
Hardware implementation

Review: Basic Hardware
c = a . bba

000

010

001

111

b

a
c

b

a
c

a c

c = a + bba

000

110

101

111

10

01

c = aa

a0

b1

cd

0

1

a

c

b

d

1. AND gate (c = a . b)

2. OR gate (c = a + b)

3. Inverter (c = a)�

4. Multiplexor
 (if d = = 0, c = a;
 else c = b)

• Selects one of the inputs to be the output
based on a control input

• Lets build our ALU using a MUX (multiplexor):

Implementation with a Multiplexor

b

0

1

Result

Operation

a

.

.

.

3
2
 u
n
it
s

Sum

CarryIn

CarryOut

a

b

• Not easy to decide the best way to implement something
– do not want too many inputs to a single gate
– do not want to have to go through too many gates (= levels)
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?

• How could we build a 32-bit ALU?

Implementations

cout = a.b + a.cin + b.cin

sum = a.b.cin + a.b.cin +
a.b.cin + a.b.cin

= a ⊕⊕⊕⊕ b ⊕⊕⊕⊕ cin

exclusive or (xor)

1-bit Adder Logic

Half-adder with one xor gate

Full-adder from 2 half-adders and
an or gate

Half-adder with the xor gate replaced
by primitive gates using the equation
A⊕⊕⊕⊕B = A.B +A.B

xor

Building a 32-bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Resu lt31
a31

b31

Resu lt0

CarryIn

a0

b0

Resu lt1
a1

b1

Resu lt2
a2

b2

Operation

ALU0

CarryIn

CarryO ut

ALU1

CarryIn

CarryO ut

ALU2

CarryIn

CarryO ut

ALU31

CarryIn

Ripple-Carry Logic for 32-bit ALU

1-bit ALU for AND, OR and add

Multiplexor control line

• Two's complement approach: just negate b and add.
• How do we negate?

– recall negation shortcut : invert each bit of b and set CarryIn to least
significant bit (ALU0) to 1

What about Subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

Tailoring the ALU to MIPS:
Test for Less-than and Equality

• Need to support the set-on-less-than instruction
– e.g., slt $t0, $t3, $t4

– remember: slt is an R-type instruction that produces 1 if rs < rt and
0 otherwise

– idea is to use subtraction: rs < rt ⇔ rs – rt < 0. Recall msb of
negative number is 1

– two cases after subtraction rs – rt:
• if no overflow then rs < rt ⇔ most significant bit of rs – rt = 1
• if overflow then rs < rt ⇔ most significant bit of rs – rt = 0

– set bit is sent from ALU31 to ALU0 as the Less bit at ALU0; all other
Less bits are hardwired 0; so Less is the 32-bit result of slt

0

3

Result

Operation

a

1

CarryIn

CarryOut

0

1

B invert

b 2

Less

0

3

Result

Operation

a

1

CarryIn

0

1

Binvert

b 2

Less

Set

Overflow
detection

Overflow

a.

b.

Set
a31

0

ALU0 Result0

CarryIn

a0

Result1
a1

0

Result2
a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Binvert

CarryIn

Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

1- bit ALU for the 31 least significant bits

1-bit ALU for the most significant bit

Extra set bit, to be routed to the Less input of the least significant 1-bit
ALU, is computed from the most significant Result bit and the Overflow bit
(it is not the output of the adder as the figure seems to indicate)

Less input of
the 31 most
significant ALUs
is always 0

32-bit ALU from 31 copies of ALU at top left and 1 copy
of ALU at bottom left in the most significant position

Tailoring the ALU to MIPS:
Test for Less-than and Equality

• What about logic for the overflow bit ?

– overflow bit = carry in to msb ⊕ carry out of msb

– logic for overflow detection therefore can be put in to ALU31

• Need to support test for equality

– e.g., beq $t5, $t6, $t7

– use subtraction: rs - rt = 0 ⇔ rs = rt

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn

ALU Result
Zero

Overflow

a

b

ALU operation

CarryOut

ALU
control
lines

Bneg- Oper- Func-
ate ation tion

0 00 and
0 01 or
0 10 add
1 10 sub
1 11 slt

Symbol representing ALU

Output is 1 only if all Result bits are 0

Combine CarryIn
to least significant
ALU and Binvert to
a single control line
as both are always
either 1 or 0

32-bit MIPS ALU

Conclusion

• We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware

– all gates are always working

– speed of a gate depends number of inputs (fan-in) to the gate

– speed of a circuit depends on number of gates in series
(particularly, on the critical path to the deepest level of logic)

• Speed of MIPS operations
– clever changes to organization can improve performance

(similar to using better algorithms in software)
– we’ll look at examples for addition, multiplication and division

