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Appendix F
Homogeneous Coordinates and
Transformation Matrices

This appendix presents a brief discussion of homogeneous coordinates. It also lists the forr
transformation matrices used for rotation, scaling, translation, perspective projection, and
orthographic projection. These topics are introduced and discusSédpter 3For a more
detailed discussion of these subjects, see almost any book on three-dimensional computer
for example Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hugt
(Reading, MA: Addison-Wesley, 1990) - or a text on projective geometry - for exarplReal
Projective Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 19
the discussion that follows, the term homogeneous coordinates always means three-dimen
homogeneous coordinates, although projective geometries exist for all dimensions.

This appendix has the following major sections:
® "Homogeneous Coordinates”

® "Transformation Matrices"

Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, but in fact all ar
internally as three-dimensional homogeneous vertices comprising four coordinates. Every «
vector &, y, z, W)T represents a homogeneous vertex if at least one of its elements is nonzet
real number is nonzero, therx(y, z, w)T and @x, ay, az, aw)T represent the same homogene
vertex. (This is just like fractiongly = (ax)/(ay).) A three-dimensional euclidean space pomy
2)T becomes the homogeneous vertex with coordinatgsZ, 1.0)T, and the two-dimensional
euclidean pointx, y)T becomesx, y, 0.0, 1.0)T.

As long asw is nonzero, the homogeneous vertex/(z, w)T corresponds to the three-dimensic
point x/w, y/w, Zw)T. If w = 0.0, it corresponds to no euclidean point, but rather to some ide:
"point at infinity." To understand this point at infinity, consider the point (1, 2, 0, 0), and note
the sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to
euclidean points (1, 2), (100, 200), and (10000, 20000). This sequence represents points rz
moving toward infinity along the linex2=y. Thus, you can think of (1, 2, 0, 0) as the point at
infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinateswwti® correctly. To be sure
that your code is portable to all OpenGL systems, use only nonnegatalaes.



Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and projectic
as perspective and orthographic) can all be represented by applying an appropriate 4 x 4 n
the coordinates representing the vertex.riépresents a homogeneous vertexind a 4 x 4
transformation matrix, thellv is the image of under the transformation . (In
computer-graphics applications, the transformations used are usually nonsingular - in other
the matrixM can be inverted. This isn’t required, but some problems arise with nonsingular
transformations.)

After transformation, all transformed vertices are clipped saxthyaiandz are in the range |-
&ohgr; , w] (assumingv > 0). Note that this range corresponds in euclidean space to [-1.0, 1

Transforming Normals

Normal vectors aren’t transformed in the same way as vertices or position vectors. Mathenr
it's better to think of normal vectors not as vectors, but as planes perpendicular to those ve
Then, the transformation rules for normal vectors are described by the transformation rules
perpendicular planes.

A homogeneous plane is denoted by the row veatds, €, d), where at least one afb, c, ord is
nonzero. Ifg is a nonzero real number, thenl, c, d) and @a, gb, qc, qd) represent the same
plane. A pointX, Yy, z, W)T is on the planea( b, c, d) if ax+by+cz+dw = 0. (Ifw = 1, this is the
standard description of a euclidean plane.) In ordetafds, €, d) to represent a euclidean plane,
least one o0&, b, orc must be nonzero. If they’re all zero, then (0, @)0epresents the "plane al
infinity," which contains all the "points at infinity."

If p is a homogeneous plane and a homogeneous vertex, then the statemels on plang”
is written mathematically gsv = 0, wheregv is normal matrix multiplication. IM is a nonsingule
vertex transformation (that is, a 4 x 4 matrix that has an in\&¢&® thenpv = 0 is equivalent to
pM-1Mv = 0, soMvV lies on the planpM-1. ThuspM-1 is the image of the plane under the ve
transformatiorM.

If you like to think of normal vectors as vectors instead of as the planes perpendicular to tte
andn be vectors such thatis perpendicular ta. Then,nTv = 0. Thus, for an arbitrary nonsingu
transformatiorM, nTM-1Mv = 0, which means that nTM-1 is the transpose of the transforme
normal vector. Thus, the transformed normal vect@vlisl)Tn. In other words, normal vectors ¢
transformed by the inverse transpose of the transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrM represents a valid projective transformation, a few specia
matrices are particularly useful. These matrices are listed in the following subsections.

Trandation

The callgiTrandate* (x, y, z2) generate3, where
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Scaling

The callglScale* (x, y, 2) generates S, where
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Notice that S-1 is defined onlyxf y, andz are all nonzero.

Rotation
The callglRotate* (a, X, y, 2) generates R as follows:

Letv=(x,y, 2)T,and u = V/||v|| = (X, Yy, Z')T.

Also let
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TheR matrix is always defined. ¥=y=z=0, thenR is the identity matrix. You can obtain the
inverse ofR, R-1, by substituting &agr; for a, or by transposition.

TheglRotate* () command generates a matrix for rotation about an arbitrary axis. Often, you
rotating about one of the coordinate axes; the corresponding matrices are as follows:



0 0

q
. . cosa -sina 0
glRotate®(a, 1, 0, 0 sina  cose 0

1

0 0

oD o

[cosa 0 sina O
0 1 0 0
glRotate®{a, 0, 1, 0 sma D cosa 0

1

0 0 0

[cosa -sma 0 0]
glRotate®(a, 0, 0, 11 Solna ooosa [1] %

o o 0 1

As before, the inverses are obtained by transposition.
Per spective Projection

The callglFrustum(l, r, b, t, n, f) generate®, where
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R is defined as long dstne;r, t &ne; b, andn &ne; f.
Orthographic Projection

The callglOrtho(l, r, b, t, n, f ) generateR, where
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R is defined as long dstne; r, t &ne; b, andn &ne; f.

*| [+ OpenGL Programming Guide



(Addison-Wesley Publishing Company)



