
1

Outline

•Addressing in Branches and Jumps

•Addressing modes summary

Section 3.8

2

Addressing in Branches and Jumps1/7

•MIPS Jump instruction j (J-type)

Opcode (6 bits) | Address (26 bits) j opcode is 2

•MIPS bne, and beq (I-type)

Opcode (6 bits) | rs (5 bits) | rt (5 bits) | branch address (16 bits)

•What are the implications of having 16 bit branch address in bne, beq?

Program addresses would have to fit in 16-bits, which means no program
could be bigger than 216

•What is the solution?

Add a register (Program Counter) to the branch address

Address of instruction to branch to = PC + branch address

Which allows program sizes to be as large as 232

3

Addressing in Branches and Jumps2/7

•Why PC?

�PC holds the address of the current instruction

�Measurement have shown that conditional branches tend to branch
to a nearby instruction

•If we use one bit for sign in branch address, we have 15 bits left, which
means we can branch to ±215 words of the current instruction
(Measurements show that almost all loops are smaller than 216 words)

•At the end of the fetch phase, PC is incremented to point to next
instruction (PC+4)

•Actually, MIPS branch address is relative to the address of following
instruction (PC+4) as opposed to the current instruction (PC)

•This form of addressing is termed PC-relative addressing

4

Addressing in Branches and Jumps3/7

• How to interpret the branch address?

•Number of bytes after the next instruction? OR

•Number of words after the next instruction?

•A word is 4 bytes

•We can branch 4 times as far (16-bit field) by interpreting the branch address
as a relative word address instead of a relative byte address

•Relative byte address = relative word address * 4

5

Addressing in Branches and Jumps4/7

Example

beq $s3, $s4, L1

add $s0,$s1,$s2

L1: sub $s0,$s0,$s3

What is the machine code of beq instruction?

•beq is I-format(opcode, rs, rt, branch address)

Opcode is 4, rs ($s3) is 19, rt ($s4) is 20, branch address is 1

•Why is the branch address 1?

�When we are executing beq instruction, after fetch phase PC is incremented
to PC+4 to point to add instruction

�If $s3 = $s4, in the execution phase for beq instruction, we need to skip 1 * 4
bytes relative to the address of add instruction (the current value of the PC)

6

Addressing in Branches and Jumps5/7

How about the 26 bit address field in j instruction?

•The 26-bit address field is also a word address (28-bit byte address)

•How to get the 28-bit byte address from the 26-bit byte address?

�Add two zeros as low order bits to 26 bits to obtain 28 bits (Why?)

•The instruction address is 32 bits, we need 4 more bits

•What is the solution?

�The 28-bit byte address replaces the lower 28 bits of the PC leaving the
upper 4 bits unchanged

�This form of addressing is called pseudodirect addressing

•How far can the jump be?

228 = 28 * 220 = 256 MB or 256 MB/4 = 64 Mwords (64 million instructions)

7

Addressing in Branches and Jumps6/7

Example page 149

Loop: add $t1, $s3, $s3 # $t1 � 2 *i

add $t1, $t1, $t1 # $t1 � 4 *i

add $t1, $t1, $s6 # $t1 � address of save[i]

lw $t0, 0($t1) # $t0 � save[i]

bne $t0, $s5, Exit # go to Exit if save [i] != k

add $s3, $s3, $s4 #i = i + j

j Loop # go to Loop

Exit:

Loop started at location 80000 in memory , what is the
MIPS machine code for loop

200002

3201920190

22185

08935

32092290

3209990

3209 19190

80024

80012

80020

80028

80016

80008

80004

80000

Machine code with addresses

•Note that textbook uses 8 for branch address in bne instruction, then later states it should
be 2 on page 150. PC-relative addressing mode refers to NUMBER OF WORDS

8

Addressing in Branches and Jumps7/7

Branching Far Away

beq $s0, $s1, L1

•If this conditional branch is a branch to a far away location, the assembler
transforms the code to replace with a conditional branch to a nearby location and a
j instruction

•Why this replacement makes it more feasible to branch to a far away location?

beq $s0,$s1,L1 bne $s0,$s1,L2

j L1

L2:

Replaced by

9

Addressing Modes Summary

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

