of a flipflop or latch always depends on the bit 
value stored, i.e., its state, and can be called 1/0 or high/low or 
true/false

• The input to a flipflop or latch can change its state depending 
on whether it is clocked or not…

• Clocks are used in synchronous logic to determine when a state 
element is to be updated 
– in level-triggered clocking methodology either the state changes 

only when the clock is high or only when it is low (technology-
dependent)

– in edge-triggered clocking methodology either the rising edge or 
falling edge is active (depending on technology) – i.e., states 
change only on rising edges or only on falling edge

• Latches are level-triggered
• Flipflops are edge-triggered

Synchronous Logic: 
Clocked Latches and Flipflops

Clock period Rising edge

Falling edge



• Registers are implemented with arrays of D-flipflops

State Elements on the 
Datapath: Register File

Register file with two read ports and one write port
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• Port implementation:

Read ports are implemented 
with a pair of multiplexors – 5 
bit multiplexors for 32 registers

Write port is implemented using
a decoder – 5-to-32 decoder for
32 registers. Clock is relevant to 
write as register state may change 
only at clock edge
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State Elements on the Datapath: Register File

Single-cycle Implementation of MIPS

• Our first implementation of MIPS will use a single long clock 
cycle for every instruction

• Every instruction begins on one up (or, down) clock edge 
and ends on the next up (or, down) clock edge

• This approach is not practical as it is much slower than a 
multicycle implementation where different instruction 
classes can take different numbers of cycles
– in a single-cycle implementation every instruction must take 

the same amount of time as the slowest instruction
– in a multicycle implementation this problem is avoided by 

allowing quicker instructions to use fewer cycles

• Even though the single-cycle approach is not practical it is 
simple and useful to understand first
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Animating the Datapath
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Animating the Datapath

op rs rt offset/immediate
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R[rt] <- MEM[R[rs] + s_extend(offset)];
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MEM[R[rs] + sign_extend(offset)] <- R[rt]

Datapath: Branch Instruction

16 32
Sign 

extend

ZeroALU

Sum

Shift 
left 2

To branch 
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write 
register

Read 
data 1

Read 
data 2

Read 
register 1

Read 
register 2

Write 
data

RegWrite

ALU operation
3

Datapath

No shift hardware required:
simply connect wires from 
input to output, each shifted
left 2 bits

Animating the Datapath

beq rs, rt, offset

if (R[rs] == R[rt]) then 
PC <- PC+4 + s_extend(offset<<2)

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

E
X
T
N
D

16 32

Zero

ADD

<<2

PC +4 from 
instruction 
datapath



MIPS Datapath I: Single-Cycle
Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Combining the datapaths for R-type instructions 
and load/stores using two multiplexors

Data is either 
from ALU (R-type)
or memory (load)

Fig. 5.11 Page 352
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Animating the Datapath: 
Load Instruction

lw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath: 
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MIPS Datapath II: Single-Cycle
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Adding instruction fetch

Separate instruction memory
as instruction and data read
occur in the same clock cycle

Separate adder as ALU operations and PC 
increment occur in the same clock cycle

MIPS Datapath III: Single-Cycle
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Adding branch capability and another multiplexor

Instruction address is either
PC+4 or branch target address

Extra adder needed as both
adders operate in each cycle

New multiplexor

Important note: in a single-cycle implementation data cannot be stored 
during an instruction – it only moves through combinational logic
Question: is the MemRead signal really needed?! Think of RegWrite…!
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Control

• Control unit takes input from
– the instruction opcode bits

• Control unit generates
– ALU control input
– write enable (possibly, read enable also) signals for each storage 

element
– selector controls for each multiplexor

ALU Control

• Plan to control ALU: main control sends a 2-bit ALUOp control field  to 
the ALU control. Based on ALUOp and funct field of instruction the 
ALU control generates the 3-bit ALU control field

– ALU control    Func-
field tion

000               and
001               or
010               add
110               sub
111               slt

• ALU must perform
– add for load/stores (ALUOp 00)
– sub for branches (ALUOp 01)
– one of and, or, add, sub, slt for R-type instructions, depending on the 

instruction’s 6-bit funct field (ALUOp 10)
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Control

ALU
Control

2

ALUOp
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Instruction
funct field

3

ALU 
control
input

To
ALU

ALUOp generation
by main control

Recall from Ch. 4



Setting ALU Control Bits

Instruction   AluOp Instruction  Funct Field   Desired        ALU control
opcode operation                       ALU action  input
LW         00      load word    xxxxxx add         0 10

SW         00      store word   xxxxxx add         0 10

Branch eq 01      branch eq xxxxxx subtract    110

R-type     10      add          100000     add         010

R-type     10      subtract     100010     subtract     110

R-type     10      AND          100100     and         000

R-type     10      OR           100101     or          001

R-type     10      set on less  101010     set on l ess 111

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

**Typo in text 
Fig. 5.15: if it is  X  
then there is potential 
conflict between 
line 2 and lines 3-7!

Designing the Main Control

• Observations about MIPS instruction format
– opcode is always in bits 31-26

– two registers to be read are always rs (bits 25-21) and rt (bits 20-
16)

– base register for load/stores is always rs (bits 25-21)

– 16-bit offset for branch equal and load/store is always bits 15-0

– destination register for loads is in bits 20-16 (rt) while for R-type 
instructions it is in bits 15-11 (rd) (will require multiplexor to select)

31-26 25-21 20-16 15-11 10-6 5-0

31-26 25-21 20-16 15-0
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Adding control to the MIPS Datapath III (and a new multiplexor to select field to 
specify destination register): what are the functions of the control signals?

New multiplexor

Control Signals

Signal Name                   Effect when deasserted Effect when asserted

RegDst The register destination number for the         The register destination number for the
Write register comes from the rt field (bits 20-16)          Write register comes from the rd field (bits 15-11)

RegWrite None                                              The register on the Write register input is written 
with the value on the Write data input

AlLUSrc The second ALU operand comes from the           The second ALU operand is the sign-extended, 
second register file output (Read data 2)                                 lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder
that computes the value of PC + 4                        that computes the branch target

MemRead None Data memory contents designated by the address
input are put on the first Read data output

MemWrite None Data memory contents designated by the address
input are replaced by the value of the Write data input

MemtoReg The value fed to the register Write data input  The value fed to the register Write data input
comes from the ALU comes from the data memory

Effects of the seven control signals



Datapath with Control II
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MIPS datapath with the control unit: input to control is the 6-bit instruction
opcode field, output is seven 1-bit signals and the 2-bit ALUOp signal
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R-type Instruction: Step 1
add $t1, $t2, $t3 (active = bold)
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R-type Instruction: Step 2
add $t1, $t2, $t3 (active = bold)
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R-type Instruction: Step 3
add $t1, $t2, $t3 (active = bold)
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R-type Instruction: Step 4
add $t1, $t2, $t3 (active = bold)
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Implementation: ALU Control Block 

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

ALU control logic

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

* *Typo in text 
Fig. 5.15: if it is  X  
then there is potential 
conflict between 
line 2 and lines 3-7!

Implementation: Main Control 
Block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Signal    R- lw sw beq
name     format
Op5        0    1    1    0
Op4        0    0    0    0
Op3        0    0    1    0
Op2        0    0    0    1
Op1        0    1    1    0
Op0        0    1    1    0
RegDst 1    0    x    x
ALUSrc 0    1    1    0
MemtoReg 0    1    x    x
RegWrite 1    1    0    0
MemRead 0    1    0    0   
MemWrite 0    0    1    0
Branch     0    0    0    1
ALUOp1     1    0    0    0
ALUOP2     0    0    0    1

I
n
p
u
ts

O
u
tp
u
ts

Truth table for main control signals

Main control PLA (programmable
logic array): principle underlying
PLAs is that any logical expression
can be written as a sum-of-products

Single-cycle Implementation 
Notes

• The steps are not really distinct as each instruction 
completes in exactly one clock cycle – they simply 
indicate the sequence of data flowing through the 
datapath

• The operation of the datapath during a cycle is purely 
combinational – nothing is stored during a clock cycle

• Therefore, the machine is stable in a particular state 
at the start of a cycle and reaches a new stable state 
only at the end of the cycle

1. Fetch instruction and increment PC
2. Read base register from the register file: the base register 

($t2) is given by bits 25-21 of the instruction
3. ALU computes sum of value read from the register file and 

the sign-extended lower 16 bits (offset) of the instruction
4. The sum from the ALU is used as the address for the data 

memory
5. The data from the memory unit is written into the register file:

the destination register ($t1) is given by bits 20-16 of the 
instruction

Load Instruction Steps
lw $t1, offset($t2)



1. Fetch instruction and increment PC
2. Read two register ($t1 and $t2) from the register file
3. ALU performs a subtract on the data values from the 

register file; the value of PC+4 is added to the sign-
extended lower 16 bits (offset) of the instruction shifted 
left by two to give the branch target address

4. The Zero result from the ALU is used to decide which 
adder result (from step 1 or 3) to store in the PC 

Branch Instruction Steps
beq $t1, $t2, offset

• Assuming fixed-period clock every instruction datapath uses one 
clock cycle implies: 

– CPI = 1

– cycle time determined by length of the longest instruction path (load)

• but several instructions could run in a shorter clock cycle: waste of time

• consider if we have more complicated instructions like floating point!

– resources used more than once in the same cycle need to be 

duplicated

• waste of hardware and chip area

Single-Cycle Design Problems

Example: Fixed-period clock vs. 
variable-period clock in a 

single-cycle implementation
• Consider a machine with an additional floating point unit. Assume 

functional unit delays as follows
– memory: 2 ns., ALU and adders: 2 ns., FPU add: 8 ns., FPU multiply: 16 ns., 

register file access (read or write): 1 ns.
– multiplexors, control unit, PC accesses, sign extension, wires: no delay

• Assume instruction mix as follows
– all loads take same time and comprise 31%
– all stores take same time and comprise 21% 
– R-format instructions comprise 27%
– branches comprise 5%
– jumps comprise 2%
– FP adds and subtracts take the same time and totally comprise 7%
– FP multiplys and divides take the same time and totally comprise 7%

• Compare the  performance of (a) a single-cycle implementation using a fixed-
period clock with (b) one using a variable-period clock where each instruction 
executes in one clock cycle that is only as long as it needs to be (not really 
practical but pretend it’s possible!)

Solution

• Clock period for fixed-period clock = longest instruction time = 20 
ns.

• Average clock period for variable-period clock = 8 × 31% +
7 × 21% + 6 × 27% + 5 × 5% + 2 × 2% + 20 × 7% + 12 × 7% 
= 7.0 ns.

• Therefore, performancevar-period /performancefixed-period = 20/7 = 2.9

Instruction        Instr.  Register   ALU      Data      Register  FPU      FPU         Total
class                  mem.  read         oper.    mem.     write       add/    mul/        time

sub       div           ns.

Load word    2     1     2     2     1                  8
Store word   2     1     2     2                        7
R-format     2     1     2     0     1                  6
Branch       2     1     2                              5
Jump         2                                          2
FP mul/div   2     1                 1          16     20
FP add/sub   2     1                 1     8           12



Fixing the problem with single-
cycle designs

• One solution: a variable-period clock with different cycle times 
for each instruction class
– unfeasible, as implementing a variable-speed clock is technically 

difficult

• Another solution:
– use a smaller cycle time…

– …have different instructions take different numbers of cycles

by breaking instructions into steps and fitting each step into one 
cycle

– feasible: multicyle approach!

• Break up the instructions into steps
– each step takes one clock cycle
– balance the amount of work to be done in each step/cycle so that

they are about equal
– restrict each cycle to use at most once each major functional unit 

so that such units do not have to be replicated
– functional units can be shared between different cycles within one 

instruction

• Between steps/cycles
– At the end of one cycle store data to be used in later cycles of the

same instruction
• need to introduce additional internal (programmer-invisible) registers for 

this purpose

– Data to be used in later instructions are stored in programmer-
visible state elements: the register file, PC, memory

Multicycle Approach

• Note particularities of
multicyle vs. single-
diagrams

– single memory for data
and instructions

– single ALU, no extra adders
– extra registers to 

hold data between 
clock cycles

Multicycle Approach
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Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal register in red ovals, new multiplexors in blue ovals



• Our goal is to break up the instructions into steps so that
– each step takes one clock cycle

– the amount of work to be done in each step/cycle is about equal
– each cycle uses at most once each major functional unit so that 

such units do not have to be replicated

– functional units can be shared between different cycles within one 
instruction

• Data at end of one cycle to be used in next must be stored !!

Breaking instructions into steps Breaking instructions into steps

• We break instructions into the following potential execution steps 
– not all instructions require all the steps – each step takes one 
clock cycle
1. Instruction fetch and PC increment (IF)

2. Instruction decode and register fetch (ID)
3. Execution, memory address computation, or branch completion (EX)

4. Memory access or R-type instruction completion (MEM)

5. Memory read completion (WB)

• Each MIPS instruction takes from 3 – 5 cycles (steps)

• Use PC to get instruction and put it in the instruction register.
Increment the PC by 4 and put the result back in the PC.

• Can be described succinctly using RTL (Register-Transfer Language):

IR = Memory[PC];

PC = PC + 4;

Step 1:  Instruction Fetch & PC 
Increment (IF)

IR = Instruction Register

• Read registers rs and rt in case we need them.
Compute the branch address in case the instruction is a branch.

• RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Step 2:  Instruction Decode and 
Register Fetch (ID)



• ALU performs one of four functions depending on instruction 
type
– memory reference:

ALUOut = A + sign-extend(IR[15-0]);

– R-type:
ALUOut = A op B;

– branch (instruction completes):
if (A==B) PC = ALUOut;

– jump (instruction completes):
PC = PC[31-28] || (IR(25-0) << 2)

Step 3: Execution, Address 
Computation or Branch Completion        

(EX)
• Again depending on instruction type:
• Loads and stores access memory

– load
MDR = Memory[ALUOut];

– store (instruction completes)
Memory[ALUOut] = B;

• R-type (instructions completes)
Reg[IR[15-11]] = ALUOut;

Step 4: Memory access or R-
type Instruction Completion

(MEM)

MDR = Memory Data Register

• Again depending on instruction type:
• Load writes back (instruction completes)

Reg[IR[20-16]]= MDR;

Important: There is no reason from a datapath (or control) point of 
view that Step 5 cannot be eliminated by performing
Reg[IR[20-16]]= Memory[ALUOut];

for loads in Step 4. This would eliminate the MDR as well.

The reason this is not done is that, to keep steps balanced in 
length, the design restriction is to allow each step to contain at 
most one ALU operation, or one register access, or one 
memory access.

Step 5: Memory Read 
Completion (WB)

Summary of Instruction 
Execution

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

1: IF

2: ID

3: EX

4: MEM

5: WB

Step



Multicycle Execution Step (1):
Instruction Fetch

IR = Memory[PC];
PC = PC + 4;
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IR = Instruction Register
MDR = Memory Data Register

Must be MUX

Multicycle Execution Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Reg[rs])
B = Reg[IR[20-15]]; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2) *
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Multicycle Execution Step (3):
Memory Reference Instructions
ALUOut = A + sign-extend(IR[15-0]);
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Multicycle Execution Step (3):
ALU Instruction (R-Type)

ALUOut = A op B
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Multicycle Execution Step (3):
Branch Instructions

if (A == B) PC = ALUOut;
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Multicycle Execution Step (3):
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)
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Multicycle Execution Step (4):
Memory Access - Read (lw )

MDR = Memory[ALUOut];
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Multicycle Execution Step (4):
Memory Access - Write (sw)

Memory[ALUOut] = B;
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Multicycle Execution Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT
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Multicycle Execution Step (5):
Memory Read Completion (lw )

Reg[IR[20-16]] = MDR ;
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Multicycle Datapath with Control I
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Multicycle Datapath with Control II

Complete multicycle MIPS datapath (with branch and jump capability)
and showing the main control block and all control lines
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Multicycle Control Step (1):
Fetch

IR = Memory[PC];
PC = PC + 4;
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Multicycle Control Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Reg[rs])
B = Reg[IR[20-15]]; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2);
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Multicycle Control Step (3):
Memory Reference Instructions

ALUOut = A + sign-extend(IR[15-0]);
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Multicycle Control Step (3):
ALU Instruction (R-Type)

ALUOut = A op B;
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Multicycle Control Step (3):
Branch Instructions

if (A == B) PC = ALUOut;
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Multicycle Execution Step (3):
Jump Instruction

PC = PC[21-28] concat (IR[25-0] << 2);
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Multicycle Control Step (4):
Memory Access - Read (lw )

MDR = Memory[ALUOut];
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Multicycle Execution Steps (4)
Memory Access - Write (sw)

Memory[ALUOut] = B;
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Multicycle Control Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOut;       (Reg[Rd] = 
ALUOut)

Multicycle Execution Steps (5)
Memory Read Completion (lw)

Reg[IR[20-16]] = MDR;
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• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not equal
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?

• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

Clock time-line

• Value of control signals is dependent upon:
– what instruction is being executed

– which step is being performed

• Use the information we have accumulated to specify a finite 
state machine
– specify the finite state machine graphically, or

– use microprogramming

• Implementation is then derived from the specification

Implementing Control



• Finite state machines (FSMs):
– a set of states and 
– next state function, determined by current state and the input
– output function, determined by current state and possibly input

– We’ll use a Moore machine – output based only on current state

Review: Finite State Machines

Next-state 
function

Current state

Clock

Output 
function

Next 
state

Outputs

Inputs

Example: Moore Machine

• The Moore machine below, given input a binary string 
terminated by “#”, will output “even ” if the string has an even 
number of 0’s and “odd ” if the string has an odd number of 0’s

Even state Odd state

Output even state Output odd state

No
output

No
output

Output 
“even”

Output 
“odd”

0

0

1
1

# #

Start

FSM Control: High-level View

Memory access 
instructions 
(Figure 5.38)

R-type instructions 
(Figure 5.39)

Branch instruction 
(Figure 5.40)

Jump instruction 
(Figure 5.41)

Instruction fetch/decode and register fetch 
(Figure 5.37)

Start

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 00 

 

MemRead 
ALUSrcA = 0 

IorD = 0 
IRWrite 

ALUSrcB = 01 
ALUOp = 00 

PCWrite 
PCSource = 00

Instruction fetch
Instruction decode/ 

Register fetch

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p 

= 
'B

EQ')

(O
p 

= 
'J

M
P

')

0
1

Start

Memory reference FSM 
(Figure 5.38)

R-type FSM 
(Figure 5.39)

Branch FSM 
(Figure 5.40)

Jump FSM 
(Figure 5.41)

 

High-level view of FSM control

Instruction fetch and decode steps of every instruction is identical

Asserted signals
shown inside
state circles

FSM Control: Memory Reference
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Write-back step
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(Figure 5.37)

Memory 
access

FSM control for memory-reference has 4 states



FSM Control: R-type Instruction
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Execution

R-type completion
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(Figure 5.37)

FSM control to implement R-type instructions has 2 states

FSM Control: Branch Instruction

Branch completion

8

(Op = 'BEQ')

From state 1

To state 0 
(Figure 5.37)
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PCWriteCond 
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FSM control to implement branches has 1 state

FSM Control: Jump Instruction

Jump completion
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(Op = 'J')

From state 1

To state 0 
(Figure 5.37)

PCWrite 
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FSM control to implement jumps  has 1 state

FSM Control: Complete View
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Example: CPI in a multicycle
CPU

• Assume
– the control design of the previous slide
– An instruction mix of 22% loads, 11% stores, 49% R-type operations, 

16% branches, and 2% jumps
• What is the CPI assuming each step requires 1 clock cycle?

• Solution:
– Number of clock cycles from previous slide for each instruction class:

• loads 5, stores 4, R-type instructions 4, branches 3, jumps 3

– CPI = CPU clock cycles / instruction count 
= Σ (instruction countclass i × CPIclass i) / instruction count
= Σ (instruction countclass I / instruction count) × CPIclass I

= 0.22 × 5 + 0.11 × 4 + 0.49 × 4 + 0.16 × 3 + 0.02 × 3
= 4.04

FSM Control: 
Implement-
ation

High-level view of FSM implementation: inputs to the combinational logic block are 
the current state number and instruction opcode bits; outputs are the next state 
number and control signals to be asserted for the current state
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Upper half is the AND plane that computes all the products. The products are carried
to the lower OR plane by the vertical lines. The sum terms for each output is given by
the corresponding horizontal line
E.g., IorD = S0.S1.S2.S3 + S0.S1.S2.S3

• ROM (Read Only Memory)
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM
– outputs are the bits of the entry the address points to

FSM Control: ROM 
Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

ROM m = 3
n = 4

The size of an m-input  n-output ROM is 2m x n bits – such a ROM can
be thought of as an array of size 2m with each entry in the array being
n bits

outputaddress



• First improve the ROM: break the table into two parts

– 4 state bits give the 16 output signals – 24 x 16 bits of ROM

– all 10 input bits give the 4 next state bits – 210 x 4 bits of ROM

– Total – 4.3K bits of ROM

• PLA is much smaller

– can share product terms

– only need entries that produce an active output

– can take into account don't cares

• PLA size = (#inputs ´ #product-terms) + (#outputs ´ #product-

terms)

– FSM control PLA  =  (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

FSM Control: ROM vs. PLA
• Microprogramming is a method of specifying FSM control that 

resembles a programming language – textual rather graphic
– this is appropriate when the FSM becomes very large, e.g., if the 

instruction set is large and/or the number of cycles per instruction 
is large

– in such situations graphical representation becomes difficult as
there may be thousands of states and even more arcs joining them

– a microprogram is specification : implementation is by ROM or PLA

• A microprogram is a sequence of microinstructions
– each microinstruction has eight fields (label + 7 functional)

• Label: used to control microcode sequencing  
• ALU control: specify operation to be done by ALU
• SRC1: specify source for first ALU operand
• SRC2: specify source for second ALU operand
• Register control: specify read/write for register file
• Memory: specify read/write for memory
• PCWrite control: specify the writing of the PC
• Sequencing: specify choice of next microinstruction

Microprogramming

Microprogramming

• The Sequencing field value determines the execution order of 
the microprogram
– value Seq : control passes to the sequentially next microinstruction

– value Fetch : branch to the first microinstruction to begin the next 
MIPS instruction, i.e., the first microinstruction in the microprogram

– value Dispatch i : branch to a microinstruction based on control 
input and a dispatch table entry (called dispatching): 

• Dispatching is implemented by means of creating a table, called 
dispatch table, whose entries are microinstruction labels and which is 
indexed by the control input. There may be multiple dispatch tables –
the value Dispatch i in the sequencing field indicates that the i th
dispatch table is to be used

Control Microprogram

• The microprogram corresponding to the FSM control shown 
graphically earlier:

Label
ALU 

control SRC1 SRC2
Register 
control Mem ory

PCW rite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

M em1 Add A Extend Dispatch 2
LW 2 Read ALU Seq

W rite MDR Fetch
SW 2 W rite ALU Fetch
Rform at1 Func code A B Seq

W rite ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUM P1 Jump address Fetch

Dispatch ROM 1

Dispatch ROM 2Op Opcode name Value

Op Opcode name Value000000 R-format Rformat1

100011 lw LW2000010 jmp JUMP1

101011 sw SW2000100 beq BEQ1
100011 lw Mem1
101011 sw Mem1

Microprogram containing 10 microinstructions

Dispatch Table 2

Dispatch Table 1



Microcode: Trade-offs
• Specification advantages

– easy to design and write

– typically manufacturer designs architecture and microcode in parallel

• Implementation advantages

– easy to change since values are in memory (e.g., off-chip ROM)

– can emulate other architectures

– can make use of internal registers

• Implementation disadvantages

– control is implemented nowadays on same chip as processor so the

advantage of an off-chip ROM does not exist

– ROM is no longer faster than on-board cache

– there is little need to change the microcode as general-purpose 

computers are used far more nowadays than computers designed for

specific applications

Summary

• Techniques described in this chapter to design datapaths and 
control are at the core of  all modern computer architecture

• Multicycle datapaths offer two great advantages over single-cycle
– functional units can be reused within a single instruction if they are 

accessed in different cycles – reducing the need to replicate expensive 
logic

– instructions with shorter execution paths can complete quicker by 
consuming fewer cycles

• Modern computers, in fact, take the multicycle paradigm to a higher 
level to achieve greater instruction throughput: 
– pipelining (next topic) where multiple instructions execute 

simultaneously by having cycles of different instructions overlap in the 
datapath

– the MIPS architecture was designed to be pipelined


