Hardware implementation

Review: Basic Hardware

L AND gate c=a. b) 2 | b [c-a.b|
0 0 0
a —»|
b c 0 1 0
—
1 0 0
1 1 1
2 ORgate (c=a+b) 2 [b [c=a+b|
0 0 0
a
1 0 1
1 1 1
3. Inverter (c = &) [a | c=3]
a —»Do—» c 0 1
1 0
4. Multiplexor d n-
(ifd==0,c=a;
else c=b) 0 a
a—>0 1 b
c
b—>|1

Implementation with a Multiplexor

« Selects one of the inputs to be the output

based on a control input

—|

» Lets build our ALU using a MUX (multiplexor):

Operation

0

1

Result

32 units

mlnlnin R mie

Implementations

* Not easy to decide the best way to implement something
— do not want too many inputs to a single gate
— do not want to have to go through too many gates (= levels)
— for our purposes, ease of comprehension is important

» Let's look at a 1-bit ALU for addition:

Carryln
Cout = @b +a.c;, + b.c;,
a—>
+ |—»sm sum=a.b.c,+ ab.c,+
bl a.b.c,,+ a. b.c,
=a@b ? Cin
v\excl usive or (xor)

CarryOut

* How could we build a 1-bit ALU for add, and, and or?
» How could we build a 32-bit ALU?

1-bit Adder Logic

A ¥

) Sum o

Half-adder with one xor gate

O~
B

L

Full-adder from 2 half-adders and
an or gate

Half-adder with the xor gate replaced
by primitive gates using the equation

N R oy SE

Cour

1-bit ALU for AND, OR and add

Building a 32-bit ALU

Multiplexor control line Ccarryin

a0 —{ Carryin
ALUO
Carryou

[—————— Result0

carryin
|

b0 —»

a1 —{ Carryin
ALU1
CarryOu

[—————— Resultl
bl —»

a2 —[Carryin

f—————— Result2

b2 ALU2

CarryOut CarryOu

a31 —{ Carryin
ALU31L

Result31

b31 —

Ripple-Carry Logic for 32-bit ALU

What about Subtraction (a —b) ?

« Two's complement approach: just negate b and add.

* How do we negate?

— recall negation shortcut : invert each bit of b and set Carryln to least

significant bit (ALUO) to 1

Carryln
|

CarryOut

Tailoring the ALU to MIPS:
Test for Less-than and Equality

Need to support the set-on-less-than instruction

eg,slt $t0, $t3, $t4
remember: sl t is an R-type instruction that produces 1 if rs < rt and
0 otherwise
idea is to use subtraction: rs <rt < rs—rt< 0. Recall msb of
negative number is 1
two cases after subtraction rs — rt:

« if no overflow then rs < rt < most significant bit of rs —rt =1

« if overflow then rs < rt < most significant bit of rs —rt =0

set bit is sent from ALU31 to ALUO as the Less bit at ALUO; all other
Less bits are hardwired 0; so Less is the 32-bit result of sl t

3invert Operation
carryln
Il

+—> Resuls

Less

a. Carryout
1- bit ALU for the 31 least significant bits

it

Less input of
the 31 most
significant ALUs
is always 0

Extra set bit, to be routed to the Less input of the least significant 1-bit
ALU, is computed from the most significant Result bit and the Overflow bit
(it is not the output of the adder as the figure seems to indicate)

B ert Opere
carryln
Il

Less

1-bit ALU for the most significant bit

Overflow
L
|d—,_ orerten

Binvert Carryln Operation

11

a0 —> Carryln

b0 —>{ ALUO Result0
Less

CarryOu

1]

al —> Carryln
bl —>{ ALU1 Resultl
0—> Less

CarryOu

1l

a2 —> Carryln
b2 —»{ ALU2 Result2
0—> Less

Carryoul

Jcarryln ‘

a3l —| Carryln ———— Result31
b31 —> ALU31 Set

0—>| Less Overflow

32-bit ALU from 31 copies of ALU at top left and 1 copy
of ALU at bottom left in the most significant position

Tailoring the ALU to MIPS.
Test for Less-than and Equality

» What about logic for the overflow bit ?

— overflow bit = carryinto msb @ carry out of msh

— logic for overflow detection therefore can be put in to ALU31
» Need to support test for equality

- e.g., beq $t5, $t6, $t7

— use subtraction: rs-rt= 0 < rs=rt

Bnegate Operation

ALU
control
lines

Bneg- Oper- | Func-

ate ation tion
a0 —»| Carryln
B0 —] ALGo |—Resulo 0 00 and
oo | — 0 01 or
Combine CarryIn i 0 10 add
to least significant l l l
ALU and Binvert to| 1 10 sub
a single control ling al—>f Camyin| paci1
as both are always| bl —» ALUL = t L 1 11 sit
either 1 or 0 0—> Less —
CarryOut B Zero
l l l s ALU operation
az—>| Canyin| pegyiry
b2 —» ALU2 a —»
0—+| Less) _ '
CarryOut] Output is 1 only if all Result bits are 0 Zero
Result
vl . Y ! ! Overflow
[: l : . b
a31 —{ Carryin wl__, CarryOut
b31 —» ALU3L Set -
0—| Less Overflow Symbol representing ALU
32-bit MIPS ALU

Conclusion

We can build an ALU to support the MIPS instruction set
— keyidea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
Important points about hardware
— all gates are always working
— speed of a gate depends number of inputs (fan-in) to the gate

— speed of a circuit depends on number of gates in series
(particularly, on the critical path to the deepest level of logic)

Speed of MIPS operations

— clever changes to organization can improve performance
(similar to using better algorithms in software)

— we'll look at examples for addition, multiplication and division

