kL
L

" Chapter 2 Assemblers

-- Basic Assembler Functions

Lk

“.* Qutline

= Basic assembler functions
= A simple SIC assembler
= Assembler algorithm and data structure

Lk

“.* Basic assembler functions

= Translating mnemonic operation codes to
their machine language equivalents

= Assigning machine addresses to symbolic
labels

Lk

“.* Assembler directive

Source Program
* Mnemonic opcode ‘ Assembler ‘ Object code
« Symbol

= Assembler directives are pseudo instructions
= They provide instructions to the assembler itself
= They are not translated into machine operation codes

= SIC assembler directive
= START : specify name & starting address
= END : end of source program, specify the first
execution instruction
= BYTE, WORD, RESB, RESW

= End of record : a null char (00)
= End of file : a zero-length record

Lk

e Example program (Figure 2.1 pp. 45)

Lk

A Example program (Figure 2.1 pp. 45)

ol e
A

5 CoPY START 1000 COPY FILE FROM INPUT TO OUTPUT 110 ;

10 FIRST STL RETADR SAVE RETURN ADDRESS 115 E SUBROUTINE TO READ RECORD INTO BUFFER

15 CLOOP JSUB /RDREC READ INPUT RECCRD 120 :

20 LDA / LENGTH TEST FOR EOF (LENGTH = 0) 125 RDREC 1LDX ZERO CLEAR LOOP COUNTER

25 COMP ZERO 130 LDA ZERO CLEAR A TO ZERO

30 JEQ / ENDFIL EXIT IF EOF FOUND 135 RLOOP TD INPUT TEST INPUT DEVICE

35 JSUB / WRREC WRITE OUTPUT RECORD 140 JEQ RLOOP LOOP UNTIIL READY

40 Shenca) CLOOP LOOP 145 RD INPUT READ CHARACTER INTO REGISTER A

45 ENDFIL LDA/ EOF INSERT END OF FILE MARKER 150 COMP ZERO TEST FOR END OF RECORD (X’00)

50 STX BUFFER 155 JEQ EXIT EXIT LOOP IF EOR

55 LDA THREE SET LENGTH = 3 160 STCH BUFFER, X STORE CHARACTER IN BUFFER

60 sta LENGTH 165 TIX MAXLEN LOOP UNLESS MAX LENGTH

65 Forward fsuB WRREC WRITE EOF 170 JLT RLOOP HAS BEEN REACHED

70 reference /LDL RETADR ET RETURN ADDRESS 175 EXIT STX LENGTH SAVE RECORD LENGTH

75 / RSUB RETURN TO CALLER 180 RSUB RETURN TO CALLER

80 EOF / BYTE C'EOF’ 185 INPUT BYTE X'F1’ CODE FOR INPUT DEVICE

85 THREE / WORD 3 190 MAXLEN WORD 4096

90 ZERO w WORD 0 195

95 RESW 1

100 LENGTH RESW 1 LENGTH OF RECORD

105 BUFFER RESB 4096 4096-BYTE BUFFER AREA

6

! L L Lok
. : Th L :
. Example program (Figure 2.1 pp. 45) - “. " Example program (Figure 2.1 pp. 45)

17D

200 4 SUBROUTINE TO WRITE RECORD FROM BUFFER

205 :

210 WRREC LDX ZERO CLEAR LOOP COUNTER

215 WLOOP D OUTPUT TEST OUTPUT DEVICE

220 JEQ WLOOP LOOP UNTIL READY

225 LDCH BUFFER, X GET CHARACTER FROM BUFFER
230 WD CUTPUT WRITE CHARACTER

235 TIX LENGTH LOOP UNTIL ALL CHARACTERS
240 JLT WLOOP HAVE BEEN WRITTEN

245 RSUB RETURN TO CALLER

250 OUTPUT BYTE X'05’ CODE FOR OUTPUT DEVICE
255 END FIRST

= Purpose of example program
= Reads records from input device (code F1)
= Copies them to output device (code 05)

= At the end of the file, writes EOF on the output device, then RSUB
to the operating system

= Data transfer (RD, WD)
= A buffer is used to store record
= Buffering is necessary for different I/O rates
= The end of each record is marked with a null character (00),
= The end of the file is indicated by a zero-length record
= Subroutines (JSUB, RSUB)
= RDREC, WRREC
= Save link register first before nested jump

Lk

"% A simple SIC assembler

s Assembler’s functions

= Convert mnemonic operation codes to their machine
language equivalents

+ Convert symbolic operands to their equivalent machine
addresses

= Decide the proper instruction format

= Convert the data constants to internal machine
representations

= Write the object program and the assembly listing

Lk

. *.* Difficult

= Convert symbolic operands to their equivalent

machine addresses
= Forward reference
= 2 passes

» First pass: scan the source program for

label definitions and assign addresses

= Second pass: perform actual translation

10
. . Example program with object code . . Example program with object code
Tk : v .
" (Figure 2.2 pp. 47) " (Figure 2.2 pp. 47)
Line Loc Source statement Object code 110 :
41 £3) ¢ SUBROUTINE TO READ RECORD INTO BUFFER
b 1000 COPY START 120 &
10 1000 FIRST SIL 125 2039 RDREC LDX ZERO 041030
- S RTLOE S 130 203C LDA ZERO 001030
e e o 135 203F RLOOP D INPUT E0205D
& bos o et 140 2042 JEQ RLOOP 30203F
i ik S sl g i 145 2045 RD INPUT DB205D
o o TR e sy 150 2048 COMP ZERO 281030
012 u / CLOOP - 3C10 > - i "
45 1015 ENDFIL LDA/ EOF, 00102A 155 204R {?9_ BALL. .. 302057
50 1018 STH BUFFER 0C1039 160 204E STCH BUFFER, X 549039
55 101B LA ~'THREE 00102D 165 2051 TIX MAXTEN 2C205E
60 101E gra " LENGTH 0C1036 170 2054 JLT RLOOP 38203F
65 1021 B WRREC 482061 175 2057 EXIT STX LENGTH 101036
70 1024 AL RETADR 081033 180 2052 RSUB 4C0000
- retwd e 428000 185 205D INPUT = BYTE X'F1’ F1
= 102A iy BERR g rvaa R0 v 190 205E MAXLEN WORD 4096 001000
85 102D WORD 3 000003 Rt
90 OS> 0 000000
95 1033x" 1
100 1036 .
105 1039 BUFFER < 4096
110 : 1 12

. . Example program with object code
“.* (Figure 2.2 pp. 47)

SUBROUTINE TO WRITE RECORD FROM BUFFER

WRREC LDX
WLOOP D
JEQ

LDCH

0
302064

509039

TIX
JLT
RSUB

bl

] TPUT BYTE
55 END

13

. . Format of object program
“.* (Figure 2.3 pp.49)

= Header record
Col. 1 H
Col. 2~7 Program name
Col. 8~13 Starting address of object program (hex)
Col. 14-19 Length of object program in bytes (hex)
= Text record
Col. 1 T
Col. 2~7 Starting address for object code in this record (hex)
Col. 8~9 Length of object code in this record in bytes (hex)
Col. 10~69 Object code, represented in hex (2 col. per byte)
= End record
Col 1 E
Col.2~7 Address of first executable instruction in object program (hex)

= “Nis only for separation only

14

. . Format of object program
“.* (Figure 2.3 pp.49)

HCOPY A001000A00107A
TAOOIO()OAIEAI41033/\482039/\001036/\281030A301015A482061A3CI003/\00102A/9C1039A00102D
TOOlOlEl5/\001036/\48206IAOB1033A4C0000A454F1¢6A000003A000000

10020 lEA041030,\00l030AEO205DA30203E}\D8205DA28l039\302057A5109039/\2C20SEA38203F
TA002057AI l01036A4C0000AF1A001000A041030AE02079A302064A509039,\DC2079A2C1036
T/\002073/\07/\3 2064A4C0000A05

EAOOIOOO

Address 1033 ~ 2038: reserve storage by loader
« RETADR: 3 bytes

« LENGTH: 3 bytes

« BUFFER: 4096 bytes = (1000),,

15

Lk

“.* The two passes of an assembler

= Pass 1 (define symbols)
= Assign addresses to all statements in the program
= Save the addresses assigned to all labels for use in Pass 2
= Perform assembler directives, including those for address
assignment, such as BYTE and RESW
= Pass 2 (assemble instructions and generate object
program)
= Assemble instructions (generate opcode and look up addresses)
= Generate data values defined by BYTE, WORD
= Perform processing of assembler directives not done during Pass 1
= Write the object program and the assembly listing

16

. . Assembler algorithm

&
“.* and data structures “.* OPTABLE
= OPTAB: operation code table = Mnemonic operation codes < Machine code
= SYMTAB: symbol table = Contain instruction format and length
s LOCCTR: location counter » LOCCTR « LOCCTR + (instruction length)
Assembler = Implementation
v v = It is a static table
SYMTAB = Array or hash table
s Usually use a hash table (mnemonic opcode
as key)
Source . Object
Program . Pass 2 Code J
The intermediate file include each source statement, assigned address and error indicator
17 18
N Lk
“* LOCCTR “" SYMTAB

= Initialize to be the beginning address
specified in the “START” statement

s LOCCTR « LOCCTR + (instruction length)

= The current value of LOCCTR gives the
address to the label encountered

19

» Label name < label address, type, length, flag
= To indicate error conditions (Ex: multiple define)

= |tis a dynamic table
= Insert, delete and search
= Usually use a hash table

» The hash function should perform non-random
key (Ex: LOOP1l, LOOP2, X, Y, Z)

20

22

Pass 2:

begin
read first input line {from intermediate file}
if OPCODE = ‘START’ then
begin
write listing line
read next input line
end {if START}
write Header record to object program
initialize first Text record
while OPCODE # ‘END’ do
begin
if this is not a comment line then
begin
search OPTAB for OPCODE
if found then

begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for OPERAND
if found then
store symbol value as operand address
else
begin
store 0 as operand address
set error flag (undefined symbol)
end
end {if symbol}
else

store 0 as operand address
assermble the object code instruction
end {if opcode found}
else if OPCODE = ‘BYTE’ or ‘WORD’ then
convert constant to object code
if object code will not fit into the current Text record then
begin
write Text record to object program
initialize new Text record
end
add object code to Text record
end {if not comment}
write listing line
read next input line
end {while not END}
write last Text record to object program
write End record to object program
write last listing line
end {Pass 2}

. . Algorithm Pass 2
“.* (Figure 2.4(b), pp.54)

i
~
Pass 1:
begin
read first input line
if OPCODE = ‘START’ then
begin
save #[OPERAND] as starting address
initialize LOCCTR to starting address
write line to intermediate file
read next input line
end {if START}
else
initialize LOCCTR to 0
while OPCODE # ‘END’ do
begin
if this is not a comment line then
begin
if there is a symbol in the LABEL field then

begin
search SYMTAB for LABEL
if found then
set error flag (duplicate symbol
else
insert (LABEL,LOCCTR) into SYMTAB
end {if symbol}
search OPTAB for OPCODE
if found then
add 3 {instruction length} to LOCCTR
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #[OPERAND] to LOCCTR
else if OPCODE = ‘RESB’ then
add #[OPERAND] to LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find length of constant in bytes
add length to LOCCTR
end (if BYTE}
else
set error flag (invalid operation code)
end {if not a comment}
write line to intermediate file
read next input line
end (while not END}
write last line to intermediate file
save (LOCCTR - starting address) as program length
end {Pass 1}

“.* (Figure 2.4(a), pp.53)

. . Algorithm Pass 1

