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Chapter 11
Tessellators and Quadrics
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Render concave filled polygons by first tessellating them into convex polygons, which can be
rendered using standard OpenGL routines.

Use the GLU library to create quadrics objects to render and model the surfaces of spheres
and cylinders and to tessellate disks (circles) and partial disks (arcs).

The OpenGL library (GL) is designed for low-level operations, both streamlined and accessible to
hardware acceleration. The OpenGL Utility Library (GLU) complements the OpenGL library,
supporting higher-level operations. Some of the GLU operations are covered in other chapters.
Mipmapping (gluBuild*DMipmaps()) and image scaling (gluScaleImage()) are discussed along
with other facets of texture mapping in Chapter 9. Several matrix transformation GLU routines
(gluOrtho2D(), gluPerspective(), gluLookAt(), gluProject(), and gluUnProject()) are described
in Chapter 3. The use of gluPickMatrix() is explained in Chapter 13. The GLU NURBS facilities,
which are built atop OpenGL evaluators, are covered in Chapter 12. Only two GLU topics remain:
polygon tessellators and quadric surfaces, and those topics are discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons, but the GLU contains
routines to tessellate concave polygons into convex ones, which the basic OpenGL can handle.
Where the basic OpenGL operates upon simple primitives, such as points, lines, and filled
polygons, the GLU can create higher-level objects, such as the surfaces of spheres, cylinders, and
cones.

This chapter has the following major sections.

"Polygon Tessellation" explains how to tessellate convex polygons into easier-to-render
convex polygons.

"Quadrics: Rendering Spheres, Cylinders, and Disks" describes how to generate spheres,
cylinders, circles and arcs, including data such as surface normals and texture coordinates.

Polygon Tessellation

As discussed in "Describing Points, Lines, and Polygons" in Chapter 2, OpenGL can directly
display only simple convex polygons. A polygon is simple if the edges intersect only at vertices,



there are no duplicate vertices, and exactly two edges meet at any vertex. If your application
requires the display of concave polygons, polygons containing holes, or polygons with intersecting
edges, those polygons must first be subdivided into simple convex polygons before they can be
displayed. Such subdivision is called tessellation, and the GLU provides a collection of routines
that perform tessellation. These routines take as input arbitrary contours, which describe
hard-to-render polygons, and they return some combination of triangles, triangle meshes, triangle
fans, or lines.

Figure 11-1 shows some contours of polygons that require tessellation: from left to right, a concave
polygon, a polygon with a hole, and a self-intersecting polygon. 

Figure 11-1 : Contours That Require Tessellation

If you think a polygon may need tessellation, follow these typical steps.

1. Create a new tessellation object with gluNewTess().

2. Use gluTessCallback() several times to register callback functions to perform operations
during the tessellation. The trickiest case for a callback function is when the tessellation
algorithm detects an intersection and must call the function registered for the
GLU_TESS_COMBINE callback.

3. Specify tessellation properties by calling gluTessProperty(). The most important property is
the winding rule, which determines the regions that should be filled and those that should
remain unshaded.

4. Create and render tessellated polygons by specifying the contours of one or more closed
polygons. If the data for the object is static, encapsulate the tessellated polygons in a display
list. (If you don’t have to recalculate the tessellation over and over again, using display lists is
more efficient.)

5. If you need to tessellate something else, you may reuse your tessellation object. If you are
forever finished with your tessellation object, you may delete it with gluDeleteTess().

Note: The tessellator described here was introduced in version 1.2 of the GLU. If you are using an
older version of the GLU, you must use routines described in "Describing GLU Errors". To query
which version of GLU you have, use gluGetString(GLU_VERSION), which returns a string with
your GLU version number. If you don’t seem to have gluGetString() in your GLU, then you have
GLU 1.0, which did not yet have the gluGetString() routine.

Create a Tessellation Object



As a complex polygon is being described and tessellated, it has associated data, such as the vertices,
edges, and callback functions. All this data is tied to a single tessellation object. To perform
tessellation, your program first has to create a tessellation object using the routine gluNewTess().

GLUtesselator* gluNewTess(void);
Creates a new tessellation object and returns a pointer to it. A null pointer is returned if the
creation fails. 

A single tessellation object can be reused for all your tessellations. This object is required only
because library routines might need to do their own tessellations, and they should be able to do so
without interfering with any tessellation that your program is doing. It might also be useful to have
multiple tessellation objects if you want to use different sets of callbacks for different tessellations.
A typical program, however, allocates a single tessellation object and uses it for all its tessellations.
There’s no real need to free it because it uses a small amount of memory. On the other hand, it
never hurts to be tidy.

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback routines to be called at
appropriate times during the tessellation. After specifying the callbacks, you describe the contours
of one or more polygons using GLU routines. When the description of the contours is complete, the
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, and any information
they might have returned to your program is lost. All are specified by the single routine
gluTessCallback().

void gluTessCallback(GLUtesselator *tessobj, GLenum type, void (* fn)()); 
Associates the callback function fn with the tessellation object tessobj. The type of the
callback is determined by the parameter type, which can be GLU_TESS_BEGIN,
GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG, GLU_TESS_EDGE_FLAG_DATA,
GLU_TESS_VERTEX, GLU_TESS_VERTEX_DATA, GLU_TESS_END,
GLU_TESS_END_DATA, GLU_TESS_COMBINE, GLU_TESS_COMBINE_DATA,
GLU_TESS_ERROR, and GLU_TESS_ERROR_DATA. The twelve possible callback
functions have the following prototypes:
GLU_TESS_BEGIN void begin(GLenum type);
GLU_TESS_BEGIN_DATA void begin(GLenum type, 
void *user_data);
GLU_TESS_EDGE_FLAG void edgeFlag(GLboolean flag);
GLU_TESS_EDGE_FLAG_DATA void edgeFlag(GLboolean flag, 
void *user_data);
GLU_TESS_VERTEX void vertex(void *vertex_data);
GLU_TESS_VERTEX_DATA void vertex(void *vertex_data, 
void *user_data);
GLU_TESS_END void end(void);
GLU_TESS_END_DATA void end(void *user_data);
GLU_TESS_ERROR void error(GLenum errno);
GLU_TESS_ERROR_DATA void error(GLenum errno, void *user_data);
GLU_TESS_COMBINE void combine(GLdouble coords[3],
void *vertex_data[4], 
GLfloat weight[4], 



void **outData);
GLU_TESS_COMBINE_DATA void combine(GLdouble coords[3],
void *vertex_data[4], 
GLfloat weight[4], 
void **outData, 
void *user_data);

To change a callback routine, simply call gluTessCallback() with the new routine. To eliminate a
callback routine without replacing it with a new one, pass gluTessCallback() a null pointer for the
appropriate function.

As tessellation proceeds, the callback routines are called in a manner 
similar to how you use the OpenGL commands glBegin(), glEdgeFlag*(), glVertex*(), and
glEnd(). (See "Marking Polygon Boundary Edges" in Chapter 2 for more information about
glEdgeFlag*().) The combine callback is used to create new vertices where edges intersect. The
error callback is invoked during the tessellation only if something goes wrong.

For every tessellator object created, a GLU_TESS_BEGIN callback is invoked with one of four
possible parameters: GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, and
GL_LINE_LOOP. When the tessellator decomposes the polygons, the tessellation algorithm will
decide which type of triangle primitive is most efficient to use. (If the
GLU_TESS_BOUNDARY_ONLY property is enabled, then GL_LINE_LOOP is used for
rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is a callback associated
with GLU_TESS_EDGE_FLAG that enables edge flags, the GLU_TESS_BEGIN callback is called
only with GL_TRIANGLES. The GLU_TESS_EDGE_FLAG callback works exactly analogously
to the OpenGL glEdgeFlag*() call.

After the GLU_TESS_BEGIN callback routine is called and before the callback associated with
GLU_TESS_END is called, some combination of the GLU_TESS_EDGE_FLAG and
GLU_TESS_VERTEX callbacks is invoked (usually by calls to gluTessVertex(), which is
described on page 425). The associated edge flags and vertices are interpreted exactly as they are in
OpenGL between glBegin() and the matching glEnd(). 

If something goes wrong, the error callback is passed a GLU error number. A character string
describing the error is obtained using the routine gluErrorString(). (See "Describing GLU Errors"
for more information about this routine.) 

Example 11-1 shows a portion of tess.c, where a tessellation object is created and several callbacks
are registered.

Example 11-1 : Registering Tessellation Callbacks: tess.c

/*  a portion of init() */
tobj = gluNewTess();
gluTessCallback(tobj, GLU_TESS_VERTEX,
                   (GLvoid (*) ()) &glVertex3dv);
gluTessCallback(tobj, GLU_TESS_BEGIN,
                   (GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS_END,
                   (GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS_ERROR,



                   (GLvoid (*) ()) &errorCallback);

/*  the callback routines registered by gluTessCallback() */

void beginCallback(GLenum which)
{
   glBegin(which);
}

void endCallback(void)
{
   glEnd();
}

void errorCallback(GLenum errorCode)
{
   const GLubyte *estring;

   estring = gluErrorString(errorCode);
   fprintf (stderr, "Tessellation Error: %s\n", estring);
   exit (0);
}

In Example 11-1, the registered GLU_TESS_VERTEX callback is simply glVertex3dv(), and only
the coordinates at each vertex are passed along. However, if you want to specify more information
at every vertex, such as a color value, a surface normal vector, or texture coordinate, you’ll have to
make a more complex callback routine. Example 11-2 shows the start of another tessellated object,
further along in program tess.c. The registered function vertexCallback() expects to receive a
parameter that is a pointer to six double-length floating point values: the x, y, and z coordinates and
the red, green, and blue color values, respectively, for that vertex.

Example 11-2 : Vertex and Combine Callbacks: tess.c

/*  a different portion of init() */
   gluTessCallback(tobj, GLU_TESS_VERTEX,
                   (GLvoid (*) ()) &vertexCallback);
   gluTessCallback(tobj, GLU_TESS_BEGIN,
                   (GLvoid (*) ()) &beginCallback);
   gluTessCallback(tobj, GLU_TESS_END,
                   (GLvoid (*) ()) &endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR,
                   (GLvoid (*) ()) &errorCallback);
   gluTessCallback(tobj, GLU_TESS_COMBINE,
                   (GLvoid (*) ()) &combineCallback);

/*  new callback routines registered by these calls */
void vertexCallback(GLvoid *vertex)
{
   const GLdouble *pointer;

   pointer = (GLdouble *) vertex;
   glColor3dv(pointer+3);
   glVertex3dv(vertex);
}

void combineCallback(GLdouble coords[3], 
                     GLdouble *vertex_data[4],
                     GLfloat weight[4], GLdouble **dataOut )
{
   GLdouble *vertex;
   int i;



   vertex = (GLdouble *) malloc(6 * sizeof(GLdouble));
   vertex[0] = coords[0];
   vertex[1] = coords[1];
   vertex[2] = coords[2];
   for (i = 3; i < 7; i++)
      vertex[i] = weight[0] * vertex_data[0][i] 
                  + weight[1] * vertex_data[1][i]
                  + weight[2] * vertex_data[2][i] 
                  + weight[3] * vertex_data[3][i];
   *dataOut = vertex;
}

Example 11-2 also shows the use of the GLU_TESS_COMBINE callback. Whenever the
tessellation algorithm examines the input contours, detects an intersection, and decides it must
create a new vertex, the GLU_TESS_COMBINE callback is invoked. The callback is also called
when the tessellator decides to merge features of two vertices that are very close to one another.
The newly created vertex is a linear combination of up to four existing vertices, referenced by
vertex_data[0..3] in Example 11-2. The coefficients of the linear combination are given by
weight[0..3]; these weights sum to 1.0. coords gives the location of the new vertex. 

The registered callback routine must allocate memory for another vertex, perform a weighted
interpolation of data using vertex_data and weight, and return the new vertex pointer as dataOut.
combineCallback() in Example 11-2 interpolates the RGB color value. The function allocates a
six-element array, puts the x, y, and z coordinates in the first three elements, and then puts the
weighted average of the RGB color values in the last three elements.

User-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each kind of callback, there
are twelve callbacks in all. For each kind of callback, there is one with user-specified data and one
without. The user-specified data is given by the application to gluTessBeginPolygon() and is then
passed, unaltered, to each *DATA callback routine. With GLU_TESS_BEGIN_DATA, the
user-specified data may be used for "per-polygon" data. If you specify both versions of a particular
callback, the callback with user_data is used, and the other is ignored. So, although there are twelve
callbacks, you can have a maximum of six callback functions active at any time.

For instance, Example 11-2 uses smooth shading, so vertexCallback() specifies an RGB color for
every vertex. If you want to do lighting and smooth shading, the callback would specify a surface
normal for every vertex. However, if you want lighting and flat shading, you might specify only
one surface normal for every polygon, not for every vertex. In that case, you might choose to use
the GLU_TESS_BEGIN_DATA callback and pass the vertex coordinates and surface normal in the
user_data pointer.

Tessellation Properties

Prior to tessellation and rendering, you may use gluTessProperty() to set several properties to
affect the tessellation algorithm. The most important and complicated of these properties is the
winding rule, which determines what is considered "interior" and "exterior."

void gluTessProperty(GLUtesselator *tessobj, GLenum property, 
GLdouble value);

For the tessellation object tessobj, the current value of property is set to value. property is
one of GLU_TESS_BOUNDARY_ONLY, GLU_TESS_TOLERANCE, or



GLU_TESS_WINDING_RULE.
If property is GLU_TESS_BOUNDARY_ONLY, value is either GL_TRUE or GL_FALSE.
When set to GL_TRUE, polygons are no longer tessellated into filled polygons; line loops are
drawn to outline the contours that separate the polygon interior and exterior. The default
value is GL_FALSE. (See gluTessNormal() to see how to control the winding direction of the
contours.)
If property is GLU_TESS_TOLERANCE, value is a distance used to calculate whether two
vertices are close together enough to be merged by the GLU_TESS_COMBINE callback. The
tolerance value is multiplied by the largest coordinate magnitude of an input vertex to
determine the maximum distance any feature can move as a result of a single merge
operation. Feature merging may not be supported by your implementation, and the tolerance
value is only a hint. The default tolerance value is zero.
The GLU_TESS_WINDING_RULE property determines which parts of the polygon are on
the interior and which are the exterior and should not be filled. value can be one of
GLU_TESS_WINDING_ODD (the default), GLU_TESS_WINDING_NONZERO,
GLU_TESS_WINDING_POSITIVE, GLU_TESS_WINDING_NEGATIVE, or
GLU_TESS_WINDING_ABS_GEQ_TWO.

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number of revolutions we make
around that point while traveling once around the contour (where a counterclockwise revolution is
positive and a clockwise revolution is negative). When there are several contours, the individual
winding numbers are summed. This procedure associates a signed integer value with each point in
the plane. Note that the winding number is the same for all points in a single region.

Figure 11-2 shows three sets of contours and winding numbers for points inside those contours. In
the left set, all three contours are counterclockwise, so each nested interior region adds one to the
winding number. For the middle set, the two interior contours are drawn clockwise, so the winding
number decreases and actually becomes negative. 

Figure 11-2 : Winding Numbers for Sample Contours

The winding rule classifies a region as inside if its winding number belongs to the chosen category
(odd, nonzero, positive, negative, or "absolute value of greater than or equal to two"). The odd and
nonzero rules are common ways to define the interior. The positive, negative, and "absolute
value>=2" winding rules have some limited use for polygon CSG (computational solid geometry)
operations.



The program tesswind.c demonstrates the effects of winding rules. The four sets of contours shown
in Figure 11-3 are rendered. The user can then cycle through the different winding rule properties to
see their effects. For each winding rule, the dark areas represent interiors. Note the effect of
clockwise and counterclockwise winding.

Figure 11-3 : How Winding Rules Define Interiors

CSG Uses for Winding Rules

GLU_TESS_WINDING_ODD and GLU_TESS_WINDING_NONZERO are the most commonly
used winding rules. They work for the most typical cases of shading. 

The winding rules are also designed for computational solid geometry (CSG) operations. Thy make
it easy to find the union, difference, or intersection (Boolean operations) of several contours.

First, assume that each contour is defined so that the winding number is zero for each exterior



region and one for each interior region. (Each contour must not intersect itself.) Under this model,
counterclockwise contours define the outer boundary of the polygon, and clockwise contours define
holes. Contours may be nested, but a nested contour must be oriented oppositely from the contour
that contains it.

If the original polygons do not satisfy this description, they can be converted to this form by first
running the tessellator with the GLU_TESS_BOUNDARY_ONLY property turned on. This returns
a list of contours satisfying the restriction just described. By creating two tessellator objects, the
callbacks from one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be implemented as
follows.

UNION - To calculate the union of several contours, draw all input contours as a single
polygon. The winding number of each resulting region is the number of original polygons that
cover it. The union can be extracted by using the GLU_TESS_WINDING_NONZERO or
GLU_TESS_WINDING_POSITIVE winding rules. Note that with the nonzero winding rule,
we would get the same result if all contour orientations were reversed.

INTERSECTION - This only works for two contours at a time. Draw a single polygon using
two contours. Extract the result using GLU_TESS_WINDING_ABS_GEQ_TWO.

DIFFERENCE - Suppose you want to compute A diff (B union C union D). Draw a single
polygon consisting of the unmodified contours from A, followed by the contours of B, C, and
D, with their vertex order reversed. To extract the result, use the
GLU_TESS_WINDING_POSITIVE winding rule. (If B, C, and D are the result of a
GLU_TESS_BOUNDARY_ONLY operation, an alternative to reversing the vertex order is
to use gluTessNormal() to reverse the sign of the supplied normal.

Other Tessellation Property Routines

There are complementary routines, which work alongside gluTessProperty().
gluGetTessProperty() retrieves the current values of tessellator properties. If the tessellator is
being used to generate wire frame outlines instead of filled polygons, gluTessNormal() can be used
to determine the winding direction of the tessellated polygons.

void gluGetTessProperty(GLUtesselator *tessobj, GLenum property, 
GLdouble *value);

For the tessellation object tessobj, the current value of property is returned to value. Values
for property and value are the same as for gluTessProperty().

void gluTessNormal(GLUtesselator *tessobj, GLdouble x, GLdouble y,
GLdouble z);

For the tessellation object tessobj, gluTessNormal() defines a normal vector, which controls
the winding direction of generated polygons. Before tessellation, all input data is projected
into a plane perpendicular to the normal. Then, all output triangles are oriented
counterclockwise, with respect to the normal. (Clockwise orientation can be obtained by
reversing the sign of the supplied normal.) The default normal is (0, 0, 0).

If you have some knowledge about the location and orientation of the input data, then using
gluTessNormal() can increase the speed of the tessellation. For example, if you know that all
polygons lie on the x-y plane, call gluTessNormal(tessobj, 0, 0, 1).



The default normal is (0, 0, 0), and its effect is not immediately obvious. In this case, it is expected
that the input data lies approximately in a plane, and a plane is fitted to the vertices, no matter how
they are truly connected. The sign of the normal is chosen so that the sum of the signed areas of all
input contours is nonnegative (where a counterclockwise contour has a positive area). Note that if
the input data does not lie approximately in a plane, then projection perpendicular to the computed
normal may substantially change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions have been registered, it is
finally time to describe the vertices that compromise input contours and tessellate the polygons.

void gluTessBeginPolygon (GLUtesselator *tessobj, void *user_data);
void gluTessEndPolygon (GLUtesselator *tessobj);

Begins and ends the specification of a polygon to be tessellated and associates a tessellation
object, tessobj, with it. user_data points to a user-defined data structure, which is passed
along all the GLU_TESS_*_DATA callback functions that have been bound.

Calls to gluTessBeginPolygon() and gluTessEndPolygon() surround the definition of one or more
contours. When gluTessEndPolygon() is called, the tessellation algorithm is implemented, and the
tessellated polygons are generated and rendered. The callback functions and tessellation properties
that were bound and set to the tessellation object using gluTessCallback() and gluTessProperty()
are used.

void gluTessBeginContour (GLUtesselator *tessobj);
void gluTessEndContour (GLUtesselator *tessobj);

Begins and ends the specification of a closed contour, which is a portion of a polygon. A
closed contour consists of zero or more calls to gluTessVertex(), which defines the vertices.
The last vertex of each contour is automatically linked to the first.

In practice, a minimum of three vertices is needed for a meaningful contour. 

void gluTessVertex (GLUtesselator *tessobj, GLdouble coords[3], 
void *vertex_data);

Specifies a vertex in the current contour for the tessellation object. coords contains the
three-dimensional vertex coordinates, and vertex_data is a pointer that’s sent to the callback
associated with GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA. Typically,
vertex_data contains vertex coordinates, surface normals, texture coordinates, color
information, or whatever else the application may find useful. 

In the program tess.c, a portion of which is shown in Example 11-3, two polygons are defined. One
polygon is a rectangular contour with a triangular hole inside, and the other is a smooth-shaded,
self-intersecting, five-pointed star. For efficiency, both polygons are stored in display lists. The first
polygon consists of two contours; the outer one is wound counterclockwise, and the "hole" is
wound clockwise. For the second polygon, the star array contains both the coordinate and color
data, and its tessellation callback, vertexCallback(), uses both.

It is important that each vertex is in a different memory location because the vertex data is not
copied by gluTessVertex(); only the pointer (vertex_data) is saved. A program that reuses the same
memory for several vertices may not get the desired result.



Note: In gluTessVertex(), it may seem redundant to specify the vertex coordinate data twice, for
both the coords and vertex_data parameters; however, both are necessary. coords refers only to the
vertex coordinates. vertex_data uses the coordinate data, but may also use other information for
each vertex.

Example 11-3 : Polygon Definition: tess.c

   GLdouble rect[4][3] = {50.0, 50.0, 0.0,
                          200.0, 50.0, 0.0,
                          200.0, 200.0, 0.0,
                          50.0, 200.0, 0.0};
   GLdouble tri[3][3] = {75.0, 75.0, 0.0,
                         125.0, 175.0, 0.0,
                         175.0, 75.0, 0.0};
   GLdouble star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
                          325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
                          400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
                          250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
                          400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

   startList = glGenLists(2);
   tobj = gluNewTess();
   gluTessCallback(tobj, GLU_TESS_VERTEX,
                   (GLvoid (*) ()) &glVertex3dv);
   gluTessCallback(tobj, GLU_TESS_BEGIN,
                   (GLvoid (*) ()) &beginCallback);
   gluTessCallback(tobj, GLU_TESS_END,
                   (GLvoid (*) ()) &endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR,
                   (GLvoid (*) ()) &errorCallback);

   glNewList(startList, GL_COMPILE);
   glShadeModel(GL_FLAT);
   gluTessBeginPolygon(tobj, NULL);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, rect[0], rect[0]);
         gluTessVertex(tobj, rect[1], rect[1]);
         gluTessVertex(tobj, rect[2], rect[2]);
         gluTessVertex(tobj, rect[3], rect[3]);
      gluTessEndContour(tobj);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, tri[0], tri[0]);
         gluTessVertex(tobj, tri[1], tri[1]);
         gluTessVertex(tobj, tri[2], tri[2]);
      gluTessEndContour(tobj);
   gluTessEndPolygon(tobj);
   glEndList();

   gluTessCallback(tobj, GLU_TESS_VERTEX,
                   (GLvoid (*) ()) &vertexCallback);
   gluTessCallback(tobj, GLU_TESS_BEGIN,
                   (GLvoid (*) ()) &beginCallback);
   gluTessCallback(tobj, GLU_TESS_END,
                   (GLvoid (*) ()) &endCallback);
   gluTessCallback(tobj, GLU_TESS_ERROR,
                   (GLvoid (*) ()) &errorCallback);
   gluTessCallback(tobj, GLU_TESS_COMBINE,
                   (GLvoid (*) ()) &combineCallback);

   glNewList(startList + 1, GL_COMPILE);
   glShadeModel(GL_SMOOTH);
   gluTessProperty(tobj, GLU_TESS_WINDING_RULE,
                   GLU_TESS_WINDING_POSITIVE);



   gluTessBeginPolygon(tobj, NULL);
      gluTessBeginContour(tobj);
         gluTessVertex(tobj, star[0], star[0]);
         gluTessVertex(tobj, star[1], star[1]);
         gluTessVertex(tobj, star[2], star[2]);
         gluTessVertex(tobj, star[3], star[3]);
         gluTessVertex(tobj, star[4], star[4]);
      gluTessEndContour(tobj);
   gluTessEndPolygon(tobj);
   glEndList();

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess().

void gluDeleteTess(GLUtesselator *tessobj);
Deletes the specified tessellation object, tessobj, and frees all associated memory.

Tessellator Performance Tips

For best performance, remember these rules.

1. Cache the output of the tessellator in a display list or other user structure. To obtain the
post-tessellation vertex coordinates, tessellate the polygons while in feedback mode. (See
"Feedback" in Chapter 13.)

2. Use gluTessNormal() to supply the polygon normal.

3. Use the same tessellator object to render many polygons rather than allocate a new tessellator
for each one. (In a multithreaded, multiprocessor environment, you may get better
performance using several tessellators.)

Describing GLU Errors

The GLU provides a routine for obtaining a descriptive string for an error code. This routine is not
limited to tessellation but is also used for NURBS and quadrics errors, as well as errors in the base
GL. (See "Error Handling" in Chapter 14 for information about OpenGL’s error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less powerful tessellator available.
The 1.0/1.1 tessellator handles only simple nonconvex polygons or simple polygons containing
holes. It does not properly tessellate intersecting contours (no COMBINE callback), nor process
per-polygon data.

The 1.0/1.1 tessellator has some similarities to the current tessellator. gluNewTess() and
gluDeleteTess() are used for both tessellators. The main vertex specification routine remains
gluTessVertex(). The callback mechanism is controlled by gluTessCallback(), although there are
only five callback functions that can be registered, a subset of the current twelve. 

Here are the prototypes for the 1.0/1.1 tessellator. The 1.0/1.1 tessellator still works in GLU 1.2, but
its use is no longer recommended.



void gluBeginPolygon(GLUtriangulatorObj *tessobj);
void gluNextContour(GLUtriangulatorObj *tessobj, GLenum type);
void gluEndPolygon(GLUtriangulatorObj *tessobj);

The outermost contour must be specified first, and it does not require an initial call to
gluNextContour(). For polygons without holes, only one contour is defined, and
gluNextContour() is not used. If a polygon has multiple contours (that is, holes or holes
within holes), the contours are specified one after the other, each preceded by
gluNextContour(). gluTessVertex() is called for each vertex of a contour.
For gluNextContour(), type can be GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW,
GLU_CW, or GLU_UNKNOWN. These serve only as hints to the tessellation. If you get them
right, the tessellation might go faster. If you get them wrong, they’re ignored, and the
tessellation still works. For polygons with holes, one contour is the exterior contour and the
other’s interior. The first contour is assumed to be of type GLU_EXTERIOR. Choosing
clockwise and counterclockwise orientation is arbitrary in three dimensions; however, there
are two different orientations in any plane, and the GLU_CCW and GLU_CW types should be
used consistently. Use GLU_UNKNOWN if you don’t have a clue.

It is highly recommended that you convert GLU 1.0/1.1 code to the new tessellation interface for
GLU 1.2 by following these steps.

1. Change references to the major data structure type from GLUtriangulatorObj to
GLUtesselator. In GLU 1.2, GLUtriangulatorObj and GLUtesselator are defined to be the
same type.

2. Convert gluBeginPolygon() to two commands: gluTessBeginPolygon() and
gluTessBeginContour(). All contours must be explicitly started, including the first one.

3. Convert gluNextContour() to both gluTessEndContour() and gluTessBeginContour(). You
have to end the previous contour before starting the next one.

4. Convert gluEndPolygon() to both gluTessEndContour() and gluTessEndPolygon(). The
final contour must be closed.

5. Change references to constants to gluTessCallback(). In GLU 1.2, GLU_BEGIN,
GLU_VERTEX, GLU_END, GLU_ERROR, and GLU_EDGE_FLAG are defined as
synonyms for GLU_TESS_BEGIN, GLU_TESS_VERTEX, GLU_TESS_END,
GLU_TESS_ERROR, and GLU_TESS_EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling and rendering simple points, lines,
and convex filled polygons. Neither 3D objects, nor commonly used 2D objects such as circles, are
directly available.

Throughout this book, you’ve been using GLUT to create some 3D objects. The GLU also provides
routines to model and render tessellated, polygonal approximations for a variety of 2D and 3D
shapes (spheres, cylinders, disks, and parts of disks), which can be calculated with quadric
equations. This includes routines to draw the quadric surfaces in a variety of styles and orientations.



Quadric surfaces are defined by the following general quadratic equation:

a1x2 + a2y2 + a3z2 + a4xy + a5yx + a6xz + a7x + a8y + a9z + a10 = 0

(See David Rogers’ Procedural Elements for Computer Graphics. New York, NY: McGraw-Hill
Book Company, 1985.) Creating and rendering a quadric surface is similar to using the tessellator.
To use a quadrics object, follow these steps.

1. To create a quadrics object, use gluNewQuadric().

2. Specify the rendering attributes for the quadrics object (unless you’re satisfied with the
default values). 

1. Use gluQuadricOrientation() to control the winding direction and differentiate the
interior from the exterior.

2. Use gluQuadricDrawStyle() to choose between rendering the object as points, lines, or
filled polygons. 

3. For lit quadrics objects, use gluQuadricNormals() to specify one normal per vertex or
one normal per face. The default is that no normals are generated at all.

4. For textured quadrics objects, use gluQuadricTexture() if you want to generate texture
coordinates.

3. Prepare for problems by registering an error-handling routine with gluQuadricCallback().
Then, if an error occurs during rendering, the routine you’ve specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics object: gluSphere(),
gluCylinder(), gluDisk(), or gluPartialDisk(). For best performance for static data,
encapsulate the quadrics object in a display list.

5. When you’re completely finished with it, destroy this object with gluDeleteQuadric(). If you
need to create another quadric, it’s best to reuse your quadrics object.

Manage Quadrics Objects

A quadrics object consists of parameters, attributes, and callbacks that are stored in a data structure
of type GLUquadricObj. A quadrics object may generate vertices, normals, texture coordinates, and
other data, all of which may be used immediately or stored in a display list for later use. The
following routines create, destroy, and report upon errors of a quadrics object.

GLUquadricObj* gluNewQuadric (void);
Creates a new quadrics object and returns a pointer to it. A null pointer is returned if the
routine fails.

void gluDeleteQuadric (GLUquadricObj *qobj);
Destroys the quadrics object qobj and frees up any memory used by it.

void gluQuadricCallback (GLUquadricObj *qobj, GLenum which, void (* fn)());
Defines a function fn to be called in special circumstances. GLU_ERROR is the only legal
value for which, so fn is called when an error occurs. If fn is NULL, any existing callback is
erased.



For GLU_ERROR, fn is called with one parameter, which is the error code. gluErrorString() can
be used to convert the error code into an ASCII string.

Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics routines. Use these
routines before you actually specify the primitives.

Example 11-4, quadric.c, on page 435, demonstrates changing the drawing style and the kind of
normals generated as well as creating quadrics objects, error handling, and drawing the primitives.

void gluQuadricDrawStyle (GLUquadricObj *qobj, GLenum drawStyle); 
For the quadrics object qobj, drawStyle controls the rendering style. Legal values for
drawStyle are GLU_POINT, GLU_LINE, GLU_SILHOUETTE, and GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a point at every vertex
or a line between each pair of connected vertices. 

GLU_SILHOUETTE specifies that primitives are rendered as lines, except that edges separating
coplanar faces are not drawn. This is most often used for gluDisk() and gluPartialDisk().

GLU_FILL specifies rendering by filled polygons, where the polygons are drawn in a
counterclockwise fashion with respect to their normals. This may be affected by
gluQuadricOrientation().

void gluQuadricOrientation (GLUquadricObj *qobj, GLenum orientation);
For the quadrics object qobj, orientation is either GLU_OUTSIDE (the default) or
GLU_INSIDE, which controls the direction in which normals are pointing. 

For gluSphere() and gluCylinder(), the definitions of outside and inside are obvious. For
gluDisk() and gluPartialDisk(), the positive z side of the disk is considered to be outside.

void gluQuadricNormals (GLUquadricObj *qobj, GLenum normals);
For the quadrics object qobj, normals is one of GLU_NONE (the default), GLU_FLAT, or
GLU_SMOOTH.

gluQuadricNormals() is used to specify when to generate normal vectors. GLU_NONE means that
no normals are generated and is intended for use without lighting. GLU_FLAT generates one
normal for each facet, which is often best for lighting with flat shading. GLU_SMOOTH generates
one normal for every vertex of the quadric, which is usually best for lighting with smooth shading.

void gluQuadricTexture (GLUquadricObj *qobj, 
GLboolean textureCoords); 

For the quadrics object qobj, textureCoords is either GL_FALSE (the default) or GL_TRUE.
If the value of textureCoords is GL_TRUE, then texture coordinates are generated for the
quadrics object. The manner in which the texture coordinates are generated varies,
depending upon the type of quadrics object rendered.

Quadrics Primitives



The following routines actually generate the vertices and other data that constitute a quadrics
object. In each case, qobj refers to a quadrics object created by gluNewQuadric().

void gluSphere (GLUquadricObj *qobj, GLdouble radius,
GLint slices, GLint stacks);

Draws a sphere of the given radius, centered around the origin, (0, 0, 0). The sphere is
subdivided around the z axis into a number of slices (similar to longitude) and along the z
axis into a number of stacks (latitude).
If texture coordinates are also generated by the quadrics facility, the t coordinate ranges from
0.0 at z = -radius to 1.0 at z = radius, with t increasing linearly along longitudinal lines.
Meanwhile, s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to
0.75 at the -x axis, and back to 1.0 at the +y axis.

void gluCylinder (GLUquadricObj *qobj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height, 
GLint slices, GLint stacks);

Draws a cylinder oriented along the z axis, with the base of the cylinder at z = 0 and the top
at z = height. Like a sphere, the cylinder is subdivided around the z axis into a number of
slices and along the z axis into a number of stacks. baseRadius is the radius of the cylinder at
z = 0. topRadius is the radius of the cylinder at z = height. If topRadius is set to zero, then a
cone is generated.
If texture coordinates are generated by the quadrics facility, then the t coordinate ranges
linearly from 0.0 at z = 0 to 1.0 at z = height. The s texture coordinates are generated the
same way as they are for a sphere.

Note: The cylinder is not closed at the top or bottom. The disks at the base and at the top are not
drawn.

void gluDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings);

Draws a disk on the z = 0 plane, with a radius of outerRadius and a concentric circular hole
with a radius of innerRadius. If innerRadius is 0, then no hole is created. The disk is
subdivided around the z axis into a number of slices (like slices of pizza) and also about the z
axis into a number of concentric rings.
With respect to orientation, the +z side of the disk is considered to be "outside"; that is, any
normals generated point along the +z axis. Otherwise, the normals point along the -z axis.
If texture coordinates are generated by the quadrics facility, then the texture coordinates are
generated linearly such that where R=outerRadius, the values for s and t at (R, 0, 0) is (1,
0.5), at (0, R, 0) they are (0.5, 1), at (-R, 0, 0) they are (0, 0.5), and at (0, -R, 0) they are (0.5,
0).

void gluPartialDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings,
GLdouble startAngle, GLdouble sweepAngle);

Draws a partial disk on the z = 0 plane. A partial disk is similar to a complete disk, in terms
of outerRadius, innerRadius, slices, and rings. The difference is that only a portion of a
partial disk is drawn, starting from startAngle through startAngle+sweepAngle (where
startAngle and sweepAngle are measured in degrees, where 0 degrees is along the +y axis, 90
degrees along the +x axis, 180 along the -y axis, and 270 along the -x axis).
A partial disk handles orientation and texture coordinates in the same way as a complete
disk.

Note: For all quadrics objects, it’s better to use the *Radius, height, and similar arguments to scale
them rather than the glScale*() command so that the unit-length normals that are generated don’t



have to be renormalized. Set the rings and stacks arguments to values other than one to force
lighting calculations at a finer granularity, especially if the material specularity is high.

Example 11-4 shows each of the quadrics primitives being drawn, as well as the effects of different
drawing styles.

Example 11-4 : Quadrics Objects: quadric.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdio.h>
#include <stdlib.h>

GLuint startList;

void errorCallback(GLenum errorCode)
{
   const GLubyte *estring;

   estring = gluErrorString(errorCode);
   fprintf(stderr, "Quadric Error: %s\n", estring);
   exit(0);
}

void init(void) 
{
   GLUquadricObj *qobj;
   GLfloat mat_ambient[] = { 0.5, 0.5, 0.5, 1.0 };
   GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
   GLfloat mat_shininess[] = { 50.0 };
   GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
   GLfloat model_ambient[] = { 0.5, 0.5, 0.5, 1.0 };

   glClearColor(0.0, 0.0, 0.0, 0.0);

   glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
   glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
   glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
   glLightfv(GL_LIGHT0, GL_POSITION, light_position);
   glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);

   glEnable(GL_LIGHTING);
   glEnable(GL_LIGHT0);
   glEnable(GL_DEPTH_TEST);

/* Create 4 display lists, each with a different quadric object.
 * Different drawing styles and surface normal specifications
 * are demonstrated.
 */
   startList = glGenLists(4);
   qobj = gluNewQuadric();
   gluQuadricCallback(qobj, GLU_ERROR, errorCallback);

   gluQuadricDrawStyle(qobj, GLU_FILL); /* smooth shaded */
   gluQuadricNormals(qobj, GLU_SMOOTH);
   glNewList(startList, GL_COMPILE);
      gluSphere(qobj, 0.75, 15, 10);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_FILL); /* flat shaded */
   gluQuadricNormals(qobj, GLU_FLAT);
   glNewList(startList+1, GL_COMPILE);



      gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_LINE); /* wireframe */
   gluQuadricNormals(qobj, GLU_NONE);
   glNewList(startList+2, GL_COMPILE);
      gluDisk(qobj, 0.25, 1.0, 20, 4);
   glEndList();

   gluQuadricDrawStyle(qobj, GLU_SILHOUETTE);
   gluQuadricNormals(qobj, GLU_NONE);
   glNewList(startList+3, GL_COMPILE);
      gluPartialDisk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
   glEndList();
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
   glPushMatrix();

   glEnable(GL_LIGHTING);
   glShadeModel (GL_SMOOTH);
   glTranslatef(-1.0, -1.0, 0.0);
   glCallList(startList);

   glShadeModel (GL_FLAT);
   glTranslatef(0.0, 2.0, 0.0);
   glPushMatrix();
   glRotatef(300.0, 1.0, 0.0, 0.0);
   glCallList(startList+1);
   glPopMatrix();

   glDisable(GL_LIGHTING);
   glColor3f(0.0, 1.0, 1.0);
   glTranslatef(2.0, -2.0, 0.0);
   glCallList(startList+2);

   glColor3f(1.0, 1.0, 0.0);
   glTranslatef(0.0, 2.0, 0.0);
   glCallList(startList+3);

   glPopMatrix();
   glFlush();
}

void reshape (int w, int h)
{
   glViewport(0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   if (w <= h)
      glOrtho(-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
         2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
   else
      glOrtho(-2.5*(GLfloat)w/(GLfloat)h,
         2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
   switch (key) {
      case 27:



         exit(0);
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
   glutInitWindowSize(500, 500); 
   glutInitWindowPosition(100, 100);
   glutCreateWindow(argv[0]);
   init();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}
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