Hardware implementation

Review: Basic Hardware
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Implementation with a Multiplexor

« Selects one of the inputs to be the output

based on a control input
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» Lets build our ALU using a MUX (multiplexor):
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Implementations

* Not easy to decide the best way to implement something
— do not want too many inputs to a single gate
— do not want to have to go through too many gates (= levels)
— for our purposes, ease of comprehension is important

» Let's look at a 1-bit ALU for addition:
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* How could we build a 1-bit ALU for add, and, and or?
» How could we build a 32-bit ALU?




1-bit Adder Logic
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Full-adder from 2 half-adders and
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Half-adder with the xor gate replaced
by primitive gates using the equation
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1-bit ALU for AND, OR and add

Building a 32-bit ALU

Multiplexor control line Ccarryin
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Ripple-Carry Logic for 32-bit ALU

What about Subtraction (a —b) ?

« Two's complement approach: just negate b and add.

* How do we negate?

— recall negation shortcut : invert each bit of b and set Carryln to least

significant bit (ALUO) to 1

Carryln
|

CarryOut

Tailoring the ALU to MIPS:
Test for Less-than and Equality

Need to support the set-on-less-than instruction

eg,slt $t0, $t3, $t4
remember: sl t is an R-type instruction that produces 1 if rs < rt and
0 otherwise
idea is to use subtraction: rs <rt < rs—rt< 0. Recall msb of
negative number is 1
two cases after subtraction rs — rt:

« if no overflow then rs < rt < most significant bit of rs —rt =1

« if overflow then rs < rt < most significant bit of rs —rt =0

set bit is sent from ALU31 to ALUO as the Less bit at ALUO; all other
Less bits are hardwired 0; so Less is the 32-bit result of sl t
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Extra set bit, to be routed to the Less input of the least significant 1-bit
ALU, is computed from the most significant Result bit and the Overflow bit
(it is not the output of the adder as the figure seems to indicate)
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Binvert Carryln Operation
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32-bit ALU from 31 copies of ALU at top left and 1 copy
of ALU at bottom left in the most significant position

Tailoring the ALU to MIPS.
Test for Less-than and Equality

» What about logic for the overflow bit ?

— overflow bit = carryinto msb @ carry out of msh

— logic for overflow detection therefore can be put in to ALU31
» Need to support test for equality

- e.g., beq $t5, $t6, $t7

— use subtraction: rs-rt= 0 < rs=rt
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Conclusion

We can build an ALU to support the MIPS instruction set
— keyidea: use multiplexor to select the output we want
— we can efficiently perform subtraction using two’s complement
— we can replicate a 1-bit ALU to produce a 32-bit ALU
Important points about hardware
— all gates are always working
— speed of a gate depends number of inputs (fan-in) to the gate

— speed of a circuit depends on number of gates in series
(particularly, on the critical path to the deepest level of logic)

Speed of MIPS operations

— clever changes to organization can improve performance
(similar to using better algorithms in software)

— we'll look at examples for addition, multiplication and division




