
1

Outline

•A look at other instruction sets

�PowerPC

�Intel 80x86

2

Power PC1/3

•Another RISC example (made by IBM and Motorola, and used in Apple Macintosh)

•32 integer registers, instructions 32 bits long

•Two more addressing modes

Indexed addressing

Allow 2 registers to be added together, similar to base address and offset (array index)

add $t0, $a0, $s3 � lw $t1,$a0+$s3

lw $t1, 0($t0)

Update addressing

Automatically increment the base register to point to next word each time data is
transferred

lw $t0,4($s3) � lwu $t0,4($s3)

addi $s3,$s3,4

3

Power PC2/3

Memory

Word

a. Indexed addressing

op rs rt rd . . .

Register

+

Register

Memory

Word

b. Update addressing

op rs rt Address

Register +

4

Power PC3/3

•Load multiple and store multiple

Transfer up to 32 words of data in a single instruction

•Special counter register, separate from the other 32 registers, to try to improve
performance of a for loop

In MIPS

Loop:

addi $t0,$t0,-1 #$t0 = $t0-1

bne $t0,$zero,Loop # if $t0 != 0 go to Loop

In Power PC

bc Loop,ctr != 0 # $ctr = $ctr-1;

if $ctr != 0 go to Loop

5

Intel 80x861/7

1978 Intel 8086 (assembly language extension to 8080 (8-bit)) 16 bit architecture, all
internal registers 16 bits. Dedicated uses not considered general-purpose register
architecture

1980 Intel 8087 (floating-point coprocessor) (relies on a stack and not registers)

1982 80286 (address space 24 bits)

1985 80386 (32-bits architecture, 32-bits registers, 32-bits address space)

1989-1995 80486, Pentium, and Pentium Pro

1997 MMX architecture, uses floating-point stack to accelerate multimedia and
communication applications.

Pentium II

Pentium III

Pentium 4 (2.8 GHz Aug. 2002)

6

Intel 80x862/7

031

GPR 0EAX

GPR 3EBX

GPR 1ECX

GPR 2EDX

GPR 6ESI

Code segment pointerCS

Stack segment pointer (top of stack)SS

Data segment pointer 0DS

Data segment pointer 1 ES

Data segment pointer 2FS

Data segment pointer 3GS

GPR 7EDI

GPR 5EBP

GPR 4ESP

EIP Instruction pointer (PC)

EFLAGS Condition codes

Name Use

80386 register set

7

Intel 80x863/7

•Instruction types for arithmetic, logical, and data transfer instructions (two-operand
instructions)

Source/Destination operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

•Must have one operand that acts as both source/destination (MIPS allows separate
registers for source and destination)

•One of the operands can be in memory but not both

8

Intel 80x864/7

•Addressing Modes

mul $t0,$s2,4

add $t0,$t0,$s1

lw $s0,0($t0)

(scale = 2)

Address is Base + (2scale* index)

Where scale can be 0, 1, 2, or 3

scale = 0, address not scaled

Scale =1, 16-bit data

Base plus scaled Index

mul $t0,$s2,4

add $t0,$t0,$s1

lw $s0,100($t0)

(scale = 2)

Address is Base + (2scale*index)
+displacement

Base plus scaled Index with 8
or 32-bit displacement

lw $s0,100($s1)

(16-bit displacement)

Address is contents of base register
plus displacement

Based mode with 8 or 32-bit
displacement

lw $s0,0($s1)Address is in a registerRegister Indirect

MIPS equivalentDescriptionMode

9

Intel 80x865/7

•Integer Operations

8086 support for both 8-bit and 16-bit data types (word)

80386 32-bits addresses and data (double words)

•Every operation works on both 8-bit data and on one longer data size (16 or 32-bits)

•Four major classes

•Data movement instructions(move, push, and pop)

•Arithmetic and Logic Instructions

•Control Flow(conditional branches, unconditional jumps, calls, and returns)

•Conditional branches are based on condition codes (flags) set as a side effect of
operation, most are used to compare the value of a result to zero.

•For argument: occur as part of normal operations and are faster to test than to
compare registers in MIPS (beq and bne)

•Against argument: compare to zero extends operation time, and programmer has
to use compare instructions to test a value that is not the result of an operation

•String instructions(string move and compare)

10

Intel 80x866/7

JE name

JMP name

CALL name

MOVW EBX,[EDI + 45]

PUSH ESI

POP EDI

ADD EAX,#6765

TEST EDX,#42

MOVSL

If equal (CC) EIP= name};

EIP–128 ≤ name < EIP + 128

{EIP = NAME};

SP = SP – 4; M[SP] = EIP + 5; EIP = name;

EBX = M [EDI + 45]

SP = SP – 4; M[SP] = ESI

EDI = M[SP]; SP = SP + 4

EAX = EAX + 6765

Set condition codea (flags) with EDX & 42

M[EDI] = M[ESI];

EDI = EDI + 4; ESI = ESI + 4

FunctionInstruction

Typical 80x86
instructions

In addition, see
figure 3.33

11

Intel 80x867/7

Instruction Encoding

JE

JE EIP + displacement

Offset

CALL

MOV EBX, [EDI + 45]

PUSH

PUSH ESI

ADD w

ADD EAX, #6765

Reg

4 4 8

6

8 32

5 3

4 13 32

Immediate

Condition

MOV

1

w

1

d

8 8

TEST EDX, #42

7 1 8 32

TEST Postbyte Immediatew

Reg

f.

e.

d.

c.

b.

a.

CALL

Displacement
r-m

postbyte

Displacement

•Instructions vary from 1 to 17
bytes in length

•Opcode byte usually contains
a bit saying whether the
operand is 8 or 32 bits (1-bit
w)

•1-bit d direction of move
from or to memory

•For some instructions, the
opcode may include the
addressing mode and the
register.

•Some instructions use a post-
byte (extra opcode byte) which
contains the addressing mode
information

