
�

Chapter 2 Assemblers
-- Basic Assembler Functions

�

Outline

� Basic assembler functions

� A simple SIC assembler

� Assembler algorithm and data structure

�

Basic assembler functions

� Translating mnemonic operation codes to

their machine language equivalents

� Assigning machine addresses to symbolic

labels

�����	
������
• ��	�����
�����	
• ������

���	���	� ���	��
���	

�

Assembler directive

� Assembler directives are pseudo instructions

� They provide instructions to the assembler itself

� They are not translated into machine operation codes

� SIC assembler directive

� START : specify name & starting address

� END : end of source program, specify the first

execution instruction

� BYTE, WORD, RESB, RESW

� End of record : a null char (00)

� End of file : a zero-length record

�

Example program (Figure 2.1 pp. 45)

������
�	 	�	��	

!

Example program (Figure 2.1 pp. 45)

"

Example program (Figure 2.1 pp. 45)

#

Example program (Figure 2.1 pp. 45)

� Purpose of example program
� Reads records from input device (code F1)

� Copies them to output device (code 05)

� At the end of the file, writes EOF on the output device, then RSUB
to the operating system

� Data transfer (RD, WD)
� A buffer is used to store record

� Buffering is necessary for different I/O rates

� The end of each record is marked with a null character (00)16
� The end of the file is indicated by a zero-length record

� Subroutines (JSUB, RSUB)
� RDREC, WRREC

� Save link register first before nested jump

$

A simple SIC assembler

� Assembler’s functions

� Convert mnemonic operation codes to their machine

language equivalents

� Convert symbolic operands to their equivalent machine

addresses

� Decide the proper instruction format

� Convert the data constants to internal machine

representations

� Write the object program and the assembly listing

�%

Difficult

� Convert symbolic operands to their equivalent

machine addresses

� Forward reference

� 2 passes

� First pass: scan the source program for

label definitions and assign addresses

� Second pass: perform actual translation

��

Example program with object code

(Figure 2.2 pp. 47)

��

Example program with object code

(Figure 2.2 pp. 47)

��

Example program with object code

(Figure 2.2 pp. 47)

��

Format of object program

(Figure 2.3 pp.49)

� Header record

Col. 1 H

Col. 2~7 Program name

Col. 8~13 Starting address of object program (hex)

Col. 14-19 Length of object program in bytes (hex)

� Text record

Col. 1 T

Col. 2~7 Starting address for object code in this record (hex)

Col. 8~9 Length of object code in this record in bytes (hex)

Col. 10~69 Object code, represented in hex (2 col. per byte)

� End record

Col.1 E

Col.2~7 Address of first executable instruction in object program (hex)

� “^” is only for separation only

��

Format of object program

(Figure 2.3 pp.49)

����	��
�%��
&
�%�#'
�	�	�(
�����	
��
���	�
•)*+�,)'
�
���	�
• -*./+0'
�
���	�
• 12��*)'
�%$!
���	�
3
4�%%%5�!

�!

The two passes of an assembler

� Pass 1 (define symbols)

� Assign addresses to all statements in the program

� Save the addresses assigned to all labels for use in Pass 2

� Perform assembler directives, including those for address

assignment, such as BYTE and RESW

� Pass 2 (assemble instructions and generate object

program)

� Assemble instructions (generate opcode and look up addresses)

� Generate data values defined by BYTE, WORD

� Perform processing of assembler directives not done during Pass 1

� Write the object program and the assembly listing

�"

Assembler algorithm

and data structures

� OPTAB: operation code table

� SYMTAB: symbol table

� LOCCTR: location counter

�����	
������

���	��
6��	���
� 7��	��	���	

���	
���
�

��+�1 �8�+�1-�66+)

���	���	�

+9	
���	��	���	
 ��	
������	
	�9
�����	
���	�	��:
�����	�
���	��
��
	����
��������

�#

OPTABLE

� Mnemonic operation codes ⇔ Machine code

� Contain instruction format and length

� LOCCTR← LOCCTR + (instruction length)

� Implementation

� It is a static table

� Array or hash table

� Usually use a hash table (mnemonic opcode

as key)

�$

LOCCTR

� Initialize to be the beginning address

specified in the “START” statement

� LOCCTR ← LOCCTR + (instruction length)

� The current value of LOCCTR gives the

address to the label encountered

�%

SYMTAB

� Label name ⇔ label address, type, length, flag

� To indicate error conditions (Ex: multiple define)

� It is a dynamic table

� Insert, delete and search

� Usually use a hash table

� The hash function should perform non-random

key (Ex: LOOP1, LOOP2, X, Y, Z)

��

Algorithm Pass 1

(Figure 2.4(a), pp.53)

��

Algorithm Pass 2

(Figure 2.4(b), pp.54)

