
 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix F
Homogeneous Coordinates and
Transformation Matrices
This appendix presents a brief discussion of homogeneous coordinates. It also lists the form of the
transformation matrices used for rotation, scaling, translation, perspective projection, and
orthographic projection. These topics are introduced and discussed in Chapter 3. For a more
detailed discussion of these subjects, see almost any book on three-dimensional computer graphics -
for example, Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hughes
(Reading, MA: Addison-Wesley, 1990) - or a text on projective geometry - for example, The Real
Projective Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 1961). In
the discussion that follows, the term homogeneous coordinates always means three-dimensional
homogeneous coordinates, although projective geometries exist for all dimensions.

This appendix has the following major sections:

"Homogeneous Coordinates"

"Transformation Matrices"

Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, but in fact all are treated
internally as three-dimensional homogeneous vertices comprising four coordinates. Every column
vector (x, y, z, w)T represents a homogeneous vertex if at least one of its elements is nonzero. If the
real number a is nonzero, then (x, y, z, w)T and (ax, ay, az, aw)T represent the same homogeneous
vertex. (This is just like fractions: x/y = (ax)/(ay).) A three-dimensional euclidean space point (x, y,
z)T becomes the homogeneous vertex with coordinates (x, y, z, 1.0)T, and the two-dimensional
euclidean point (x, y)T becomes (x, y, 0.0, 1.0)T.

As long as w is nonzero, the homogeneous vertex (x, y, z, w)T corresponds to the three-dimensional
point (x/w, y/w, z/w)T. If w = 0.0, it corresponds to no euclidean point, but rather to some idealized
"point at infinity." To understand this point at infinity, consider the point (1, 2, 0, 0), and note that
the sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to the
euclidean points (1, 2), (100, 200), and (10000, 20000). This sequence represents points rapidly
moving toward infinity along the line 2x = y. Thus, you can think of (1, 2, 0, 0) as the point at
infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinates with w < 0 correctly. To be sure
that your code is portable to all OpenGL systems, use only nonnegative w values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and projections (such
as perspective and orthographic) can all be represented by applying an appropriate 4 × 4 matrix to
the coordinates representing the vertex. If v represents a homogeneous vertex and M is a 4 × 4
transformation matrix, then Mv is the image of v under the transformation by M. (In
computer-graphics applications, the transformations used are usually nonsingular - in other words,
the matrix M can be inverted. This isn’t required, but some problems arise with nonsingular
transformations.)

After transformation, all transformed vertices are clipped so that x, y, and z are in the range [-
&ohgr; , w] (assuming w > 0). Note that this range corresponds in euclidean space to [-1.0, 1.0].

Transforming Normals

Normal vectors aren’t transformed in the same way as vertices or position vectors. Mathematically,
it’s better to think of normal vectors not as vectors, but as planes perpendicular to those vectors.
Then, the transformation rules for normal vectors are described by the transformation rules for
perpendicular planes.

A homogeneous plane is denoted by the row vector (a, b, c, d), where at least one of a, b, c, or d is
nonzero. If q is a nonzero real number, then (a, b, c, d) and (qa, qb, qc, qd) represent the same
plane. A point (x, y, z, w)T is on the plane (a, b, c, d) if ax+by+cz+dw = 0. (If w = 1, this is the
standard description of a euclidean plane.) In order for (a, b, c, d) to represent a euclidean plane, at
least one of a, b, or c must be nonzero. If they’re all zero, then (0, 0, 0, d) represents the "plane at
infinity," which contains all the "points at infinity."

If p is a homogeneous plane and v is a homogeneous vertex, then the statement "v lies on plane p"
is written mathematically as pv = 0, where pv is normal matrix multiplication. If M is a nonsingular
vertex transformation (that is, a 4 × 4 matrix that has an inverse M-1), then pv = 0 is equivalent to
pM-1Mv = 0, so Mv lies on the plane pM-1. Thus, pM-1 is the image of the plane under the vertex
transformation M.

If you like to think of normal vectors as vectors instead of as the planes perpendicular to them, let v
and n be vectors such that v is perpendicular to n. Then, nTv = 0. Thus, for an arbitrary nonsingular
transformation M, nTM-1Mv = 0, which means that nTM-1 is the transpose of the transformed
normal vector. Thus, the transformed normal vector is (M-1)Tn. In other words, normal vectors are
transformed by the inverse transpose of the transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrix M represents a valid projective transformation, a few special
matrices are particularly useful. These matrices are listed in the following subsections.

Translation

The call glTranslate*(x, y, z) generates T, where

Scaling

The call glScale*(x, y, z) generates S, where

Notice that S-1 is defined only if x, y, and z are all nonzero.

Rotation

The call glRotate*(a, x, y, z) generates R as follows:

Let v = (x, y, z)T, and u = v/||v|| = (x’, y’, z’)T.

Also let

Then

The R matrix is always defined. If x=y=z=0, then R is the identity matrix. You can obtain the
inverse of R, R-1, by substituting - &agr; for a, or by transposition.

The glRotate*() command generates a matrix for rotation about an arbitrary axis. Often, you’re
rotating about one of the coordinate axes; the corresponding matrices are as follows:

As before, the inverses are obtained by transposition.

Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where

R is defined as long as l ≠ r, t ≠ b, and n ≠ f .

Orthographic Projection

The call glOrtho(l, r, b, t, n, f) generates R, where

R is defined as long as l ≠ r, t ≠ b, and n ≠ f .

 OpenGL Programming Guide

(Addison-Wesley Publishing Company)

