« "« Chapter 4 Macro Processors
“ * --Basic Macro Processor Functions

L L

“.* Introduction

= A macro instruction (macro) is a notational
convenience for the programmer
= It alowsthe programmer to write shorthand version of a program
(module programming)
= The macro processor replaces each macro
Instruction with the corresponding group of source
language statements (expanding)
= Normally, it performs no analysis of the text it handles.
= It does not concern the meaning of the involved statements during
Macro expans on.
= The design of a macro processor generally is
machine independent!

System Programming

L L

“.* Basic macro processor functions

= Two new assembler directives are used in macro
definition
= MACRO: identify the beginning of a macro definition
= MEND: identify the end of amacro definition

= Prototype for the macro
= Each parameter beginswith ‘&'’
name MACRO paraneters
body

IVEND

= Body: the statements that will be generated as the expansion of the
macro.

System Programming 3

L L

“.* Macro expansion

Source

M1 MACRO &D1, &D2
STA &D1
STB &D?2
MEND

M1 DATAL, DATA2

M1 DATA4, DATA3

Expanded source

+ STA
STB
+ STA
STB

System Programming

DATAL
DATAZ2

DATAA4
DATA3

. . Example of macro definition

“.* Figure4.1, pp. 178

5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

COPY
RDBUFF

START
MACRO

0
&INDEV, &BUFADR &RECLTH

COPY FILE FROM INPUT TO OUTPUT

MACRO TO READ RECORD INTO BUFFER

CLEAR X
CLEAR A
CLEAR S
+LDT #4096
D =X’ INDEV’
JEQ %3
RD =X’ &INDEV’
COMPR A,S
JEQ *4+11
STCH &BUFADR, X
TIXR T
LT *-19
STX &RECLTH
MEND

CLEAR LOOP COUNTER

SET MAXINUM RECORD LENTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUN LENGTH
HAS BEEN RECARD

SAVE RECORD LENGTH

System Programming

L L

“.* Macro invocation

= A macro invocation statement (a macro call) gives the
name of the macro instruction being invoked and the
arguments to be used in expanding the macro.

= NMAacro_nane pl, p2,
= Difference between macro call and procedure call

= Macro call: statements of the macro body are expanded each time the
macro isinvoked.

= Procedure call: statements of the subroutine appear only one,
regardless of how many times the subroutine is called.

= Question

= How does a programmer decide to use macro calls or procedure calls?
« From the viewpoint of a programrer
« From the viewpoint of the CPU

System Programming

L L

“.* Exchange the values of two variables

voi d exchange(int a, int b) {
| nt tenp,;
tenp = a;
a b;
b t enp;
}

mai n() {
Int 1=1, j=3;
printf("BEFORE - % %\n", i, j);
exchange(i, j);
printf("AFTER - % %\n", i, j);

What’stheresult?

System Programming

“.* Pass by Reference

voi d exchange(int *pl, int *p2) {
| nt tenp,;

temp = *pl;
*pl — *pz;
*P2 = tenp;
}
mai n() {
int i=1, j=3;
printf("BEFORE - % %\n", i, j);

exchange(& , &);
printf("AFTER - % %\n", 1, |);

System Programming

L L

“.* 12 Lines of Assembly Code

. Subr outi ne EXCH MAI N LDA #1
EXCH STA I
LDA #3
STA J

Call a subroutine

P1 RESW 1
P2 RESW 1
TEMP RESW 1 I RESW 1

J RESW 1
END MAI N

System Programming

L L

“.* Swap two variables by macro

mai n() {
Int 1 =1, |=3;
printf("BEFORE - % %\ n",
swap(l,]);
printf("AFTER - % %\ n", |

System Programming

IDE

IDE

10

L L

“.* 6 Linesof Assembly Code

MAI' N

| nvoke

TEMP

L DA #1
STA I
LDA #3
STA J
a Macro

RESW 1
RESW 1
RESW 1

END MAI' N

System Programming

11

L

k

“.* Macro expansion

Each macro invocation statement will be expanded into
the statements that form the body of the macro.

Arguments from the macro invocation are substituted for
the parameters in the macro prototype (according to their
positions).

= Inthe definition of macro: parameter

= Inthe macro invocation: argument

Comment lines within the macro body will be deleted.

Macro invocation statement itself has been included as a
comment line.

The label on the macro invocation statement has been
retained as a label on the first statement generated in the
macro expansion.

= We can use a macro instruction in exactly the same way as an assembl er
|language mnemonic.

System Programming 12

. . Example of macro invocation
“.* Figure4.1, pp. 178

170
175
180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

FIRST
CLOOP

ENDFIL

EOF
THREE
RETADR
LENGTH
BUFFER

MAIN PROGRAM

STL RETADR

RDBUFF F1,BUFFER,LENGTH
LDA LENGTH

COMP #0

JEQ ENDFIL

WRBUFF 05,BUFFER,LENGTH
J CLOOP

WRBUFF 05,EOF, THREE

J @RETADR

BYTE C EOF

WORD 3

RESW 1

RESW 1

RESB 4096

END FIRST

SAVE RETURN ADDRESS
READ RECORD INTO BUFFER
TEST FOR END OF FILE

EXIT IF EOF FOUND
WRITE OUTPUT RECORD
LOOP

INSERT EOF MARKER

LENGTH OF RECORD
4096-BYTE BUFFER AREA

System Programming 13

.« Example of macro expansion

"« " Figure4.2, pp. 179

5 COPY START 0 COPY FILE FROM INPUT TO OUTPUT
180 FIRST STL RETADR SAVE RETURN ADDRESS

190 .CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
190a CLOOP CLEAR X CLEAR LOOP COUNTER

190b CLEAR A

190c CLEAR S

190d +LDT #4096 SET MAXIMUN RECORD LENGTH
190e TD =X'F1’ TEST INPUT DEVICE

190f JEQ *-3 LOOP UNTIL READY

190g RD =X'F1’ TEST FOR END OF RECORD

190h COMPR A, S TEST FOR END OF RECORD

190i JEQ *+11 EXIT LOOP IF EOR

190j STCH BUFFER, X STORE CHARACTER IN BUFFER
190k TIXR T LOOP UNLESS MAXIMUN LENGTH
190l JLT *-19 HAS BEEN REACHED

190M STX LENGTH SAVE RECORD LENGTH

System Programming

14

.« Example of macro expansion
"« " Figure4.2, pp. 179

195 LDA LENGTH TEST FOR END OF FILE

200 COMP #0

205 JEQ ENDFIL EXIT IF EOF FOUND

210 WRBUFF 05,BUFFER,LENGTH WRITE OUTPUT RECORD

210a CLEAR X CLEAR LOOP COUNTER

210b LDT LENGTH

210c LDCH BUFFER,X GET CHARACTER FROM BUFFER
210d 1D =X'05’ TEST OUTPUT DEVICE

210e JEQ *-3 LOOP UNTIL READY

210f WD =X'05’ WRITE CHARACTER

210g TIXR T LOOP UNTIL ALL CHARACTERS
210h JLT *-14 HAVE BEEN WRITTEN

215 J CLOOP LOOP

220 .ENDFIL ~ WRBUFF 05,EOF, THREE INSERT EOF MARKER

System Programming

15

.« Example of macro expansion
"« " Figure4.2, pp. 179

220a ENDFIL CLEAR X CLEAR LOOP COUNTER

220b LDT THREE

220c LDCH EOF, X GET CHARACTER FROM BUFFER
220d TD =X'05’ TEST OUTPUT DEVICE

220e JEQ *-3 LOOP UNTIL READY

220f WD =X'05’ WRITE CHARACTER

220g TIXR T LOOP UNTIL ALL CHARACTERS
220h JLT *-14 HAVE BEEN WRITTEN

225 J @RETADR

230 EOF BYTE C EOF

235 THREE WORD 3

240 RETADR RESW 1

245 LENGTH RESW 1

250 BUFFER RESB 4096 4096-BYTE BUFFER AREA

255 END FIRST

System Programming

16

L L

"« " No labdl in the macro body

= Problem of the label in the body of macro:

= If the same macro is expanded multiple times at different placesin
the program ...

= There will be duplicate labels, which will be treated as errors by
the assembler.
= Solutions:
= Do not use labels in the body of macro.
= Explicitly use PC-relative addressing instead.
« EX, Iin RDBUFF and WRBUFF nmacr os,
JEQ *+11
JLT *-14
«= It IS inconvenient and error-prone.

= Theway of avoiding such error-prone method will be discussed in
Section 4.2.2

System Programming 17

L L

“. " TwoO-pass macro processor

= You may design a two-pass macro processor

= Passl:
= Process all nmacro definitions

= Pass 2
« Expand all macro invocation statenents

= However, one-pass may be enough

= Because all macros would have to be defined during the
first pass before any macro invocations were expanded.

« The definition of a macro nust appear before
any statenents that invoke that macro.

= Moreover, the body of one macro can contain definitions of
other macros.

System Programming 18

Example of recursive macro definition
Figure 4.3, pp.182

= MACROS (for SIC)

= Contansthe definitions of RDBUFF and WRBUFF
written in SIC instructions.

MACROS MACOR

RDBUFF

WRBUFF

MACRO
MEND
MACRO

MEND

MEND

{Defines SIC standard version macros}
&INDEV,&BUFADR,&RECLTH

{SIC standard version}

{End of RDBUFF}
&OUTDEV,&BUFADR,&RECLTH

{SIC standard version}
{End of WRBUFF}

{End of MACROS}

System Programming 19

. . Example of recursive macro definition
“.* Figure 4.3, pp.182

-3
4

= MACROX (for SIC/XE)

= Contansthe definitions of RDBUFF and WRBUFF
written in SIC/XE instructions.

MACROX MACRO {Defines SIC/XE macros}
RDBUFF MACRO &INDEV,&BUFADR,&RECLTH
{SIC/XE version}
MEND {End of RDBUFF}
WRBUFF MACRO &OUTDEV,&BUFADR,&RECLTH
{SIC/XE version}
MEND {End of WRBUFF}
MEND {End of MACROX}

System Programming 20

L L

“.* Example of macro definitions

= A program that is to be run on SIC system
could invoke MACROS whereas a program to
be run on SIC/XE can invoke MACROX.

= However, defining MACROS or MACROX
does not define RDBUFF and WRBUFF.
These definitions are processed only when
an invocation of MACROS or MACROX is
expanded.

System Programming 21

L L

. " One-pass macro processor

= A one-pass macro processor that alternate
between macro definition and macro

expansion in a recursive way is able to
handle recursive macro definition.
s Restriction

= Thedéefinition of amacro must appear in the source
program before any statements that invoke that macro.

= Thisrestriction does not create any real inconvenience.

System Programming 22

. . Data structures
“.* for one-pass macro processor

= DEFTAB (definition table)

= Stores the macro definition including macro prototype and macro body
= Comment lines are omitted.

= Referencesto the macro instruction parameters are converted to a
positional notation for efficiency in substituting arguments.

= NAMTAB

= Stores macro names

= Servesasanindex to DEFTAB

= Pointers to the beginning and the end of the nacro
definition (DEFTAB)

= ARGTAB

= Stores the arguments of macro invocation according to their positionsin
the argument list

= Asthe macro is expanded, arguments from ARGTAB are substituted for
the corresponding parameters in the macro body.
System Programming 23

N Data structures

MAMT AR DEFTAB
. .
" .
" L]
-
. /_/_. RDBUFF &INDEV, &BUFADR ARECLTH
ADBUFF E"""i" - .
CLEAR A
: CLEAR 5
» +LDT #4059
T =X'71"'
JEQ 3
"D =X‘71"
COMPR A.S
ARGTAB JEQ ailld
Ulla STCH +2 X
2| BUFFER TIXR T
JLT . |
3| LENGTH o 5
b) T P uenp
L]
]
(a)

System Frogramming

L L

L Procedure GETLINE

“ Algorithm | EXPANDING then

read next line from input file

get the next line to be processed from DEFTAB
MAIN program
- [terations of
 GETLINE

Else
« PROCESSL INE Procedure PROCESSLINE

* DEFINE
* EXPA
utput source line

Procedure EXPAND
Set up the argument valuesin ARGTAB
Expand a macro invocation statement (likein
MAIN procedure)
- [terations of
« GETLINE
 PROCESSLINE

Procedure DEFINE
Make appropriate entriesin
DEFTAB and NAMTAB

System Programming 25

.« Algorithm
"« " Figure 4.5, pp. 184

begin {macro processor}
EXPANDINF := FALSE
while OPCODE + ‘END’ do

begin
GETLINE
PROCESSLINE
end {while}

end {macro processor}

Procedure PROCESSLINE
begin
search MAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = ‘MACRO’ then
DEFINE
else write source line to expanded file
end {PRCOESSOR}

System Programming

26

.« Algorithm
"« Figure 4.5, pp. 185

Procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :-1
while LEVEL > do
begin
GETLINE
if this is not a comment line then
begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = ‘MACRO’ then
LEVEL := LEVEL +1
else if OPCODE = ‘MEND’ then
LEVEL := LEVEL -1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition
end {DEFINE}

System Programming

27

.« Algorithm
"« Figure 4.5, pp. 185

Procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
while macro invocation to expanded file as a comment
while not end of macro definition do
begin

GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

Procedure GETLINE
begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else
read next line from input file

ETLINE
end {G ; System Programming

28

L L

" “ Handling nested macro definition

= In DEFINE procedure

= When amacro definition is being entered into DEFTAB, the normal
approach is to continue until an MEND directive is reached.

= T hiswould not work for nested macro definition because the first MEND
encountered in the inner macro will terminate the whole macro definition
Process.

= To solvethisproblem, acounter LEVEL is used to keep track of the level
of macro definitions.
= Increase LEVEL by 1 each tine a MACRO directive is
read.

« Decrease LEVEL by 1 each tine a MEND directive is
read.

= A MEND term nates the whole nacro definition process
when LEVEL reaches O.

« This process is very much |Iike matching left and
ri ght parentheses when scanning an arithnetic
expr essi on.
System Programming 29

L L

“.* Comparison of Macro Processors Design

= One-pass algorithm
= Every macro must be defined before it is called

= One-pass processor can alternate between macro
definition and macro expansion

= Nested macro definitions are allowed but nested calls
are not
= Two-pass algorithm
= Passl: Recognize macro definitions
= Pass2. Recognize macro calls
= Nested macro definitions are not allowed

System Programming 30

