Qutline

sLoops

A Loop with a variable array index

Loop: g=g+Ali;
i=i+j
If (i I= h) go to Loop
Variables g, h, i, and j associated with $315s4
Array base is in $s8Vhat is the MIPS assembly code?

Loop: add $t1, $s3, $s3 # P& 2%
add $t1, $t1, $t1 # $t& 4 =i
add $t1, $t1, $s5 # $t¢ address of A[i]
Iw $t0, 0($t1) # $t0& Ali]
add $s1, $s1, $t0 #€ g+ Ali]
add $s3, $s3, $s4 #i=i+]

bne $s3, $s2, Loop #gotoLoopifil=h

A While Loop-

while (savel[i] == k)

i=i+j;
i, j, and k associated with $s3 $s5. Base of array save is in $gfhat is MIPS
Assembly code?

l

No

Exit:

CXIL.

A less than test

if (a<b)gotoLess

a, b associated with $s0, and $s1, respectivVéhat is the MIPS assembly code?

*To test for less than we introduce a new instauncti
slt $t0, $s0, $s1 # sltis set on less than

Register $t0 is set to 1 if the value in regist&d & less than the value in register
$s1, otherwise, register $t0 is set to 0

*Register $zero always contains zero
«Comparing $t0 to $zero gives us the effect of bnémyg if a less than b
*Combining slt with bne implements branch on lessitha

slt $t0, $s0, $s1 # $t€& 1 if a < b, otherwise $t& 0

bne $t0, $zero, Less #gotoLessif$t0!=0

Less:

Case/Switch Statement

*Switch statement allows the programmer to seleciobmeany
alternatives depending on a single value

*Can be implemented as a series of if —then-else statsr(not efficient)
«Alternatively (or more efficiently)

> First instruction within each case sequence is assigfeduel (the
label holds the address of the first instruction ingbguence)

»These addresses are stored in a jump table in memory
*Use new instruction
jr register (jump register)
Unconditional jump to the address specified in regist

*Program loads appropriate entry from jump table aregister, then
jump to proper address using a jump register

Case/Switch Statement

switch (k) {
case 0: f=i+j; break;
case 1. f=g+ h;break;
case 2. f=g-h; break;
case 3: f=i—j; break;

Variables f through k associated with $308s5. Register $t2 contains 4.
Register $t4 contains address of jump table in nmgmMdlPS Assembly code?

Jump table stored

Address of instruction f = i + label LO in memory

Address of instruction f = g+ # label L1

Address of instruction f = g - ¥ label L2 1036 L3

Address of instruction f =i - label L3 1032 L2
$t4 1028 L1

1024 Lo

Case/Switch Statemeat

slt $t3, $s5, $zero #testifk<O
bne $t3, $zero, Exit #if k < 0 go to Exit
st $t3,$s5,$t2 #testifk<4
beq $t3, $zero, Exit #if k >= 4 go to Exit
add $t1,$s5,$s5 # $& 2 *k (Why?)
add $t1,$t1,$t1 # $tE 4%k
add $t1,5t1,$t4 # $t& address of JumpTable[k]
Iw $t0,0($t1) # $t0& JumpTable[K]
jr $t0 # jump to address found in register $t0
LO: add $s0, $s3, $s4 #((k=0)thenf=i+j
j Exit # break (go to Exit)
L1: add $s0,$s1,$s2 #(= 1) then f = g+h
j Exit # break (go to Exit)
L2: sub $s0,$s1,$s2 #(k=2) then f = g-h
j Exit
L3: sub $s0,$s3,$s4 #(k=3) then f = i-j

Exit: # End of switch statement

What we know so far

*Fig. 3.9 page 131
einstruction format for unconditional jumJ-format)
<opcode (6 bits), target address (26 bits)> (more ortadpress in section 3.8)
*Thejr instruction-> (R-format)
opcode = 0, funct = 8, rs is jump register
*Thesltinstruction-> (R-format)
Opcode =0, funct =42, rs, rd, rt
*Thebeq bneinstructions> (I-format)
*$zero always contains the value 0
*The instructiorbeq $s1, $s2, 108 an I-format instruction. The resulting machine code
*Op|rs | rt| address
4117]18|25

*Why the value in address field is 25 and not 100? Will dis¢his when we cover section 3.8

