
 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix H
OpenGL Invariance
OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an exact match between
images produced by different OpenGL implementations. However, OpenGL does specify exact
matches, in some cases, for images produced by the same implementation. This appendix describes
the invariance rules that define these cases.

The obvious and most fundamental case is repeatability. A conforming OpenGL implementation
generates the same results each time a specific sequence of commands is issued from the same
initial conditions. Although such repeatability is useful for testing and verification, it’s often not
useful to application programmers, because it’s difficult to arrange for equivalent initial conditions.
For example, rendering a scene twice, the second time after swapping the front and back buffers,
doesn’t meet this requirement. So repeatability can’t be used to guarantee a stable, double-buffered
image.

A simple and useful algorithm that counts on invariant execution is erasing a line by redrawing it in
the background color. This algorithm works only if rasterizing the line results in the same fragment
x,y pairs being generated in both the foreground and background color cases. OpenGL requires that
the coordinates of the fragments generated by rasterization be invariant with respect to framebuffer
contents, which color buffers are enabled for drawing, the values of matrices other than those on the
top of the matrix stacks, the scissor parameters, all writemasks, all clear values, the current color,
index, normal, texture coordinates, and edge-flag values, the current raster color, raster index, and
raster texture coordinates, and the material properties. It is further required that exactly the same
fragments be generated, including the fragment color values, when framebuffer contents, color
buffer enables, matrices other than those on the top of the matrix stacks, the scissor parameters,
writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be invariant with respect to
the matrix mode, the depths of the matrix stacks, the alpha test parameters (other than alpha test
enable), the stencil parameters (other than stencil enable), the depth test parameters (other than
depth test enable), the blending parameters (other than enable), the logical operation (but not logical
operation enable), and the pixel-storage and pixel-transfer parameters. Because invariance with
respect to several enables isn’t recommended, you should use other parameters to disable functions
when invariant rendering is required. For example, to render invariantly with blending enabled and
disabled, set the blending parameters to GL_ONE and GL_ZERO to disable blending rather than
calling glDisable(GL_BLEND). Alpha testing, stencil testing, depth testing, and the logical
operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth test, is
invariant to all OpenGL state except the state that directly defines it. For example, the only
OpenGL parameters that affect how the arithmetic of blending is performed are the source and
destination blend parameters and the blend enable parameter. Blending is invariant to all other state
changes. This invariance holds for the scissor test, the alpha test, the stencil test, the depth test,

blending, dithering, logical operations, and buffer writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that images rendered into
different color buffers, either simultaneously or separately using the same command sequence, are
pixel identical. This holds for all the color buffers in the framebuffer or all the color buffers in an
off-screen buffer, but it isn’t guaranteed between the framebuffer and off-screen buffers.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

