[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 13
Selection and Feedback

Chapter Objectives
After reading this chapter, you’ll be able to do the following:

® Create applications that allow the user to select a region of the screen or pick an obje
on the screen

® Use the OpenGL feedback mode to obtain the results of rendering calculations

Some graphics applications simply draw static images of two- and three-dimensional objec
applications allow the user to identify objects on the screen and then to move, modify, dele
otherwise manipulate those objects. OpenGL is designed to support exactly such interactiv
applications. Since objects drawn on the screen typically undergo multiple rotations, transle
and perspective transformations, it can be difficult for you to determine which object a user
selecting in a three-dimensional scene. To help you, OpenGL provides a selection mechan
automatically tells you which objects are drawn inside a specified region of the window. Yo
use this mechanism together with a special utility routine to determine which object within tl
region the user is specifying, prcking, with the cursor.

Selection is actually a mode of operation for OpenGL,; feedback is another such mode. In f
mode, you use your graphics hardware and OpenGL to perform the usual rendering calcule
Instead of using the calculated results to draw an image on the screen, however, OpenGL |
(or feeds back) the drawing information to you. For example, if you want to draw three-dime
objects on a plotter rather than the screen, you would draw the items in feedback mode, co
drawing instructions, and then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to the application ra
being sent to the framebuffer, as it is in rendering mode. Thus, the screen remains frozen -
drawing occurs - while OpenGL is in selection or feedback mode. In these modes, the cont
the color, depth, stencil, and accumulation buffers are not affected. This chapter explains e
these modes in its own section:

® "Selection"discusses how to use selection mode and related routines to allow a user ¢
application to pick an object drawn on the screen.

® "Feedback'tescribes how to obtain information about what would be drawn on the scr
and how that information is formatted.

Selection

Typically, when you’re planning to use OpenGL’s selection mechanism, you first draw your
into the framebuffer, and then you enter selection mode and redraw the scene. However, o
you're in selection mode, the contents of the framebuffer don’t change until you exit selectic
mode. When you exit selection mode, OpenGL returns a list of the primitives that intersect -
viewing volume (remember that the viewing volume is defined by the current modelview an
projection matrices and any additional clipping planes, as explair@dhapter 3 Each primitive

that intersects the viewing volume causes a selektiofhe list of primitives is actually returnec
as an array of integer-valuedmes and related data - thnét records - that correspond to the curr
contents of th@ame stack. You construct the name stack by loading names onto it as you iss
primitive drawing commands while in selection mode. Thus, when the list of names is retur
can use it to determine which primitives might have been selected on the screen by the use

In addition to this selection mechanism, OpenGL provides a utility routine designed to simp
selection in some cases by restricting drawing to a small region of the viewport. Typically, y
this routine to determine which objects are drawn near the cursor, so that you can identify v
object the user is picking. (You can also delimit a selection region by specifying additional
planes. Remember that these planes act in world space, not in screen space.) Since pickin
special case of selection, selection is described first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps.

[

. Specify the array to be used for the returned hit recordsgBehectBuffer ().

N

. Enter selection mode by specifying GL_SELECT wjtRender M ode().
3. Initialize the name stack usimglj nitNames() andglPushName().

4. Define the viewing volume you want to use for selection. Usually this is different from
viewing volume you originally used to draw the scene, so you probably want to save &
restore the current transformation state \gltPushM atrix() andglPopM atrix().

5. Alternately issue primitive drawing commands and commands to manipulate the name
so that each primitive of interest has an appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit records).

The following paragraphs descrigkSelectBuffer () andglRender Mode(). In the next section, the
commands to manipulate the name stack are described.

void glSelectBuffer(GLsizal size, GLuint * buffer);
Soecifiesthe array to be used for the returned selection data. The buffer argument isa
pointer to an array of unsigned integers into which the data is put, and size indicates the
maximum number of values that can be stored in the array. You need to call glSelectBuffer()
before entering selection mode.

GLint glRenderMode(GLenum mode);
Controls whether the application isin rendering, selection, or feedback mode. The mode

argument can be one of GL_RENDER (the default), GL_SELECT, or GL_FEEDBACK. The
application remains in a given mode until gilRenderMode() is called again with a different
argument. Before entering selection mode, gl SelectBuffer() must be called to specify the
selection array. Smilarly, before entering feedback mode, glFeedbackBuffer() must be
called to specify the feedback array. The return value for glRenderMode() has meaning if the
current render mode (that is, not the mode parameter) is either GL_SELECT or
GL_FEEDBACK. Thereturn value is the number of selection hits or the number of values
placed in the feedback array when either mode is exited; a negative value means that the
selection or feedback array has overflowed. You can use GL_RENDER _MODE with

0l Getl ntegerv() to obtain the current mode.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the selection infol
that’s returned to you. To create the name stack, first initialize itghtitiit Names(), which simply
clears the stack, and then add integer names to it while issuing corresponding drawing con
As you might expect, the commands to manipulate the stack allow you to push a name ont
(glPushName()), pop a name off of itg{PopName()), and replace the name on the top of the s
with a different onedlL oadName()). Example 13-Ishows what your name-stack manipulation
code might look like with these commands.

Example 13-1: Creating a Name Stack

gl I ni t Nanmes() ;
gl PushNane(0) ;

gl PushMatri x(); /* save the current transformation state */
/* create your desired view ng volume here */

gl LoadNane(1);

dr awSormehj ect () ;

gl LoadNane(2) ;

dr awAnot her Cbj ect () ;

gl LoadNane(3) ;

dr awYet Anot her Qbj ect () ;
drawJust OneMor eQbj ect () ;

gl PopMatrix (); /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, and the third and f
objects share a single name. With this setup, if either or both of the third and fourth objects
selection hit, only one hit record is returned to you. You can have multiple objects share the
name if you don’t need to differentiate between them when processing the hit records.

void gll nitNames(void);
Clears the name stack so that it’s empty.

void glPushName(GLuint name);
Pushes name onto the name stack. Pushing a name beyond the capacity of the stack generates
the error GL_STACK_OVERFLOW. The name stack’ s depth can vary among different
OpenGL implementations, but it must be able to contain at least sixty-four names. You can
use the parameter GL_NAME_STACK_DEPTH with glGetl ntegerv() to obtain the depth of
the name stack.

void glPopName(void);
Pops one name off the top of the name stack. Popping an empty stack generates the error

GL_STACK_UNDERFLOW.

void glLoadName(GLuint name);
Replaces the value on the top of the name stack with name. If the stack is empty, which it is
right after glinitNames() is called, glLoadName() generates the error
GL_INVALID_OPERATION. To avoid this, if the stack isinitially empty, call glPushName()
at least once to put something on the name stack before calling glLoadName().

Calls toglPushName(), gilPopName(), andglL oadName() are ignored if you're not in selection
mode. You might find that it simplifies your code to use these calls throughout your drawinc
and then use the same drawing code for both selection and normal rendering modes.

TheHit Record

In selection mode, a primitive that intersects the viewing volume causes a selection hit. Wh
name-stack manipulation command is executeglRender M ode() is called, OpenGL writes a h
record into the selection array if there’s been a hit since the last time the stack was manipu
glRender M ode() was called. With this process, objects that share the same name - for exar
object that's composed of more than one primitive - don’t generate multiple hit records. Als
records aren’t guaranteed to be written into the array giRénder M ode() is called.

Note: In addition to primitives, valid coordinates producedyliyaster Pos() can cause a selectio
hit. Also, in the case of polygons, no hit occurs if the polygon would have been culled.

Each hit record consists of four items, in order.
® The number of names on the name stack when the hit occurred.

® Both the minimum and maximum window-coordinatelues of all vertices of the primitiv
that intersected the viewing volume since the last recorded hit. These two values, whi
the range [0,1], are each multiplied by 232-1 and rounded to the nearest unsigned inte

® The contents of the name stack at the time of the hit, with the bottommost element firs

When you enter selection mode, OpenGL initializes a pointer to the beginning of the selecti
array. Each time a hit record is written into the array, the pointer is updated accordingly. If v
hit record would cause the number of values in the array to excegdethegument specified wit
glSelectBuffer (), OpenGL writes as much of the record as fits in the array and sets an overf
flag. When you exit selection mode wilRender M ode(), this command returns the number of
records that were written (including a partial record if there was one), clears the name stacl
the overflow flag, and resets the stack pointer. If the overflow flag had been set, the return
-1.

A Selection Example

In Example 13-2four triangles (green, red, and two yellow triangles, created by calling
drawTriangle()) and a wireframe box representing the viewing voludnaWViewVolume()) are
drawn to the screen. Then the triangles are rendered agact@Dbjects()), but this time in
selection mode. The corresponding hit records are procesgeocassHits(), and the selection
array is printed out. The first triangle generates a hit, the second one doesn’t, and the third
fourth ones together generate a single hit.

Example 13-2 : Selection Example: select.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

void drawlriangle (G.float x1, G.float yl, G.float x2
G.float y2, Gfloat x3, Gfloat y3, Gfloat 2z)

{
gl Begi n (GL_TRI ANGLES)
gl Vertex3f (x1, vyl1, z);
gl Vertex3f (x2, y2, z);
gl Vertex3f (x3, y3, z);
gl End ();

}

voi d drawvi ewwol une (G.float x1, G.float x2, Gfloat yl,

G.float y2, G.float z1, G.float z2)

{
gl Color3f (1.0, 1.0, 1.0);
gl Begin (GL_LI NE_LOOP);
gl Vertex3f (x1, yl1, -z1);
gl Vertex3f (x2, yl, -zl1);
gl Vertex3f (x2, y2, -z1);
gl Vertex3f (x1, y2, -z1);
gl End ();
gl Begin (GL_LI NE_LOOP);
gl Vertex3f (x1, yl1, -z2);
gl Vertex3f (x2, yl, -z2);
gl Vertex3f (x2, y2, -z2);
gl Vertex3f (x1, y2, -z2);
gl End ();
glBegin (&L_LINES); /* 4 lines */
gl Vertex3f (x1, yl, -z1);
gl Vertex3f (x1, yl1, -z2);
gl Vertex3f (x1, y2, -z1);
gl Vertex3f (x1, y2, -z2);
gl Vertex3f (x2, yl, -z1);
gl Vertex3f (x2, yl, -z2);
gl Vertex3f (x2, y2, -z1);
gl Vertex3f (x2, y2, -z2);
gl End ();

}

voi d drawScene (void)

{

gl Matri xMbde (GL_PRQIECTI ON);
gl Loadl dentity ();
gl uPer spective (40.0, 4.0/3.0, 1.0, 100.0);

gl Matri xMode (GL_MODELVI EW ;

gl Loadl dentity ();

gl uLookAt (7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
gl Col or 3f (0.0, 1.0, 0. O), /* green triangle */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);

gl Col or3f (1.0, 0.0, 0.0); /* red triangle */
drawTri angle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);

gl Color3f (1.0, 1.0, 0.0); /* yellow triangles */
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);

drawTri angle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);

drawi ewol une (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);

}

void processHits (Gint hits, Guint buffer[])
{

unsigned int i, j;

GLui nt nanes, *ptr;

printf ("hits = %\n", hits);

ptr = (Guint *) buffer;

for (i =0; i <hits; i++) { /* for each hit */
names = *ptr;

printf (" nunber of names for hit = %\ n", nanes);
printf(" z1is %;", (float) *ptr/Ox7fffffff); ptr++
printf(" z2 is %\n", (float) *ptr/Ox7fffffff); ptr++
printf (" the nane is ");
for (j = 0; j < nanes; j++) { /* for each name */
printf ("% ", *ptr); ptr++;
}
printf ("\n");
}
}
#defi ne BUFSI ZE 512
voi d sel ect Obj ect s(voi d)
{
GLui nt sel ect Buf [BUFSI ZE]
Gint hits;
gl Sel ect Buf fer (BUFSIZE, sel ectBuf);
(void) gl Render Mbde (G._SELECT);
gl I ni t Nanmes() ;
gl PushNane(0) ;
gl PushiMatrix ();
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
glOtho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
gl Matri xMode (GL_MODELVI EW ;
gl Loadl dentity ();
gl LoadNane(1);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
gl LoadNane(2) ;
drawfriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
gl LoadNane(3) ;
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
gl PopMatrix ();
gl Flush ();
hits = gl Render Mode (G._RENDER);
processHits (hits, selectBuf);
}
void init (void)
{
gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeModel (GL_FLAT);
}
voi d di spl ay(voi d)
{

gl earColor (0.0, 0.0, 0.0, 0.0);
gl O ear (G._COLOR BUFFER BI T | G._DEPTH BUFFER BIT);

drawScene ();
sel ect oj ects ();
gl Fl ush();

int main(int argc, char** argv)

glutlnit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (200, 200);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}
Picking

As an extension of the process described in the previous section, you can use selection mc
determine if objects are picked. To do this, you use a special picking matrix in conjunction \
projection matrix to restrict drawing to a small region of the viewport, typically near the curs
Then you allow some form of input, such as clicking a mouse button, to initiate selection m¢
With selection mode established and with the special picking matrix used, objects that are (
near the cursor cause selection hits. Thus, during picking you're typically determining whict
objects are drawn near the cursor.

Picking is set up almost exactly like regular selection mode is, with the following major diffe

® Picking is usually triggered by an input device. In the following code examples, pressi
left mouse button invokes a function that performs picking.

® You use the utility routingluPickMatrix() to multiply a special picking matrix onto the
current projection matrix. This routine should be called prior to multiplying a standard
projection matrix (such aguPer spective() or glOrtho()). You'll probably want to save the
contents of the projection matrix first, so the sequence of operations may look like this

gl Matri xMode (G_PRQIECTI ON) ;
gl Pushiatrix ();
gl Loadl dentity ();
gl uPi ckMatrix (...);
gl uPerspective, gl Otho, gluOtho2D, or gl Frustum
[* ... draw scene for picking ; performpicking ... */
gl PopMat ri x();

Another completely different way to perform picking is describétinject Selection Using the
Back Buffer" in Chapter 14This technique uses color values to identify different components
object.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,

GLdouble height, GLint viewport[4]);
Creates a projection matrix that restricts drawing to a small region of the viewport and
multiplies that matrix onto the current matrix stack. The center of the picking regionis (X, y)
in window coordinates, typically the cursor location. width and height define the size of the
picking region in screen coordinates. (You can think of the width and height as the sensitivity
of the picking device.) viewport[] indicates the current viewport boundaries, which can be

obtained by calling
gl Get |l ntegerv(G_VI EWPORT, GLint *viewport);

Advanced

The net result of the matrix createdddyPickM atrix() is to transform

the clipping region into the unit cube -1 &l&; ¢, 2) ≤ 1 (or w ≤ (wx, wy, wz) ≤ w). The
picking matrix effectively performs an orthogonal transformation that maps a subregion of tl
cube to the unit cube. Since the transformation is arbitrary, you can make picking work for
sorts

of regions - for example, for rotated rectangular portions of the window. In certain situations
might find it easier to specify additional clipping planes to define the picking region.

Example 13-3llustrates simple picking. It also demonstrates how to use multiple names to i
different components of a primitive, in this case the row and column of a selected object. A
grid of squares is drawn, with each square a different color. The board[3][3] array maintains
current amount of blue for each square. When the left mouse button is prespek Shear es()
routine is called to identify which squares were picked by the mouse. Two names identify e
square in the grid - one identifies the row, and the other the column. Also, when the left mo
button is pressed, the color of all squares under the cursor position changes.

Example 13-3: Picking Example: picksquare.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <G/ gl ut. h>

int board[3][3]; /* ampunt of color for each square */

/* dear color value for every square on the board */
voi d init(void)

int i, j;
for (i =0; i < 3; i++)
for (j =0; j <3,] ++)
board[i][j] = O;
glClearColor (0.0, 0.0, 0.0, 0.0);

}

voi d dr awSquar es(GL.enum node)

Guint i, j;
for (i =0; i < 3; i++) {
if (nbde == G._SELECT)
gl LoadNane (i);
for (j =0; j <3; j ++) {
if (mode == G__SELECT)
gl PushNare (j);
gl Color3f ((G.float) i/3.0, (G.float)
(GLfloat) board[i][j]/3.0);
gl Recti (i, j, i+1, j+1);
if (nbde == G._SELECT)
gl PopNane ();

/3.0,

/* processHits prints out the contents of the
* gselection array.

*/
void processHits (Gint hits, Guint buffer[])
{

unsigned int i, j;

Guint ii, jj, nanes, *ptr;

printf ("hits = %l\n", hits);
ptr = (Guint *) buffer;
for (i =0; i < hits; i++) { /* for each hit */
nanmes = *ptr;
printf (" nunmber of names for this hit = %\ n", names);
ptr++;
printf(" z1is %;",

(float) *ptr/Ox7fffffff); ptr++;
printf(" z2 is %\n", (fl fff);

).

J

at) *ptr/Ox7ffff ;o ptr++;

o O

printf (" names are ");
for (j =0; j <nanes; j++) { /* for each name */
printf ("% ", *ptr);

if (j ==0) [/* set rowand colum */
ii = *ptr;
else if (j == 1)
ji = *ptr;
ptr++;
printf ("\n");

board[ii][jj] = (board[ii][jj] + 1) % 3;
}
}

#def i ne BUFSI ZE 512
voi d pickSquares(int button, int state, int x, int y)

GLui nt sel ect Buf [BUFSI ZF] ;
Gint hits;
GLint viewport[4];

if (button != GLUT_LEFT BUTTON || state != GLUT_DOWN)
return;

gl Get I ntegerv (G._VI EWPORT, viewport);

gl Sel ect Buf fer (BUFSIZE, sel ectBuf);
(voi d) gl Render Mode (G._SELECT);

gl I ni t Names() ;
gl PushNane(0) ;

gl Mat ri xMode (GL_PRQIECTI ON);
gl Pushiatrix ();
gl Loadl dentity ();
/* create 5x5 pixel picking region near cursor |ocation */
gl uPi ckhvatrix ((G.double) x, (G.double) (viewport[3] - V),
5.0, 5.0, viewport);
gluOrtho2D (0.0, 3.0, 0.0, 3.0);
drawSquar es (G._SELECT);

gl Mat ri xMode (G._PRQIECTI ON);
gl PopMatrix ();
gl Flush ();

hits = gl Render Mbde (G._RENDER);
processHits (hits, selectBuf);
gl ut Post Redi spl ay() ;

}
voi d di spl ay(voi d)

gl A ear (G._COLOR BUFFER BI T);
dr awSquar es (GL_RENDER) ;
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, w, h);

gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

gluOortho2D (0.0, 3.0, 0.0, 3.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlinitD splayMbde (GLUT_SINGLE | GLUT_RGB)
gl ut I nit WndowSi ze (100, 100);
gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut MouseFunc (pi ckSquares);
gl ut ReshapeFunc (reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

}

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in a scene. For ex
you were rendering an assembly line of automobiles, you might want the user to move the
pick the third bolt on the left front tire of the third car in line. A different name can be used t
identify each level of hierarchy: which car, which tire, and finally which bolt. As another exa
one name can be used to describe a single molecule among other molecules, and addition
can differentiate individual atoms within that molecule.

Example 13-4s a modification oExample 3-4which draws an automobile with four identical
wheels, each of which has five identical bolts. Code has been added to manipulate the nan
with the object hierarchy.

Example 13-4 : Creating Multiple Names

draw_wheel _and_bol t s()
{

long i;

draw_wheel _body();
for (i =0; i <5; i++) {
gl PushMatri x();
gl Rotate(72.0*i, 0.0, 0.0, 1.0);
gl Transl atef (3.0, 0.0, 0.0);
gl PushNane(i);
draw bolt_body();

gl PopNane();

gl PopMat ri x();
}
draw_body_and_wheel _and_bol t s()

draw_car_body();
gl PushMatrix();

gl Transl ate(40, 0, 20); /* first wheel position*/

gl PushNane(1); /* nanme of wheel nunber 1 */
draw wheel _and_bol ts();

gl PopNane();

gl PopMat ri x();
gl PushiMatri x();

gl Transl ate(40, 0, -20); /* second wheel position */

gl PushNane(2); /* nane of wheel nunber 2 */
draw_wheel _and_bol ts();

gl PopNane() ;

gl PopMat ri x();

/* draw | ast two wheels simlarly */

}

Example 13-51ses the routines Example 13-40 draw three different cars, numbered 1, 2, ar

Example 13-5: Using Multiple Names

draw_t hree_cars()

gl I ni t Names() ;
gl PushMatri x();
translate_to _first_car_position();
gl PushNane(1);
draw _body and wheel _and_bolts();
gl PopNare() ;
gl PopMat ri x();

gl PushMatri x();
translate_to_second_car_position();
gl PushNane(2) ;

draw _body and wheel _and_bolts();
gl PopNare() ;

gl PopMat ri x();

gl PushiMatri x();
translate to third car_position();
gl PushNane(3) ;

draw_body_and_wheel _and_bol ts();
gl PopNare() ;

gl PopMat ri x();

Assuming that picking is performed, the following are some possible name-stack return vali
their interpretations. In these examples, at most one hit record is returnedi asdd2 are deptf
values.

2d1d2 2 1 Car 2, wheel 1
1d1d2 3 Car 3 body

3d1d21 1 0Bolt 0 onwheelloncarl

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the same picking regit
user might well pick both the wheel and the bolt, yielding two hits. If you receive multiple hit
have to decide which hit to process, perhaps by using the depth values to determine which
object is closest to the viewpoint. The use of depth values is explored further in the next se

Picking and Depth Values

Example 13-Glemonstrates how to use depth values when picking to determine which objes
picked. This program draws three overlapping rectangles in normal rendering mode. When
mouse button is pressed, fhiekRects() routine is called. This routine returns the cursor positi
enters selection mode, initializes the name stack, and multiplies the picking matrix onto the
before the orthographic projection matrix. A selection hit occurs for each rectangle the curs
over when the left mouse button is clicked. Finally, the contents of the selection buffer are
examined to identify which named objects were within the picking region near the cursor.

The rectangles in this program are drawn at different depthyatues. Since only one name is
used to identify all three rectangles, only one hit can be recorded. However, if more than or
rectangle is picked, that single hit has different minimum and maxiruatues.

Example 13-6 : Picking with Depth Values: pickdepth.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

void init(void)

gl dearColor(0.0, 0.0, 0.0, 0.0);

gl Enabl e(G._DEPTH_TEST) ;

gl ShadeModel (GL_FLAT);

gl Dept hRange(0.0, 1.0); /* The default z mapping */

voi d drawRect s(GLenum node)

if (nbde == G._SELECT)
gl LoadNane(1);
gl Begi n(G._QUADS) ;
gl Color3f(1.0, 1.0, 0.0);
gl Vertex3i (2, 0, 0);
gl Vertex3i (2, 6, 0);
gl Vertex3i (6, 6, 0);
gl Vertex3i (6, 0, 0);
gl End() ;
if (mpde == G._SELECT)
gl LoadNane(2) ;
gl Begi n(G._QUADS) ;
gl Col or3f(0.0, 1.0, 1.0);
gl Vertex3i (3, 2, -1);
gl Vertex3i (3, 8, -1);
gl Vertex3i (8, 8, -1);
gl Vertex3i (8, 2, -1);
gl End() ;
if (mbde == G._SELECT)
gl LoadNane(3) ;

gl Begi n(GL_QUADS) ;
gl Col or3f (1.0, 0.0, 1.0);
gl Vertex3i (0, 2, -2);

gl Vertex3i (0, 7, -2);
gl Vertex3i (5, 7, -2);
gl Vertex3i (5, 2, -2);
gl End() ;

void processH ts(G.int hits, GQuint buffer[])

unsigned int i, j;
GLui nt nanes, *ptr;

printf("hits = %\ n", hits);

ptr = (Guint *) buffer;

for (i =0; i < hits; i++) { [* for each hit */
nanmes = *ptr;

printf(" nunber of names for hit = %l\n", nanes); ptr++;

printf(" z1 is %;", (float) *ptr/Ox7fffffff); ptr++;

printf(" z2 is Y@\n", (float) *ptr/Ox7fffffff); ptr++;

printf(" the nane is ");

for (j =0; j <nanes; j++) { [/* for each nane */
printf("% ", *ptr); ptr++;

E)ri ntf("\n");
}
}

#def i ne BUFSI ZE 512

voi d pickRects(int button, int state, int x, int vy)
{

GLui nt sel ect Buf [BUFSI ZE] ;

Glint hits;

GLint viewport[4];

if (button != GLUT_LEFT_BUTTON || state != GLUT_DOM)
return;
gl Get I nt eger v(GL_VI EWPORT, Vi ewport);

gl Sel ect Buf f er (BUFSI ZE, sel ect Buf);
(void) gl Render Mode(GL_SELECT) ;

gl I ni t Nanmes() ;
gl PushNane(0) ;

gl Mat ri xMode(GL_PROJECTI ON) ;
gl PushiMatri x();
gl Loadl dentity();

/* create 5x5 pixel picking region near cursor |ocation */
gl uPi ckMatri x((G.doubl e) x, (G.double) (viewport[3] - V),

5.0, 5.0, viewport);

glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
drawRect s(GL_SELECT) ;
gl PopMat ri x();
gl Fl ush();

hits = gl Render Mode(G._RENDER) ;
processHi ts(hits, selectBuf);

}
voi d di spl ay(voi d)
gl O ear (G._COLOR BUFFER BI T | G._DEPTH BUFFER BIT);

dr awRect s(G__RENDER) ;
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

glOtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

}

int main(int argc, char **argv)
{
glutinit(&rgc, argv);
glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (200, 200);
gl utlnit WndowPosition (100, 100);
gl ut Creat eW ndow(argv[0]);
init();
gl ut MouseFunc(pi ckRect s);
gl ut ReshapeFunc(reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

}
Try This

® Modify Example 13-6o add additional calls tgiPushName() so that multiple names are «
the stack when the selection hit occurs. What will the contents of the selection buffer t

® By default,giDepthRange() sets the mapping of tlzevalues to [0.0,1.0]. Try modifying the
glDepthRange() values and see how it affects thealues that are returned in the selectio
array.

Hintsfor Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry provide a mechanism -
user to pick items or groups of items for editing. For two-dimensional drawing programs (fo
example, text editors, page-layout programs, and circuit-design programs), it might be easi
your own picking calculations instead of using the OpenGL picking mechanism. Often, it's €
find bounding boxes for two-dimensional objects and to organize them in some hierarchical
structure to speed up searches. For example, picking that uses the OpenGL style in a VLS|
program containing millions of rectangles can be relatively slow. However, using simple
bounding-box information when rectangles are typically aligned with the screen could make
picking in such a program extremely fast. The code is probably simpler to write, too.

As another example, since only geometric objects cause hits, you might want to create you
method for picking text. Setting the current raster position is a geometric operation, but it

effectively creates only a single pickable point at the current raster position, which is typical
the lower-left corner of the text. If your editor needs to manipulate individual characters witt
text string, some other picking mechanism must be used. You could draw little rectangles a
each character during picking mode, but it's almost certainly easier to handle text as a spec

If you decide to use OpenGL picking, organize your program and its data structures so that
to draw appropriate lists of objects in either selection or normal drawing mode. This way, w
user picks something, you can use the same data structures for the pick operation that you
display the items on the screen. Also, consider whether you want to allow the user to selec
objects. One way to do this is to store a bit for each item indicating whether it's selected (hc
this method requires traversing your entire list of items to find the selected items). You migl|
useful to maintain a list of pointers to selected items to speed up this search. It's probably ¢
idea to keep the selection bit for each item as well, since when you're drawing the entire pic
you might want to draw selected items differently (for example, in a different color or with a
selection box around them). Finally, consider the selection user interface. You might want t
the user to do the following:

® Select an item
® Sweep-select a group of items (see the next paragraphs for a description of this beha
® Add an item to the selection
® Add a sweep selection to the current selections
® Delete an item from a selection
® Choose a single item from a group of overlapping items
A typical solution for a two-dimensional drawing program might work as follows.

1. All selection is done by pointing with the mouse cursor and using the left mouse butto
what follows,cursor means the cursor tied to the mouse, lautthn means the left mouse
button.

2. Clicking on an item selects it and deselects all other currently selected items. If the cu
on top of multiple items, the smallest is selected. (In three dimensions, many other str
work to disambiguate a selection.)

3. Clicking down where there is no item, holding the button down while dragging the curs
and then releasing the button selects all the items in a screen-aligned rectangle whos
are determined by the cursor positions when the button went down and where it came
is called asweep selection. All items not in the swept-out region are deselected. (You mt
decide whether an item is selected only if it's completely within the sweep region, or if
part of it falls within the region. The completely within strategy usually works best.)

4. If the Shift key is held down and the user clicks on an item that isn’t currently selected
item is added to the selected list. If the clicked-upon item is selected, it's deleted from
selection list.

5. If a sweep selection is performed with the Shift key pressed, the items swept out are ¢
the current selection.

6. In an extremely cluttered region, it's often hard to do a sweep selection. When the but
down, the cursor might lie on top of some item, and normally that item would be selec
You can make any operation a sweep selection, but a typical user interface interprets

button-down on an item plus a mouse motion as a select-plus-drag operation. To solv
problem, you can have an enforced sweep selection by holding down, say, the Alt key
this, the following set of operations constitutes a sweep selection: Alt-button down, sw
button up. Items under the cursor when the button goes down are ignored.

7. If the Shift key is held during this sweep selection, the items enclosed in the sweep re
added to the current selection.

8. Finally, if the user clicks on multiple items, select just one of them. If the cursor isn’t
(or maybe not moved more than a pixel), and the user clicks again in the same place,
the item originally selected, and select a different item under the cursor. Use repeatec
the same point to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you probably don’t have to
about characters on top of each other, and selections of multiple characters are always cor
characters in the document. Thus, you need to mark only the first and last selected charact
identify the complete selection. With text, often the best way to handle selection is to identi
positions between characters rather than the characters themselves. This allows you to ha
empty selection when the beginning and end of the selection are between the same pair of
characters; it also allows you to put the cursor before the first character in the document or
final one with no special-case code.

In three-dimensional editors, you might provide ways to rotate and zoom between selectior
sophisticated schemes for cycling through the possible selections might be unnecessary. C
other hand, selection in three dimensions is difficult because the cursor’s position on the sc
usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you're in either mode, no pixels are produced
screen is frozen. Drawing does not occur; instead, information about primitives that would t
been rendered is sent back to the application. The key difference between selection and fe
modes is what information is sent back. In selection mode, assigned names are returned tc
of integer values. In feedback mode, information about transformed primitives is sent back
array of floating-point values. The values sent back to the feedback array consist of tokens
specify what type of primitive (point, line, polygon, image, or bitmap) has been processed a
transformed, followed by vertex, color, or other data for that primitive. The values returned :
fully transformed by lighting and viewing operations. Feedback mode is initiated by calling

glRender M ode() with GL_FEEDBACK as the argument.

Here’s how you enter and exit feedback mode.

1. Call glFeedbackBuffer() to specify the array to hold the feedback information. The
arguments to this command describe what type of data and how much of it gets writte
the array.

2. Call giRenderMode() with GL_FEEDBACK as the argument to enter feedback mode. (
this step, you can ignore the value returnediBender M ode().) After this point, primitives
aren't rasterized to produce pixels until you exit feedback mode, and the contents of tl
framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can make several calls t
glPassT hrough() to insert markers into the returned feedback data and thus facilitate p

4. Exit feedback mode by callingfRender M ode() with GL_RENDER as the argument if yot
want to return to normal drawing mode. The integer value returngiRiesider M ode() is the
number of values stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat * buffer);
Establishes a buffer for the feedback data: buffer is a pointer to an array where the data is
stored. The size argument indicates the maximum number of values that can be stored in the
array. The type argument describes the information fed back for each vertex in the feedback
array; its possible values and their meaning are shown in Table 13-1. glFeedbackBuffer()
must be called before feedback mode is entered. In the table, k is 1 in color-index mode and 4
in RGBA mode.

Table 13-1: glFeedbackBuffer(dype Values

type Argument Coordinates | Color | Texture | Total Values
GL_2D X,y - - 2
GL_3D XY,z - - 3
GL_3D_COLOR X, VY, Z k - 3+Kk
GL_3D_COLOR_TEXTURE| x,v, z Kk 4 7+k
GL_4D _COLOR_TEXTURE| x,vy, z,w k 4 8 +k

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each gid8itimap(),
glDrawPixels(), or glCopyPixels(), if the raster position is valid) generates a block of values t
copied into the feedback array. The number of values is determined tgpdlaegument to
olFeedbackBuffer(), as listed inTable 13-1 Use the appropriate value for the type of primitive
you're drawing: GL_2D or GL_3D for unlit two- or three-dimensional primitives, GL_3D_CC
for lit, three-dimensional primitives, and GL_3D_COLOR_TEXTURE or
GL_4D_COLOR_TEXTURE for lit, textured, three- or four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive type, followed by
that describe the primitive’s vertices and associated data. Entries are also written for pixel

rectangles. In addition, pass-through markers that you've explicitly created can be returned
array; the next section explains these markers in more degble 13-2shows the syntax for the
feedback array; remember that the data associated with each returned vertex is as de$eaibls

13-1 Note that a polygon can hamevertices returned. Also, they, z coordinates returned by

feedback are window coordinateswiis returned, it’s in clip coordinates. For bitmaps and pixe
rectangles, the coordinates returned are those of the current raster position. In the table, nc
GL_LINE_RESET_TOKEN is returned only when the line stipple is reset for that line segm:«

Table 13-2 : Feedback Array Syntax

Primitive Type | Code Associated Data
Point GL_POINT_TOKEN vertex
Line GL_LINE_TOKEN or vertex vertex

GL_LINE_RESET_TOKEN

Polygon GL_POLYGON_TOKEN n vertex vertex ...
vertex
Bitmap GL_BITMAP_TOKEN vertex
Pixel Rectangle| GL_DRAW_PIXEL_TOKEN or vertex
GL_COPY_PIXEL_TOKEN
Pass-through GL_PASS_THROUGH_TOKEN a floating-point
number

Using Markersin Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and interpretation of polyg
glPolygonM ode(). It might also occur after polygons with more than three edges are broken
triangles (if your particular OpenGL implementation renders polygons by performing this
decomposition). Thus, it might be hard for you to recognize the primitives you drew in the fe
data you receive. To help parse the feedback dataylPalisT hrough() as needed in your
sequence of drawing commands to insert a marker. You might use the markers to separate
feedback values returned from different primitives, for example. This command causes
GL_PASS_THROUGH_TOKEN to be written into the feedback array, followed by the
floating-point value you pass in as an argument.

void glPassThrough(GLfloat token);
Inserts a marker into the stream of values written into the feedback array, if called in
feedback mode. The marker consists of the code GL_PASS THROUGH_TOKEN followed by
a single floating-point value, token. This command has no effect when called outside of
feedback mode. Calling glPassThrough() between glBegin() and glEnd() generates a
GL_INVALID_OPERATION error.

A Feedback Example

Example 13-temonstrates the use of feedback mode. This program draws a lit, three-dime
scene in normal rendering mode. Then, feedback mode is entered, and the scene is redrav
the program draws lit, untextured, three-dimensional objects, the type of feedback data is
GL_3D_COLOR. Since RGBA mode is used, each unclipped vertex generates seven value
feedback bufferx, y, z r, g, b, anda.

In feedback mode, the program draws two lines as part of a line strip and then inserts a
pass-through marker. Next, a point is drawn at (-100.0, -100.0, -100.0), which falls outside
orthographic viewing volume and thus doesn’t put any values into the feedback array. Final
another pass-through marker is inserted, and another point is drawn.

Example 13-7 : Feedback Mode: feedback.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i nclude <@/ glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

voi d init(void)

gl Enabl e(G._LI GHTI NG) ;
gl Enabl e(G._LI GHTO) ;

}
voi d drawGeonetry (GLenum node)
{
gl Begin (GL_LINE_STRI P);
gl Norrmal 3f (0.0, 0.0, 1.0);
gl Vertex3f (30.0, 30.0, 0.0);
gl Vertex3f (50.0, 60.0, 0.0);
gl Vertex3f (70.0, 40.0, 0.0);
gl End ();
i f (nobde == GL_FEEDBACK)
gl PassThrough (1.0);
gl Begin (G_PA NTS);
gl Vertex3f (-100.0, -100.0, -100.0); /* wll be clipped */
gl End ();
i f (mode == G__FEEDBACK)
gl PassThrough (2.0);
gl Begin (G _PA NTS);
gl Nornmal 3f (0.0, 0.0, 1.0);
gl Vertex3f (50.0, 50.0, 0.0);
gl End ();
}
voi d print3Dcol orVertex (G.int size, G.int *count,
G.fl oat *buffer)
t
int i;
printf (" ;
for (i =0; i <7; i++) {
printf ("%.2f ", buffer[size-(*count)]);
*count = *count - 1;
}
printf ("\n");
}

void printBuffer(GLint size, Gfloat *buffer)

GLi nt count;

A fl oat token;

count = size;
whil e (count) {
t oken = buffer[size-count]; count--;
if (token == G__PASS_THROUGH TCOKEN) ({
printf ("G._PASS_THROUGH TOKEN n");
printf (" 9%l 2f\n", buffer[size-count]);
count - -;

}
else if (token == GL_PO NT_TOKEN) {
printf ("G._PO NT_TOKEN n");
print 3Dcol or Vertex (size, &count, buffer);

}

else if (token == GL_LINE_TOKEN) {
printf ("G._LINE_TOKEM n");
print 3Dcol or Vertex (size, &count, buffer);
print3Dcol or Vertex (size, &count, buffer);

}

else if (token == G._LINE_RESET_TCKEN) ({
printf ("G._LINE_RESET_TOKEM n");
print3Dcol or Vertex (size, &count, buffer);
print3Dcol orVertex (size, &count, buffer);

}

}
}

voi d di spl ay(voi d)

GLfl oat feedBuffer[1024];
Gint size;

gl Matri xMbde (GL_PRQIECTI ON) :
gl Loadl dentity ();
glOrtho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0):

gl CearColor (0.0, 0.0, 0.0, 0.0);
gl O ear (G._COLOR BUFFER BI T);
drawGeonetry (G._RENDER);

gl FeedbackBuffer (1024, G._3D COLOR, feedBuffer);
(voi d) gl Render Mbde (G._FEEDBACK) ;
drawGeonetry (G._FEEDBACK);

size = gl Render Mode (GL_RENDER);
printBuffer (size, feedBuffer);

}
int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD spl ayMode(GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (100, 100);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow(argv[0]);

init();

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

Running this program generates the following output:

GL_LI NE_RESET_TOKEN
30. 00 30.00 0.00 0.84 0.84 0.84 1.00

50. 00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LI NE_TOKEN

50. 00 60.00 0.00 0.84 0.84 0.84 1.00
70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN

1.00
GL_PASS_THROUGH_TOKEN

2.00
GL_PO NT_TOKEN

50. 00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

gl Begi n(GL_LI NE_STRI P) ;
gl Nornal 3f (0.0, 0.0, 1.0);
gl Vertex3f (30.0, 30.0, 0.0);
gl Vertex3f (50.0, 60.0, 0.0);
gl Vertex3f (70.0, 40.0, 0.0);
gl End() ;

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates that the primitive
line segment and that the line stipple is reset. The second primitive begins with

GL_LINE_TOKEN, so it's also a line segment, but the line stipple isn’t reset and hence con
from where the previous line segment left off. Each of the two vertices for these lines gener
seven values for the feedback array. Note that the RGBA values for all four vertices in thes
lines are (0.84, 0.84, 0.84, 1.0), which is a very light gray color with the maximum alpha val
These color values are a result of the interaction of the surface normal and lighting parame

Since no feedback data is generated between the first and second pass-through markers, \
deduce that any primitives drawn between the first two califPassT hrough() were clipped out
of the viewing volume. Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated dat
copied into the feedback array.

Note: In both feedback and selection modes, information on objects is returned prior to any
fragment tests. Thus, objects that would not be drawn due to failure of the scissor, alpha, d
stencil tests may still have their data processed and returned in both feedback and selectio

Try This

Make changes tBxample 13-7and see how they affect the feedback values that are returnec
example, change the coordinate valueglOftho(). Change the lighting variables, or eliminate
lighting altogether and change the feedback type to GL_3D. Or add more primitives to see
other geometry (such as filled polygons) contributes to the feedback array.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

