Review of Digital Circuits & Logic Design

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Number Systems

Quantities/Counting

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number Systems

Number Systems

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1, and so on

Number Systems

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

- Reverse the process when converting binary to hexadecimal

Number Systems

Negative Numbers

- Two ways to represent a negative binary number.
 - a signed bit to represent the positive or negative sign.
 - the <u>complemented</u> form of the positive number to represent a negative value.
- Negative number represented by a *sign* preceding its absolute value, e.g. -65.
- Similar technique can be employed to represent a negative binary number.
- Attach one digit to the binary number to represent the sign.
- This binary digit is the sign bit.
- Sign bit is always the MSB. The number is positive if the sign bit is 0 and is negative if the sign bit is 1.
- For example, 00101₂ represents +0101₂, while 10101₂ means -0101₂

Number Systems

- The advantage is simple.
- Disadvantages
 - Duplication in representing zero.
 - i.e., 00 and 10 represent zero
 - addition to a signed negative number gives an incorrect answer.

+	1011101	(+93)		01011101	(+93)
-	1000001	(-65)	+	11000001	(-65)
	0011100	(+28)	1	00011110	(+30)
			\uparrow		
			Over	flow	

Number Systems

Complement representation

- The 1's complement and the 2's complement.
- The most significant bit still represents the sign.
- The other digits are not the same.

1's complement

- The negative value of an n-digit binary number, $N_{\rm 2},$ can be represented by its 1's complement, $N'_{\rm 2}$
- It is equal to the base number, 2, to the power n minus the number N minus one, or:

 $N'_2 = 2^n - N_2 - 1 = (2^n - 1) - N_2$

• N'₂ can be obtained by subtracting each digit with 1, or by inverting all binary digits.

Number Systems

- 1's complement number of **01001101**₂:
- n = 8.

 $N'_{2} = (2^{8} - 1) - N_{2}$ = (100000000 - 1) - 01001101 = 11111111 - 01001101

 $= 10110010_{2}$

Number Systems

2's complement

- The 2's complement, N"₂, of an n-digit binary number, N₂, is defined as:
 - $N''_2 = 2^n N_2$ = $(2^n - 1) - N_2 + 1$ = $N'_2 + 1$
- where N'₂ is the 1's complement representation of the number.

Number Systems

- No duplicate representation for all numbers.
 - $N_2 = 00000000$
 - N'₂= 11111111

 $N''_2 = N'_2 + 1 = 1\ 0000000$

- Since only 8 bits are used, the base complement of zero is zero, too.
- With 8-bit 2's complement representation, total 256 numbers

 10000000_2 (-128₁₀) to 00000000_2 (0₁₀) to 01111111_2 (+127₁₀).

Number Systems

• 2's complement number of **01001101**.

1's complement, N' is 10110010

N" = N' + 1

= 10110010 + 1

= 10110011

• Subtraction of two numbers:

$$X_2 - Y_2 = X_2 + (-Y_2)$$

• In 2's complement representation:

$$X_2 + (2^n - Y_2) = X_2 - Y_2 + 2^n$$

• If X > Y, the sum will produce an end carry, 2ⁿ, which can be discarded, and the sum is positive.

Number Systems

• If X < Y, the sum is negative and will be

2ⁿ - (Y₂ - X₂)

which is the 2's complement of $(Y_2 - X_2)$.

Example: 93 - 65

 +93 = 01011101₂
 -65 = 10000000-01000001 = 10111110 (in1's complement)
 = 10111111 (in 2's complement)

	93	3 - 65			
	01011101	(+93)	(X)		
+	10111111	(-65)	$(2^{8} - Y)$		
1	00011100	(+28)	(X-Y)		
\uparrow					
Overflow (2^8)					

Number Systems

• Example: 65 - 93	
$+65=01000001_{2}$	
-93 = 10000000-01011101	
= 10100010 (in 1's complement)	
= 10100011 (in 2's complement)	
65 - 93	
0 1 0 0 0 0 0 1 (+ 6 5)	(X)
+ 10100011 (-93)	(-Y)
1 1 1 0 0 1 0 0 (-ve)	
↑ 。	
2 ° - (Y - X)	. 8
	2 0
<u>- 11100100 2°-(Y</u>	- X)
0 0 0 1 1 1 0 0 - (Y	- X)
$(X - Y) = -00011100_2 =$	-28

Combinational Logic

- outputs logical functions of inputs
- outputs appear shortly after changed inputs (propagation delay)
- no feedback loops
- no clock

Combinational Logic

1/4 74x86

A0-B0-

Adders

Equality Comparators

1-bit comparator

4-bit comparator

DIFF

1-bit half-adder: two 1-bit inputs, output "half sum" and carry1-bit full adder: two 1-bit inputs and carry-in, output sum and carry

Full adder truth table:					
Х	Y	Cin	S	Cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

S: XY 00 01 11 10 0 1 1 Cin 1 1 1

Cout:			XY	,
	00	01	11	10
0			. 1	
Cin 1		• 1	1	1

$$C_{\rm out} = XC_{\rm in} + YC_{\rm in} + XY$$

Full-adder circuit

Ripple adder

Any limitation?

Subtractor

- No need for specific hardware
- Use full adder
- How ???
- HOME WORK #1

Subtraction

- Subtraction is the same as addition of the two's complement.
- The two's complement is the bit-by-bit complement plus 1.
- Therefore, $X Y = X + \overline{Y} + 1$
 - Complement Y inputs to adder, set C_{in} to 1
 - For a borrow, set C_{in} to 0.

Encoders vs. Decoders

Binary encoders

Need priority encoder in most applications

8-input priority encoder

2-to-4-decoder logic diagram

10 + 10 + 11 = N 10 + 10 + 11 = N 10 + 10 + 10 + 10 + 10 11 + 10 + 10 + 10 Y1 Y1 Y2 Y3

Decoder Symbol

Complete 74x139 Decoder

10

Decoder cascading

Sequential Logic

74x138 3-to-8-decoder symbol

74x138

G1

G2A

G2B

R

С

2

YO

Y1

Y2

YЗ

Y4 Y5

Y6

Y7

- outputs logical functions of inputs and previous history of circuit (memory)
- after changed inputs, new outputs appear in the next clock cycle
- frequent feedback loops
- sequential circuits can be described using:
 - * state table
 - For each current-state, specify next-states as function of inputs
 - For each current-state, specify outputs as function of inputs
 - Like a separate combinational problem for each state
 - * state diagram

graphical representation of state table

Clock signals

- Very important with most sequential circuits
 - State variables change state at clock edge.

Sequential Circuit Elements

S-R Latch

Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e

S R

0 0

1 0

1 1

0 1

Q

last Q

0

1

0

QN

last QN

1

0

0

Sequential Circuit Elements

С	D	Q	QN
1	0	0	1
1	1	1	0
0	х	last Q	last QN

Storage Elements

Storage Elements

Read/Write Memories

- a.k.a. "RAM" (Random Access Memory)
- Volatility
 - Most RAMs lose their memory when power is removed
 - NVRAM = RAM + battery
 - Or use EEPROM
- SRAM (Static RAM)
 - Memory behaves like latches or flip-flops
- DRAM (Dynamic Memory)
 - Memory lasts only for a few milliseconds
 - Must "refresh" locations by reading or writing

Storage Elements

SRAM

Storage Elements

SRAM operation

- Individual bits are D latches, *not* edge-triggered D flip-flops.
 - Fewer transistors per cell.
- Implications for write operations:
 - Address must be stable before writing cell.
 - Data must be stable before ending a write.

Storage Elements

SRAM array