
Chapter 3

Z80 Instructions & Assembly Language

Von Neumann Architecture
• The von Neumann architecture is a computer design model that uses

a processing unit and a separate storage to hold both instructions and data
• To run a machine, program and data must be loaded into memory

Memory

Processor

program

data

instructions

Z80 Programming Model

Z80

program

data

instructions

data

� Instructions are loaded into memory in program segment

� Data are loaded into memory at data segment

� Data are processed by processor according to instructions by loading them into

internal temporary storage called �registers�

Also known as �stored-program computer� model

Register Set (revisited)

• A : Accumulator Register

• F : Flag register

• Two sets of six general-purpose registers

– may be used as 8-bit A, F, B, C, D, E, H, L (A’, F’, B’, C’, D’, E’, H’, L’)

– or in pairs as 16-bit AF, BC, DE, HL (AF’ BC’ DE’ HL’)

• The Alternative registers (A’, F’, B’, C’, D’, E’, H’, L’) not visible to the
programmer but can access via special instructions:

– EXX (BC)<->(BC') , (DE)<->(DE') , (HL)<->(HL')

– EX AF, AF ’ (AF)<->(AF')

Register Set (revisited)

• 4 (16-bit) registers hold memory address (pointers)
– index registers (IX) and (IY) are 16-bit memory pointers
– 16 bit stack pointer (SP)
– Program counter (PC)

• Program counter (PC)
– PC points to the next opcode to be fetched from ROM
– when the µP places an address on the address bus to fetch the

byte from memory, it then increments the program counter by
one to the next location

• Special purpose registers
– I : Interrupt vector register.
– R : memory Refresh register

Z80 CPU Instructions

• 158 different instructions
• Including all 78 of the 8080A CPU.
• Instruction groups

– Load and Exchange
• Move data to / from memory to registers
• Exchange data in main registers and alternate regis ters

– Block Transfer and Search
• Move / search data in memory as a block

– Arithmetic and Logical
• Performing arithmetic / logical operations

– Rotate and Shift
• Performing arithmetic / logical rotation / shifting

– Bit Manipulation (Set, Reset, Test)
– Jump, Call, and Return
– Input/Output
– Basic CPU Control

Z80 Instructions
Load and Exchange

• One of the most useful instruction in the Z80.
• It is used to transfer data between registers, and to and from memory.
• The most simple type of LD instruction is to fill a register with a number:

Example LD A, 6
This loads the A register with the number 6

• You can transfer this data to other registers

Example LD H , A
This transfer content of the A register to the H register

LD " Load instruction

Instruction Description in Z80 User Manual Document

1 how it is used

2 what it does

3 how it does

4 example

Z80 Instructions Z80 Instructions
16-bit Load instructions

Z80 Instructions
8-bit Load instructions with memory reference

Memory Address
0000
.
.
.
75A0H

75A1H

75A2H

58H 58H

Z80 Instructions
8-bit Load instructions with memory reference

Z80 Instructions
8-bit Load instructions with memory reference

Z80 Instructions
8-bit Load instructions with memory reference

Z80 Instructions
8-bit Load instructions with memory reference

Z80 Instructions
16-bit Load instructions with memory reference

Z80 Instructions
16-bit Load instructions with memory reference

Z80 Instructions
16-bit Load instructions with memory reference

Z80 Instructions
16-bit Load instructions with memory reference

Z80 Assembly Language Programming

Program Template (for C16 assembler)

cpu “z80.tbl”
hof “INT8”
org 2000h

. ; Comment follows semicolon

. ; Line by line

. ; Your assembly codes start after

. ; org directive

.

.

.

.

.

end

Directive for relocatable assembler

Directive to indicate number scheme

Directive to indicate instruction table

Accumulator and Flag Registers

Program example

cpu “z80.tbl”
hof “INT8”
org 2000h

xor a ;clear reg A
Loop: out (40h), a ;output to port 40h

inc a ;increment reg A
jp loop ;jump to loop
halt ;terminate
end

Special-Purpose Registers

Developing Z80 Program in assembly language

Edit source file

.asm

Translate to machine code

Using C16 assembler

.hex (optional .lst)

Z80 Simulator

.hex

ET-Board

.hex

Homework, Lab Report

.lst

Special-Purpose Registers

Demo Session

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions

Flag (Revisited)

� Register F (F7) has special purpose

� Each bit of F (F7) has unique meaning

H

Z80 Instructions

Carry Flag

The Carry Flag (C) is set or cleared depending on the operation performed.
• If ADD instruction generates a Carry, the Carry Flag sets.
• If SUB instructions generates a Borrow, the Carry Flag sets.
• Otherwise, the Carry Flag is reset by an ADD/SUB instructions.

• The Carry Flag is also used in Logical rotation instructions.
• Logical operations AND, OR, XOR always reset the Carry Flag.

H

Z80 Instructions

The Add/Subtract Flag (N)

Used to indicate the last executed instruction whether it was ADD or SUB
• For ADD instructions, N is cleared to 0.
• For SUB instructions, N is set to 1.

H

Z80 Instructions

Parity/Overflow Flag (P/V)

This flag is set to a specific state depending on the operation performed.
• For arithmetic operations,

P/V is set when the result in the Accumulator is greater than the
maximum possible number (+127) or is less than the minimum
possible number (–128). � Overflow Condition

• For logical operations,
P/V is set to indicate the resulting parity is Even. The number of 1
bits in a byte are counted.
If the total is Odd, P/V is cleared (P/V = 0).

H

Z80 Instructions

H

Half Carry Flag

The Half-Carry Flag (H) is set (1) or cleared (0) depending on the Carry
and Borrow status between Bits 3 and 4 of an 8-bit arithmetic operation.

Z80 Instructions

H

Zero Flag

The Zero Flag (Z) is set (1) or cleared (0) if the result generated by the
execution of certain instructions is 0.
For 8-bit arithmetic and logical operations,

• the Z flag is set (Z = 1) if the resulting byte in the Accumulator is 0.
• If the byte is not 0, the Z flag is reset (Z = 0).

Z80 Instructions

H

Sign Flag

The Sign Flag (S) stores the state of the most-significant bit of the
Accumulator (bit 7).

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

Z80 Instructions
8-bit Arithmetic Group

DAA

Operation: Decimal Adjust Accumulator

Z80 Instructions
General-Purpose Group

Z80 Instructions
Processor Control Group

Very useful instruction!!!

Z80 Instructions
Processor Control Group

Z80 Instructions
Rotate and Shift Group

RLCA

Z80 Instructions
Rotate and shift Group

RLA

Z80 Instructions
Rotate and shift Group

RRCA

Z80 Instructions
Rotate and shift Group

RRA

Z80 Instructions
Rotate and shift Group

SLA

Z80 Instructions
Rotate and shift Group

SRA

Z80 Instructions
Unconditional Jump Group

Z80 Instructions
Unconditional Jump Group

Description:
• If condition cc is true, the instruction loads operand nn to

register pair PC (Program Counter)
• If condition cc is false, the PC is incremented as usual, and the

program continues with the next sequential instruction.
• Condition cc is programmed as one of eight status that

corresponds to condition bits in the Flag Register (register F).

Example

restart: LD A, (HL)

SUB B

JP z, restart

LD D, A

restart: LD A, (HL)

SUB B

JP nz, restart

LD D, A

restart: LD A, (HL)

SUB B

JP c, restart

LD D, A

Z80 Instructions
Unconditional Jump Group

JR e

Description:
• This instruction provides for unconditional branching to other

segments of a program.
• The value of the displacement e is added to the PC and the

next instruction is fetched from the location designated by the
new contents of the PC.

Z80 Instructions
Conditional Jump Group

Z80 Instructions
Conditional Jump Group

DJNZ e

Description:
• The B register is decremented, and if a non zero value remains,

the value of the displacement e is added to the PC.
• The next instruction is fetched from the location designated by

the new contents of the PC.
• The jump has a range of -126 to +129 bytes.
• If the result of decrementing leaves B with a zero value, the next

instruction executed is taken from the location following this instruction.

Example
LD B, 03

loop: .
.
.
DJNZ loop
LD A, (HL)

Conclusion

Z80 instructions
• Data transfer
• Arithmetic
• CPU Control
• Shift-Rotate
• Conditional/Unconditional Jump

"Do you program in Assembly ? ”she asked.

"NOP” he said.

