
1

Outline

•Loops

2

A Loop with a variable array index
Loop: g = g + A[i];

i = i + j;

If (i != h) go to Loop

Variables g, h, i, and j associated with $s1 � $s4

Array base is in $s5. What is the MIPS assembly code?

Loop: add $t1, $s3, $s3 # $t1  2 *i

add $t1, $t1, $t1 # $t1  4 *i

add $t1, $t1, $s5 # $t1  address of A[i]

lw $t0, 0($t1) # $t0  A[i]

add $s1, $s1, $t0 # g  g + A[i]

add $s3, $s3, $s4 # i = i+ j

bne $s3, $s2, Loop # go to Loop if i != h

3

A While Loop1/2

while (save[i] == k)

i = i + j;

i, j, and k associated with $s3 � $s5. Base of array save is in $s6. What is MIPS
Assembly code?

Save[i] == k?

i = i +j

Exit:

Yes

No

Loop: add $t1, $s3, $s3 # $t1  2 *i

add $t1, $t1, $t1 # $t1  4 *i

add $t1, $t1, $s6 # $t1  address of save[i]

lw $t0, 0($t1) # $t0  save[i]

bne $t0, $s5, Exit # go to Exit if save [i] != k

add $s3, $s3, $s4 #i = i + j

j Loop # go to Loop

Exit:

4

A less than test
if (a < b) go to Less

a, b associated with $s0, and $s1, respectively. What is the MIPS assembly code?

•To test for less than we introduce a new instruction

slt $t0, $s0, $s1 # slt is set on less than

Register $t0 is set to 1 if the value in register $s0 is less than the value in register
$s1, otherwise, register $t0 is set to 0

•Register $zero always contains zero

•Comparing $t0 to $zero gives us the effect of branching if a less than b

•Combining slt with bne implements branch on less than

slt $t0, $s0, $s1 # $t0  1 if a < b, otherwise $t0  0

bne $t0, $zero, Less # go to Less if $t0 != 0

……

Less:

5

Case/Switch Statement1/3

•Switch statement allows the programmer to select one of many
alternatives depending on a single value

•Can be implemented as a series of if –then-else statements (not efficient)

•Alternatively (or more efficiently)

�First instruction within each case sequence is assigned a label (the
label holds the address of the first instruction in the sequence)

�These addresses are stored in a jump table in memory

•Use new instruction

jr register (jump register)

Unconditional jump to the address specified in register

•Program loads appropriate entry from jump table into a register, then
jump to proper address using a jump register

6

Case/Switch Statement2/3

switch (k) {
case 0: f = i + j; break;
case 1: f = g + h; break;
case 2: f = g - h; break;
case 3: f = i – j; break;

}
Variables f through k associated with $s0 � $s5. Register $t2 contains 4.
Register $t4 contains address of jump table in memory. MIPS Assembly code?

Address of instruction f = i + j � label L0

Address of instruction f = g+ h � label L1

Address of instruction f = g - h � label L2

Address of instruction f = i - j � label L3

L0

L1

L2

L3

$t4
1024

1028

1032

1036

Jump table stored
in memory

1024

7

Case/Switch Statement3/3

slt $t3, $s5, $zero # test if k < 0

bne $t3, $zero, Exit # if k < 0 go to Exit

slt $t3,$s5,$t2 # test if k < 4

beq $t3, $zero, Exit # if k >= 4 go to Exit

add $t1,$s5,$s5 # $t1  2 *k (Why?)

add $t1,$t1,$t1 # $t1  4 *k

add $t1,$t1,$t4 # $t1  address of JumpTable[k]

lw $t0,0($t1) # $t0  JumpTable[k]

jr $t0 # jump to address found in register $t0

L0: add $s0, $s3, $s4 # (k = 0) then f = i +j

j Exit # break (go to Exit)

L1: add $s0,$s1,$s2 #(k = 1) then f = g+h

j Exit # break (go to Exit)

L2: sub $s0,$s1,$s2 #(k=2) then f = g-h

j Exit

L3: sub $s0,$s3,$s4 #(k=3) then f = i- j

Exit: # End of switch statement

8

What we know so far
•Fig. 3.9 page 131

•instruction format for unconditional jump j (J-format)

<opcode (6 bits), target address (26 bits)> (more on target address in section 3.8)

•The jr instruction � (R-format)

opcode = 0, funct = 8, rs is jump register

•The slt instruction � (R-format)

Opcode = 0, funct = 42, rs, rd, rt

•The beq, bneinstructions � (I-format)

•$zero always contains the value 0

•The instruction beq $s1, $s2, 100is an I-format instruction. The resulting machine code

•Op| rs | rt | address

4 | 17 | 18 | 25

•Why the value in address field is 25 and not 100? Will discuss this when we cover section 3.8

