Qutline

*Addressing in Branches and Jumps
*Addressing modes summary

Section 3.8

Addressing in Branches and Jumps

*MIPS Jump instruction j (J-type)

Opcode (6 bits) | Address (26 bits) j opcode is 2
*MIPS bne, and beq (I-type)

Opcode (6 bits) | rs (5 bits) | rt (5 bits) | branddrass (16 bits)
*What are the implications of having 16 bit branddrass in bne, beq?

Program addresses would have to fit in 16-bits, wiielans no program
could be bigger than'2

*What is the solution?
Add a register (Program Counter) to the branch addre
Address of instruction to branch to = PC + brancheskl

Which allows program sizes to be as large®s 2

Addressing in Branches and Jumps

*Why PC?
»PC holds the address of the current instruction

»Measurement have shown that conditional branchekttebranch
to a nearby instruction

«If we use one bit for sign in branch address, we H&vkits left, which
means we can branch+8%> words of the current instruction
(Measurements show that almost all loops are smaber2#i words)

At the end of the fetch phase, PC is incrementgubitat to next
instruction (PC+4)

«Actually, MIPS branch address is relative to the adslof following
instruction (PC+4) as opposed to the current instm¢fL)

*This form of addressing is termé&d-relative addressing

Addressing in Branches and Jumps

» How to interpret the branch address?
Number of bytes after the next instruction? OR
*Number of words after the next instruction?

*A word is 4 bytes

*We can branch 4 times as far (16-bit field) by ipteting the branch address
as a relative word address instead of a relative dxydeess

*Relative byte address = relative word address * 4

Addressing in Branches and Jumps

Example
beq $s3, $s4, L1
add $s0,$s1,$s2
L1: sub $s0,$s0,$s3

What is the machine code of beq instruction?

*beq is I-format(opcode, rs, rt, branch address)
Opcode is 4, rs ($s3) is 19, rt ($s4) is 20, branalress is 1

*Why is the branch address 1?

»When we are executing beq instruction, after fetthisp PC is incremented

to PC+4 to point to add instruction

»If $s3 = $s4, in the execution phase for beq insimncwe need to skip 1 * 4
bytes relative to the address of add instructiba ¢@urrent value of the PC)

Addressing in Branches and Jumps

How about the 26 bit address field in j instruction?

*The 26-bit address field is also a word address (EByié address)

*How to get the 28-bit byte address from the 2@pie address?
»Add two zeros as low order bits to 26 bits to obta&rbits (Why?)

*The instruction address is 32 bits, we need 4 mibse b

*What is the solution?

»The 28-bit byte address replaces the lower 28 bitlseoPC leaving the

upper 4 bits unchanged

»This form of addressing is calledeudodirect addressing

*How far can the jump be?

228 = 8% 220= 256 MB or 256 MB/4 = 64 Mwords (64 million instrims)

6

Addressing in Branches and Jumps

Example page 149

Loop: add $t1, $s3, $s3 # $& 2 *i

R
add $t1, $t1, $t1 # $t&E 4 i

add $t1, $t1, $s6 # $t¢ address of savef}——»

Iw $t0, O($t1) # $t0& save[il———»

bne $t0, $s5, Exit # go to Exit if save [i] l=k——1_,
add $s3, $s3, $s4 #i =i+

j Loop #goto LOO\

Loop started at location 80000 in memory , what is t
MIPS machine code for loop

Exit:

*Note that textbook uses 8 for branch address énitstruction, then later states it should

80000 19 |19 32
80004 9 |9 32
80008 (1o |9 |22|9 |0 |32
80012 | [35 |9 |8

80016 21

80020 [[0 |19 |20 |19 |o |32
80024 20000
80028

Machine code with addresses

be 2 on page 150. PC-relative addressing modesresf dUMBER OF WORDS

Addressing in Branches and Jumps

Branching Far Away
beq $s0, $s1, L1

«If this conditional branch is a branch to a fagMocation, the assembler
transforms the code to replace with a conditiomahbh to a nearby location and a

j instruction

*Why this replacement makes it more feasible to¢ieao a far away location?

Replaced by

beq $s0,$s1,L1

L2:

bne $s0,$s1,L.2
jL1

Addressing Modes Summary

1. Immediate addressing

| op | s | Tt | Immediate |

2. Register addressing
| op | s | Tt | rd | | f‘uncf_l Registers
T [Register

3. Base addressing
| op | s | Tt | Address | Memory

[Register | E?)_. [Bie] Halfword Word

4. PC-relative addressing
[[= [n] st | Memory

[FC] (;}—» Word

5. Pseudodirect addressing
[er | Address | Memory

| PC | E;)_. Word

