[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 10
The Framebuffer

Chapter Objectives

After reading this chapter, you’ll be able to do the following:
® Understand what buffers make up the framebuffer and how they’re used
® Clear selected buffers and enable them for writing

® Control the parameters of the scissoring, alpha, stencil, and depth-buffer tests that are
to pixels

® Perform dithering and logical operations
® Use the accumulation buffer for such purposes as scene antialiasing

An important goal of almost every graphics program is to draw pictures on the screen. The
composed of a rectangular array of pixels, each capable of displaying a tiny square of colol
point in the image. After the rasterization stage (including texturing and fog), the data are n
pixels, but are fragments. Each fragment has coordinate data which corresponds to a pixel.
as color and depth values. Then each fragment undergoes a series of tests and operations
which have been previously described (38lending" in Chapter pand others that are discusse¢
in this chapter.

If the tests and operations are survived, the fragment values are ready to become pixels. T
these pixels, you need to know what color they are, which is the information that’s stored in
color buffer. Whenever data is stored uniformly for each pixel, such storage for all the pixel:
called abuffer. Different buffers might contain different amounts of data per pixel, but within
given buffer, each pixel is assigned the same amount of data. A buffer that stores a single |
information about pixels is called a bitplane.

As shown inFigure 10-1the lower-left pixel in an OpenGL window is pixel (0, 0), correspond
to the window coordinates of the lower-left corner of the 1 x 1 region occupied by this pixel.
general, pixelX, y) fills the region bounded byon the leftx+1 on the righty on the bottom, anc
y+1 on the top.

lower left comer

a0 - of the window
3 20 -
£
E pixal (2, 1)
= J
3 1.0
_E
S
=
1] T T
0.0 1.0 2.0 3.0

¥ window coordinate

Figure 10-1: Region Occupied by a Pixel

As an example of a buffer, let’'s look more closely at the color buffer, which holds the color
information that’s to be displayed on the screen. Assume that the screen is 1280 pixels wid
1024 pixels high and that it's a full 24-bit color screen - in other words, there are 224 (or
16,777,216) different colors that can be displayed. Since 24 bits translates to 3 bytes (8 bit:
the color buffer in this example has to store at least 3 bytes of data for each of the 1,310,7z2
(1280*1024) pixels on the screen. A particular hardware system might have more or fewer
on the physical screen as well as more or less color data per pixel. Any particular color bufi
however, has the same amount of data saved for each pixel on the screen.

The color buffer is only one of several buffers that hold information about a pixel. For exam
"A Hidden-Surface Removal Survival Kit" in Chapten/®u learned that the depth buffer holds
depth information for each pixel. The color buffer itself can consist of several subbuffers. Tt
framebuffer on a system comprises all of these buffers. With the exception of the color buff
you don’t view these other buffers directly; instead, you use them to perform such tasks as
hidden-surface elimination, antialiasing of an entire scene, stenciling, drawing smooth moti
other operations.

This chapter describes all the buffers that can exist in an OpenGL implementation and how
used. It also discusses the series of tests and pixel operations that are performed before ar
written to the viewable color buffer. Finally, it explains how to use the accumulation buffer,
is used to accumulate images that are drawn into the color buffer. This chapter has the follc
major sections.

® "Buffers and Their Usegiescribes the possible buffers, what they’re for, and how to cle
them and enable them for writing.

® "Testing and Operating on Fragmengplains the scissoring, alpha, stencil, and depth-i
tests that occur after a pixel’s position and color have been calculated but before this
information is drawn on the screen. Several operations - blending, dithering, and logic
operations - can also be performed before a fragment updates the screen.

® "The Accumulation Buffertlescribes how to perform several advanced techniques usir
accumulation buffer. These techniques include antialiasing an entire scene, using mof
and simulating photographic depth of field.

Buffersand Thar Uses

An OpenGL system can manipulate the following buffers:

® Color buffers: front-left, front-right, back-left, back-right, and any number of auxiliary c
buffers

® Depth buffer
® Stencil buffer
® Accumulation buffer

Your particular OpenGL implementation determines which buffers are available and how m
per pixel each holds. Additionally, you can have multiple visuals, or window types, that hav:
different buffers availabléelable 10-1lists the parameters to use wiflGetl ntegerv() to query
your OpenGL system about per-pixel buffer storage for a particular visual.

Note: If you're using the X Window System, you're guaranteed, at a minimum, to have a vis
with one color buffer for use in RGBA mode with associated stencil, depth, and accumulatic
buffers that have color components of nonzero size. Also, if your X Window System
implementation supports a Pseudo-Color visual, you are also guaranteed to have one Opel
visual that has a color buffer for use in color-index mode with associated depth and stencil
You'll probably want to usglXGetConfig() to query your visuals; séppendix Cand the
OpenGL Reference Manufar more information about this routine.

Table 10-1 : Query Parameters for Per-Pixel Buffer Storage

Parameter Meaning

GL_RED_BITS, GL_GREEN_BITS,| Number of bits per R, G, B, or A component in the
GL_BLUE_BITS, GL_ALPHA_BITS| color buffers

GL_INDEX_BITS Number of bits per index in the color buffers
GL_DEPTH_BITS Number of bits per pixel in the depth buffer
GL_STENCIL_BITS Number of bits per pixel in the stencil buffer
GL_ACCUM_RED_BITS, Number of bits per R, G, B, or A component in the
GL_ACCUM_GREEN_BITS, accumulation buffer

GL_ACCUM_BLUE_BITS,
GL_ACCUM_ALPHA BITS

Color Buffers

The color buffers are the ones to which you usually draw. They contain either color-index o
color data and may also contain alpha values. An OpenGL implementation that supports
stereoscopic viewing has left and right color buffers for the left and right stereo images. If s
isn’t supported, only the left buffers are used. Similarly, double-buffered systems have front
back buffers, and a single-buffered system has the front buffers only. Every OpenGL
implementation must provide a front-left color buffer.

Optional, nondisplayable auxiliary color buffers may also be supported. OpenGL doesn'’t s
any particular uses for these buffers, so you can define and use them however you please.
example, you might use them for saving an image that you use repeatedly. Then rather tha
redrawing the image, you can just copy it from an auxiliary buffer into the usual color buffer
the description ofl CopyPixels() in "Reading, Writing, and Copying Pixel Data" in Chaptd¢oi8
more information about how to do this.)

You can use GL_STEREO or GL_DOUBLEBUFFER wgtlsetBooleanv() to find out if your
system supports stereo (that is, has left and right buffers) or double-buffering (has front anc
buffers). To find out how many, if any, auxiliary buffers are presentgl@et| ntegerv() with
GL_AUX_BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. As describadHidden-Surface Removal
Survival Kit" in Chapter 5depth is usually measured in terms of distance to the eye, so pixe
larger depth-buffer values are overwritten by pixels with smaller values. This is just a usefu
convention, however, and the depth buffer's behavior can be modified as desctibeptmTest.
The depth buffer is sometimes called theuffer(the z comes from the fact thatindy values
measure horizontal and vertical displacement on the screen, aawbibie measures distance
perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the screen, just as
cardboard stencil can be used with a can of spray paint to make fairly precise painted imag
example, if you want to draw an image as it would appear through an odd-shaped windshie
can store an image of the windshield’s shape in the stencil buffer, and then draw the entire
The stencil buffer prevents anything that wouldn’t be visible through the windshield from be
drawn. Thus, if your application is a driving simulation, you can draw all the instruments an
items inside the automobile once, and as the car moves, only the outside scene need be uj

Accumulation Buffer

The accumulation buffer holds RGBA color data just like the color buffers do in RGBA mod
results of using the accumulation buffer in color-index mode are undefined.) It's typically us
accumulating a series of images into a final, composite image. With this method, you can p
operations like scene antialiasing by supersampling an image and then averaging the samj
produce the values that are finally painted into the pixels of the color buffers. You don't dra
directly into the accumulation buffer; accumulation operations are always performed in rect
blocks, which are usually transfers of data to or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically one of the mosi
expensive operations you can perform - on a 1280 x 1024 monitor, it requires touching wel
million pixels. For simple graphics applications, the clear operation can take more time thar
of the drawing. If you need to clear not only the color buffer but also the depth and stencil b
the clear operation can be three times as expensive.

To address this problem, some machines have hardware that can clear more than one buft
The OpenGL clearing commands are structured to take advantage of architectures like this
you specify the values to be written into each buffer to be cleared. Then you issue a single
command to perform the clear operation, passing in a list of all the buffers to be cleared. If
hardware is capable of simultaneous clears, they all occur at once; otherwise, each buffer i
sequentially.

The following commands set the clearing values for each buffer.

void glClearColor(GLclampfred, GLclampfgreen GLclampfblue

GLclampfalpha);

void glClearIndex(GLfloatindex);

void glClear Depth(GLclampddepth;

void glClear Stencil (GLint s);

void glClearAccum(GLfloatred, GLfloatgreen GLfloatblue,

GLfloatalpha);
Specifies the current clearing values for the color buffer (in RGBA mode), the color bu
color-index mode), the depth buffer, the stencil buffer, and the accumulation buffer. Tt
GLclampf and GLclampd types (clamped GLfloat and clamped GLdouble) are clampe
between 0.0 and 1.0. The default depth-clearing value is 1.0; all the other default clea
values are 0. The values set with the clear commands remain in effect until they’re ch
by another call to the same command.

After you've selected your clearing values and you're ready to clear the buffegbClese ().

void glClear(GLbitfield mask;
Clears the specified buffers. The valuenafskis the bitwise logical OR of some combinat
of GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_I
and GL_ACCUM_BUFFER_BIT to identify which buffers are to be cleared.
GL_COLOR_BUFFER_BIT clears either the RGBA color or the color-index buffer,
depending on the mode of the system at the time. When you clear the color or color-ir
buffer, all the color buffers that are enabled for writing (see the next section) are clear
pixel ownership test, scissor test, and dithering, if enabled, are applied to the clearing
operation. Masking operations, suchg€olorMask() andgllndexMask(), are also
effective. The alpha test, stencil test, and depth test do not affect the opergt@ieant).

Selecting Color Buffersfor Writing and Reading

The results of a drawing or reading operation can go into or come from any of the color buf
front, back, front-left, back-left, front-right, back-right, or any of the auxiliary buffers. You ca
choose an individual buffer to be the drawing or reading target. For drawing, you can also ¢
target to draw into more than one buffer at the same time. Yoyl DsawBuffer () to select the
buffers to be written angReadBuffer () to select the buffer as the sourcedidReadPixels(),

glCopyPixels(), glCopyTexl mage* (), andglCopyTexSubl mage* ().

If you are using double-buffering, you usually want to draw only in the back buffer (and swe
buffers when you’re finished drawing). In some situations, you might want to treat a
double-buffered window as though it were single-buffered by cadlidgawBuffer () to enable
you to draw to both front and back buffers at the same time.

glDrawBuffer() is also used to select buffers to render stereo images (GL*LEFT and GL*RI
and to render into auxiliary buffers (GL_AWX

void glDrawBuffer(GLenummodse);
Selects the color buffers enabled for writing or clearing. Disables buffers enabled by p
calls toglDrawBuffer(). More than one buffer may be enabled at one time. The vatned:
can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_AUKXi
GL_BACK GL_FRONT RIGHT GL_FRONT AND_BACK
GL LEFT GL BACK LEFT GL_NONE

GL_RIGHT GL_BACK_RIGHT

Arguments that omit LEFT or RIGHT refer to both the left and right buffers; similarly,
arguments that omit FRONT or BACK refer to both. iTimeGL_AUX is a digit identifying ¢
particular auxiliary buffer.

By defaultmodeis GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You can enable drawing to nonexistent buffers as long as you enable drawing to at le
buffer that does exist. If none of the specified buffers exist, an error results.

void glReadBuffer(GLenummode;
Selects the color buffer enabled as the source for reading pixels for subsequent calls
glReadPixels(), glCopyPixels(), glCopyTexI mage* (), andglCopyTexSubl mage* (). Disables

buffers enabled by previous callsgilreadBuffer(). The value omodecan be one of the
following:

GL_FRONT GL_FRONT LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT

GL LEFT GL_BACK_LEFT

GL_RIGHT GL_BACK_RIGHT

By defaultimodeis GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You must enable reading from a buffer that does exist or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, a masking opel
applied to the data, as specified with one of the following commands. A bitwise logical ANC
performed with each mask and the corresponding data to be written.

void gll ndexMask(GLuintmask;

void glColorMask(GLboolearred, GLbooleargreen GLboolearblue

GLbooleamalpha);

void glDepthMask(GLbooleanflag);

void glStencilMask(GLuint mask;
Sets the masks used to control writing into the indicated buffers. The mask set by
glindexMask() applies only in color-index mode. If a 1 appearsiaisk the corresponding
bit in the color-index buffer is written; where a 0 appears, the bit isn’t written. Similarly
glColorMask() affects drawing in RGBA mode only. Thd, green blue andalphavalues
control whether the corresponding component is written. (GL_TRUE means it is writte
flag is GL_TRUE forglDepthMask(), the depth buffer is enabled for writing; otherwise, i
disabled. The mask fgtStencilMask() is used for stencil data in the same way as the m
is used for color-index data igilndexMask(). The default values of all the GLboolean m:
are GL_TRUE, and the default values for the two GLuint masks are all 1’s.

You can do plenty of tricks with color masking in color-index mode. For example, you can L
bit in the index as a different layer and set up interactions between arbitrary layers with apg
settings of the color map. You can create overlays and underlays, and do so-called color-ir
animations. (Se€hapter 14or examples of using color masking.) Masking in RGBA mode is
useful less often, but you can use it for loading separate image files into the red, green, anc
bitplanes, for example.

You've seen one use for disabling the depth buffélmee-Dimensional Blending with the Dey
Buffer" in Chapter 6Disabling the depth buffer for writing can also be useful if a common
background is desired for a series of frames, and you want to add some features that may
obscured by parts of the background. For example, suppose your background is a forest, a
would like to draw repeated frames with the same trees, but with objects moving among the
After the trees are drawn with their depths recorded in the depth buffer, then the image of tl
is saved, and the new items are drawn with the depth buffer disabled for writing. As long as
items don’t overlap each other, the picture is correct. To draw the next frame, restore the in
the trees and continue. You don’t need to restore the values in the depth buffer. This trick it
useful if the background is extremely complex - so complex that it's much faster just to recc
image into the color buffer than to recompute it from the geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer to hold multiple
stencils (one per bit). You might use this technique to perform capping as expldiSeshicil

Test"or to implement the Game of Life as describetlife in the Stencil Buffer" in Chapter 14

Note: The mask specified byl StencilM ask() controls which stencil bitplanes are written. This
mask isn'’t related to the mask that’s specified as the third paramet&afcilFunc(), which
specifies which bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL performs several calcule
rotate, translate, scale, determine the lighting, project the object(s) into perspective, figure
which pixels in the window are affected, and determine what colors those pixels should be
Many of the earlier chapters in this book give some information about how to control these
operations. After OpenGL determines that an individual fragment should be generated and
color should be, several processing stages remain that control how and whether the fragme
drawn as a pixel into the framebuffer. For example, if it's outside a rectangular region or if if
farther from the viewpoint than the pixel that’s already in the framebuffer, it isn’t drawn. In a
stage, the fragment’s color is blended with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must pass before it gc
the framebuffer and the possible final operations that can be performed on the fragment as
written. The tests and operations occur in the following order; if a fragment is eliminated in .
test, none of the later tests or operations take place.

1. Scissor test

2. Alpha test

3. Stencil test

4. Depth test

5. Blending

6. Dithering

7. Logical operation
Each of these tests and operations is described in detail in the following sections.

Scissor Test

You can define a rectangular portion of your window and restrict drawing to take place with
using theglScissor () command. If a fragment lies inside the rectangle, it passes the scissor t

void glScissor(GLint x, GLinty, GLsizewidth, GLsizeiheigh);
Sets the location and size of the scissor rectangle (also known as the scissor box). Tt
parameters define the lower-left cornery), and the width and height of the rectangle.
Pixels that lie inside the rectangle pass the scissor test. Scissoring is enabled and dis
passing GL_SCISSOR_TESTgtBnable() andglDisable(). By default, the rectangle

matches the size of the window and scissoring is disabled.

The scissor test is just a version of a stencil test using a rectangular region of the screen. It
easy to create a blindingly fast hardware implementation of scissoring, while a given syster
be much slower at stenciling - perhaps because the stenciling is performed in software.

Advanced

An advanced use of scissoring is performing nonlinear projection. First divide the window ir
regular grid of subregions, specifying viewport and scissor parameters that limit rendering t
region at a time. Then project the entire scene to each region using a different projection m

To determine whether scissoring is enabled and to obtain the values that define the scissor
rectangle, you can use GL_SCISSOR_TEST wglitelEnabled() and GL_SCISSOR_BOX with
glGetlntegerv().

Alpha Test

In RGBA mode, the alpha test allows you to accept or reject a fragment based on its alpha
The alpha test is enabled and disabled by passing GL_ALPHA_THE$Ertable() and
glDisable(). To determine whether the alpha test is enabled, use GL_ALPHA_TEST with
gll sEnabled().

If enabled, the test compares the incoming alpha value with a reference value. The fragmel
accepted or rejected depending on the result of the comparison. Both the reference value ¢
comparison function are set wighAlphaFunc(). By default, the reference value is zero, the
comparison function is GL_ALWAYS, and the alpha test is disabled. To obtain the alpha
comparison function or reference value, use GL_ALPHA_TEST_FUNC or
GL_ALPHA_TEST_REF witlglGetl nteger v().

void glAlphaFunc(GLenumfung GLclampfref);
Sets the reference value and comparison function for the alpha test. The referencefvs
clamped to be between zero and one. The possible valuesméand their meaning are
listed inTable 10-2

Table 10-2 : glAlphaFunc() Parameter Values (continued)

Parameter Meaning

GL_NEVER Never accept the fragment

GL_ALWAYS Always accept the fragment

GL_LESS Accept fragment if fragment alpha < reference alpha
GL_LEQUAL Accept fragment if fragment alpha ≤ reference alpha
GL_EQUAL Accept fragment if fragment alpha = reference alpha
GL_GEQUAL Accept fragment if fragment alpha ≥ reference alpha

GL_GREATER Accept fragment if fragment alpha > reference alpha

GL_NOTEQUAL | Accept fragment if fragment alpha ≠ reference alpha

One application for the alpha test is to implement a transparency algorithm. Render your er
scene twice, the first time accepting only fragments with alpha values of one, and the secol
accepting fragments with alpha values that aren’t equal to one. Turn the depth buffer on du
passes, but disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps where you can see through certair
the decals. Set the alphas in the decals to 0.0 where you want to see through, set them to :
otherwise, set the reference value to 0.5 (or anything between 0.0 and 1.0), and set the cor
function to GL_GREATER. The decal has see-through parts, and the values in the depth bi
aren’t affected. This technique, called billboarding, is describ&8ample Uses of Blending" in
Chapter 6

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no stencil buffer, the ¢
test always passes.) Stenciling applies a test that compares a reference value with the val.
a pixel in the stencil buffer. Depending on the result of the test, the value in the stencil buffe
modified. You can choose the particular comparison function used, the reference value, an
modification performed with thgl StencilFunc() andglStencilOp() commands.

void glStencilFunc(GLenumfung GLintref, GLuintmask;
Sets the comparison functiofu(c), reference value€f), and a maskniask for use with th
stencil test. The reference value is compared to the value in the stencil buffer using th
comparison function, but the comparison applies only to those bits where the correspc
bits of the mask are 1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS,
GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. Ifit's
GL_LESS, for example, then the fragment passefig less than the value in the stencil
buffer. If the stencil buffer contaisditplanes, the low-ordes bits ofmaskare bitwise
ANDed with the value in the stencil buffer and with the reference value before the con

is performed. The masked values are all interpreted as nonnegative values. The stenc
enabled and disabled by passing GL_STENCIL_TES$iEtable() and glDisable(). By
default, funcis GL_ALWAYSgf is 0,maskis all 1's, and stenciling is disabled.

void glStencilOp(GLenumfail, GLenunefail, GLenunzpas$,
Specifies how the data in the stencil buffer is modified when a fragment passes or fail
stencil test. The three functiofel, zfail, andzpasscan be GL_KEEP, GL_ZERO,
GL_REPLACEGL_INCR, GL_DECR, or GL_INVERT. They correspond to keeping the
current value, replacing it with zero, replacing it with the reference value, incrementing
decrementing it, and bitwise-inverting it. The result of the increment and decrement fu
is clamped to lie between zero and the maximum unsigned integer value (2s-1 if the s
buffer holdss bits). Thefail function is applied if the fragment fails the stencil test; if it
passes, thenmfail is applied if the depth test fails amdassf the depth test passes, or if no
depth test is performed. (S&2epth Test.) By default, all three stencil operations are
GL_KEEP.

Stencil Queries
You can obtain the values for all six stencil-related parameters by using the query function

glGetIntegerv() and one of the values shownTiable 10-3 You can also determine whether the
stencil test is enabled by passing GL_STENCIL_TES{JltsEnabled().

Table 10-3 : Query Values for the Stencil Test (continued)

Query Value M eaning

GL_STENCIL_FUNC Stencil function

GL_STENCIL_REF Stencil reference value
GL_STENCIL_VALUE_MASK Stencil mask

GL_STENCIL_FAIL Stencil fail action

GL_STENCIL_PASS _DEPTH_FAIL| Stencil pass and depth buffer fail actiop
GL_STENCIL_PASS DEPTH_PAS$ Stencil pass and depth buffer pass acl1 on

Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly shaped region
screen to prevent drawing from occurring within it (as in the windshield exam{Befiers and
Their Uses). To do this, fill the stencil mask with zeros, and then draw the desired shape in
stencil buffer with 1's. You can’t draw geometry directly into the stencil buffer, but you can
achieve the same result by drawing into the color buffer and choosing a suitable valuegast
function (such as GL_REPLACE). (You can gterawPixels() to draw pixel data directly into t
stencil buffer.) Whenever drawing occurs, a value is also written into the stencil buffer (in tr
the reference value). To prevent the stencil-buffer drawing from affecting the contents of th

buffer, set the color mask to zero (or GL_FALSE). You might also want to disable writing in
depth buffer.

After you've defined the stencil area, set the reference value to one, and the comparison fu
such that the fragment passes if the reference value is equal to the stencil-plane value. Dul
drawing, don’t modify the contents of the stencil planes.

Example 10-demonstrates how to use the stencil test in this way. Two tori are drawn, with
diamond-shaped cutout in the center of the scene. Within the diamond-shaped stencil masl
sphere is drawn. In this example, drawing into the stencil buffer takes place only when the
is redrawn, so the color buffer is cleared after the stencil mask has been created.

Example 10-1 : Using the Stencil Test: stencil.c

#i nclude <@/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>

#def i ne YELLOWAT 1
#def i ne BLUEMAT 2

void init (void)

G.float yellow diffuse[] ={ 0.7, 0.7, 0.0, 1.0 };
G.float yellow specular[] ={ 1.0, 1.0, 1.0, 1.0 };

G.float blue diffuse[] ={ 0.1, 0.1, 0.7, 1.0 };
G.float blue_specular[] ={ 0.1, 1.0, 1.0, 1.0 };

G.float position_one[] ={ 1.0, 1.0, 1.0, 0.0 };

gl NewLi st (YELLOAWAT, GL_COWPI LE);

gl Material fv(G._FRONT, G._DI FFUSE, yell ow diffuse);
gl Material fv(G._FRONT, G._SPECULAR, yell ow specul ar);
gl Material f(G_FRONT, G._SHI NI NESS, 64.0);

gl EndLi st ();

gl NewLi st (BLUEMAT, GL_COWPI LE)

gl Material fv(G._FRONT, G._DI FFUSE, bl ue_diffuse);
gl Material fv(G._FRONT, G._SPECULAR, blue_ specul ar);
gl Material f (G._FRONT, GL_SHI NI NESS, 45.0);

gl EndLi st ();

gl Li ght fv(GL_LI GHTO, GL_POSI TI ON, position_one);

gl Enabl e(G._LI GHTO) ;
gl Enabl e(G._LI GHTI NG ;
gl Enabl e(G._DEPTH_TEST) ;

gl C ear St enci | (0x0);
gl Enabl e(GL_STENCI L_TEST) ;

}

/* Draw a sphere in a di anond-shaped section in the
* mddle of a wwndowwth 2 tori.

*/

voi d di spl ay(voi d)

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

/* draw bl ue sphere where the stencil is 1 */
gl Stencil Func (G._EQUAL, 0x1, 0Ox1);
gl Stencil O (G._KEEP, G.L_KEEP, G._KEEP);
gl Cal | Li st (BLUENAT);
gl ut Sol i dSphere (0.5, 15, 15);

/* draw the tori where the stencil is not 1 */
gl Stenci |l Func (G._NOTEQUAL, 0Ox1, 0x1);
gl PushiMatri x();
gl Rotatef (45.0, 0.0, 0.0, 1.0);
gl Rotatef (45.0, 0.0, 1.0, 0.0);
gl Cal | Li st (YELLOMWAT) ;
glut Sol i dTorus (0.275, 0.85, 15, 15);
gl PushiMatri x();
gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut Sol i dTorus (0.275, 0.85, 15, 15);
gl PopMat ri x();
gl PopMat ri x();
}

/* \Wenever the wi ndow is reshaped, redefine the
* coordi nate systemand redraw the stencil area.
*/

void reshape(int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

/* create a dianmond shaped stencil area */
gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w<=h)
gluOrtho2D(-3.0, 3.0, -3.0*(G.float)h/ (G float)w,
3.0*(CG.float)h/ (G.float)w);
el se
gl uOrtho2D(-3. 0*(G.fl oat)w (G.fl oat) h,
3.0*(G.float)w (Gfloat)h, -3.0, 3.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl O ear (GL_STENCI L_BUFFER BI T) ;
gl Stenci |l Func (G._ALWAYS, O0x1, Ox1);
gl Stenci |l Op (G._REPLACE, G._REPLACE, GL._REPLACE);
gl Begi n(G._QUADS) ;
gl Vertex2f (-1.0, 0.0);
gl Vertex2f (0.0, 1.0);
gl Vertex2f (1.0, 0.0);
gl Vertex2f (0.0, -1.0);
gl End() ;

gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl uPerspective(45.0, (G.float) w (Gfloat) h, 3.0, 7.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
gl Transl atef (0.0, 0.0, -5.0);
}

/* Main Loop

* Be certain to request stencil bits.
*/

int main(int argc, char** argv)

glutinit(&rgc, argv);
glutlnitD splayMyde (GLUT_SINGLE | GLUT_RGB
| GLUT_DEPTH | GLUT_STENCIL);

gl utlni t WndowSi ze (400, 400);

gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut ReshapeFunc(reshape);

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

The following examples illustrate other uses of the stencil testGBagter 14or additional
ideas.)

® Capping - Suppose you're drawing a closed convex object (or several of them, as long

don’t intersect or enclose each other) made up of several polygons, and you have a ¢
plane that may or may not slice off a piece of it. Suppose that if the plane does interse
object, you want to cap the object with some constant-colored surface, rather than set
inside of it. To do this, clear the stencil buffer to zeros, and begin drawing with stencili
enabled and the stencil comparison function set to always accept fragments. Invert th
in the stencil planes each time a fragment is accepted. After all the objects are drawn,
of the screen where no capping is required have zeros in the stencil planes, and regic
requiring capping are nonzero. Reset the stencil function so that it draws only where t
stencil value is nonzero, and draw a large polygon of the capping color across the ent
screen.

Overlapping translucent polygons - Suppose you have a translucent surface that's me
polygons that overlap slightly. If you simply use alpha blending, portions of the underh
objects are covered by more than one transparent surface, which doesn’t look right. LU
stencil planes to make sure that each fragment is covered by at most one portion of tr
transparent surface. Do this by clearing the stencil planes to zeros, drawing only wher
stencil plane is zero, and incrementing the value in the stencil plane when you draw.

Stippling - Suppose you want to draw an image with a stipple pattern:Sp&ying
Points, Lines, and Polygons" in Chaptdo2more information about stippling.) You can «
this by writing the stipple pattern into the stencil buffer, and then drawing conditionally
the contents of the stencil buffer. After the original stipple pattern is drawn, the stencil
isn’t altered while drawing the image, so the object gets stippled by the pattern in the
planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance between the view
the object occupying that pixel. Then if the specified depth test passes, the incoming depth
replaces the one already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new candidate color 1
pixel appears, it's drawn only if the corresponding object is closer than the previous object.
way, after the entire scene has been rendered, only objects that aren’t obscured by other it
remain. Initially, the clearing value for the depth buffer is a value that's as far from the view,
possible, so the depth of any object is nearer than that value. If this is how you want to use
depth buffer, you simply have to enable it by passing GL_DEPTH_TE§Etable() and
remember to clear the depth buffer before you redraw each framé(|8aeng Buffers.) You
can also choose a different comparison function for the depth tesil@ahthFunc().

void glDepthFunc(GLenumfuno);
Sets the comparison function for the depth test. The valdarfomust be GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER,
GL_NOTEQUAL. An incoming fragment passes the depth test ifatae has the specifiec
relation to the value already stored in the depth buffer. The default is GL_LESS, whicl
that an incoming fragment passes the test & #alue is less than that already stored in tF
depth buffer. In this case, thevalue represents the distance from the object to the view
and smaller values mean the corresponding objects are closer to the viewpoint.

Blending, Dithering, and L ogical Operations

Once an incoming fragment has passed all the tests described in the previous section, it ce
combined with the current contents of the color buffer in one of several ways. The simplest
which is also the default, is to overwrite the existing values. Alternatively, if you're using RC
mode and you want the fragment to be translucent or antialiased, you might average its val
the value already in the buffer (blending). On systems with a small number of available colc
might want to dither color values to increase the number of colors available at the cost of a
resolution. In the final stage, you can use arbitrary bitwise logical operations to combine the
incoming fragment and the pixel that’'s already written.

Blending

Blending combines the incoming fragment’s R, G, B, and alpha values with those of the pix
already stored at the location. Different blending operations can be applied, and the blendir
occurs depends on the values of the incoming alpha value and the alpha value (if any) stor
pixel. (Se€'Blending" in Chapter @or an extensive discussion of this topic.)

Dithering

On systems with a small number of color bitplanes, you can improve the color resolution at
expense of spatial resolution by dithering the color in the image. Dithering is like halftoning
newspapers. Although The New York Times has only two colors - black and white - it can s
photographs by representing the shades of gray with combinations of black and white dots.
Comparing a newspaper image of a photo (having no shades of gray) with the original phot
grayscale) makes the loss of spatial resolution obvious. Similarly, systems with a small nun
color bitplanes may dither values of red, green, and blue on neighboring pixels for the perci
a wider range of colors.

The dithering operation that takes place is hardware-dependent; all OpenGL allows you to-
turn it on and off. In fact, on some machines, enabling dithering might do nothing at all, whi
makes sense if the machine already has high color resolution. To enable and disable dithel
GL_DITHER toglEnable() andglDisable(). Dithering is enabled by default.

Dithering applies in both RGBA and color-index mode. The colors or color indices alternate
some hardware-dependent way between the two nearest possibilities. For example, in colo
mode, if dithering is enabled and the color index to be painted is 4.4, then 60% of the pixels
painted with index 4 and 40% of the pixels with index 5. (Many dithering algorithms are pos
but a dithered value produced by any algorithm must depend upon only the incoming value
fragment’s x and y coordinates.) In RGBA mode, dithering is performed separately for eacl
component (including alpha). To use dithering in color-index mode, you generally need to
the colors in the color map appropriately in ramps, otherwise, bizarre images might result.

L ogical Operations

The final operation on a fragment is the logical operation, such as an OR, XOR, or INVERT
is applied to the incoming fragment values (source) and/or those currently in the color buffe
(destination). Such fragment operations are especially useful on bit-blt-type machines, on v
primary graphics operation is copying a rectangle of data from one place in the window to ¢
from the window to processor memory, or from memory to the window. Typically, the copy
doesn’t write the data directly into memory but instead allows you to perform an arbitrary lo
operation on the incoming data and the data already present; then it replaces the existing c
the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many such machines ar
available. As an example of using a logical operation, XOR can be used to draw on an ima
undoable way; simply XOR the same drawing again, and the original image is restored. As
example, when using color-index mode, the color indices can be interpreted as bit patterns
you can compose an image as combinations of drawings on different layers, use writemask
drawing to different sets of bitplanes, and perform logical operations to modify different laye

You enable and disable logical operations by passing GL_INDEX_ LOGIC_OP or
GL_COLOR_LOGIC_OP tglEnable() andglDisable() for color-index mode or RGBA mode,
respectively. You also must choose among the sixteen logical operatiomslvagihcOp(), or
you'll just get the effect of the default value, GL_COPY. (For backward compatibility with
OpenGL Version 1.(ylEnable(GL_LOGIC_OP) also enables logical operation in color-index
mode.)

void glLogicOp(GLenumopcodé;
Selects the logical operation to be performed, given an incoming (source) fragment ar
pixel currently stored in the color buffer (destinatiohable 10-4shows the possible value
for opcodeand their meanings(represents source arbidestination). The default value is
GL_COPY.

Table 10-4 : Sixteen Logical Operations

Parameter Operation | Parameter Operation

GL_CLEAR 0 GL_AND s∧ d
GL_COPY S GL OR s∨ d
GL_NOOP d GL_NAND =(s ∧ d)
GL_SET 1 GL_NOR (s ∨ d)
GL_COPY_INVERTED || —s GL_XOR s XOR d
GL_INVERT -d GL_EQUIV ~(s XOR d)

GL_AND_REVERSE | s∧-d | GL_AND_INVERTED | -s ∧ d

GL_OR_REVERSE s∨ ~d GL_OR_INVERTED =s ∨ d

The Accumulation Buffer
Advanced

The accumulation buffer can be used for such things as scene antialiasing, motion blur, sin
photographic depth of field, and calculating the soft shadows that result from multiple light <
Other techniques are possible, especially in combination with some of the other buffefhig S
Accumulation Buffer: Hardware Support for High-Quality Rendebgdaul Haeberli and Kurt
Akeley (SIGGRAPH 1990 Proceedings, p. 309-318) for more information on the uses for th
accumulation buffer.)

OpenGL graphics operations don’t write directly into the accumulation buffer. Typically, a s
images is generated in one of the standard color buffers, and these are accumulated, one ¢
into the accumulation buffer. When the accumulation is finished, the result is copied back ir
color buffer for viewing. To reduce rounding errors, the accumulation buffer may have hight
precision (more bits per color) than the standard color buffers. Rendering a scene several t
obviously takes longer than rendering it once, but the result is higher quality. You can decic
trade-off between quality and rendering time is appropriate for your application.

You can use the accumulation buffer the same way a photographer can use film for multipl
exposures. A photographer typically creates a multiple exposure by taking several pictures
same scene without advancing the film. If anything in the scene moves, that object appears
Not surprisingly, a computer can do more with an image than a photographer can do with a
For example, a computer has exquisite control over the viewpoint, but a photographer can’t
camera a predictable and controlled amount. {S&maring Buffers'for information about how tc
clear the accumulation buffer; ugkccum() to control it.)

void glAccum(GLenumop, GLfloatvalue);
Controls the accumulation buffer. Thp parameter selects the operation, aradueis a
number to be used in that operation. The possible operations are GL_ACCUM, GL_L(
GL_RETURN, GL_ADD, and GL_MULT.

® GL_ACCUM reads each pixel from the buffer currently selected for reading with
glReadBuffer (), multiplies the R, G, B, and alpha valuesvbyue and adds the result to th
accumulation buffer.

® GL_LOAD does the same thing, except that the values replace those in the accumula
buffer rather than being added to them.

® GL_RETURN takes values from the accumulation buffer, multiplies thewalmwg and
places the result in the color buffer(s) enabled for writing.

® GL_ADD and GL_MULT simply add or multiply the value of each pixel in the accumul
buffer byvalueand then return it to the accumulation buffer. For GL_MWaAlyeis
clamped to be in the range [-1.0,1.0]. For GL_ADD, no clamping occurs.

Scene Antialiasing

To perform scene antialiasing, first clear the accumulation buffer and enable the front buffe
reading and writing. Then loop several times (sxyhrough code that jitters and draws the ime
(jittering is moving the image to a slightly different position), accumulating the data with

gl Accum(GL_ACCUM 1.0/ n);
and finally calling
gl Accun{G._RETURN, 1.0);

Note that this method is a bit faster if, on the first pass through the loop, GL_LOAD is used
clearing the accumulation buffer is omitted. Sable 10-5for possible jittering values. With this
code, the image is drawrtimes before the final image is drawn. If you want to avoid showinc
user the intermediate images, draw into a color buffer that's not displayed, accumulate fron
and use the GL_RETURN call to draw into a displayed buffer (or into a back buffer that yot
subsequently swap to the front).

You could instead present a user interface that shows the viewed image improving as eacl
additional piece is accumulated and that allows the user to halt the process when the imag:
enough. To accomplish this, in the loop that draws successive imagetAcalim() with
GL_RETURN after each accumulation, using 16.0/1.0, 16.0/2.0, 16.0/3.0, ... as the second
argument. With this technique, after one pass, 1/16 of the final image is shown, after two p:
2/16 is shown, and so on. After the GL_RETURN, the code should check to see if the user
interrupt the process. This interface is slightly slower, since the resultant image must be co
after each pass.

To decide whai should be, you need to trade off speed (the more times you draw the scene
longer it takes to obtain the final image) and quality (the more times you draw the scene, th
smoother it gets, until you make maximum use of the accumulation buffer’s resol(Riaig.22"
and"Plate 23"show improvements made using scene antialiasing.

Example 10-2lefines two routines for jittering that you might find usefutPer spective() and
accFrustum(). The routineaccPer spective() is used in place ajiuPer spective(), and the first fou
parameters of both routines are the same. To jitter the viewing frustum for scene antialiasir
thex andy jitter values (of less than one pixel) to the fifth and sixth parameters of

accPer spective(). Also pass 0.0 for the seventh and eighth parametacsRer spective() and a
nonzero value for the ninth parameter (to prevent division by zero iasiBer spective()). These
last three parameters are used for depth-of-field effects, which are described later in this ct

Example 10-2 : Routines for Jittering the Viewing Volume: accpersp.c

#define Pl _ 3.14159265358979323846

voi d accFrustum GLdoubl e [eft, G.double right, G.double bottom
GLdoubl e top, G.doubl e near, G.double far, G.doubl e pixdx,
GLdoubl e pi xdy, GLdoubl e eyedx, G.doubl e eyedy,
GLdoubl e focus)

GLdoubl e xwsi ze, ywsize
GLdoubl e dx, dy;
GLint viewport[4];

gl Getlntegerv (G__VI EWPORT, viewport);

XWsi ze right - left;

ywsi ze = top - bottom

dx = -(pixdx*xwsize/ (CGL.doubl e) viewport[2] +
eyedx*near/focus);

dy = -(pixdy*ywsi ze/ (GL.doubl e) viewport[3] +
eyedy*near/focus);

gl Mat ri xMode(GL_PROJECTI ON) ;

gl Loadl dentity();

gl Frustum (left + dx, right + dx, bottom+ dy, top + dy,
near, far);

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Transl atef (-eyedx, -eyedy, 0.0);

}

voi d accPerspective(G.doubl e fovy, G.doubl e aspect,
GL.doubl e near, G.double far, G.doubl e pixdx, G.doubl e pixdy,
GLdoubl e eyedx, G.doubl e eyedy, G.doubl e focus)

{
GLdoubl e fov2,left,right,bottomtop
fov2 = ((fovy*Pl_) / 180.0) / 2.0;
top = near / (fcos(fov2) / fsin(fov2));
bottom = -top;
right = top * aspect;
left = -right;
accFrustum (left, right, bottom top, near, far
pi xdx, pixdy, eyedx, eyedy, focus);
}

Example 10-3uses these two routines to perform scene antialiasing.

Example 10-3 : Scene Antialiasing: accpersp.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>

#i ncl ude <stdlib. h>
#i ncl ude <nath. h>

#i ncl ude <G/ glut. h>
#include "jitter.h"

VOi

voi

d init(void)

G.float mat_anmbient[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
G.float light position[] ={ 0.0, 0.0, 10.0, 1.0 };
G.float Imanbient[] ={ 0.2, 0.2, 0.2, 1.0 };

gl Material fv(G._FRONT, G._AMBI ENT, mat_anbient);

gl Material fv(GL_FRONT, GL_SPECULAR, nat_specul ar)
gl Material f(GL_FRONT, GL_SHI NI NESS, 50.0);

gl Lightfv(G._LIGHTO, G._POSITION, |ight position);
gl Li ght Model fv(GL_LI GHT_MODEL_AMBI ENT, | m anbi ent);

gl Enabl e(GL_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;

gl Enabl e(GL_DEPTH_TEST) ;
gl ShadeMbdel (G._FLAT);

gl dearColor(0.0, 0.0, 0.0, 0.0);
gl O ear Accunm(0.0, 0.0, 0.0, 0.0);

d di spl ayObj ect s(voi d)

G.float torus diffuse[] ={ 0.7, 0.7, 0.0, 1.0 };

G.fl oat cube diffuse[] = { 0.0, 0.7, 0.7, 1.0 };
G.fl oat sphere_diffuse[] ={ 0.7, 0.0, 0.7, 1.0 };
G.float octa_diffuse[] ={ 0.7, 0.4, 0.4, 1.0 };

gl PushiMatrix ();
gl Transl atef (0.0, 0.0, -5.0);
gl Rotatef (30.0, 1.0, 0.0, 0.0);

gl PushMatrix ();

gl Transl atef (-0.80, 0.35, 0.0);

gl Rotatef (100.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G._DI FFUSE, torus_diffuse);
gl ut Sol i dTorus (0.275, 0.85, 16, 16);

gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (-0.75, -0.50, 0.0);

gl Rotatef (45.0, 0.0, 0.0, 1.0);

gl Rotatef (45.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G._DI FFUSE, cube_diffuse);

gl ut Sol i dCube (1.5);
gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (0.75, 0.60, 0.0);

gl Rotatef (30.0, 1.0, 0.0, 0.0);

gl Material fv(G._FRONT, G__DI FFUSE, sphere_diffuse);
gl ut Sol i dSphere (1.0, 16, 16);

gl PopMatrix ();

gl Pushiatrix ();

gl Transl atef (0.70, -0.90, 0.25);

gl Material fv(G._FRONT, G._DI FFUSE, octa_diffuse);
gl ut Sol i dCct ahedron ();

gl PopMatrix ();

gl PopMatrix ();

#defi ne ACSIZE 8
voi d di spl ay(voi d)
{

GLint viewport[4];
int jitter;

gl Cetl ntegerv (G_VI EWPORT, viewport);

gl d ear (GL_ACCUM BUFFER BI T);
for (jitter = 0; jitter < ACSIZE, jitter++) {
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
accPerspective (50.0,
(GLdoubl e) viewport[2]/(G.doubl e) viewdort][3],
1.0, 15.0, j8g[jitter].x, j8[jitter].y, 0.0, 0.0, 1.0);
di spl ayQbj ects ();
gl Accum(G._ACCUM 1.0/ ACSI ZE);

gl Accum (GL_RETURN, 1.0);
gl Fl ush();

}
voi d reshape(int w, int h)

gl Viewport (0, O, (G.sizei) w, (Gsizei) h);

/* Main Loop

* Be certain you request an accumnul ati on buffer.
*/

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMde (GLUT_SINGLE | GUT_RGB
GLUT_ACCUM | GLUT_DEPTH);

gl utl ni t WndowSi ze (250, 250);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init();

gl ut ReshapeFunc(reshape);

gl ut Di spl ayFunc(di spl ay) ;

gl ut Mai nLoop() ;

return O;

}

You don’t have to use a perspective projection to perform scene antialiasing. You can antie
scene with orthographic projection simply by usghgrandate* () to jitter the scene. Keep in mi
thatglTrandate* () operates in world coordinates, but you want the apparent motion of the s
be less than one pixel, measured in screen coordinates. Thus, you must reverse the world-
mapping by calculating the jittering translation values, using its width or height in world
coordinates divided by its viewport size. Then multiply that world-coordinate value by the ai
of jitter to determine how much the scene should be moved in world coordinates to get a pr
jitter of less than one pixdExample 10-4&hows how théisplay() andreshape() routines might
look with a world-coordinate width and height of 4.5.

Example 10-4 : Jittering with an Orthographic Projection: accanti.c

#define ACSIZE 8

voi d di spl ay(voi d)
{

GLint viewport[4];
int jitter;

gl Get I ntegerv (G._VI EWPORT, viewport);

gl d ear (G._ACCUM BUFFER BI T);
for (jitter = 0; jitter < ACSIZE; jitter++)
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);
gl PushMatrix ();
Note that 4.5 is the distance in world space between
left and right and bottom and top.
This formula converts fractional pixel nmovenent to
wor | d coordi nates.

* % %k % X

gl Translatef (j8[jitter].x*4.5/viewort][?2],
j8[jitter].y*4.5/viewort[3], 0.0);

di spl ayQbj ects ();

gl PopMatrix ();

gl Accum({ G__ACCUM 1.0/ ACSI ZE);

}
gl Accum (G._RETURN, 1.0);

gl Flush();
}
voi d reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();
if (w<=h)
glOtho (-2.25, 2.25, -2.25*h/w, 2.25*h/w, -10.0, 10.0);
el se
glOtho (-2.25*w h, 2.25*w h, -2.25, 2.25, -10.0, 10.0);
gl Matri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
Motion Blur

Similar methods can be used to simulate motion blur, as shoifaile 7" in Appendix and
Figure 10-2 Suppose your scene has some stationary and some moving objects in it, and y
to make a motion-blurred image extending over a small interval of time. Set up the accumu
buffer in the same way, but instead of spatially jittering the images, jitter them temporally. T
entire scene can be made successively dimmer by calling

gl Accum (G._MJILT, decayFactor);

as the scene is drawn into the accumulation buffer, wlezrayFactois a number from 0.0 to 1.
Smaller numbers fatecayFactorcause the object to appear to be moving faster. You can tra
the completed scene with the object’s current position and "vapor trail" of previous position:
the accumulation buffer to the standard color buffer with

gl Accum (GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds, or if some of them are
accelerated. As before, the more jitter points (temporal, in this case) you use, the better the
image, at least up to the point where you begin to lose resolution due to finite precision in tl
accumulation buffer. You can combine motion blur with antialiasing by jittering in both the s

and temporal domains, but you pay for higher quality with longer rendering times.

= Motion

Figure 10-2 : Motion-Blurred Obiject

Depth of Field

A photograph made with a camera is in perfect focus only for items lying on a single plane
distance from the film. The farther an item is from this plane, the more out of focus it is. The
of field for a camera is a region about the plane of perfect focus where items are out of foct
small enough amount.

Under normal conditions, everything you draw with OpenGL is in focus (unless your monito
bad, in which case everything is out of focus). The accumulation buffer can be used to appi
what you would see in a photograph where items are more and more blurred as their distar
a plane of perfect focus increases. It isn’t an exact simulation of the effects produced ina c
but the result looks similar to what a camera would produce.

To achieve this result, draw the scene repeatedly using calls with different argument values
glFrustum(). Choose the arguments so that the position of the viewpoint varies slightly arot
true position and so that each frustum shares a common rectangle that lies in the plane of |

focus, as shown iRigure 10-3 The results of all the renderings should be averaged in the us
way using the accumulation buffer.

— Mormal View
< {not jitterer)
<
A | Jittered at Point A
::: é Jittared at Point B
i
B

N

Flane in Focus

Figure 10-3 : Jittered Viewing Volume for Depth-of-Field Effects

"Plate 10" in Appendix shows an image of five teapots drawn using the depth-of-field effect
gold teapot (second from the left) is in focus, and the other teapots get progressively blurrie
depending upon their distance from the focal plane (gold teapot). The code to draw this ime
shown inExample 10-Fwhich assumeaccPer spective() andaccFrustum() are defined as

described irExample 10-2 The scene is drawn eight times, each with a slightly jittered viewi
volume, by callingaccPer spective(). As you recall, with scene antialiasing, the fifth and sixth
parameters jitter the viewing volumes in thandy directions. For the depth-of-field effect,
however, you want to jitter the volume while holding it stationary at the focal plane. The foc
plane is the depth value defined by the ninth (last) paramedecRer spective(), which isz=5.0
in this example. The amount of blur is determined by multiplyingtuedy jitter values (seventh
and eighth parameters adcPer spective()) by a constant. Determining the constant is not a
science; experiment with values until the depth of field is as pronounced as you want. (Not¢
Example 10-5the fifth and sixth parametersaocPer spective() are set to 0.0, so scene
antialiasing is turned off.)

Example 10-5 : Depth-of-Field Effect: dof.c

#i nclude <@./gl. h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <mat h. h>
#include "jitter.h"

void init(void)

G.float anbient[] ={ 0.0, 0.0, 0.0, 1.0 };
G.float diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float position[] ={ 0.0, 3.0, 3.0, 0.0 };

G.float | nodel _anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
G.float local _viewf] ={ 0.0 };

gl Lightfv(G_LI GHATO, G._AMBI ENT, anbient);
gl Li ghtfv(G._LI GHTO, G__DI FFUSE, diffuse);
gl Lightfv(G _LI GHTO, G._POSI TI ON, position);

gl Li ght Model f v(G._LI GHT_MODEL_AMBI ENT, | nodel _anbi ent);
gl Li ght Model fv(G._LI GHT_MODEL_LOCAL_VI EVER, | ocal _vi ew);

gl Front Face (GL_CW;

gl Enabl e(G_LI GHTI NG ;

gl Enabl e(GL_LI GHTO) ;

gl Enabl e(GL_AUTO _NORMNAL) ;
gl Enabl e(GL_NORMALI ZE) ;
gl Enabl e(G._DEPTH_TEST) ;

gl dearColor(0.0, 0.0, 0.0, 0.0);
gl d ear Accum(0.0, 0.0, 0.0, 0.0);
/* nmake teapot display list */
teapot Li st = gl GenLists(1);
gl NewLi st (teapotlList, G._COWILE);
gl ut Sol i dTeapot (0.5);

gl EndLi st ();
}
voi d render Teapot (G.float x, G.float y, Gfloat z,

G.float anbr, G.float anmbg, G.fl oat ambb,

G.float difr, G.float difg, G.float difb,

G.fl oat specr, G.float specg, Gfloat specb, G.float shine)
{

G.float mat[4];

gl PushiMatri x();

gl Transl atef (x, y, z);
mat[0] = anbr; mat[1l] = anbg; mat[2] = anbb; mat[3] = 1.0;
gl Material fv (GL_FRONT, GL_AMBI ENT, mat);
mat[0] = difr; mat[1l] = difg; mat[2] = difb;
gl Material fv (GL_FRONT, G._DlI FFUSE, mat);
mat [0] = specr; mat[1l] = specg; mat[2] = spech
gl Material fv (G._FRONT, G._SPECULAR, mat);
gl Material f (GL_FRONT, G._SHI NI NESS, shine*128.0);
gl Cal I Li st (teapotList);
gl PopMat ri x();
}

voi d di spl ay(voi d)
{

int jitter;
GLint viewport[4];

gl GetI ntegerv (G._VI EWPORT, viewport);
gl O ear (GL_ACCUM BUFFER BI T);

for (jitter = 0; jitter < 8; jitter++) {
gl dear (G _COLOR BUFFER BI T | G._DEPTH BUFFER BIT);
accPerspective (45.0,
(GLdoubl e) viewport[2]/(G.doubl e) viewport]3],
1.0, 15.0, 0.0, 0.0,
0.33*j8[jitter].x, 0.33*j8[jitter].y, 5.0);

/* ruby, gold, silver, enerald, and cyan teapots */
render Teapot (-1.1, -0.5, -4.5, 0.1745, 0.01175,
0. 01175, 0.61424, 0.04136, 0.04136,
0.727811, 0.626959, 0.626959, 0.6);
render Teapot (-0.5, -0.5, -5.0, 0.24725, 0.1995,
0. 0745, 0.75164, 0.60648, 0.22648,
0. 628281, 0.555802, 0.366065, 0.4);
render Teapot (0.2, -0.5, -5.5, 0.19225, 0.19225,
0.19225, 0.50754, 0.50754, 0.50754,
0.508273, 0.508273, 0.508273, 0.4);
render Teapot (1.0, -0.5, -6.0, 0.0215, 0.1745, 0.0215,
0. 07568, 0.61424, 0.07568, 0.633,
0.727811, 0.633, 0.6);
render Teapot (1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0,
0. 50980392, 0.50980392, 0.50196078,
0.50196078, 0.50196078, .25);
gl Accum (GL_ACCUM 0. 125);

}
gl Accum (G._RETURN, 1.0);
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);

/* Main Loop
* Be certain you request an accunul ati on buffer
*/
int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB
GLUT_ACCUM | GLUT_DEPTH);
gl utlnit WndowSi ze (400, 400);
gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init();

gl ut ReshapeFunc(reshape);
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;

return O;

}
Soft Shadows

To accumulate soft shadows due to multiple light sources, render the shadows with one ligl
on at a time, and accumulate them together. This can be combined with spatial jittering to ¢
the scene at the same time. (S8leadows" in Chapter 1#r more information about drawing
shadows.)

Jittering

If you need to take nine or sixteen samples to antialias an image, you might think that the b
choice of points is an equally spaced grid across the pixel. Surprisingly, this is not necessa
In fact, sometimes it's a good idea to take points that lie in adjacent pixels. You might want
uniform distribution or a normalized distribution, clustering toward the center of the pixel. (T
aforementioned SIGGRAPH paper discusses these issues.) In addita 1 0-5shows a few se
of reasonable jittering values to be used for some selected sample counts. Most of the exal
the table are uniformly distributed in the pixel, and all lie within the pixel.

Table 10-5: (continued) Sample Jittering Values

Count | Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},

{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}
5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}
6 {0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},

{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125}, {0.8125
0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

{0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666},
{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},
{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},

{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}

12

{0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},
{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75, 0.625)},
{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},

{0.0833333333, 0.625}, {0.583333333, 0.875}

16

{0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},
{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},

{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},

{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

