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Chapter 2 Assemblers
-- Basic Assembler Functions
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Basic assembler functions

� Translating mnemonic operation codes to

their machine language equivalents

� Assigning machine addresses to symbolic

labels
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Assembler directive

� Assembler directives are pseudo instructions

� They provide instructions to the assembler itself

� They are not translated into machine operation codes

� SIC assembler directive

� START : specify name & starting address

� END : end of source program, specify the first

execution instruction

� BYTE, WORD, RESB, RESW

� End of record : a null char (00)

� End of file : a zero-length record
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Example program (Figure 2.1 pp. 45)
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Example program (Figure 2.1 pp. 45)
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Example program (Figure 2.1 pp. 45)

� Purpose of example program
� Reads records from input device (code F1)

� Copies them to output device (code 05)

� At the end of the file, writes EOF on the output device, then RSUB
to the operating system

� Data transfer (RD, WD)
� A buffer is used to store record

� Buffering is necessary for different I/O rates

� The end of each record is marked with a null character (00)16
� The end of the file is indicated by a zero-length record

� Subroutines (JSUB, RSUB)
� RDREC, WRREC

� Save link register first before nested jump
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A simple SIC assembler

� Assembler’s functions

� Convert mnemonic operation codes to their machine

language equivalents

� Convert symbolic operands to their equivalent machine

addresses

� Decide the proper instruction format

� Convert the data constants to internal machine

representations

� Write the object program and the assembly listing
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Difficult

� Convert symbolic operands to their equivalent

machine addresses

� Forward reference

� 2 passes

� First pass: scan the source program for

label definitions and assign addresses

� Second pass: perform actual translation
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Example program with object code

(Figure 2.2 pp. 47)
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Example program with object code

(Figure 2.2 pp. 47)
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Example program with object code

(Figure 2.2 pp. 47)
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Format of object program

(Figure 2.3 pp.49)

� Header record

Col. 1 H

Col. 2~7 Program name

Col. 8~13 Starting address of object program (hex)

Col. 14-19 Length of object program in bytes (hex)

� Text record

Col. 1 T

Col. 2~7 Starting address for object code in this record (hex)

Col. 8~9 Length of object code in this record in bytes (hex)

Col. 10~69 Object code, represented in hex (2 col. per byte)

� End record

Col.1 E

Col.2~7 Address of first executable instruction in object program (hex)

� “^” is only for separation only
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Format of object program

(Figure 2.3 pp.49)
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The two passes of an assembler

� Pass 1 (define symbols)

� Assign addresses to all statements in the program

� Save the addresses assigned to all labels for use in Pass 2

� Perform assembler directives, including those for address

assignment, such as BYTE and RESW

� Pass 2 (assemble instructions and generate object

program)

� Assemble instructions (generate opcode and look up addresses)

� Generate data values defined by BYTE, WORD

� Perform processing of assembler directives not done during Pass 1

� Write the object program and the assembly listing
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Assembler algorithm

and data structures

� OPTAB: operation code table

� SYMTAB: symbol table

� LOCCTR: location counter
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OPTABLE

� Mnemonic operation codes ⇔ Machine code

� Contain instruction format and length

� LOCCTR← LOCCTR + (instruction length)

� Implementation

� It is a static table

� Array or hash table

� Usually use a hash table (mnemonic opcode

as key)
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LOCCTR

� Initialize to be the beginning address

specified in the “START” statement

� LOCCTR ← LOCCTR + (instruction length)

� The current value of LOCCTR gives the

address to the label encountered
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SYMTAB

� Label name ⇔ label address, type, length, flag

� To indicate error conditions (Ex: multiple define)

� It is a dynamic table

� Insert, delete and search

� Usually use a hash table

� The hash function should perform non-random

key (Ex: LOOP1, LOOP2, X, Y, Z)
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Algorithm Pass 1

(Figure 2.4(a), pp.53)
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Algorithm Pass 2

(Figure 2.4(b), pp.54)


