
The Processor: Datapath and Control

• We're ready to look at an implementation of the MIPS instruction set
• Simplified to contain only

– arithmetic-logic instructions: add, sub, and, or, slt

– memory-reference instructions: lw, sw

– control-flow instructions: beq, j

Implementing MIPS

op rs rt offset

6 bits 5 bits 5 bits 16 bits

op rs rt rd functshamt

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-Format

I-Format

op address

6 bits 26 bits

J-Format

• High-level abstract view of fetch/execute implementation
– use the program counter (PC) to read instruction address
– fetch the instruction from memory and increment PC
– use fields of the instruction to select registers to read
– execute depending on the instruction
– repeat…

Implementing MIPS: the
Fetch/Execute Cycle

Registers

Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

Overview: Processor
Implementation Styles

• Single Cycle
– perform each instruction in 1 clock cycle

– clock cycle must be long enough for slowest instruction; therefore,
– disadvantage: only as fast as slowest instruction

• Multi-Cycle
– break fetch/execute cycle into multiple steps

– perform 1 step in each clock cycle

– advantage: each instruction uses only as many cycles as it needs

• Pipelined
– execute each instruction in multiple steps

– perform 1 step / instruction in each clock cycle
– process multiple instructions in parallel – assembly line

• Two types of functional elements in the hardware:
– elements that operate on data (called combinational elements)

– elements that contain data (called state or sequential elements)

Functional Elements Combinational Elements

• Works as an input ⇒ output function, e.g., ALU
• Combinational logic reads input data from one register and writes

output data to another, or same, register
– read/write happens in a single cycle – combinational element cannot

store data from one cycle to a future one

Clock cycle

State
element

1
Combinational logic

State
element

2

State
element

Combinational logic

Combinational logic hardware units

State Elements

• State elements contain data in internal storage, e.g., registers
and memory

• All state elements together define the state of the machine
– What does this mean? Think of shutting down and starting up again…

• Flipflops and latches are 1-bit state elements, equivalently,
they are 1-bit memories

• The output(s) of a flipflop or latch always depends on the bit
value stored, i.e., its state, and can be called 1/0 or high/low or
true/false

• The input to a flipflop or latch can change its state depending
on whether it is clocked or not…

• Clocks are used in synchronous logic to determine when a state
element is to be updated
– in level-triggered clocking methodology either the state changes

only when the clock is high or only when it is low (technology-
dependent)

– in edge-triggered clocking methodology either the rising edge or
falling edge is active (depending on technology) – i.e., states
change only on rising edges or only on falling edge

• Latches are level-triggered
• Flipflops are edge-triggered

Synchronous Logic:
Clocked Latches and Flipflops

Clock period Rising edge

Falling edge

• Registers are implemented with arrays of D-flipflops

State Elements on the
Datapath: Register File

Register file with two read ports and one write port

Clock

5 bits

5 bits

5 bits

32 bits

32 bits

32 bits

Control signal

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

• Port implementation:

Read ports are implemented
with a pair of multiplexors – 5
bit multiplexors for 32 registers

Write port is implemented using
a decoder – 5-to-32 decoder for
32 registers. Clock is relevant to
write as register state may change
only at clock edge

M
u
x

Register 0

Register 1

Register n – 1

Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Clock

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0

1

n – 1

n

Clock

State Elements on the Datapath: Register File

Single-cycle Implementation of MIPS

• Our first implementation of MIPS will use a single long clock
cycle for every instruction

• Every instruction begins on one up (or, down) clock edge
and ends on the next up (or, down) clock edge

• This approach is not practical as it is much slower than a
multicycle implementation where different instruction
classes can take different numbers of cycles
– in a single-cycle implementation every instruction must take

the same amount of time as the slowest instruction
– in a multicycle implementation this problem is avoided by

allowing quicker instructions to use fewer cycles

• Even though the single-cycle approach is not practical it is
simple and useful to understand first

Datapath: Instruction
Store/Fetch & PC Increment

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction
memory

Read
address

Instruction

4

Add

Three elements used to store
and fetch instructions and
increment the PC

Datapath

Animating the Datapath

Instruction <- MEM[PC]
PC <- PC + 4

RD
Memory

ADDR

PC

Instruction

4

ADD

Datapath: R-Type Instruction

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

Instruction
Registers

Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Zero

RegWrite

ALU operation3

Two elements used to implement
R-type instructions

Datapath

Animating the Datapath

add rd, rs, rt

R[rd] <- R[rs] + R[rt];

5 5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

op rs rt rd functshamt

Operation

ALU Zero

Instruction

3

Datapath:
Load/Store Instruction

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Instruction

16 32

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Data
memory

Write
data

Read
data

Write
data

Sign
extend

ALU
result

Zero
ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

Two additional elements used
To implement load/stores

Datapath

Animating the Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

lw rt, offset(rs)

R[rt] <- MEM[R[rs] + s_extend(offset)];

Animating the Datapath

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RDWD

MemRead

Memory
ADDR

MemWrite

5

sw rt, offset(rs)

MEM[R[rs] + sign_extend(offset)] <- R[rt]

Datapath: Branch Instruction

16 32
Sign

extend

ZeroALU

Sum

Shift
left 2

To branch
control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

RegWrite

ALU operation
3

Datapath

No shift hardware required:
simply connect wires from
input to output, each shifted
left 2 bits

Animating the Datapath

beq rs, rt, offset

if (R[rs] == R[rt]) then
PC <- PC+4 + s_extend(offset<<2)

op rs rt offset/immediate

5 5

16

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

E
X
T
N
D

16 32

Zero

ADD

<<2

PC +4 from
instruction
datapath

MIPS Datapath I: Single-Cycle
Input is either register (R-type) or sign-extended
lower half of instruction (load/store)

Combining the datapaths for R-type instructions
and load/stores using two multiplexors

Data is either
from ALU (R-type)
or memory (load)

Fig. 5.11 Page 352

Animating the Datapath:
R-type Instruction

add rd,rs,rt
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Load Instruction

lw rt,offset(rs)
5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

Animating the Datapath:
Store Instruction

sw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

M
U
XALUSrc

MemtoReg

MIPS Datapath II: Single-Cycle

PC

Instruction
memory

Read
address

Instruction

16 32

Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address

Write
data

Read
data M

u
x

4

Add

M
u
x

ALU

RegWrite

ALU operation3

MemRead

MemWrite

ALUSrc
MemtoReg

Adding instruction fetch

Separate instruction memory
as instruction and data read
occur in the same clock cycle

Separate adder as ALU operations and PC
increment occur in the same clock cycle

MIPS Datapath III: Single-Cycle

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

Adding branch capability and another multiplexor

Instruction address is either
PC+4 or branch target address

Extra adder needed as both
adders operate in each cycle

New multiplexor

Important note: in a single-cycle implementation data cannot be stored
during an instruction – it only moves through combinational logic
Question: is the MemRead signal really needed?! Think of RegWrite…!

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing add
add rd, rs, rt

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing lw
lw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing sw
sw rt,offset(rs)

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

Datapath Executing beq
beq r1,r2,offset

Control

• Control unit takes input from
– the instruction opcode bits

• Control unit generates
– ALU control input
– write enable (possibly, read enable also) signals for each storage

element
– selector controls for each multiplexor

ALU Control

• Plan to control ALU: main control sends a 2-bit ALUOp control field to
the ALU control. Based on ALUOp and funct field of instruction the
ALU control generates the 3-bit ALU control field

– ALU control Func-
field tion

000 and
001 or
010 add
110 sub
111 slt

• ALU must perform
– add for load/stores (ALUOp 00)
– sub for branches (ALUOp 01)
– one of and, or, add, sub, slt for R-type instructions, depending on the

instruction’s 6-bit funct field (ALUOp 10)

Main
Control

ALU
Control

2

ALUOp

6

Instruction
funct field

3

ALU
control
input

To
ALU

ALUOp generation
by main control

Recall from Ch. 4

Setting ALU Control Bits

Instruction AluOp Instruction Funct Field Desired ALU control
opcode operation ALU action input
LW 00 load word xxxxxx add 0 10

SW 00 store word xxxxxx add 0 10

Branch eq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 set on less 101010 set on l ess 111

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

**Typo in text
Fig. 5.15: if it is X
then there is potential
conflict between
line 2 and lines 3-7!

Designing the Main Control

• Observations about MIPS instruction format
– opcode is always in bits 31-26

– two registers to be read are always rs (bits 25-21) and rt (bits 20-
16)

– base register for load/stores is always rs (bits 25-21)

– 16-bit offset for branch equal and load/store is always bits 15-0

– destination register for loads is in bits 20-16 (rt) while for R-type
instructions it is in bits 15-11 (rd) (will require multiplexor to select)

31-26 25-21 20-16 15-11 10-6 5-0

31-26 25-21 20-16 15-0

opcode

opcode

rs

rs

rt

rt address

rd shamt functR-type

Load/store
or branch

Datapath with Control I

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Adding control to the MIPS Datapath III (and a new multiplexor to select field to
specify destination register): what are the functions of the control signals?

New multiplexor

Control Signals

Signal Name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the
Write register comes from the rt field (bits 20-16) Write register comes from the rd field (bits 15-11)

RegWrite None The register on the Write register input is written
with the value on the Write data input

AlLUSrc The second ALU operand comes from the The second ALU operand is the sign-extended,
second register file output (Read data 2) lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the adder The PC is replaced by the output of the adder
that computes the value of PC + 4 that computes the branch target

MemRead None Data memory contents designated by the address
input are put on the first Read data output

MemWrite None Data memory contents designated by the address
input are replaced by the value of the Write data input

MemtoReg The value fed to the register Write data input The value fed to the register Write data input
comes from the ALU comes from the data memory

Effects of the seven control signals

Datapath with Control II

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

MIPS datapath with the control unit: input to control is the 6-bit instruction
opcode field, output is seven 1-bit signals and the 2-bit ALUOp signal

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

Determining control signals for the MIPS datapath based on instruction opcode

PCSrc cannot be
set directly from the
opcode: zero test
outcome is required

Control Signals:
R-Type Instruction

Control signals
shown in blue

1

0

0

0

1

???
Value depends on

funct

0

0

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
lw Instruction

0

Control signals
shown in blue

0
010

1

1

1

0

1

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
sw Instruction

0

Control signals
shown in blue

X
010

1

X

0

1

0

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction
I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

rd
I[15:11]

rt
I[20:16]

rs
I[25:21]

immediate/
offset
I[15:0]

0

1

0

1
1

0

10

Control Signals:
beq Instruction

Control signals
shown in blue

X
110

0

X

0

0

0

1 if Zero=1

Datapath with Control III

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M
u
x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31– 28]

Sign
extend

16 32Instruction [15– 0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1 0

ALU

Shift
left 226 28

Address

31-26 25-0

opcode addressJump

MIPS datapath extended to jumps: control unit generates new Jump control bit

New multiplexor with additional
control bit Jump

Composing jump
target address

Datapath Executing j

5 516

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Register File

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Data
Memory

ADDR
MemWrite

5

Instruction I32

M
U
X

ALUSrc

MemtoReg

ADD

<<2

RD

Instruction
Memory

ADDR

PC

4

ADD

ADD

M
U
X

M
U
X

PCSrc

MUX RegDst

5

0

1

0

1
1

0

10

ALU
Control

Control
Unit

6 6

op I[31:

op I[31:26] funct I[5:0]

ALUOp

2

Branch

M
U
X

0

1

Jump

<<2

26

CONCAT
28

jmpaddr I[25:0]

PC+4[31-28]

32

R-type Instruction: Step 1
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

Fetch instruction and increment PC count

R-type Instruction: Step 2
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31–26]

4

16 32Instruction [15–0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x
1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15–11]

ALU
control

ALU
Address

Read two source registers from the register file

R-type Instruction: Step 3
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

ALU
control

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Data
memory

Read
dataAddress

Write
data

M
u
x

1

Instruction [15 11]

ALU

Shift
left 2

ALU operates on the two register operands

R-type Instruction: Step 4
add $t1, $t2, $t3 (active = bold)

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

ALU
control

Control

Shift
left 2

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
Address

Write result to register

Implementation: ALU Control Block

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

ALU control logic

Truth table for ALU control bits

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
0 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

* *Typo in text
Fig. 5.15: if it is X
then there is potential
conflict between
line 2 and lines 3-7!

Implementation: Main Control
Block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Signal R- lw sw beq
name format
Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0
RegDst 1 0 x x
ALUSrc 0 1 1 0
MemtoReg 0 1 x x
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOP2 0 0 0 1

I
n
p
u
ts

O
u
tp
u
ts

Truth table for main control signals

Main control PLA (programmable
logic array): principle underlying
PLAs is that any logical expression
can be written as a sum-of-products

Single-cycle Implementation
Notes

• The steps are not really distinct as each instruction
completes in exactly one clock cycle – they simply
indicate the sequence of data flowing through the
datapath

• The operation of the datapath during a cycle is purely
combinational – nothing is stored during a clock cycle

• Therefore, the machine is stable in a particular state
at the start of a cycle and reaches a new stable state
only at the end of the cycle

1. Fetch instruction and increment PC
2. Read base register from the register file: the base register

($t2) is given by bits 25-21 of the instruction
3. ALU computes sum of value read from the register file and

the sign-extended lower 16 bits (offset) of the instruction
4. The sum from the ALU is used as the address for the data

memory
5. The data from the memory unit is written into the register file:

the destination register ($t1) is given by bits 20-16 of the
instruction

Load Instruction Steps
lw $t1, offset($t2)

1. Fetch instruction and increment PC
2. Read two register ($t1 and $t2) from the register file
3. ALU performs a subtract on the data values from the

register file; the value of PC+4 is added to the sign-
extended lower 16 bits (offset) of the instruction shifted
left by two to give the branch target address

4. The Zero result from the ALU is used to decide which
adder result (from step 1 or 3) to store in the PC

Branch Instruction Steps
beq $t1, $t2, offset

• Assuming fixed-period clock every instruction datapath uses one
clock cycle implies:

– CPI = 1

– cycle time determined by length of the longest instruction path (load)

• but several instructions could run in a shorter clock cycle: waste of time

• consider if we have more complicated instructions like floating point!

– resources used more than once in the same cycle need to be

duplicated

• waste of hardware and chip area

Single-Cycle Design Problems

Example: Fixed-period clock vs.
variable-period clock in a

single-cycle implementation
• Consider a machine with an additional floating point unit. Assume

functional unit delays as follows
– memory: 2 ns., ALU and adders: 2 ns., FPU add: 8 ns., FPU multiply: 16 ns.,

register file access (read or write): 1 ns.
– multiplexors, control unit, PC accesses, sign extension, wires: no delay

• Assume instruction mix as follows
– all loads take same time and comprise 31%
– all stores take same time and comprise 21%
– R-format instructions comprise 27%
– branches comprise 5%
– jumps comprise 2%
– FP adds and subtracts take the same time and totally comprise 7%
– FP multiplys and divides take the same time and totally comprise 7%

• Compare the performance of (a) a single-cycle implementation using a fixed-
period clock with (b) one using a variable-period clock where each instruction
executes in one clock cycle that is only as long as it needs to be (not really
practical but pretend it’s possible!)

Solution

• Clock period for fixed-period clock = longest instruction time = 20
ns.

• Average clock period for variable-period clock = 8 × 31% +
7 × 21% + 6 × 27% + 5 × 5% + 2 × 2% + 20 × 7% + 12 × 7%
= 7.0 ns.

• Therefore, performancevar-period /performancefixed-period = 20/7 = 2.9

Instruction Instr. Register ALU Data Register FPU FPU Total
class mem. read oper. mem. write add/ mul/ time

sub div ns.

Load word 2 1 2 2 1 8
Store word 2 1 2 2 7
R-format 2 1 2 0 1 6
Branch 2 1 2 5
Jump 2 2
FP mul/div 2 1 1 16 20
FP add/sub 2 1 1 8 12

Fixing the problem with single-
cycle designs

• One solution: a variable-period clock with different cycle times
for each instruction class
– unfeasible, as implementing a variable-speed clock is technically

difficult

• Another solution:
– use a smaller cycle time…

– …have different instructions take different numbers of cycles

by breaking instructions into steps and fitting each step into one
cycle

– feasible: multicyle approach!

• Break up the instructions into steps
– each step takes one clock cycle
– balance the amount of work to be done in each step/cycle so that

they are about equal
– restrict each cycle to use at most once each major functional unit

so that such units do not have to be replicated
– functional units can be shared between different cycles within one

instruction

• Between steps/cycles
– At the end of one cycle store data to be used in later cycles of the

same instruction
• need to introduce additional internal (programmer-invisible) registers for

this purpose

– Data to be used in later instructions are stored in programmer-
visible state elements: the register file, PC, memory

Multicycle Approach

• Note particularities of
multicyle vs. single-
diagrams

– single memory for data
and instructions

– single ALU, no extra adders
– extra registers to

hold data between
clock cycles

Multicycle Approach

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc

MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers

Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

Single-cycle datapath

Multicycle datapath (high-level view)

Multicycle Datapath

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3

2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Basic multicycle MIPS datapath handles R-type instructions and load/stores:
new internal register in red ovals, new multiplexors in blue ovals

• Our goal is to break up the instructions into steps so that
– each step takes one clock cycle

– the amount of work to be done in each step/cycle is about equal
– each cycle uses at most once each major functional unit so that

such units do not have to be replicated

– functional units can be shared between different cycles within one
instruction

• Data at end of one cycle to be used in next must be stored !!

Breaking instructions into steps Breaking instructions into steps

• We break instructions into the following potential execution steps
– not all instructions require all the steps – each step takes one
clock cycle
1. Instruction fetch and PC increment (IF)

2. Instruction decode and register fetch (ID)
3. Execution, memory address computation, or branch completion (EX)

4. Memory access or R-type instruction completion (MEM)

5. Memory read completion (WB)

• Each MIPS instruction takes from 3 – 5 cycles (steps)

• Use PC to get instruction and put it in the instruction register.
Increment the PC by 4 and put the result back in the PC.

• Can be described succinctly using RTL (Register-Transfer Language):

IR = Memory[PC];

PC = PC + 4;

Step 1: Instruction Fetch & PC
Increment (IF)

IR = Instruction Register

• Read registers rs and rt in case we need them.
Compute the branch address in case the instruction is a branch.

• RTL:
A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Step 2: Instruction Decode and
Register Fetch (ID)

• ALU performs one of four functions depending on instruction
type
– memory reference:

ALUOut = A + sign-extend(IR[15-0]);

– R-type:
ALUOut = A op B;

– branch (instruction completes):
if (A==B) PC = ALUOut;

– jump (instruction completes):
PC = PC[31-28] || (IR(25-0) << 2)

Step 3: Execution, Address
Computation or Branch Completion

(EX)
• Again depending on instruction type:
• Loads and stores access memory

– load
MDR = Memory[ALUOut];

– store (instruction completes)
Memory[ALUOut] = B;

• R-type (instructions completes)
Reg[IR[15-11]] = ALUOut;

Step 4: Memory access or R-
type Instruction Completion

(MEM)

MDR = Memory Data Register

• Again depending on instruction type:
• Load writes back (instruction completes)

Reg[IR[20-16]]= MDR;

Important: There is no reason from a datapath (or control) point of
view that Step 5 cannot be eliminated by performing
Reg[IR[20-16]]= Memory[ALUOut];

for loads in Step 4. This would eliminate the MDR as well.

The reason this is not done is that, to keep steps balanced in
length, the design restriction is to allow each step to contain at
most one ALU operation, or one register access, or one
memory access.

Step 5: Memory Read
Completion (WB)

Summary of Instruction
Execution

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

1: IF

2: ID

3: EX

4: MEM

5: WB

Step

Multicycle Execution Step (1):
Instruction Fetch

IR = Memory[PC];
PC = PC + 4;

4PC + 4

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

IR = Instruction Register
MDR = Memory Data Register

Must be MUX

Multicycle Execution Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Reg[rs])
B = Reg[IR[20-15]]; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2) *

Branch
Target

Address

Reg[rs]

Reg[rt]

PC + 4

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

*

Multicycle Execution Step (3):
Memory Reference Instructions
ALUOut = A + sign-extend(IR[15-0]);

Mem.
Address

Reg[rs]

Reg[rt]

PC + 4

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (3):
ALU Instruction (R-Type)

ALUOut = A op B

R-Type
Result

Reg[rs]

Reg[rt]

PC + 4

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (3):
Branch Instructions

if (A == B) PC = ALUOut;

Branch
Target

Address

Reg[rs]

Reg[rt]

Branch
Target

Address

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (3):
Jump Instruction

PC = PC[31-28] concat (IR[25-0] << 2)

Jump
Address

Reg[rs]

Reg[rt]

Branch
Target

Address

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (4):
Memory Access - Read (lw)

MDR = Memory[ALUOut];

Mem.
Data

PC + 4

Reg[rs]

Reg[rt]

Mem.
Address

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (4):
Memory Access - Write (sw)

Memory[ALUOut] = B;

PC + 4

Reg[rs]

Reg[rt]

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOUT

R-Type
Result

Reg[rs]

Reg[rt]

PC + 4

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Execution Step (5):
Memory Read Completion (lw)

Reg[IR[20-16]] = MDR ;

PC + 4

Reg[rs]

Reg[rt]Mem.
Data

Mem.
Address

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

PC

I
R

M
D
R

A

B

ALU
OUT

Multicycle Datapath with Control I

Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

ALUOpALUSrcB

RegDst RegWrite

Instruction
[15– 0]

Instruction [5– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3

2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

… with control lines and the ALU control block added – not all control lines are shown

Multicycle Datapath with Control II

Complete multicycle MIPS datapath (with branch and jump capability)
and showing the main control block and all control lines

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

New multiplexorNew gates
For the jump address

Multicycle Control Step (1):
Fetch

IR = Memory[PC];
PC = PC + 4;

1

0

1

0

1

0
X

0
X

0
010

1

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Control Step (2):
Instruction Decode & Register Fetch

A = Reg[IR[25-21]]; (A = Reg[rs])
B = Reg[IR[20-15]]; (B = Reg[rt])
ALUOut = (PC + sign-extend(IR[15-0]) << 2);

0

0
X

0

0
X

3

0
X

X

010

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

0
X

Multicycle Control Step (3):
Memory Reference Instructions

ALUOut = A + sign-extend(IR[15-0]);

X

2

0

0
X

0 1

X

010

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Control Step (3):
ALU Instruction (R-Type)

ALUOut = A op B;

0
X

X

0

0

0
X

0 1

X

???

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

1 if
Zero=1

Multicycle Control Step (3):
Branch Instructions

if (A == B) PC = ALUOut;

0
X

X

0

0

X
0 1

1

011

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Execution Step (3):
Jump Instruction

PC = PC[21-28] concat (IR[25-0] << 2);

0
X

X

X

0

1
X

0 X

2

XXX

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Control Step (4):
Memory Access - Read (lw)

MDR = Memory[ALUOut];

0
X

X

X

1

0
1

0 X

X

XXX

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Execution Steps (4)
Memory Access - Write (sw)

Memory[ALUOut] = B;

0
X

X

X

0

0
1

1 X

X

XXX

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1
2
3

M
U
X

1

0

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

10

0
X

0

X

0

XXX

X

X

1

1
5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1

2
3

M
U
X

0

1

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

Multicycle Control Step (4):
ALU Instruction (R-Type)

Reg[IR[15:11]] = ALUOut; (Reg[Rd] =
ALUOut)

Multicycle Execution Steps (5)
Memory Read Completion (lw)

Reg[IR[20-16]] = MDR;

1
0

0

X

0

0
X

0 X

X

XXX

0

5 5

RD1

RD2

RN1 RN2 WN

WD

RegWrite

Registers

Operation

ALU

3

E
X
T
N
D

16 32

Zero

RD

WD
MemRead

Memory
ADDR

MemWrite

5

Instruction I

32

ALUSrcB

<<2

PC

4

RegDst

5

I
R

M
D
R

M
U
X

0
1

2
3

M
U
X

0

1

M
U
X

0

1A

B
ALU
OUT

0

1

2
M
U
X

<<2 CONCAT
28 32

M
U
X

0

1

ALUSrcA

jmpaddr
I[25:0]

rd

MUX
0 1

rtrs

immediate

PCSource

MemtoReg

IorD

PCWr*

IRWrite

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not equal
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?

• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

Clock time-line

• Value of control signals is dependent upon:
– what instruction is being executed

– which step is being performed

• Use the information we have accumulated to specify a finite
state machine
– specify the finite state machine graphically, or

– use microprogramming

• Implementation is then derived from the specification

Implementing Control

• Finite state machines (FSMs):
– a set of states and
– next state function, determined by current state and the input
– output function, determined by current state and possibly input

– We’ll use a Moore machine – output based only on current state

Review: Finite State Machines

Next-state
function

Current state

Clock

Output
function

Next
state

Outputs

Inputs

Example: Moore Machine

• The Moore machine below, given input a binary string
terminated by “#”, will output “even ” if the string has an even
number of 0’s and “odd ” if the string has an odd number of 0’s

Even state Odd state

Output even state Output odd state

No
output

No
output

Output
“even”

Output
“odd”

0

0

1
1

#

Start

FSM Control: High-level View

Memory access
instructions
(Figure 5.38)

R-type instructions
(Figure 5.39)

Branch instruction
(Figure 5.40)

Jump instruction
(Figure 5.41)

Instruction fetch/decode and register fetch
(Figure 5.37)

Start

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p

=
'B

EQ')

(O
p

=
'J

M
P

')

0
1

Start

Memory reference FSM
(Figure 5.38)

R-type FSM
(Figure 5.39)

Branch FSM
(Figure 5.40)

Jump FSM
(Figure 5.41)

High-level view of FSM control

Instruction fetch and decode steps of every instruction is identical

Asserted signals
shown inside
state circles

FSM Control: Memory Reference

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegWrite
MemtoReg = 1

RegDst = 0

Memory address computation

(Op = 'LW') or (Op = 'SW')

Memory
access

Write-back step

 (O
p = 'SW

')

(O
p

=
 'L

W
')

4

2

53

From state 1

To state 0
(Figure 5.37)

Memory
access

FSM control for memory-reference has 4 states

FSM Control: R-type Instruction

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

RegDst = 1
RegWrite

MemtoReg = 0

Execution

R-type completion

6

7

(Op = R-type)

From state 1

To state 0
(Figure 5.37)

FSM control to implement R-type instructions has 2 states

FSM Control: Branch Instruction

Branch completion

8

(Op = 'BEQ')

From state 1

To state 0
(Figure 5.37)

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

FSM control to implement branches has 1 state

FSM Control: Jump Instruction

Jump completion

9

(Op = 'J')

From state 1

To state 0
(Figure 5.37)

PCWrite
PCSource = 10

FSM control to implement jumps has 1 state

FSM Control: Complete View

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0

MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst =0
RegWrite

MemtoReg=1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (O
p = 'SW') (Op = R-type)

(O
p

=
'B

EQ
')

(O
p

=
'J

')

 (O
p = 'SW

')

(O
p

=
 'L

W
')

4

0
1

9862

753

Start

The complete FSM control for the multicycle MIPS datapath:
refer Multicycle Datapath with Control II

Labels on arcs are conditions
that determine next state

IF ID

EX

MEM

WB

Example: CPI in a multicycle
CPU

• Assume
– the control design of the previous slide
– An instruction mix of 22% loads, 11% stores, 49% R-type operations,

16% branches, and 2% jumps
• What is the CPI assuming each step requires 1 clock cycle?

• Solution:
– Number of clock cycles from previous slide for each instruction class:

• loads 5, stores 4, R-type instructions 4, branches 3, jumps 3

– CPI = CPU clock cycles / instruction count
= Σ (instruction countclass i × CPIclass i) / instruction count
= Σ (instruction countclass I / instruction count) × CPIclass I

= 0.22 × 5 + 0.11 × 4 + 0.49 × 4 + 0.16 × 3 + 0.02 × 3
= 4.04

FSM Control:
Implement-
ation

High-level view of FSM implementation: inputs to the combinational logic block are
the current state number and instruction opcode bits; outputs are the next state
number and control signals to be asserted for the current state

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

Four state bits are required for 10 states

FSM
Control:
PLA
Implem-
entation

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

Upper half is the AND plane that computes all the products. The products are carried
to the lower OR plane by the vertical lines. The sum terms for each output is given by
the corresponding horizontal line
E.g., IorD = S0.S1.S2.S3 + S0.S1.S2.S3

• ROM (Read Only Memory)
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the ROM
– outputs are the bits of the entry the address points to

FSM Control: ROM
Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

ROM m = 3
n = 4

The size of an m-input n-output ROM is 2m x n bits – such a ROM can
be thought of as an array of size 2m with each entry in the array being
n bits

outputaddress

• First improve the ROM: break the table into two parts

– 4 state bits give the 16 output signals – 24 x 16 bits of ROM

– all 10 input bits give the 4 next state bits – 210 x 4 bits of ROM

– Total – 4.3K bits of ROM

• PLA is much smaller

– can share product terms

– only need entries that produce an active output

– can take into account don't cares

• PLA size = (#inputs ´ #product-terms) + (#outputs ´ #product-

terms)

– FSM control PLA = (10x17)+(20x17) = 460 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

FSM Control: ROM vs. PLA
• Microprogramming is a method of specifying FSM control that

resembles a programming language – textual rather graphic
– this is appropriate when the FSM becomes very large, e.g., if the

instruction set is large and/or the number of cycles per instruction
is large

– in such situations graphical representation becomes difficult as
there may be thousands of states and even more arcs joining them

– a microprogram is specification : implementation is by ROM or PLA

• A microprogram is a sequence of microinstructions
– each microinstruction has eight fields (label + 7 functional)

• Label: used to control microcode sequencing
• ALU control: specify operation to be done by ALU
• SRC1: specify source for first ALU operand
• SRC2: specify source for second ALU operand
• Register control: specify read/write for register file
• Memory: specify read/write for memory
• PCWrite control: specify the writing of the PC
• Sequencing: specify choice of next microinstruction

Microprogramming

Microprogramming

• The Sequencing field value determines the execution order of
the microprogram
– value Seq : control passes to the sequentially next microinstruction

– value Fetch : branch to the first microinstruction to begin the next
MIPS instruction, i.e., the first microinstruction in the microprogram

– value Dispatch i : branch to a microinstruction based on control
input and a dispatch table entry (called dispatching):

• Dispatching is implemented by means of creating a table, called
dispatch table, whose entries are microinstruction labels and which is
indexed by the control input. There may be multiple dispatch tables –
the value Dispatch i in the sequencing field indicates that the i th
dispatch table is to be used

Control Microprogram

• The microprogram corresponding to the FSM control shown
graphically earlier:

Label
ALU

control SRC1 SRC2
Register
control Mem ory

PCW rite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

M em1 Add A Extend Dispatch 2
LW 2 Read ALU Seq

W rite MDR Fetch
SW 2 W rite ALU Fetch
Rform at1 Func code A B Seq

W rite ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUM P1 Jump address Fetch

Dispatch ROM 1

Dispatch ROM 2Op Opcode name Value

Op Opcode name Value000000 R-format Rformat1

100011 lw LW2000010 jmp JUMP1

101011 sw SW2000100 beq BEQ1
100011 lw Mem1
101011 sw Mem1

Microprogram containing 10 microinstructions

Dispatch Table 2

Dispatch Table 1

Microcode: Trade-offs
• Specification advantages

– easy to design and write

– typically manufacturer designs architecture and microcode in parallel

• Implementation advantages

– easy to change since values are in memory (e.g., off-chip ROM)

– can emulate other architectures

– can make use of internal registers

• Implementation disadvantages

– control is implemented nowadays on same chip as processor so the

advantage of an off-chip ROM does not exist

– ROM is no longer faster than on-board cache

– there is little need to change the microcode as general-purpose

computers are used far more nowadays than computers designed for

specific applications

Summary

• Techniques described in this chapter to design datapaths and
control are at the core of all modern computer architecture

• Multicycle datapaths offer two great advantages over single-cycle
– functional units can be reused within a single instruction if they are

accessed in different cycles – reducing the need to replicate expensive
logic

– instructions with shorter execution paths can complete quicker by
consuming fewer cycles

• Modern computers, in fact, take the multicycle paradigm to a higher
level to achieve greater instruction throughput:
– pipelining (next topic) where multiple instructions execute

simultaneously by having cycles of different instructions overlap in the
datapath

– the MIPS architecture was designed to be pipelined

