The Processor: Datapath and Control

Implementing MIPS

We're ready to look at an implementation of the MIPS instruction set
Simplified to contain only

— arithmetic-logic instructions: add, sub, and, or, st

— memory-reference instructions: Iw, sw

— control-flow instructions: beq, j

6 bits | 5bitsI 5bitsI 5bitsI 5bits| 6 bits

[op | rs | rt | rd |shamt] funct | R-Format
6 bits | 5bits | 5 bits | 16 bits |

Lop [rs | rt | offset | 1-Format
6 bits | 26 bits |

[op | address | J-Format

Implementing MIPS: the
Fetch/Execute Cycle

High-level abstract view of fetch/execute implementation
— use the program counter (PC) to read instruction address
— fetch the instruction from memory and increment PC
— use fields of the instruction to select registers to read
— execute depending on the instruction

— repeat...

—| Dria
—| Regster #

Addess Instrudtion— Regsters Address

Istudian —| Regster#

nemay) Deta ||
| Rgste # nenmay

Dea

Overview: Processor
Implementation Styles

Single Cycle
— perform each instruction in 1 clock cycle
— clock cycle must be long enough for slowest instruction; therefore,
— disadvantage: only as fast as slowest instruction
Multi-Cycle
— break fetch/execute cycle into multiple steps
— perform 1 step in each clock cycle
— advantage: each instruction uses only as many cycles as it needs
Pipelined
— execute each instruction in multiple steps
— perform 1 step / instruction in each clock cycle
— process multiple instructions in parallel — assembly line

Functional Elements

Two types of functional elements in the hardware:
— elements that operate on data (called combinational elements)
— elements that contain data (called state or sequential elements)

Combinational Elements

Works as an input = output function, e.g., ALU

Combinational logic reads input data from one register and writes
output data to another, or same, register

— read/write happens in a single cycle — combinational element cannot
store data from one cycle to a future one

= = D

Combinational logic hardware units

State State State
element Combinational logic element element
1 2

Combinational logic

Clock cycle —,—\—,_

State Elements

State elements contain data in internal storage, e.g., registers
and memory
All state elements together define the state of the machine

— What does this mean? Think of shutting down andistaup again...
Flipflops and latches are 1-bit state elements, equivalently,
they are 1-bit memories
The output(s) of a flipflop or latch always depends on the bit
value stored, i.e., its state, and can be called 1/0 or high/low or
trueffalse
The input to a flipflop or latch can change its state depending
on whether it is clocked or not...

Synchronous Logic:
Clocked Latches and Flipflops

Clocks are used in synchronous logic to determine when a state
element is to be updated
— in level-triggered clocking methodology either the state changes
only when the clock is high or only when it is low (technology-
dependent)

Falling edge

Clock period \ Rising edge
— in edge-triggered clocking methodology either the rising edge or

falling edge is active (depending on technology) — i.e., states
change only on rising edges or only on falling edge

Latches are level-triggered
Flipflops are edge-triggered

State Elements on the
Datapath: Register File

Registers are implemented with arrays of D-flipflops

Clock

. Read register 32 bits
Sbhits =% number? Read|
data !
5 bits »| Read register
number 2
.. Register file
YN C—
register 32 bits
Read
32bits] WWIitE data?
data

Control signal

Register file with two read ports and one write port

State Elements on the Datapath: Register File

* Port implementation: Clock
Clock
Read register 1 Register 0
number 1 N 1 D
Register 0 Regsternarter—o| 01 | H e
Register 1 M decoder | + Register 1
U H—> Read datal n-1 °
Register n— 1 X n
Register n
W/
Read register —D_C)
number 2 A I?eglstem—l
) C
M Register n
U [4—> Read data2 Register data D
X
Write port is implemented using

a decoder — 5-to-32 decoder for
32 registers. Clock is relevant to
write as register state may change
only at clock edge

Read ports are implemented
with a pair of multiplexors — 5
bit multiplexors for 32 registers

Single-cycle Implementation of MIPS

Our first implementation of MIPS will use a single long clock
cycle for every instruction
Every instruction begins on one up (or, down) clock edge
and ends on the next up (or, down) clock edge
This approach is not practical as it is much slower than a
multicycle implementation where different instruction
classes can take different numbers of cycles
— in a single-cycle implementation every instruction must take
the same amount of time as the slowest instruction
— in a multicycle implementation this problem is avoided by
allowing quicker instructions to use fewer cycles
Even though the single-cycle approach is not practical it is
simple and useful to understand first

Datapath: Instruction
Store/Fetch & PC Increment

Instruction
address —
P Add
Instruction (=
Instruction 4
memory

Read
address
a. Instruction memory b. Program counter c. Adder
Instruction
Three elements used to store Instruction
- - memol
and fetch instructions and v

increment the PC

Datapath

Animating the Datapath

Datapath: R-Type Instruction

Instruction <- MEM[PC]
_ PC<-PC+4
ADD
S| Read __[Read 3 J ALY operation
register 1 dR‘eaf L. register 1 Read
Register 5| Read ata data 1
A . numbers T 'eg‘s‘e;feg‘s‘e,s Data Instruction '_’ ?eeg?gtekze e AL Zerg
= ier wite 0 reai
daRz:azd — | register Read
PC Data {—‘ xvar':;e Write data 2
‘ RegWiite | data
${ ADDR
—> Memory a. Registers b. ALU fean
RD == |nstruction
Two elements used to implement Datapath
R-type instructions
. add rd, rs, rt
Instruction
[Cop T rs T rt T rd JshamtJfunct | R[rd]<- R[rs] + R[rt];
Read
MemWrite register 1 Read MemWrite
) Read data 1
(s Operation Instruction [register2
v —] Address Read| [| wite Regsers Address Read
data register Read data
RN1 RN2 WN wite data 2
RD1 —| wiite Data [data Data
Register File Zero e Reguie ke .
WD MemRead N MemRead
a. Data memory unit b. Sign-extension unit

RD2
RegWrite

?

Two additional elements used
To implement load/stores

Datapath

Animating the Datapath

| rs | rt | offset/immediate | lw rt,Offset(rS)

Operation

RN1 RN2 WN
Zero

) . RD1
Register File
WD

l

MemWrite
ADDR

Memor
o y

RD2

RegWrite

\ 4

RD

MemRead

?

Animating the Datapath

op | 1s | 1t | offseimmediate] sw rt, offset(rs)

® R[rt] <- MEM[R[rs] + s_extend(offset)];

Operation

RN1 RN2 WN
. _ RD1
Register File

Zero

y

WD
MemWrite
) ADDR
RegWrite
Memory
WD
MemRead

Datapath: Branch Instruction

PC + 4 from instruction datapath =

No shift hardware_ required: Add Sum Branch targer
simply connect wires from \
input to output, each shifted
left 2 bits
Read ALU operation
Instruction register 1 Read
Read data 1
reglstekz i To branch
Write egsters control logic
register Read
Write data 2
data
chWHd
16 . 32
\ Sign
extend

Datapath

| offset/immediate | |Pn§t4r-jcftr|%rrr1]

6 datapath

It

Operation

RN1 RN2 WN

. _ RD1
Register File
WD

RD2

RegWrite

beq rs, rt, offset

if (R[rs] == R[rt]) then

6 MEM[R][rs] + sign_extend(offset)] <- R[rt]

PC <- PC+4 + s_extend(offset<<2)

MIPS Datapath I: Single-Cycle

Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

\1
gs
&
WEX ’
\ D, AR |
\ pe
\ E

 T_—

\ =
4
£

v
ad
&
“a

> 3 ” hY
\ /
A\ ';'
./

Data is either
from ALU (R-type)
or memory (load)

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Fig. 5.11 Page 352

Animating the Datapath:
R-type Instruction

add rd,rs,rt

Instruction
32 fie 3 5
A
RNI RN2 WN
. _ RD1
Register File
—»1 WD
RD2
RegWrite
t e
X
16: T 32
N
D

Operation

Zero

i

MemWrite
ADDR
Data
Memory

h 4

WD

MemRead

RD

f

MemtoReg

Animating the Datapath:
Load Instruction

Iw rt,offset(rs)

Animating the Datapath:
Store Instruction

sw rt,offset(rs)

Instruction
32 a6 f IS f Operation
RN1 RN2 WN
. _ RD1 2
Register File ero
=l wp !
RD2 MemWrite MemioR
ADDR emioreg
RegWrite
f Data
g 3 Memory RD
ALUSrc
18: T 2 » WD
N
D !\/Iem:ead

Instruction

RN1 RN2 WN
. _ RD1

Register File

—» WD
RD2
RegWrite

X
16k T 32

1IN

D

Operation
3
Zero
> MemWrite
u =»| ADDR
. B
Data
Memory RD
ALUSIc
P WD
MemRead

MemtoReg

MIPS Datapath II: Single-Cycle

Separate adder as ALU operations and PC
increment occur in the same clock cycle

Read Registers
Read register 1 fon
address Read d
. register 2 ata 1
Instruction = -
Write Read Address ~ Read
register data 2 data M
Instruction Write u
memory = data Data X
Write Mmemory
I data
16 [sign 132

| extend

Separate instruction memory
as instruction and data read
occur in the same clock cycle

Adding instruction fetch

MIPS Datapath Ill: Single-Cycle

PCSr New multiplexor
Add l '\L{I
X
\ Extra adder needed as both
adders operate in each cycle
Registers ALU operation
Read 3 peratior MemWrite
N Read register 1 o4 ALLIJSVC
address Read data 1 MemtoReg
register 2
Instruction .
Write Read M =>| Address %ead L
Instruction :;gltster data 2 u ata ,\L/J|
memory —p| VVrite Data X
data > Write memory
RegWrite] data
16 Sign MemRead
. o extend emiea
Instruction address is either
PC+4 or branch target address

Adding branch capability and another multiplexor
Important note: in a single-cycle implementation data cannot be stored
during an instruction — it only moves through combinational logic
Question: is the MemRead signal really needed?! Think of RegWrite...!

Datapath Executing add

add rd, rs, rt

Instruction
ADDR L =
Instruction L Y 3
Memory RNI_RNZ _WN
. . RD1 » 2
Register File ALU ero
=% wo !
> MemWrite
RD2 u] ADDR MemtoReg
RegWrite - X
f Data
E Memory RD
16 X |32 ALUSrc
»| T »| WD
N MemRead
- 1

Datapath Executing Iw

Iw rt,offset(rs)

Instruction

ADDR R

. 32 e 5 5 5
Instruction ¥ Y Y
Memory RNI _RNZ WN
. . RD1 >
Register File
—»{ WD
> MemWrite
v RD2 u ADDR MemtoReg
RegWrite - X
? Data
E Memory RD
X ALUSrc
16: T 32 »| wo
N MemRead
- f

Datapath Executing sw

sw rt,offset(rs)

h 4

Instruction
ADDR RI
. 32 16 5 5 5 Operation
Instruction ¥ ¥
Memory RNI_RNZ WN
. . RD1 >
Register File
—{ WD

MemWrite

RD2 T m ADDR MemtoReg
RegWrite - X
f Data
E Memory RD
X ALUSIC
16: T 32 »| wo
N MemRead
D

f

Datapath Executing beq

beq rl,r2,offset

Instruction
#{ ADDR R
. 32 16 5 5 5 Operation
Instruction ¥ N 3
Memory RN1 RN2 WN
. . RD1 > 2
Register File ALU ero
—»{ WD !
> MemWrite
RD2 u | ADDR
RegWrite - X
? Data

16‘

A 4

WD
MemRead

oz—4XxXm

Memory RD

MemtoReg

f

Control

« Control unit takes input from
— the instruction opcode bits

« Control unit generates
— ALU control input

— write enable (possibly, read enable also) signals for each storage
element

— selector controls for each multiplexor

ALU Control

» Plan to control ALU: main control sends a 2-bit ALUOp control field to
the ALU control. Based on ALUOp and funct field of instruction the
ALU control generates the 3-bit ALU control field

e ALU must perform

Recall from Ch. 4

ALU control Func- ,
field tion

000 and
001 or
010 add

110 sub 6

111 slt +

Instruction

ALUOp generation

funct field by main control

add for load/stores (ALUOp 00)
sub for branches (ALUOp 01)

one of and, or, add, sub, slt for R-type instructions, depending on the
instruction’s 6-bit funct field (ALUOp 10)

To
ALU

Setting ALU Control Bits

Instruction AluOp Instruction Funct Field Desired ALU control

opcode operation ALU action input
Lw 00 load word ~ XXXXXX add 0 10
SW 00 store word XXXXXX add 0 10
Brancheq 01 branch eq XXXXXX subtract 110
R-type 10 add 100000 add 010
R-type 10 subtract 100010 subtract 110
R-type 10 AND 100100 and 000
R-type 10 OR 100101 or 001
R-type 10 setonless 101010 setonl| ess 111
ALUOp Funct field Operation
ALUOpP1|ALUOpPO|F5|FA4[F3|F2|F1|FO
.) 0] 0 XIXIXIX|X|X 010
Typoin text g 1 I xx I x] x| 110
inen there is potentig————xxtolololo] ow
tcoir;lict betwepen 1 X X1 X 0010 110
line 2 and lines 3-7! 1 X X1X10111010 000
1 X X|X|10]1l0[1 001
1 X X|{Xl1]ol1lo0 111

Truth table

-

or ALU control bits

Designing the Main Control

R-type ‘ opcode ‘ rs ‘ r ‘ rd ‘ shamt funct ‘
31-26 25-21 20-16 15-11 10-6 5-0
Load/store
or branch ‘ opcode ‘ s ‘ rt ‘ address ‘
31-26 25-21 20-16 15-0

Observations about MIPS instruction format
— opcode is always in bits 31-26

— two registers to be read are always rs (bits 25-21) and rt (bits 20-
16)

— base register for load/stores is always rs (bits 25-21)
— 16-bit offset for branch equal and load/store is always bits 15-0

— destination register for loads is in bits 20-16 (rt) while for R-type
instructions it is in bits 15-11 (rd) (will require multiplexor to select)

Datapath with Control |

MemWrite

MemtoReg

Add l
New multiplexor RegWrite
Instruction [25—21] Read
Read register 1 Read
address Instruction [20— 1§] Read datal
Instruction T register 2 Read!
31- 0] M Write data 2
U register
Instruction Instruction [15-11] | X | [\write
memory 0] 1" data
RegDst|
Instruction [15-0]
Instruction [5—0]

Address Read|
data

wiite _Data
data memory

MemRead

ALUOp

Adding control to the MIPS Datapath III (and a new multiplexor to select field to
specify destination register): what are the functions of the control signals?

Signal Name

Control Signals

Effect when deasserted

Effect when asserted

RegDst The register destination number for the The register destination number for the
Write register comes from the rt field (bits 20-16) Write register comes from the rd field (bits 15-11)
RegWrite None The register on the Write register input is written
with the value on the Write data input
AlLUSrc The second ALU operand comes from the The second ALU operand is the sign-extended,
second register file output (Read data 2) lower 16 bits of the instruction
PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder
that computes the value of PC + 4 that computes the branch target
MemRead None Data memory contents designated by the address
input are put on the first Read data output
MemWrite None Data memory contents designated by the address
input are replaced by the value of the Write data input
MemtoReg The value fed to the register Write data input The value fed to the register Write data input

comes from the ALU

comes from the data memory

Effects of the seven control signals

Datapath with Control Il

PCSrc cannot be

set directly from the
opcode: zero test
outcome is required

0 A% N\
M /]
t [b
[ructic 31 -26]
Add e’:blt 1 instruction :)]
Add .
R t
4= Branch
H‘ nRea Instruction [25 -21] Read
Instruction [31-26] address nsucion 2046 register 1 JReag
nstuction| | | TSI 2 s Read
neneion M g L
‘ memory | nstruction [15 1) wite bata u
memory o
momd Instruction [25 -21] Read wrie ™
PCi—4—s| R& register 1 Read
Read esion 2015 - da(: o Instruction [15 -0] 16 ef“g;‘d 32
imcton D) | Resters e .
Instruction "S ‘;'é'Q.'ge; data2 Address data tn Instruction [5-0]
memory Instruction [15 -11] 1* . \d,\,ge bata u
lat
memory 0 - - - - -
urite Determining control signals for the MIPS datapath based on instruction opcode
32
renam i ont T Memto- | Reg | Mem | Mem
|" Instruction | RegDst | ALUSrc [Req |Write| Read [Write| Branch { ALUOp1 [ALUpO
Instruction [5-0) R-format 1 0 0 1 0 0 0 1 0
Iw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
MIPS datapath with the control unit: input to control is the 6-bit instruction beq X 0 X 0 0 0 1 0 1
opcode field, output is seven 1-bit signals and the 2-bit ALUOp signal
. .
Control S |s: Control S |s:
ontrol signails. ontrol signails.
. .
R-Type Instruction lw Instruction
ADD
4 rs rt rd
1[25:21] 1[20:16] 1[15:11] 4 s r rd
pC Instruction 1[25:21] 1[20:16] I[15:11]
k=i ADDR RD ;2 pC l— Instruction
Instruction | 299 Va\uefdepends on » ADDR) RD o
Memory 16 RegDst ogerafion unct Instruction 10
3 Memory s i - [ReIDS oneration
RN1 RN2 WN i 3
RD1 RN1 RN2 WN I
Register File ALU Zero) R - , 0
WD 4] Register File ero
i medi at e/ r = wb
MemWrite - @ ¢
|o[flfsseo‘]4> RegWrite ROz ; [~ APOR e oRes ‘ "Ef?'sgf ¢ RD2 b L MemWrite MembRe
1 { voata oo 111s:0] RegWrite []5= ADDRD . ¢
E emor L ata
1 16 | x]e ALUSIC R Y E 3+ Memory RD
> R 0 " 1 16 | X |32 ALUSrc o] wo
Control signals D MemRead = N
i 10 Control signals 5 1 MemRead
shown in blue SS9 z 1
shown in blue

Control Signals: Control Signals:
Sw Instruction beq Instruction

ADD ADD
4 rs rt r 4 rs rt rd
1[25:21] 1[20:16] I[15:11] 1[25:21] 1[20:16] I[15:11] i

pC Instruction i pC Instruction \ l / i @ " A

DDR RD [y ADDR RO [l 1if Zero=1

Instruction Instruction | 10

Memory 16 s s Memory " RegDst operation
[3
RNI RNZ WN RNI RNZ WN
RD1 RD1 = .
Register File il- Register File rero ?
wp : wD o
I ngfefd‘sz: . RD2 Viemwrite MemtoReg ‘ ng?fd;:‘t L RD2 - Memwrite MemtoReg
—
1115:0] RegWrite APDR 1715:0] RegWrite - [ADOR
Data Data
% Memory £ R ALUSrc Memory F°
0 15' >; 32 wo 0 '16> _IN_ 3.2 5 ol wo
. N .
Control signals D MemRead Control signals D Mem;ea"
shown in blue to shown in blue 0

Jump l opcode ‘ address ‘

31-26 Composing jump 250 New multiplexor with additional

target address control bit Jump
N
Instruction [25-0] @ Jump address [31- 0]
26 @25 0 |_, 1
PC+4 [31-28]) VL‘! rz\
X X
1 j——s{0

Control

Unit
Instruction [31-26]
" ADDR RD 5*1[31 26]
. 32 |Instruction |
Instruction Read
- RegDst -
Memory 16 Operftion Branch
ead Instruction [25-21] Z%‘agpm RNL_RN2 _WN
address Instruction [20- 16] et opll3L: RD1
nstruction Read . !
stracton Teerster 2 Register File
Y L. () wite 9SS Read 5 —»! WD] ‘
Instruction "S register M Address }w ~ MemWrite
memory Instructon 15111 | X Wiite M N u RD2 l—»! ADDR MemtoReg
—li) — ata X
= . Write memery U RegWrite - Data
deta t E Memory RP
Instruction [15-0] 16 16 >T< 32 ALUSrc o wo
N MemRead
D,
Instruction [5-0]

MIPS datapath extended to jumps: control unit generates new Jump control bit

R-type Instruction: Step 1

add $t1, $t2, $t3 (active = bold)

R-type Instruction: Step 2

add $t1, $t2, $t3 (active = bold)

0
M
p
X
1
0 Add|
" —
| S v
X 4
1
Instruction [31-26]
Instructon [81-26)
Instruction [31- 26]
Instruction [25-21] Read
Read register 1
PC address o Read
Instruction [20-16] Read data 1
Instruction [25-21] Read I register 2
Read Ster 1 nstruction L__4 () Registers
address) o JRead -0l M wie e e o Address Readl (]
Instruction [20- 16] Read data Instruction u register M data v
.
Instruction () ‘FHMNRS - memol X u
iy m— gisters Read Instruction [15- 11, u
131-0] M Wiite data 2 +—| Address Readl (7 flnstucton 15714 | X\’”‘e X Data X
Instruction u register data M lata —1 mory 0
memory Instruction [15-11] | X Write v
—{l — Data X
e memory . N
data Instruction [15-0] Sign
Instruction [15- 0] 16 extend
o Instruction [5-0]
Instruction [5- 0]
Fetch instruction and increment PC count : :
Read two source registers from the register file
R-type Instruction: Step 3 R-type Instruction: Step 4
. .
add $t1, $t2, $t3 (active = bold) add $t1, $t2, $t3 (active = bold)
0
0
M
" | SR v
u x
X
) .
1
add Add! |
. -~
4 4
Instruction [31-26] _Instruction [31-26] |
RegWrite
" Instruction [25-21] Read ead Instruction [25-21] Read
PC oaress register 1 Read Ls|pct—s{ Read register 1 Read
Instruction [20 -16] Read data 1 Instruction [20 -16] Read data1
Instruction |__J () L isters Read ALU ALl Instruction L4 LG regme’RZegnsters Read
[81-0] M Write 0 result j—g—s| Address Read| 7) -0 M Write data 2 Address Readl_,)
Instruction u register M data v Instruction u register data y
memory Instruction [15-11) | * Wite " u memory Instruction [15-11] 1X Wite Dat M
Jisucion s 1y | ¥ __| u fioswucton 15 41|) X
data ¢ memory 0 data memory 0
Write Write
data data
Instruction [15 0] 16 Instruction [15 0] 16
Instruction [5-0] r Instruction [5-0]

ALU operates on the two register operands

Write result to register

Implementation: ALU Control Block

ALUOp Funct field Operation
ALUOpP1|ALUOPO|F5|F4|F3|F2|F1[FO0

0 0] XIX|X|I XXX 010

0* 1 Ixdxdxdxd x x| 110 *Typo in text

1 x IxIxlolololo| o010 Fig. 5.15. ifitis X
then there is potential

1 X X|X10]0/1/0 110 conflict between

1 X X|X|l0l1l10l0 000 line 2 and lines 3-7!

1 X X|X/0]1]0[1 001

1 X XIXx11101110 111

Truth table for ALU control bits

ALU control block

|ALUOpO
ALUOp1

—> Operation
F (5-0)

ALU control logic

Inputs

Outputs

Implementation: Main Control

Block

Inputs

op5

Op4
Signal R- Iw sw beq o
name format oPL—{7e 1 i 1
Op5 01 10 Op0
Op4 0 0 0 O sl
Op3 0 0 10) Outputs
Op2 0 0 0 1 R-forma Iwj sw| beq RegDst
Opl 0110) ALUSIC
Opo 0 1 1 O MemtoReg
RegDst 1 0 x X :>
ALUSTIC 0110) > peonne
MemtoReg 0 1 x x Memwii
RegWrite 11 00 $——————— Branch
MemRead 01 0O ALUOp1
MemWrite 0 01 0 L ALUOPO
Branch 0 0 0 1 Main control PLA (programmable
ALUOpl 1 0 0 O logic array): principle underlying
ALUOP2 0 0 0 1 PLAs is that any logical expression

Truth table for main control signals can be written as a sum-of-products

Single-cycle Implementation
Notes

* The steps are not really distinct as each instruction
completes in exactly one clock cycle — they simply
indicate the sequence of data flowing through the
datapath

» The operation of the datapath during a cycle is purely
combinational — nothing is stored during a clock cycle

» Therefore, the machine is stable in a particular state
at the start of a cycle and reaches a new stable state
only at the end of the cycle

Load Instruction Steps
lw $t1, offset($t2)

Fetch instruction and increment PC

Read base register from the register file: the base register
($t2) is given by bits 25-21 of the instruction

ALU computes sum of value read from the register file and
the sign-extended lower 16 bits (offset) of the instruction
The sum from the ALU is used as the address for the data
memory

The data from the memory unit is written into the register file:
the destination register ($t1) is given by bits 20-16 of the
instruction

Branch Instruction Steps
beq $t1, $t2, offset

1. Fetch instruction and increment PC

Read two register ($t1 and $t2) from the register file

3. ALU performs a subtract on the data values from the
register file; the value of PC+4 is added to the sign-
extended lower 16 bits (offset) of the instruction shifted
left by two to give the branch target address

4. The Zero result from the ALU is used to decide which
adder result (from step 1 or 3) to store in the PC

N

Single-Cycle Design Problems

» Assuming fixed-period clock every instruction datapath uses one
clock cycle implies:

- CPI=1

— cycle time determined by length of the longest instruction path (load)
« but several instructions could run in a shorter clock cycle: waste of time
« consider if we have more complicated instructions like floating point!

— resources used more than once in the same cycle need to be

duplicated

« waste of hardware and chip area

Example: Fixed-period clock vs.
variable-period clock in a
single-cycle implementation

Consider a machine with an additional floating point unit. Assume
functional unit delays as follows

— memory: 2 ns., ALU and adders: 2 ns., FPU add: 8 ns., FPU multiply: 16 ns.,
register file access (read or write): 1 ns.

— multiplexors, control unit, PC accesses, sign extension, wires: no delay
Assume instruction mix as follows

— all loads take same time and comprise 31%

— all stores take same time and comprise 21%

— R-format instructions comprise 27%

— branches comprise 5%

— jumps comprise 2%

— FP adds and subtracts take the same time and totally comprise 7%

— FP multiplys and divides take the same time and totally comprise 7%
Compare the performance of (a) a single-cycle imphation using a fixed-
period clock with (b) one using a variable-period clogkere each instruction
executes in one clock cycle that is only as long asatls to be (not really
practical but pretend it's possible!)

Solution

Instruction Instr. Register ALU Data Register FPU FPU Total
class mem. read oper. mem. write add/ mul/ time
sub div ns.
Loadword 2 1 2 2 1 8
Storeword 2 1 2 2 7
Rformat 2 1 2 0 1 6
Branch 2 1 2 5
Jump 2 2
FP mul/div 2 1 1 16 20
FP add/sub 2 1 1 8 12

» Clock period for fixed-period clock = longest instruction time = 20
ns.

< Average clock period for variable-period clock = 8 x 31% +
Tx21%+6x27%+5x5%+2x2%+20x 7% + 12 x 7%
=7.0ns.

* Therefore, performance, . period /PEIfOrMance ey period = 20/7 = 2.9

Fixing the problem with single-
cycle designs

¢ One solution: a variable-period clock with different cycle times
for each instruction class
— unfeasible, as implementing a variable-speed clock is technically
difficult
* Another solution:
— use a smaller cycle time...
— ...have different instructions take different numbers of cycles

by breaking instructions into steps and fitting each step into one
cycle

— feasible: multicyle approach!

Multicycle Approach

e Break up the instructions into steps
— each step takes one clock cycle
— balance the amount of work to be done in each step/cycle so that
they are about equal
— restrict each cycle to use at most once each major functional unit
so that such units do not have to be replicated
— functional units can be shared between different cycles within one
instruction
« Between steps/cycles
— At the end of one cycle store data to be used in later cycles of the
same instruction
« need to introduce additional internal (programmer-invisible) registers for
this purpose
— Data to be used in later instructions are stored in programmer-
visible state elements: the register file, PC, memory

Multicycle Approach

PCSrc
N ["
u
4
ALl
4 —’V @ Add, Sl

Registers

Read .
Read register 1 LUSrc
address Read
register 2

Note particularities of
multicyle vs. single- RaSer amaS T

memory Write x Data
data |

diagrams e e menee
— single memory for data _L"” . p,,,“

and instructions
Single-cycle datapath

Instruction
Read

Address
data

1

— single ALU, no extra adders
— extraregisters to
hold data between

clock cycles L address

register
o Data

.
Register #

Registers
Register #

Instruction
Memory " or data

ALUOUY

| bata register

Register #

Multicycle datapath (high-level view)

Multicycle Datapath

L 3¢ 0 0
M Instructior Read "
U pel| Address [25-21] \ register 1 M
x
Instructior Read Read A X 2z
< Memory [20- 16] 1 register 2 datal ! TR \
MemD: o Registers AL ALUOU
Instructionf M Write Read result W
w [15- 0 hstruction| u register gata 2 B 0
fite 15-11 | x M
data Instruction] b Write a1
register data 2y
3

Instructign
-

Memory
data
register

Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal register in red ovals, new multiplexors in blue ovals

Breaking instructions into steps

e Our goal is to break up the instructions into steps so that
— each step takes one clock cycle
— the amount of work to be done in each step/cycle is about equal

— each cycle uses at most once each major functional unit so that
such units do not have to be replicated

— functional units can be shared between different cycles within one
instruction

« Data at end of one cycle to be used in next must be stored !!

Breaking instructions into steps

* We break instructions into the following potential execution steps
—not all instructions require all the steps — each step takes one
clock cycle

1. Instruction fetch and PC increment (IF)

. Instruction decode and register fetch (ID)

. Execution, memory address computation, or branch completion (EX)

. Memory access or R-type instruction completion (MEM)

. Memory read completion (WB)

a b wN

« Each MIPS instruction takes from 3 — 5 cycles (steps)

Step 1: Instruction Fetch & PC
Increment (IF)

Use PC to get instruction and put it in the instruction register.
Increment the PC by 4 and put the result back in the PC.

Can be described succinctly using RTL (Register-Transfer Language):

IR = Memory[PC];
PC =PC + 4;

IR = Instruction Register

Step 2: Instruction Decode and
Register Fetch (ID)

Read registers rs and rt in case we need them.
Compute the branch address in case the instruction is a branch.

RTL:

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Step 3: Execution, Address
Computation or Branch Completion
(EX)

* ALU performs one of four functions depending on instruction
type
— memory reference:
ALUOuUt = A + sign-extend(IR[15-0]);
— R-type:
ALUOut =A op B;
— branch (instruction completes):
if (A==B) PC = ALUOUL;
— jump (instruction completes):
PC = PC[31-28] || (IR(25-0) << 2)

Step 4: Memory access or R-
type Instruction Completion
(MEM)

« Again depending on instruction type:
« Loads and stores access memory
— load
MDR = Memory[ALUOut];
— store (instruction completes)
Memory[ALUOut] = B;

MDR = Memory Data Register

¢ R-type (instructions completes)
Reg[IR[15-11]] = ALUOut;

Step 5: Memory Read
Completion (WB)

» Again depending on instruction type:
» Load writes back (instruction completes)
Reg[IR[20-16]]= MDR;

Important: There is no reason from a datapath (or control) point of
view that Step 5 cannot be eliminated by performing

Reg[IR[20-16]]= Memory[ALUOuLt];
for loads in Step 4. This would eliminate the MDR as well.

The reason this is not done is that, to keep steps balanced in
length, the design restriction is to allow each step to contain at
most one ALU operation, or one register access, or one
memory access.

Summary of Instruction
Execution

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4
Instruction A = Reg [IR[25-21]]

decodef/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

4: MEM

5: WB

Execution, address ALUOuUt=AopB ALUOuUt = A + sign-extend if (A ==B) then | PC = PC [31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B
Memory read completion Load: Reg|[IR[20-16]] = MDR

Multicycle Execution Step (1):
Instruction Fetch

IR = Memory[PC];
PC =PC + 4;

IR = Instruction Register
MDR = Memory Data Register

| Instruction I
R
5 5 5 a
‘ 1 ¢ Oper zon
PC|l & MemWrite RN1 RN2 N v
>
Aeon Registers <0t &
Memory M 9 ALU
RD D »| WD ALU
R A 4 out
PC+4 WD RD2 B 1
MemRead RegWrite

Must be MUX

Multicycle Execution Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Req[rs])
B = Reg[IR[20-15]]; (B = Reqrt])
ALUQut = (PC + sign-extend(lI R 15-0]) << 2) *
Il? Instruction I
¢ T} v
pclly | | wvemwite RNI RN2 WN 3 Address
" ADD,;emory M Registers "0t . O
i nar I w ol an
PC+4 WD R RD2 -DE
MemRead RegWrite
IA * f . Rerg

Multicycle Execution Step (3):
Memory Reference Instructions

ALUOuUt = A + sign-extend(IR[15-0]);

| Instruction I
R
! ¥ ¥ L rery Mem.
PCl ¥ N MemWrite RN1 RN2 WN Address
»| ADDR) RDL A o
Memory M Registers
" i 1 1
out
PC+4 WD R RD2 B -]
MemRead RegWrite
t 4 Reg[rt]

Multicycle Execution Step (3):
ALU Instruction (R-Type)

ALUOUt =Aop B

| Instruction I
R
y * ¥ { Regr
PCJ ¥ MemWrite RN1 RN2 N 4
»| ADDR - RD1
Memory M Registers
RD D e
PC+4 WD R RD2 B
MemRead RegWrite
t ? Reg[rt]

Multicycle Execution Step (3):
Branch Instructions

if (A == B) PC = ALUOUL;

R
Branch
‘ ‘5 3 VS Reg[rs] Target
MemWrite RN1 RN2 N
PC|l ¥ »!| ADDR) RDL L . Address
Memory M Registers
RD D »| WD ALU
Branch R A out
Target WDM read et RDZ-DB‘
emRea egWrite
Address
* t Reg(rt]

Multicycle Execution Step (3):
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)

|I2 Instruction I
‘ 5 5 5 Branch
Target
PCLYIL], omemivrite RNL - RN2 zm Address
al . ro
Memory gl oo Registers —
RD >
Jump wo R ; . ouTt
Address I-‘ MemRead RegWrite

Multicycle Execution Step (4):
Memory Access - Read (Ilw)

MDR = Memory[ALUOut];

ll? Instruction I
‘ ¥ > T Regrg Mem.
PC| ¥ MemWrite RNI RN2 WN Address
»| ADDR) RDL A .
Memory M Registers
ro i D [H-s o
PC+4 WD R D2 B
MemRead RegWrite 4
Mem. Reqlr
glrt]
? Data T

Multicycle Execution Step (4):
Memory Access - Write (sw)

Memory[ALUOUut] = B;

| Instruction I
R
‘ 5 5 5 Reg[rs|
PC| § MemWrite RN1 RN2 N 4
| ADDR) RD1
Memory M Registers
RD D e
PC+4 wp R RD2 -bEl
MemRead RegWrite
t ? Reg[rt]

Multicycle Execution Step (4):

ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT

!

PC| v MemWrite
| ADDR
Memory
PC+4 WD
MemRead

RD

DOZ

*

Instruction I

Lol B gedrs

RN1 RN2 WN

A
Registers RD1
wD

A 4

Operation

RegWrite

R-Type
Result

ALU
ouTt

Multicycle Execution Step (5):
Memory Read Completion (Ilw)

Reg[IR[20-16]] = MDR

!

PC| < MemWrite
| ADDR
Memory
RD
PC+4 WD
MemRead

?

Instruction I

Operation
Mem
RN1 RN2 WN Address
. RD1
Registers
Wb ALU
out

RegWrite

Multicycle Datapath with Control |

T

0
M Instruction Read
u p=»|Address [25-21] register 1
X Instruction e: Read
Q Memory [20-16] I register 2 datal
MemData 0 _ Registers
Instruction 4 M Write Rea
w 115-0I Y jnstruction| u register data 2
> e Instruction SR Wite
register data
Instruction 0
[15-0] M
u
x
Memory 1
data 16
register e

Instruction [5-0]

ALUOuU

... with control lines and the ALU control block added — not a// control lines are shown

Multicycle Datapath with Control Il

New,_gates

For the junlwp address New multiplexor

/S ox

]

Instruction
[15-0)

register

Instruction [5- 0]

op
15-0]
—_— Jump
Instruction [25—0] 26 (o in\2 ‘address [31-0]
— left 2
\nsﬂzucﬂzasﬂ
Ly | Pl (0 1-20] l 3 PC [31-28]
M Instruction Read >
u f] Address [25-21] register 1
x Read {
Instruction ea
L Memory register 2 datal
MemD: Registers ba | ALUOL
Instruction, Write Read
(15-0If'Y instruction register ata 2
| e Instruction [5-11] Wi
register data

Complete multicycle MIPS datapath (with branch and jump capability)
and showing the main control block and all control lines

Multicycle Control Step (1):
Fetch

IR = Memory[

Multicycle Control Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Regq]rs])
PC=PC+4; ; B = Reg[IR[20-15]]; (B = Reg|rt])
IRwite ALUOut = (PC + sign-extend(IR[15-0]) << 2);
¥ - IRWrite
|
nstruction addig L
Pcv]\;r* 0 ‘azt . l rs. rt 53rd :np i(‘j 6 fi /é_Lyg i 'I? Instruction I - j npaddrt 2 28 32
- IoiD ° T 3 ALusrcA O]_O 22 ’ oD — = iM
I MemWrite RNL _RNZ WN - Ei i ‘ _: :
m ADDl\jemory ’\6' Registers .o, "(‘) ce I MemWrite — RN1 RN2 WN
wD " " RD2 m AI)Dl\'jlemt)ry RD ’él Registers ppy I pesnree
=i 3 L e " MemRead o r? 4—; M .
' e O, ' X .
i medi at e 1 2
> é -.@* imrediate 1o % 32 _»@-h_l-;mms
D
Multicycle Control Step (3): Multicycle Control Step (3):
Memory Reference Instructions ALU Instruction (R-Type)
ALUOUt =A - ign-extend(IR[15-0]); ALUOUt =A(B;
\varthe \Rwi&e
== +
i 'IQ Instruction I rs. - d J‘ana?”dr o 28 32 \ PCVT”' Il? Instruction I — - - — Hrpa(it‘ir o 28 32 \
16rD — 1 5 —p|1 lorD {32 5 5 RegDst = i
! Mem\ime — RNL RNZ WN oo pC + Memime _ v v WNs ALUSICA o
ADD’\I:emory . l\él Regislers RD1 PCSource ADD’:emory ~ I\él PCSouirce

WD *
MemRead "
E
i mredi at e . X |32 ALUSrcB
' <<2
N
D

i Registers o,
u WD
0 x
wp 3 RD2 >
MemRead MemtoReg 4l M
f ReaWrite
£ ALUSrcB
i medi at e 10 2<|_ 32@

N
D

ALU
ouT

Multicycle Control Step (3): Multicycle Execution Step (3):
Branch Instructions Jump Instruction

if (A==B)PC ALUOuL; PC = PC[21-28] concat (IR[25-0] << 2);

IRWrite _
i IRWrite
| 28 32
Instruction I j mpaddr
R 5 TTZ5T0T <<2 ! Instruction. I j.npaddr 28 32
> PCWr rs| ot r
. M 5 " W RegDst _ " >
| RegDst
or® 3 ALUSrcA B orb 32 I A . -
* a »o ‘ ; 3 ALUSICA Y
MemWrite] RNL - RN2 WN d pC — AT]
Aeen M Registers PCSource MemWrite
ADDR .
Memory D L v RD1 M Ny Registers PCSource
RD R oY wb Memory D »{L RD1
X ALU RD R WD
—_— ~ ouT 0 x ALU
wD RD2 - _ out
MemRead MemtoReg 4= WD RD2
? »l2 % MemRead MemtoReg 4 =l
RegWrite f ' o R
= RegWrite
imediate 16 | X |32 ALUSTEB S ALUSIcB
™ & i mredi at e v X |32
N » T
D N
D

Multicycle Control Step (4): Multicycle Execution Steps (4)
Memory Access - Read (lw) Memory Access - Write (sw)

MDR = Memory[ALUOUL]; Memory[ALUOut] = B;

\Rerne

\Rerne

| .
. ddr 28 32
Instruction I j npaddr 28 32 Instruction I] mpa
l 5 e =2 Wi+ R S. e <2 3
rs rt rd PCWr’ rs rt rd
M

s
o

— m RegDst 2
for 32 9 M
1 M orD 5 5

X

I 3 ALUSTCA . . B

3 ALUSICA >y ‘
Operation PC
RN1 RN2 WN MemWrite
ADDR
. S
Registers pp, Zero PCSource
WD
ALU
ouT

MemWrite
ADDR

Memor
Y ro

A.
RN1 RN2 WN

PCSource

I ;UU§|

WD RD2

> Registers
Memor 1w RD1
Y ko oY WD
ALU
ouT wD
MemRead

RD2
MemRead

MemtoReg

MemtoReg

RegWrite

14—}
' PR 3
te
g ALUSIcB E 2 ALUSICcB
i medi at e w | X |32 i medi at e o
N N "C)
D D

|3
T
[=3

Multicycle Control Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOut; (Reg[Rd] =
ALUOUL)
IRwrite
| 28 £
Instruction I j mpaddr
R CONCAT
2
oD 32 5 5 W RegDst ‘ 1 u
3 ALUSIcA Y
PC ¥ ¥ 3 Operauon >
E MemWrite RNL RNZ WN L3
ADDR M . PCSource
Memory - D > v "o Registers) Zero
R 1 x ALU
ouT

wD RD2 B >
MemRead MemtoReg 4 =p
f RegWrite
i medi at e N 32 @ ALUSIcB

Multicycle Execution Steps (5)
Memory Read Completion (lw)

Reg[IR[20-16]] = MDR;

IRWrite

PCWr*

|-| 2
Instruction I j mpaddr
R | ¢ > e <2
rs

=Y
xcz

A
oz-xm
A
A
N

rt rd
lér\D 32 5 5 \Oyux /4 RegDst o
! 5 ALUSICA —
‘ ¢ Operation »
MemWrite RN1 RN2 WN b 3
ADDR M X u
Memory D 0w Registers p; Byl o i Zero
RD R u wD ALU
1 x OALU
utT
we RD2 B >
MemRead MemtoReg 4 —p lm
* Y
ReaWrite 3
i medi at e 10 32 ALUSrcB

PCSource

Simple Questions

* How many cycles will it take to execute this code?

w $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not equal
add $t5, $t2, $t3
sw $t5, 8($t3)
Label:

« What is going on during the 8th cycle of execution?

uuyrurorrrrryyorirmyyuryyyt

Clock time-line

* In what cycle does the actual addition of $t2 argitéikes place?

Implementing Control

Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

Use the information we have accumulated to specify a finite
state machine

— specify the finite state machine graphically, or

— use microprogramming

Implementation is then derived from the specification

Review: Finite State Machines

» Finite state machines (FSMs):
— aset of states and
— next state function, determined by current state and the input
— output function, determined by current state and possibly input

Next
Next-statt siate
lext-state
Current state function
Clock
Inputs
— = Outputs

— We'll use a Moore machine — output based only on current state

Example: Moore Machine

e The Moore machine below, given input a binary string
terminated by “#”, will output “even ” if the string has an even
number of 0’s and “odd” if the string has an odd number of 0’s

Even state Odd state

Start

Output
“even”

Output
“odd”

Output even state Output odd state

FSM Control: High-level View

Start
| [

Instruction fetch/decode and register fetch
(Figure 5.37)

l l | |

Memory access
instructions
(Figure 5.38)

R-type instructions Branch instruction Jump instruction
(Figure 5.39) (Figure 5.40) (Figure 5.41)

High-level view of FSM control

Instruction fetch

Instruction decode/
Register fetch

- ALUSrcA=0

Asserted signals stat——» R0 ALUSIEB = 11

shown inside \ AReno0 ALUop=00
PCSource = 00,

state circles

="IMP)

©p

Memory reference FSM

R-type FSM Branch FSM Jump FSM
(Figure 5.38) (Figure 5.39) (Figure 5.40) (Figure 5.41)

Instruction fetch and decode steps of every instruction is identical

FSM Control: Memory Reference

From state 1
l(Op ="LW') or (Op = 'SW')

Memory address computation

ALUSrcA =1
ALUSIcB = 10
ALUOp = 00

Memory
access

Memory
access

MemRead
loD=1

MemWrite
loD=1

Write-back step

To state 0
(Figure 5.37)

RegWrite
MemtoReg = 1
RegDst =0

FSM control for memory-reference has 4 states

FSM Control: R-type Instruction

From state 1
l(op = R-type)

Execution

ALUSrcA=1
ALUSrcB =00

ALUOp = 10

R-type completior

RegDst = 1
RegWrite
MemtoReg = 0

To state 0
(Figure 5.37)

FSM control to implement R-type instructions has 2 states

FSM Control: Branch Instruction

From state 1
(Op = 'BEQ))

Branch completion

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource = 01

To state 0
(Figure 5.37)

FSM control to implement branches has 1 state

FSM Control: Jump Instruction

From state 1
(Op=")

Jump completion

PCWrite
PCSource = 10

To state 0
(Figure 5.37)

FSM control to implement jumps has 1 state

FSM Control: Complete View

Instruction decode
struction fetch register fetct
MemRead
ALUSICA =0
lorD =0

ALUSICA = 0
ALUSICB = 11
ALUOp =00

IRWrite
ALUSICB = 01

Start

Memory address ,
computatior Jump

completion

ALUSICA = 1

ALUSIcA =1

EX - ALUSICA =1 ALUSICB = 00 PCWite
ALUSTICB = 10 ALUSICB = 00 ALUOp =01 PCSource = 10
ALUOp =00 ALUOp= 10 PCWriteCond
PCSource = 01
Memory
access R-type completion
RegDst=1 Labels on arcs are conditions
M E M MemRead MemWrite RegWiite .
lorD = 1 oD =1 MenmioReg 0 that determine next state
WB RegDst=0
RegWrite

MemtoReg =1

refer Multicycle Datapath with Control II

The complete FSM control for the multicycle MIPS datapath

Example: CPI in a multicycle
CPU

¢ Assume
— the control design of the previous slide

— An instruction mix of 22% loads, 11% stores, 49% R-type operations,
16% branches, and 2% jumps

¢ What is the CPIl assuming each step requires 1 clodkTyc

¢ Solution:
— Number of clock cycles from previous slide for each instruction class:
« loads 5, stores 4, R-type instructions 4, branches 3, jumps 3

— CPI = CPU clock cycles / instruction count
= X (instruction count x CPl) / instruction count
= X (instruction count,,,/ instruction count) x CPI .,
=022x5+0.11x4+049x4+0.16 x3+0.02x 3
=4.04

class i

FSM Control:
Implement-
ation

PCWrite
lorD
MemRead
MemWrite
IRWrite
Control logic MemtoReg
PCSource
ALUOp
Outputs ALUSICB
ALUSIcA
RegWrite
RegDst
NS3
NS2
\ . NS1
nputs 5
P L [Nso
-
vl | al 8 4 9
o o =% o a =% ™ o — 1
ol ol 6| ol o] o nl ol n| @

Instruction register /'

State register ‘

opcode field

Four state bits are required for 10 states

High-level view of FSM implementation: inputs to the combinational logic block are
the current state number and instruction opcode bits; outputs are the next state

I —

number and control signals to be asserted for the current state

FSM z:::
Control: =t
PLA =ty
Implem- -
entation

Upper half is the AND plane that computes all the products. The products are carried

to the lower OR plane by the vertical lines. The sum terms for each output is given by
the corresponding horizontal line
E.g., IorD = S0.S1.52.S3 + S0.51.S2.S3

FSM Control: ROM
Implementation

¢« ROM (Read Only Memory)

— values of memory locations are fixed ahead of time
¢ A ROM can be used to implement a truth table

— if the address is m-bits, we can address 2™ entries in the ROM

— outputs are the bits of the entry the address points to

addr ess out put
—r /_H

0000
0011
0101
0111
1000
1010
1100
1110

|
T

011
100
100
000
0noo
001
110

11

The size of an m-input n-output ROM is 2™ x n bits — such a ROM can
be thought of as an array of size 2™ with each entry in the array being

n bits

FSM Control: ROM vs. PLA

« First improve the ROM: break the table into two parts
— 4 state bits give the 16 output signals — 24 x 16 bits of ROM
— all 10 input bits give the 4 next state bits — 210 x 4 bits of ROM
— Total — 4.3K bits of ROM
¢ PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares
¢ PLA size = (#inputs - #product-terms) + (#outputs - #product-
terms)
— FSM control PLA = (10x17)+(20x17) = 460 PLA cells
« PLA cells usually about the size of a ROM cell (slightly bigger)

Microprogramming

Microprogramming is a method of specifying FSM control that
resembles a programming language — textual rather graphic
— this is appropriate when the FSM becomes very large, e.g., if the
instruction set is large and/or the number of cycles per instruction
is large
— in such situations graphical representation becomes difficult as
there may be thousands of states and even more arcs joining them
— a microprogram is specification : implementation is by ROM or PLA
A microprogram is a sequence of microinstructions
— each microinstruction has eight fields (label + 7 functional)
¢ Label: used to control microcode sequencing
« ALU control: specify operation to be done by ALU
« SRC1.: specify source for first ALU operand
* SRC2: specify source for second ALU operand
« Register control: specify read/write for register file
* Memory: specify read/write for memory
« PCWrite control: specify the writing of the PC
« Sequencing: specify choice of next microinstruction

Microprogramming

The Sequencing field value determines the execution order of
the microprogram
— value Seq : control passes to the sequentially next microinstruction
— value Fetch : branch to the first microinstruction to begin the next
MIPS instruction, i.e., the first microinstruction in the microprogram
— value Dispatch i : branch to a microinstruction based on control
input and a dispatch table entry (called dispatching):
« Dispatching is implemented by means of creating a table, called
dispatch table, whose entries are microinstruction labels and which is
indexed by the control input. There may be multiple dispatch tables —

the value Dispatch i in the sequencing field indicates that the i th
dispatch table is to be used

Control Microprogram

e The microprogram corresponding to the FSM control shown
graphically earlier:

ALU Register PCWrite
Label control SRC1] SRC2 control Memory control Sequencing
Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft [Read Dispatch 1
Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl |[Func code |A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond [Fetch
JUMP1 Jump address [Fetch
Microprogram containing 10 microinstructions
Dispatch ROM 1
ooggoo Ooé?vi?r::tme r:ﬁ'r“meau Pl ol
" Op Opcode name Value
000010 jmp JUMP1 100011 W w2
s ol m
em. -
01011 Meml Dispatch Table 2

Dispatch Table 1

Microcode: Trade-offs

Specification advantages
— easy to design and write
— typically manufacturer designs architecture and microcode in parallel
Implementation advantages
— easy to change since values are in memory (e.g., off-chip ROM)
— can emulate other architectures
— can make use of internal registers
Implementation disadvantages
— control is implemented nowadays on same chip as processor so the
advantage of an off-chip ROM does not exist
— ROM is no longer faster than on-board cache
— there is little need to change the microcode as general-purpose
computers are used far more nowadays than computers designed for
specific applications

Summary

Techniques described in this chapter to design datapaths and
control are at the core of all modern computer architecture
Multicycle datapaths offer two great advantages over single-cycle

— functional units can be reused within a single instruction if they are
accessed in different cycles — reducing the need to replicate expensive
logic

— instructions with shorter execution paths can complete quicker by
consuming fewer cycles

Modern computers, in fact, take the multicycle paradigm to a higher
level to achieve greater instruction throughput:

— pipelining (next topic) where multiple instructions execute
simultaneously by having cycles of different instructions overlap in the
datapath

— the MIPS architecture was designed to be pipelined

