[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 9
Texture Mapping

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Understand what texture mapping can add to your scene
® Specify a texture image
® Control how a texture image is filtered as it's applied to a fragment

® Create and manage texture images in texture objects and, if available, control a
high-performance working set of those texture objects

® Specify how the color values in the image combine with those of the fragment to whicl
being applied

® Supply texture coordinates to indicate how the texture image should be aligned to the
in your scene

® Use automatic texture coordinate generation to produce effects like contour maps anc
environment maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shade
between the colors at its vertices - that is, they've been drawn without texture mapping. If y
to draw a large brick wall without texture mapping, for example, each brick must be drawn :
separate polygon. Without texturing, a large flat wall - which is really a single rectangle - mi
require thousands of individual bricks, and even then the bricks may appear too smooth an
to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by scannir
photograph of a real wall) to a polygon and to draw the entire wall as a single polygon. Tex
mapping ensures that all the right things happen as the polygon is transformed and rendere
example, when the wall is viewed in perspective, the bricks may appear smaller as the wall
farther from the viewpoint. Other uses for texture mapping include depicting vegetation on |
polygons representing the ground in flight simulation; wallpaper patterns; and textures that
polygons look like natural substances such as marble, wood, or cloth. The possibilities are
Although it's most natural to think of applying textures to polygons, textures can be applied
primitives - points, lines, polygons, bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large, complex subject,

must make several programming choices when using it. For instance, you can map texture
surfaces made of a set of polygons or to curved surfaces, and you can repeat a texture in ¢
directions to cover the surface. A texture can even be one-dimensional. In addition, you cal
automatically map a texture onto an object in such a way that the texture indicates contour:
properties of the item being viewed. Shiny objects can be textured so that they appear to b
center of a room or other environment, reflecting the surroundings off their surfaces. Finally
texture can be applied to a surface in different ways. It can be painted on directly (like a de:
placed on a surface), used to modulate the color the surface would have been painted othe
used to blend a texture color with the surface color. If this is your first exposure to texture n
you might find that the discussion in this chapter moves fairly quickly. As an additional refei
you might look at the chapter on texture mappingundamentals of Three-Dimensional

Computer Graphicdy Alan Watt (Reading, MA: Addison-Wesley Publishing Company, 199(

Textures are simply rectangular arrays of data - for example, color data, luminance data, ol
and alpha data. The individual values in a texture array are often teadidsl\What makes texture
mapping tricky is that a rectangular texture can be mapped to nonrectangular regions, and
be done in a reasonable way.

Figure 9-1lillustrates the texture-mapping process. The left side of the figure represents the
texture, and the black outline represents a quadrilateral shape whose corners are mapped
spots on the texture. When the quadrilateral is displayed on the screen, it might be distorte:
applying various transformations - rotations, translations, scaling, and projections. The righ
the figure shows how the texture-mapped quadrilateral might appear on your screen after tl
transformations. (Note that this quadrilateral is concave and might not be rendered correctl
OpenGL without prior tessellation. SEdapter 1¥or more information about tessellating

polygons.)

CAAE (W

Figure 9-1: Texture-Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, i
stretched in the direction and compressed in thdirection; there’s a bit of rotation and sheari
going on as well. Depending on the texture size, the quadrilateral’s distortion, and the size
screen image, some of the texels might be mapped to more than one fragment, and some f

might be covered by multiple texels. Since the texture is made up of discrete texels (in this
256 x 256 of them), filtering operations must be performed to map texels to fragments. For
example, if many texels correspond to a fragment, they’re averaged down to fit; if texel bou
fall across fragment boundaries, a weighted average of the applicable texels is performed.
of these calculations, texturing is computationally expensive, which is why many specialize
graphics systems include hardware support for texture mapping.

An application may establish texture objects, with each texture object representing a single
(and possible associated mipmaps). Some implementations of OpenGL can support a spec
working set of texture objects that have better performance than texture objects outside the
set. These high-performance texture objects are saidresioentand may have special hardwa
and/or software acceleration available. You may use OpenGL to create and delete texture
and to determine which textures constitute your working set.

This chapter covers the OpenGL'’s texture-mapping facility in the following major sections.

® "An Overview and an Examplajives a brief, broad look at the steps required to perforn
texture mapping. It also presents a relatively simple example of texture mapping.

® "Specifying the Texturegxplains how to specify one- or two-dimensional textures. It als
discusses how to use a texture’s borders, how to supply a series of related textures oi
sizes, and how to control the filtering methods used to determine how an applied textt
mapped to screen coordinates.

® "Filtering" details how textures are either magnified or minified as they are applied to t
pixels of polygons. Minification using special mipmap textures is also explained.

® "Texture Objects'tlescribes how to put texture images into objects so that you can con
several textures at one time. With texture objects, you may be able to create a workin
high-performance textures, which are said to be resident. You may also prioritize textt
objects to increase or decrease the likelihood that a texture object is resident.

® "Texture Functionstliscusses the methods used for painting a texture onto a surface. "
choose to have the texture color values replace those that would be used if texturing \
effect, or you can have the final color be a combination of the two.

® "Assigning Texture Coordinateslescribes how to compute and assign appropriate textt
coordinates to the vertices of an object. It also explains how to control the behavior of
coordinates that lie outside the default range - that is, how to repeat or clamp textures
surface.

® "Automatic Texture-Coordinate Generatisiiows how to have OpenGL automatically
generate texture coordinates so that you can achieve such effects as contour and env
maps.

® "Advanced Featurexplains how to manipulate the texture matrix stack and how to us
g texture coordinate.

Version 1.1 of OpenGL introduces several new texture-mapping operations:

O Thirty-eight additional internal texture image formats

O Texture proxy, to query whether there are enough resources to accommodate a
texture image

O Texture subimage, to replace all or part of an existing texture image rather than
completely deleting and creating a texture to achieve the same effect

O Specifying texture data from framebuffer memory (as well as from processor me
O Texture objects, including resident textures and prioritizing
If you try to use one of these texture-mapping operations and can't find it, check the versior

number of your implementation of OpenGL to see if it actually supports it."(Beieh Version
Am | Using?" in Chapter 14

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also p
relatively simple texture-mapping program. Of course, you know that texture mapping can t
very involved process.

Stepsin Texture Mapping
To use texture mapping, you perform these steps.
1. Create a texture object and specify a texture for that object.
2. Indicate how the texture is to be applied to each pixel.
3. Enable texture mapping.
4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in
color-index mode are undefined.

Create a Texture Object and Specify a Texturefor That Object

A texture is usually thought of as being two-dimensional, like most images, but it can also k
one-dimensional. The data describing a texture may consist of one, two, three, or four elen
texel, representing anything from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-1which is very simple, a single texture object is created to maintain a single
two-dimensional texture. This example does not find out how much memory is available. Si
only one texture is created, there is no attempt to prioritize or otherwise manage a working
texture objects. Other advanced techniques, such as texture borders or mipmaps, are not L
simple example.

Indicate How the Texturelsto Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA value from the
fragment color and the texture-image data. One possibility is simply to use the texture colol
final color; this is thelecalmode, in which the texture is painted on top of the fragment, just ¢
decal would be appliedEkample 9-luses decal mode.) Theplacemode, a variant of the deca
mode, is a second method. Another method is to use the textoeltdate or scale, the

fragment’s color; this technique is useful for combining the effects of lighting with texturing.
Finally, a constant color can be blended with that of the fragment, based on the texture valt

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is enabled or disabled t
glEnable() or glDisable() with the symbolic constant GL_TEXTURE_1D or GL_TEXTURE_2
for one- or two-dimensional texturing, respectively. (If both are enabled, GL_ TEXTURE_2C
one that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the fragments to which it
applied before it's "glued on." That is, you need to specify both texture coordinates and gec
coordinates as you specify the objects in your scene. For a two-dimensional texture map, f
example, the texture coordinates range from 0.0 to 1.0 in both directions, but the coordinatt
items being textured can be anything. For the brick-wall example, if the wall is square and 1
represent one copy of the texture, the code would probably assign texture coordinates (O, (
(1, 1), and (0, 1) to the four corners of the wall. If the wall is large, you might want to paint <
copies of the texture map on it. If you do so, the texture map must be designed so that the
the left edge match up nicely with the bricks on the right edge, and similarly for the bricks o
top and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0] should be treate
textures repeat to cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that int
textures are large. Typically, textures are read from an image file, since specifying a texture
programmatically could take hundreds of lines of cod&xample 9-1the texture - which consis
of alternating white and black squares, like a checkerboard - is generated by the program.
program applies this texture to two squares, which are then rendered in perspective, one of
facing the viewer squarely and the other tilting back at 45 degrees, as sHagure9-2 In objec
coordinates, both squares are the same size.

Figure9-2: Texture-Mapped Squares

Example 9-1 : Texture-Mapped Checkerboard: checker.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

/*

Create checkerboard texture */

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
static Gubyte checkl mage[checkl nageHei ght] [checkl mageW dt h] [4] ;

static GLui nt texName;

Vo

{

VO

d makeCheckl nage(voi d)
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {

for (j = 0; j < checklmageWdth; j++) {
c = ((((i&0x8)==0)"((j&0x8))==0))*255;

checkl mage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;
checklmage[i][j][3] = (G.ubyte) 255;
}
}
d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl mage() ;
gl Pi xel St orei (G._UNPACK_ALI GNMENT, 1);

gl GenTextures(1, &texNane);
gl Bi ndText ure(GL_TEXTURE_2D, texNane);

gl TexParanmet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, G._REPEAT);

gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, G._REPEAT);

gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE_MAG FI LTER
GL_NEAREST) ;

gl TexParamet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER,
GL_NEAREST) ;
gl Texl mage2D(GL_TEXTURE 2D, 0, G._RGBA, checkl nageW dt h,
checkl mageHei ght, 0, GL_RGBA, GL_UNSI GNED BYTE,
checkl mage) ;

}
voi d di spl ay(voi d)
{
gl O ear (G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl Enabl e(GL_TEXTURE_2D) ;
gl TexEnvf (GL_TEXTURE_ENV, G._TEXTURE_ENV_MODE, GL_DECAL);
gl Bi ndText ure(GL_TEXTURE_2D, texNane);
gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoor d2f (0.0, 1.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(0.0, 1.0, 0.0);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(0.0, -1.0, 0.0);
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(1.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(1.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(2.41421, 1.0, -1.41421);
gl TexCoor d2f (1.0, 0.0); gl Vertex3f(2.41421, -1.0, -1.41421);
gl End() ;
gl Fl ush();
gl Di sabl e(GL_TEXTURE_2D) ;
}
voi d reshape(int w, int h)
{
gl Viewport (0, O, (GLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
gl uPerspective(60.0, (Gfloat) w (Gfloat) h, 1.0, 30.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
gl Transl atef (0.0, 0.0, -3.6);
}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
defaul t:
br eak;
}
}
int main(int argc, char** argv)
{

glutinit(&rgc, argv);

glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(250, 250);

gl ut I ni t WndowPosi tion(100, 100);
gl ut Creat eW ndow(argv[0]);

init();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

The checkerboard texture is generated in the rootasleeCheckl mage(), and all the
texture-mapping initialization occurs in the routiné(). gilGenTextures() andglBindTextur ()
name and create a texture object for a texture image'8gwire Objects)'The single,
full-resolution texture map is specified gyl exl mage2D(), whose parameters indicate the size
the image, type of the image, location of the image, and other properties of {iSf@e#ying the
Texture"for more information abowgi T exl mage2D().)

The four calls t@I TexParameter* () specify how the texture is to be wrapped and how the co
are to be filtered if there isn't an exact match between pixels in the texture and pixels on the
(See"Repeating and Clamping Texturesmid"Filtering.")

In display(), glEnable() turns on texturinggl TexEnv* () sets the drawing mode to GL_DECAL
that the textured polygons are drawn using the colors from the texture map (rather than tak
account what color the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with verte
coordinates. ThglTexCoord*() command behaves similarly to thi&ormal() command.
glTexCoord*() sets the current texture coordinates; any subsequent vertex command has tl
texture coordinates associated with it ugitifexCoor d*() is called again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile ar
it on your machine - for example, it might look like two triangles with different projections of
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again
do this, usglHint().

Specifying the Texture

The command)l Texlmage2D() defines a two-dimensional texture. It takes several argument:
which are described briefly here and in more detail in the subsections that follow. The relatt
command for one-dimensional texturgls,exl magelD(), is described iiOne-Dimensional
Textures."

void gl Texl mage2D(GLenumtarget, GLintlevel GLintinternalFormat

GLsizeiwidth, GLsizeiheight GLintborder,

GLenumformat, GLenuntype

const GLvoidpixels);
Defines a two-dimensional texture. Tthegetparameter is set to either the constant
GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. You usketetparameter if you're
supplying multiple resolutions of the texture map; with only one resollgns should be 0
(See'Multiple Levels of Detail'for more information about using multiple resolutions.)
The next parametemternalFormat indicates which of the R, G, B, and A components ¢
luminance or intensity values are selected for use in describing the texels of an image
value ofinternalFormatis an integer from 1 to 4, or one of thirty-eight symbolic constan
The thirty-eight symbolic constants that are also legal valuestemalFormatare
GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINA|
GL_LUMINANCE4, GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE1S6,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHA.
GL_LUMINANCES8_ALPHAS8, GL_LUMINANCE12_ ALPHAA4,

GL_LUMINANCE12_ ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGE
GL_R3_G3 B2, GL_RGB4, GL_RGB5, GL_RGBS8, GL_RGB10, GL_RGB12, GL_RG
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS8, GL_RGB10_AZ2,
GL_RGBA12, and GL_RGBA16. (S&exture Functionsfor a discussion of how these
selected components are applied.)

If internalFormatis one of the thirty-eight symbolic constants, then you are asking for
specific components and perhaps the resolution of those components. For example, i
internalFormatis GL_R3_G3_B2, you are asking that texels be 3 bits of red, 3 bits of ¢
and 2 bits of blue, but OpenGL is not guaranteed to deliver this. OpenGL is only oblig;
choose an internal representation that closely approximates what is requested, but an
match is usually not required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALP
GL_RGB, and GL_RGBA are lenient, because they do not ask for a specific resolutiol
compatibility with the OpenGL release 1.0, the numeric values 1, 2, 3, and 4, for
internalFormat are equivalent to the symbolic constants GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)

Thewidth andheightparameters give the dimensions of the texture imagyeler indicates
the width of the border, which is either zero (no border) or one."(3®ag a Texture’s
Borders") Bothwidth andheightmust have the form 2m+2b, where m is a nhonnegative
integer (which can have a different value wadth than forheigh) and b is the value of
border. The maximum size of a texture map depends on the implementation of Openc
must be at least 64 x 64 (or 66 x 66 with borders).

The formatandtype parameters describe the format and data type of the texture image
They have the same meaning as they dglfarawPixels(). (Se€'lmaging Pipeline” in
Chapter 8) In fact, texture data is in the same format as the data usgtDbbswPixels(), so
the settings ofl Pixel Store* () and glPixel Transfer* () are applied. (InExample 9-1the call

gl Pi xel St or ei (GL_UNPACK_ALI GNVENT, 1);

is made because the data in the example isn’t padded at the end of each texel row.) 1
formatparameter can be GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA
that is, the same formats available fDrawPixels() with the exceptions of
GL_STENCIL_INDEX and GL_DEPTH_COMPONENT.

Similarly, thetypeparameter can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED _INT, GL_FLOAT, or GL_BITMAI
Finally, pixelscontains the texture-image data. This data describes the texture image i
well as its border.

The internal format of a texture image may affect the performance of texture operations. Fc
example, some implementations perform texturing with GL_RGBA faster than GL_RGB, be
the color components align the processor memory better. Since this varies, you should che
specific information about your implementation of OpenGL.

The internal format of a texture image also may control how much memory a texture image
consumes. For example, a texture of internal format GL_RGBAS8 uses 32 bits per texel, wh
texture of internal format GL_R3_G3_B2 only uses 8 bits per texel. Of course, there is a
corresponding trade-off between memory consumption and color resolution.

Note: Although texture-mapping results in color-index mode are undefined, you can still spe
texture with a GL_COLOR_INDEX image. In that case, pixel-transfer operations are applie

convert the indices to RGBA values by table lookup before they’re used to form the texture

The number of texels for both the width and height of a texture image, not including the opt
border, must be a power of 2. If your original image does not have dimensions that fit that
limitation, you can use the OpenGL Utility Library routiglesScalel mage() to alter the size of
your textures.

int gluScalel mage(GLenumformat, GLintwidthin, GLint heightin

GLenunmtypein const void #atain, GLintwidthout

GLint heightout GLenuntypeout void *dataou);
Scales an image using the appropriate pixel-storage modes to unpack the dadatfiom
The format, typein andtypeoutparameters can refer to any of the formats or data types
supported bylDrawPixels(). The image is scaled using linear interpolation and box filte
(from the size indicated lwidthin andheightinto widthoutandheightouj, and the resulting
image is written talataout using the pixel GL_PACK* storage modes. The caller of
gluScalel mage() must allocate sufficient space for the output buffer. A value of 0 is rett
on success, and a GLU error code is returned on failure.

The framebuffer itself can also be used as a source for texturgl@apy T exl mage2D() reads a
rectangle of pixels from the framebuffer and uses it for a new texture.

void glCopyTexl mage2D(GLenumtarget GLintlevel

GLint internalFormat

GLint x, GLinty, GLsizewidth, GLsizeiheight

GLint border);
Creates a two-dimensional texture, using framebuffer data to define the texels. The pi
read from the current GL_READ_BUFFER and are processed exactlgl&ogyPixels()
had been called but stopped before final conversion. The settigtf2x# Transfer*() are
applied.
Thetarget parameter must be set to the constant GL_ TEXTURE_2DeVéle
internalFormat andborder parameters have the same effects that they have for
gl Teximage2D(). The texture array is taken from a screen-aligned pixel rectangle with
lower-left corner at coordinates specified by tkeyj parameters. Theidth andheight
parameters specify the size of this pixel rectangle. ®atth andheightmust have the forn
2m+2b, where m is a nonnegative integer (which can have a different valuelfiothan for
heighd and b is the value dforder.

The next sections give more detail about texturing, including the usetafgie¢ border, andlevel
parameters. The&argetparameter can be used to accurately query the size of a texture (by cr
texture proxy withgl Texlmage* D()) and whether a texture possibly can be used within the te
resources of an OpenGL implementation. Redefining a portion of a texture is described in
"Replacing All or Part of a Texture Imag€&he-dimensional textures are discussed in
"One-Dimensional TexturesThe texture border, which has its size controlled byotrder
parameter, is detailed fiusing a Texture’s BordersThelevel parameter is used to specify
textures of different resolutions and is incorporated into the special techniounoépping
which is explained ifiMultiple Levels of Detail."Mipmapping requires understanding how to fi
textures as they’re applied; filtering is the subjectatering."

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture resources are tyf

limited and vary among OpenGL implementations. There is a special texture proxy target tc
evaluate whether sufficient resources are available.

olGetintegerv(GL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or heigt
without borders) of a texture image, typically the size of the largest square texture supporte
However, GL_ MAX_TEXTURE_SIZE does not consider the effect of the internal format of
texture. A texture image that stores texels using the GL_RGBA16 internal format may be u:
bits per texel, so its image may have to be 16 times smaller than an image with the
GL_LUMINANCE4 internal format. (Also, images requiring borders or mipmaps may furthe
reduce the amount of available memory.)

A special place holder, groxy, for a texture image allows the program to query more accura
whether OpenGL can accommodate a texture of a desired internal format. To use the prox
OpenGL, calglTexlmage2D() with atargetparameter of GL_PROXY_TEXTURE_2D and the
givenlevel, internalFormat, width, height, border, formahdtype (For one-dimensional texture
use corresponding 1D routines and symbolic constants.) For a proxy, you should pass NUL
pointer for thepixelsarray.

To find out whether there are enough resources available for your texture, after the texture
has been created, query the texture state variableg@iehT exL evel Par ameter*(). If there aren
enough resources to accommodate the texture proxy, the texture state variables for width,
border width, and component resolutions are set to 0.

void glGetTexL evel Parameter{if} v(GLenumtarget, GLintlevel

GLenumpname TYPE*paramg;
Returns inparamstexture parameter values for a specific level of detail, specifiésl/abk
targetdefines the target texture and is one of GL_ TEXTURE_1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D. Accepted valyemfoeare
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_
GL_TEXTURE_LUMINANCE_SIZE, or GL_TEXTURE_INTENSITY_SIZE.
GL_TEXTURE_COMPONENTS is also acceptedfame but only for backward
compatibility with OpenGL Release 1.0 - GL_TEXTURE_INTERNAL_FORMAT is the
recommended symbolic constant for Release 1.1.

Example 9-Zdemonstrates how to use the texture proxy to find out if there are enough resot
create a 64 x 64 texel texture with RGBA components with 8 bits of resolution. If this succe
thenglGetTexL evelParameteriv() stores the internal format (in this case, GL_RGBAS) into tt
variable format

Example 9-2 . Querying Texture Resources with a Texture Proxy

Gint format;

gl Tex| mage2D(GL_PROXY_TEXTURE 2D, 0, GL_RGBAS,
64, 64, 0, GL_RGBA, GL_UNSI GNED BYTE, NULL);
gl Get TexLevel Paranet eri v(G._PROXY_TEXTURE 2D, O,
GL_TEXTURE_| NTERNAL_FORVAT, &f ormat);

Note: There is one major limitation about texture proxies: The texture proxy tells you if there
space for your texture, but only if all texture resources are available (in other words, if it's tt
texture in town). If other textures are using resources, then the texture proxy query may res

affirmatively, but there may not be enough space to make your texture resident (that is, par
possibly high-performance working set of textures). (Segture Objectsfor more information
about managing resident textures.)

Replacing All or Part of a Texturelmage

Creating a texture may be more computationally expensive than modifying an existing one.
OpenGL Release 1.1, there are new routines to replace all or part of a texture image with n
information. This can be helpful for certain applications, such as using real-time, captured v
images as texture images. For that application, it makes sense to create a single texture ar
ol TexSubl mage2D() to repeatedly replace the texture data with new video images. Also, the
no size restrictions fayl TexSubl mage2D() that force the height or width to be a power of two.
This is helpful for processing video images, which generally do not have sizes that are pow
two.

void gl TexSubl mage2D(GLenuntarget GLintlevel GLint xoffsef

GLint yoffset GLsizewidth, GLsizeiheight

GLenumformat, GLenuntype const GLvoidpixels);
Defines a two-dimensional texture image that replaces all or part of a contiguous subr
(in 2D, it's simply a rectangle) of the current, existing two-dimensional texture image.
targetparameter must be set to GL_TEXTURE_2D.
Thelevel format,andtypeparameters are similar to the ones useddidrexl mage2D().
levelis the mipmap level-of-detail number. It is not an error to specify a width or heigh
zero, but the subimage will have no efféostmatandtypedescribe the format and data ty,
of the texture image data. The subimage is also affected by modegstkéeptore* () and
glPixel Transfer*().
pixelscontains the texture data for the subimagilth andheightare the dimensions of th
subregion that is replacing all or part of the current texture imag#setandyoffsetspecify
the texel offset in theandy directions (with (0, 0) at the lower-left corner of the texture)
specify where to put the subimage within the existing texture array. This region may n
include any texels outside the range of the originally defined texture array.

In Example 9-3some of the code frolxample 9-lhas been modified so that pressing the ‘s’
drops a smaller checkered subimage into the existing image. (The resulting texture is show
Figure 9-3) Pressing the ‘r’ key restores the original imdpeample 9-3hows the two routines,
makeCheckl mages() andkeyboard(), that have been substantially changed. ($egture
Objects"for more information abowiBindTextur&().)

Figure 9-3: Texture with Subimage Added

Example 9-3: Replacing a Texture Subimage: texsub.c

/* Create checkerboard textures */

#def i ne checkl mnageW dt h 64

#def i ne checkl mageHei ght 64

#defi ne subl mageWdth 16

#def i ne subl mageHei ght 16

static Gubyte checkl mage[checkl mageHei ght] [checkl mageW dt h] [4] ;
static GLubyte subl nage[subl nageHei ght][subl mageW dt h] [4] ;

voi d makeCheckl mages(voi d)

t
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {
for (j = 0; j < checklnageWdth; j++)
c = ((((i&x8)==0)"((] &0x8))==0)) *255;
checklmage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;
checklmage[i][j][3] = (G.ubyte) 255;
}
}
for (i = 0; i < sublmageHeight; i++) {
for (j = 0; j < sublnmageWdth; j++)
c = ((((i&0x4)==0)"((]j &0x4))==0)) *255;
sublmage[i][j][0] = (GLubyte) c;
sublmage[i][j]1[1] = (GLubyte) O;
sublmage[i][j]1[2] = (GLubyte) O;
sublmage[i][j]1[3] = (GLubyte) 255;
}
}
}

voi d keyboard (unsigned char key, int x, int y)

switch (key) {

case ‘s’

case ‘'S
gl Bi ndText ure(GL_TEXTURE 2D, texNane);
gl TexSubl mage2D(GL_TEXTURE 2D, 0, 12, 44,

subl mageW dt h, subl mageHei ght, GL_RGBA,
GL_UNSI GNED_BYTE, subl nage);

gl ut Post Redi spl ay() ;
br eak;

case ‘r’

case ‘R :
gl Bi ndText ure(GL_TEXTURE 2D, texNane);
gl Texl mage2D(GL_TEXTURE 2D, 0, G._RGBA,

checkl mageW dt h, checkl nageHei ght, O,
GL_RGBA, G._UNSI GNED BYTE, checkl nage);

gl ut Post Redi spl ay() ;
br eak;

case 27:
exit(0);
br eak;

def aul t:
br eak;

}
}

Once again, the framebuffer itself can be used as a source for texture data; this time, a tex
subimageglCopyTexSublmage2D() reads a rectangle of pixels from the framebuffer and rep
a portion of an existing texture arraglQopyTexSublmage2D() is kind of a cross between
glCopyTexlmage2D() andgl TexSubl mage2D().)

void glCopyTexSubl mage2D(GLenuntarget, GLintlevel

GLint xoffset GLintyoffset GLintx, GLinty,

GLsizeiwidth, GLsizeiheigh;
Uses image data from the framebuffer to replace all or part of a contiguous subregion
current, existing two-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly gidbpyPixels() had been called,
stopping before final conversion. The settingglBfxel Store* () andglPixel Transfer* () are
applied.
Thetarget parameter must be set to GL_ TEXTURE_[2Relis the mipmap level-of-detail
number xoffsetandyoffsetspecify the texel offset in the x and y directions (with (0, 0) af
lower-left corner of the texture) and specify where to put the subimage within the exist
texture array. The subimage texture array is taken from a screen-aligned pixel rectang
the lower-left corner at coordinates specified by the/\ parameters. Theidth andheight
parameters specify the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient - for example, if you're drawing textured
where all the variation is in one direction. A one-dimensional texture behaves like a
two-dimensional one witheight= 1, and without borders along the top and bottom. All the
two-dimensional texture and subtexture definition routines have corresponding one-dimens
routines. To create a simple one-dimensional texturegliiszl magelD().

void gl TexlmagelD(GLenumtarget GLintlevel GLintinternalFormat

GLsizeiwidth, GLintborder, GLenumformat

GLenunmtype const GLvoidpixels);
Defines a one-dimensional texture. All the parameters have the same meanings as fo
gl Texl mage2D(), except that the image is now a one-dimensional array of texels. As b
the value ofvidthis 2m (or 2m+2, if there’s a border), where m is a nonnegative intege
can supply mipmaps, proxies (ts#tgetto GL_PROXY_TEXTURE_1D), and the same
filtering options are available as well.

For a sample program that uses a one-dimensional texture mé&xaseple 9-6
To replace all or some of the texels of a one-dimensional texturglTieseSubl magelD().

void gl TexSubl magelD(GLenuntarget GLintlevel GLint xoffsef

GLsizeiwidth, GLenumformat,

GLenunmtype const GLvoidpixels);
Defines a one-dimensional texture array that replaces all or part of a contiguous subre
(in 1D, a row) of the current, existing one-dimensional texture imagetaftet parameter
must be set to GL_TEXTURE_1D.
Thelevel format,andtypeparameters are similar to the ones useddidrexl magelD().
levelis the mipmap level-of-detail numbéormatandtypedescribe the format and data ty
of the texture image data. The subimage is also affected by modegd@kéystore* () or
glPixel Transfer*().

pixelscontains the texture data for the subimagdth is the number of texels that replace part
all of the current texture imageoffsetspecifies the texel offset for where to put the subimage
within the existing texture array.

To use the framebuffer as the source of a new or replacement for an old one-dimensional t
use eitheglCopyTexImagelD() or glCopyTexSubl magelD().

void glCopyTexl magelD(GLenumtarget, GLintlevel

GLintinternalFormat GLintx, GLinty,

GLsizeiwidth, GLintborder);
Creates a one-dimensional texture, using framebuffer data to define the texels. The pi
read from the current GL_READ_BUFFER and are processed exactlgl&ogyPixels()
had been called but stopped before final conversion. The settig2a Store* () and
glPixel Transfer*() are applied.
Thetarget parameter must be set to the constant GL_ TEXTURE_1DeVéle
internalFormat andborder parameters have the same effects that they have for
glCopyTexIlmage2D(). The texture array is taken from a row of pixels with the lower-left
corner at coordinates specified by they) parameters. Theidth parameter specifies the
number of pixels in this row. The valuenflith is 2m (or 2m+2 if there’s a border), where
IS @ nonnegative integer.

void glCopyTexSubl magelD(GLenuntarget GLintlevel GLint xoffset

GLint x, GLinty, GLsizeiwidth);
Uses image data from the framebuffer to replace all or part of a contiguous subregion
current, existing one-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly ggdbpyPixels() had been called but
stopped before final conversion. The settingglBifxel Store* () and glPixel Transfer*() are
applied.
Thetargetparameter must be set to GL_TEXTURE_|&Relis the mipmap level-of-detall
number xoffsetspecifies the texel offset and specifies where to put the subimage withil
existing texture array. The subimage texture array is taken from a row of pixels with tr
lower-left corner at coordinates specified by tkeyj parameters. Theidth parameter
specifies the number of pixels in this row.

Using a Texture'sBorders
Advanced

If you need to apply a larger texture map than your implementation of OpenGL allows, you
with a little care, effectively make larger textures by tiling with several different textures. Fol
example, if you need a texture twice as large as the maximum allowed size mapped to a sc
draw the square as four subsquares, and load a different texture before drawing each piece

Since only a single texture map is available at one time, this approach might lead to problel
edges of the textures, especially if some form of linear filtering is enabled. The texture valu
used for pixels at the edges must be averaged with something beyond the edge, which, ide
should come from the adjacent texture map. If you define a border for each texture whose 1
values are equal to the values of the texels on the edge of the adjacent texture map, then tl
behavior results when linear filtering takes place.

To do this correctly, notice that each map can have eight neighbors - one adjacent to each
one touching each corner. The values of the texels in the corner of the border need to corre
with the texels in the texture maps that touch the corners. If your texture is an edge or corn
whole tiling, you need to decide what values would be reasonable to put in the borders. The
reasonable thing to do is to copy the value of the adjacent texel in the texture map. Remernr
the border values need to be supplied at the same time as the texture-image data, so you r

figure this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way that it only partia
covers a primitive. (Se#&kepeating and Clamping Texturdst more information about this
situation.)

Multiple Levels of Detail
Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances fro
viewpoint. In a dynamic scene, as a textured object moves farther from the viewpoint, the t
map must decrease in size along with the size of the projected image. To accomplish this, ¢
has to filter the texture map down to an appropriate size for mapping onto the object, witho
introducing visually disturbing artifacts. For example, to render a brick wall, you may use a
(say 128 x 128 texel) texture image when it is close to the viewer. But if the wall is moved f
away from the viewer until it appears on the screen as a single pixel, then the filtered textur
appear to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing
resolutions, callechipmapsas shown ifrigure 9-4 The termmipmapwas coined by Lance
Williams, when he introduced the idea in his papRyramidal Parametrics(SIGGRAPH 1983
ProceedingsMip stands for the Latimultim im parvgo meaning "many things in a small place.
Mipmapping uses some clever methods to pack image data into memory.

Onginal Texture

Pre-Filtered Images

14

146

1784
@eb}.
P | pixel

Figure 9-4 : Mipmaps

When using mipmapping, OpenGL automatically determines which texture map to use basi
size (in pixels) of the object being mapped. With this approach, the level of detail in the texi
map is appropriate for the image that’s drawn on the screen - as the image of the object ge
smaller, the size of the texture map decreases. Mipmapping requires some extra computati
texture storage area; however, when it's not used, textures that are mapped onto smaller o
might shimmer and flash as the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the |
size and a 1 x 1 map. For example, if your highest-resolution map is 64 x 16, you must alst
maps of size 32 x 8,16 x4,8x2,4x1,2x1,and 1 x 1. The smaller maps are typically fi
and averaged-down versions of the largest map in which each texel in a smaller texture is ¢
average of the corresponding four texels in the larger texture. (Since OpenGL doesn’t requ
particular method for calculating the smaller maps, the differently sized textures could be tc
unrelated. In practice, unrelated textures would make the transitions between mipmaps ext
noticeable.)

To specify these textures, cglll exl mage2D() once for each resolution of the texture map, wit
different values for thievel width, height andimageparameters. Starting with zeteyel
identifies which texture in the series is specified; with the previous example, the largest texi
size 64 x 16 would be declared witlvel= 0, the 32 x 8 texture willbvel= 1, and so on. In
addition, for the mipmapped textures to take effect, you need to choose one of the appropri
filtering methods described in the next section.

Example 9-4llustrates the use of a series of six texture maps decreasing in size from 32 x !
1. This program draws a rectangle that extends from the foreground far back in the distanct
eventually disappearing at a point, as showtPlate 20" in Appendix.INote that the texture
coordinates range from 0.0 to 8.0 so 64 copies of the texture map are required to tile the re
eight in each direction. To illustrate how one texture map succeeds another, each map has
different color.

Example 9-4 : Mipmap Textures: mipmap.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>
#i ncl ude <stdlib. h>
GLubyte mi prmapl nage32[32][32][4];
GLubyte m prmapl nagel6[16][16][4];
GLubyte m prmapl nage8[8][8][4];
GLubyte m prmapl naged[4][4][4];
GLubyte m pmapl nage2[2][2][4];
GLubyte m prmapl magel[1][1][4];
static GLuint texNamne;
voi d makel mages(voi d)
{
int i, j;
for (i =0; i <32; i++) {
for (j =0; j <32, j++) {
m prmapl mage32[i][j]1[0] = 255;
m pmapl mage32[i][j][1] = 255;
m pmapl mage32[i][j][2] = O;
m prmapl mage32[i][j][3] = 255;
}
Yoo . .
for (i =0; i < 16; i++) {
for (j =0; j < 16; j++) {
m pmapl magel6[i][j][0] = 255;
m prapl magel6[i][j][1] = O;
m prmapl magel6[i][j]1[2] = 255;
m prmapl magel6[i][j][3] = 255;

voi

for (i =0; i

for (j =05] <|8; J')+£“) {
m pmapl mage8[i][j][0] = 255;
m pmapl mage8[i][j][1] = O;
m pmapl mage8[i][j][2] = O;
m prmapl mage8[i][j]1[3] = 255;
}
for (i =0; i <4, i++) {
for (j =0;] <4, j++) {
m pmapl mage4[i][j][0] = O;
m pmapl maged[i]J[j][1] = 255;
m pmapl mage4[i][j][2] = O;
m prmapl mage4[i][j]1[3] = 255;
}
%or (i =0; i <2; i++) {
for (j =0;] <2, j++) {
m pmapl mage2[i][j][0] = O;
m pmapl mage2[i][j][1] = O;
m pmapl mage2[i][j][2] = 255;
m pmapl mage2[i][j][3] = 255;
}
m prmapl magel[0] [0] [0] = 255;
m prmapl magel[0] [0] [1] = 255;
m prmapl magel[0] [0] [2] = 255;
m pmapl magel[0] [0] [3] = 255;
d init(void)
gl Enabl e(G._DEPTH_TEST) ;
gl ShadeModel (GL_FLAT);
gl Transl atef (0.0, 0.0, -3.6);

makel nages() ;
gl Pi xel St orei (GL_UNPACK_ALI GNMVENT, 1);

gl GenTextures(1, &texName);

gl Bi ndText ure(GL_TEXTURE 2D, texNane);

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;

gl TexPar anet eri (G._TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_REPEAT);
GL_TEXTURE_WRAP_T, GL_REPEAT):
GL_TEXTURE_MAG FI LTER,

GL_TEXTURE_M N_FI LTER,

GL_NEAREST_M PMAP_NEAREST) ;

gl Tex| mage2D(GL_TEXTURE 2D, 0, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Texl mage2D(GL_TEXTURE 2D, 1, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 2, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 3, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Tex| mage2D(GL_TEXTURE 2D, 4, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,
gl Texl mage2D(GL_TEXTURE 2D, 5, G._RGBA,
GL_RGBA, GL_UNSI GNED BYTE,

32, 32, 0,

m pmapl mage32) ;
16, 16, O,

nm prmapl magel6) ;
rﬁ pm'apl 'mage8) ;
m prriapl ,rrage4) ;
rﬁ pm'apl 'mage2) ;

nm prmapl magel) ;

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

gl Enabl e(G._TEXTURE_2D) ;

voi d di spl ay(voi d)
{

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl Bi ndText ure(GL_TEXTURE_2D, texNane);

gl Begi n(GL_QUADS) ;

gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);

gl TexCoor d2f (0.0, 8.0); gl Vertex3f(-2.0, 1.0, 0.0);

gl TexCoord2f (8.0, 8.0); gl Vertex3f(2000.0, 1.0, -6000.0);
gl TexCoord2f (8.0, 0.0); gl Vertex3f(2000.0, -1.0, -6000.0);

gl End() ;
gl Fl ush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
gl uPer spective(60.0, (G.float)w (Gfloat)h, 1.0, 30000.0);
gl Mat ri xMode(GL_MCODELVI EW ;
gl Loadl dentity();
}
voi d keyboard (unsigned char key, int x, int y)
{
switch (key) {
case 27:
exit(0);
br eak;
def aul t:
br eak;
}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);
glutlnitD splayMde(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze(500, 500);
gl utlni t WndowPosi tion(50, 50);
gl ut Creat eW ndow(argv[0]);
init();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}

Example 9-4llustrates mipmapping by making each mipmap a different color so that it's ob\
when one map is replaced by another. In a real situation, you define mipmaps so that the tr
is as smooth as possible. Thus, the maps of lower resolution are usually filtered versions of
original, high-resolution map. The construction of a series of such mipmaps is a software p
and thus isn’t part of OpenGL, which is simply a rendering library. However, since mipmap
construction is such an important operation, however, the OpenGL Utility Library contains t
routines that aid in the manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution map, the routines
gluBuild1DMipmaps() andgluBuild2DMipmaps() construct and define the pyramid of mipme
down to a resolution of 1 x 1 (or 1, for one-dimensional texture maps). If your original imag:
dimensions that are not exact powers ajl@Build*DMipmaps() helpfully scales the image to t
nearest power of 2.

int gluBuild1DMipmaps(GLenuntarget, GLintcomponentsGLint width,

GLenumformat, GLenuntype void *data);

int gluBuild2DMipmaps(GLenuntarget, GLintcomponentsGLint width,

GLint height GLenumformat, GLenuntype

void *data);
Constructs a series of mipmaps and cgliEexl mage* D() to load the images. The
parameters fotarget, componentswidth, height format type anddataare exactly the san
as those fogl TexlmagelD() andglTexl mage2D(). A value of O is returned if all the
mipmaps are constructed successfully; otherwise, a GLU error code is returned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface ar
transformed into screen coordinates, the individual texels of a texture rarely correspond to
individual pixels of the final screen image. Depending on the transformations used and the
mapping applied, a single pixel on the screen can correspond to anything from a tiny portio
texel (magnification) to a large collection of texels (minification), as showigure 9-5 In either
case, it's unclear exactly which texel values should be used and how they should be averay
interpolated. Consequently, OpenGL allows you to specify any of several filtering options tc
determine these calculations. The options provide different trade-offs between speed and il
quality. Also, you can specify independently the filtering methods for magnification and
minification.

ortion of a texel__ g
/pomenclateel A,]
" T
E -]tht&lé_"“
texel

Taxture Polygan Texture Polygon

Magnification Minification

Figure 9-5: Texture Magnification and Minification

In some cases, it isn’t obvious whether magnification or minification is called for. If the mipr
needs to be stretched (or shrunk) in bothxtaady directions, then magnification (or minificatio
is needed. If the mipmap needs to be stretched in one direction and shrunk in the other, Og
makes a choice between magnification and minification that in most cases gives the best re
possible. It's best to try to avoid these situations by using texture coordinates that map with
distortion. (SeéComputing Appropriate Texture Coordinatgs."

The following lines are examples of how to gsEexPar ameter*() to specify the magnification
and minification filtering methods:

gl TexPar anet eri (G._TEXTURE 2D, G._TEXTURE_MAG FI LTER,
GL_NEAREST) ;

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE M N _FI LTER,
GL_NEAREST) ;

The first argument tgl TexParameter*() is either GL_TEXTURE_2D or GL_TEXTURE_1D,
depending on whether you’re working with two- or one-dimensional textures. For the purpo
this discussion, the second argument is either GL_TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER to indicate whether you're specifying the filtering method for
magnification or minification. The third argument specifies the filtering mefhable 9-1lists the
possible values.

Table 9-1: Filtering Methods for Magnification and Minification

Par ameter Values

GL_TEXTURE_MAG_FILTER | GL_NEAREST or GL_LINEAR

GL_TEXTURE_MIN_FILTER | GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is u:
both magnification and minification. This can result in aliasing artifacts (sometimes severe).
choose GL_LINEAR, a weighted linear average of the 2 x 2 array of texels that lie nearest"
center of the pixel is used, again for both magnification and minification. When the texture
coordinates are near the edge of the texture map, the nearest 2 x 2 array of texels might in
some that are outside the texture map. In these cases, the texel values used depend on wt
GL_REPEAT or GL_CLAMP is in effect and whether you’ve assigned a border for the textL
(See"Using a Texture’s Borderg.GL_NEAREST requires less computation than GL_LINEAF
and therefore might execute more quickly, but GL_LINEAR provides smoother results.

With magnification, even if you've supplied mipmaps, the largest texture lenag<£ 0) is always
used. With minification, you can choose a filtering method that uses the most appropriate o
two mipmaps, as described in the next paragraph. (If GL_NEAREST or GL_LINEAR is spe
with minification, the largest texture map is used.)

As shown inTable 9-1 four additional filtering choices are available when minifying with
mipmaps. Within an individual mipmap, you can choose the nearest texel value with
GL_NEAREST_MIPMAP_NEAREST, or you can interpolate linearly by specifying
GL_LINEAR_MIPMAP_NEAREST. Using the nearest texels is faster but yields less desiral
results. The particular mipmap chosen is a function of the amount of minification required, ¢
there’s a cutoff point from the use of one particular mipmap to the next. To avoid a sudden
transition, use GL_NEAREST_MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to
linearly interpolate texel values from the two nearest best choices of mipmaps.
GL_NEAREST_MIPMAP_LINEAR selects the nearest texel in each of the two maps and tr
interpolates linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses lineal
interpolation to compute the value in each of two maps and then interpolates linearly betwe
two values. As you might expect, GL_LINEAR_MIPMAP_LINEAR generally produces the
smoothest results, but it requires the most computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object st
texture data and makes it readily available. You can now control many textures and go bac
textures that have been previously loaded into your texture resources. Using texture object
usually the fastest way to apply textures, resulting in big performance gains, because it is a
always much faster to bind (reuse) an existing texture object than it is to reload a texture in
usinggl Texl mage* D().

Also, some implementations support a limited working set of high-performance textures. Yc
use texture objects to load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.
1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the image arrays and te:
properties.

3. If your implementation supports a working set of high-performance textures, see if yot
enough space for all your texture objects. If there isn’t enough space, you may wish tc
establish priorities for each texture object so that more often used textures stay in the
set.

4. Bind and rebind texture objects, making their data currently available for rendering tex
models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusii
consistently usglGenTextures() to provide unused texture names.

void glGenTextures(GLsizein, GLuint*textureNameps
Returnsn currently unused names for texture objects in the aeagureNamesThe names
returned intextureNameslo not have to be a contiguous set of integers.
The names itextureNameare marked as used, but they acquire texture state and
dimensionality (1D or 2D) only when they are first bound.
Zero is a reserved texture name and is never returned as a texture nghGeijextures().

gllsTexture() determines if a texture name is actually in use. If a texture name was returnec
glGenTextures() but has not yet been bound (callgi®indTexture() with the name at least
once), thergll sTexture() returns GL_FALSE.

GLbooleangll sTexture(GLuinttextureNamg
Returns GL_TRUE tkextureNamas the name of a texture that has been bound and has
been subsequently deleted. Returns GL_FAL&&tiireNamas zero ortextureNames a
nonzero value that is not the name of an existing texture.

Creating and Using Texture Objects

The same routing|BindTextur &), both creates and uses texture objects. When a texture ne
initially bound (used witlglBindTexture()), a new texture object is created with default values
the texture image and texture properties. Subsequent cglibexd mage* (), gl TexSubl mage* (),
glCopyTexlmage* (), glCopyTexSubl mage* (), gl TexParameter* (), andglPrioritizeT extures()
store data in the texture object. The texture object may contain a texture image and associ:
mipmap images (if any), including associated data such as width, height, border width, inte
format, resolution of components, and texture properties. Saved texture properties include
minification and magnification filters, wrapping modes, border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes the current texi
(The state of the previously bound texture is replaced.)

void glBindTexture(GLenumtarget, GLuinttextureNamg
glBindTexture() does three things. When ustegtureNamef an unsigned integer other
than zero for the first time, a new texture object is created and assigned that name. W
binding to a previously created texture object, that texture object becomes active. Wh
binding to atextureNamevalue of zero, OpenGL stops using texture objects and returns
the unnamed default texture.
When a texture object is initially bound (that is, created), it assumes the dimensionalit
target which is either GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon its
binding, the state of texture object is equivalent to the state of the default GL_TEXTUI
or GL_TEXTURE_2D (depending upon its dimensionality) at the initialization of Open!
this initial state, texture properties such as minification and magnification filters, wrapg
modes, border color, and texture priority are set to their default values.

In Example 9-5two texture objects are creatednit(). In display(), each texture object is used
render a different four-sided polygon.

Example 9-5: Binding Texture Objects: texbind.c

#def i ne checkl mageW dt h 64

#def i ne checkl mageHei ght 64

static Gubyte checkl mage[checkl nageHei ght][checkl mageW dt h] [4] ;
static G.ubyte otherl mage[checkl nageHei ght][checkl mageW dt h] [4] ;

static G.uint texNane[2];

voi d makeCheckl mages(voi d)

{

int i, j, c;

for (i = 0; i < checklnmageHeight; i++) {
for (j = 0; j < checklnmageWdth; j++)
c = ((((i &0x8)==0)"((]j &0x8))==0)) *255;

checkl mage[i][j]1[0] (GLubyte) c;
checkl mage[i][j]11[1] (GLubyte) c;
(GLubyte) c;

checkl mage[i]
c = ((((i&x1

(GLubyte) 255;

checklmage[i][j]]2]
= (j &0x10))==0)) *255;

[
11
|11
11
11
11

3]
0"
0]
1]
2]
3]

I I I | e N | I | IR T B

ot herl mage[i] (GLubyte) c;

ot herl mage[i] (GLubyte) O;

otherlmage[i]][]j (GLubyte) O;
]

ot her | mage[i

(GLubyte) 255;

void init(void)
gl d ear Col or
gl ShadeModel (GL_FLAT);
gl Enabl e(G._DEPTH_TEST) ;

makeCheckl| mages() ;

gl Pi xel St orei (GL_UNPACK_ALI GNMVENT,

gl GenTextures(2, texNane);
gl Bi ndText ur e(GL_TEXTURE_2D,
gl TexPar anet eri (G._TEXTURE_2D,
gl TexPar anet eri (GL_TEXTURE_2D,
gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;
gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;
gl Texl mage2D(G._TEXTURE 2D, 0,
checkl mageHei ght ,
checkl mage) ;

gl Bi ndText ur e(G._TEXTURE 2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (G._TEXTURE_2D,

gl TexPar anet eri (GL_TEXTURE_2D,
GL_NEAREST) ;

gl TexPar anet eri (G._TEXTURE_2D,
GL_NEAREST) ;

(0.0, 0.0, 0.0, 0.0);

1);

t exNane[0]);

GL_TEXTURE_WRAP_S, GL_CLAWP):
GL_TEXTURE_WRAP_T, GL_CLAWP);
GL_TEXTURE_MAG FI LTER

GL_TEXTURE_M N_FI LTER,

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, GL_UNSI GNED BYTE,

texNane[1]);

GL_TEXTURE_WRAP_S, GL_CLAWP);
GL_TEXTURE_WRAP_T, GL_CLAWP):
GL_TEXTURE_MAG FI LTER]

GL_TEXTURE_M N_FI LTER,

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL):

gl Texl mage2D(G._TEXTURE 2D, 0,
checkl mageHei ght ,
ot her | mage) ;

gl Enabl e(G._TEXTURE_2D) ;

GL_RGBA, checkl nageW dt h,
0, GL_RGBA, GL_UNSI GNED BYTE,

}
voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
gl Bi ndText ure(GL_TEXTURE 2D, texNane[O0]);
gl Begi n(G._QUADS) ;
gl TexCoord2f (0.0, 0.0); gl Vertex3f(-2.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(-2.0, 1.0, 0.0);
gl TexCoor d2f (1.0, 1.0); gl Vertex3f(0.0, 1.0, 0.0);
gl TexCoord2f (1.0, 0.0); gl Vertex3f(0.0, -1.0, 0.0);
gl End() ;
gl Bi ndText ure(G._TEXTURE 2D, texNane[1]);
gl Begi n(G._QUADS) ;
gl TexCoor d2f (0.0, 0.0); gl Vertex3f(1.0, -1.0, 0.0);
gl TexCoord2f (0.0, 1.0); gl Vertex3f(1.0, 1.0, 0.0);
gl TexCoord2f (1.0, 1.0); gl Vertex3f(2.41421, 1.0, -1.41421);
gl TexCoor d2f (1.0, 0.0); gl Vertex3f(2.41421, -1.0, -1.41421);
gl End() ;
gl Fl ush();
}

Whenever a texture object is bound once again, you may edit the contents of the bound te»
object. Any commands you call that change the texture image or other properties change ti
contents of the currently bound texture object as well as the current texture state.

In Example 9-5after completion oflisplay(), you are still bound to the texture named by the
contents ofexName[1] Be careful that you don’t call a spurious texture routine that changes
data in that texture object.

When using mipmaps, all related mipmaps of a single texture image must be put into a sin¢
texture object. Ifexample 9-4levels 0-5 of a mipmapped texture image are put into a single
texture object nametg@xName

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around somewhere among your
resources. If texture resources are limited, deleting textures may be one way to free up res

void glDeleteTextures(GLsizein, const GLuinttextureNameyg
Deletesn texture objects, named by elements in the aeatureNamesThe freed texture
names may now be reused (for examplal@gnTextures()).
If a texture that is currently bound is deleted, the binding reverts to the default texture,
glBindTexture() were called with zero for the valuetektureNameAttempts to delete
nonexistent texture names or the texture name of zero are ignored without generating
error.

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance textures, which
to be resident. Typically, these implementations have specialized hardware to perform text
operations and a limited hardware cache to store texture images. In this case, using texture
is recommended, because you are able to load many textures into the working set and ther
them.

If all the textures required by the application exceed the size of the cache, some textures ci
resident. If you want to find out if a single texture is currently resident, bind its object, and tt
olGetTexParameter*v() to find out the value associated with the GL_ TEXTURE_RESIDENT
state. If you want to know about the texture residence status of many textures, use
glAreTexturesResident().

GLbooleanglAreTexturesResident(GLsizein, const

GLuint'textureNamesGLbooleartresidencey
Queries the texture residence status ofrtbexture objects, named in the array
textureNamegesidencess an array in which texture residence status is returned for the
corresponding texture objects in the artaxtureNamedf all the named textures in
textureNameare resident, thglAreTexturesResident() function returns GL_TRUE, and tt
contents of the arragesidencesre undisturbed. If any texture iextureNames not
resident, thergl AreTexturesResident() returns GL_FALSE and the elementsasidences
which correspond to nonresident texture objectextureNamesare also set to GL_FALSI

Note thatglAreT exturesResident() returns the current residence status. Texture resources al
dynamic, and texture residence status may change at any time. Some implementations cac
textures when they are first used. It may be necessary to draw with the texture before chec
residency.

If your OpenGL implementation does not establish a working set of high-performance textu
then the texture objects are always considered resident. In thagléasd,extur esResident()
always returns GL_TRUE and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture performance po
you really have to know the specifics of your implementation and application. For example,
visual simulation or video game, you have to maintain performance in all situations. In that
you should never access a nonresident texture. For these applications, you want to load ug
textures upon initialization and make them all resident. If you don’t have enough texture me
available, you may need to reduce the size, resolution, and levels of mipmaps for your text
images, or you may uggT exSubl mage* () to repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable.
textures are used more frequently than others, you may assign a higher priority to those te»
objects to increase their likelihood of being resident. Deleting texture objects also frees up
Short of that, assigning a lower priority to a texture object may make it first in line for being
out of the working set, as resources dwinglBrioritizeT extures() is used to assign priorities tc
texture objects.

void glPrioritizeTextures(GLsizein, const GLuinttextureNames

const GLclampfpriorities);
Assigns the texture objects, named in the arri@xtureNameghe texture residence
priorities in the corresponding elements of the arpaprities. The priority values in the
array priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicat
lowest priority; these textures are least likely to be resident. One indicates the highest
priority.
glPrioritizeTextures() does not require that any of the texturegextureNamebe bound.
However, the priority might not have any effect on a texture object until it is initially bo

glTexParameter*() also may be used to set a single texture’s priority, but only if the texture
currently bound. In fact, use gfT exParameter*() is the only way to set the priority of a defaul
texture.

If texture objects have equal priority, typical implementations of OpenGL apply a least rece
used (LRU) strategy to decide which texture objects to move out of the working set. If you k
that your OpenGL implementation has this behavior, then having equal priorities for all text
objects creates a reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture objects of equal
(or if you don’t know how it decides), you can implement your own LRU strategy by carefull
maintaining the texture object priorities. When a texture is used (bound), you can maximize
priority, which reflects its recent use. Then, at regular (time) intervals, you can degrade the
priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you're deleting and
lots of new textures. Although it is even possible that you can load all the texture objects int
working set by binding them in one sequence, binding them in a different sequence may le:
textures nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used dire
colors to be painted on the surface being rendered. You can also use the values in the text

modulate the color that the surface would be rendered without texturing, or to blend the col
texture map with the original color of the surface. You choose one of four texturing function
supplying the appropriate argumentgldexEnv* ().

void gl TexEnV{if}(GLenumtarget GLenumpname TYPEparam);

void gl TexEnV{if} v(GLenumtarget GLenumpname TYPE* param);
Sets the current texturing functidargetmust be GL_TEXTURE_ENV phameis
GL_TEXTURE_ENV_MODHaramcan be GL_DECAL, GL_REPLACE, GL_MODULA’
or GL_BLEND, to specify how texture values are to be combined with the color values
fragment being processed.gdhameis GL_TEXTURE_ENV_COLORaramis an array of
four floating-point values representing R, G, B, and A components. These values are
only if the GL_BLEND texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the te
are applied for each component of the texture. The texturing function operates on selected
components of the texture and the color values that would be used with no texturing. (Note
selection is performed after the pixel-transfer function has been applied.) Recall that when"
specify your texture map withi TexImage* D(), the third argument is the internal format to be

selected for each texel.

Table 9-2andTable 9-3show how the texturing function and base internal format determine
texturing application formula used for each component of the texture. There are six base in
formats (the letters in parentheses represent their values in the tables): GL_ALPHA (A),
GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A), GL_INTENSITY (), GL_RGB
(C), and GL_RGBA (C and A). Other internal formats specify desired resolutions of the text
components and can be matched to one of these six base internal formats.

Table9-2 : Replace and Modulate Texture Function

Base I nternal Format Replace Texture Function | Modulate Texture Function
GL_ALPHA C = Cf, C = Cf,
A=At A = AfAt
GL_LUMINANCE C = Lt, C = CfLt,
A = Af A = Af
GL_LUMINANCE_ALPHA | C=Lt, C = CfLt,
A=At A = AfAt
GL_INTENSITY C=1t, C = Cflt,
A=t A = Aflt
GL_RGB C =Ct, C = CfCt,
A = Af A = Af
GL_RGBA C =Ct, C = CfCt,

A=At A = AfAt

Table 9-3 : Decal and Blend Texture Function

Base I nternal Format Decal Texture Function || Blend Texture Function
GL_ALPHA undefined C = Cf,
A = AfAt
GL_LUMINANCE undefined C = Cf(1-Lt) + CcLt,
A = Af
GL_LUMINANCE_ALPHA | undefined C = Cf(1-Lt) + CcLt,
A = AfAt
GL_INTENSITY undefined C = Cf(1-It) + Cclt,
A = Af(1-1t) + Aclt,
GL_RGB C =Ct, C = Cf(1-Ct) + CcCt,
A = Af A = Af
GL_RGBA C = Cf(1-At) + CtAt, C = Cf(1-Ct) + CcCt,
A = Af A = AfAt

Note: In Table 9-2andTable 9-3 a subscript of t indicates a texture value, f indicates the incc
fragment value, c indicates the values assigned with GL_ TEXTURE_ENV_COLOR, and nc
subscript indicates the final, computed value. Also in the tables, multiplication of a color trip
scalar means multiplying each of the R, G, and B components by the scalar; multiplying (or
two color triples means multiplying (or adding) each component of the second by the corres
component of the first.

The decal texture function makes sense only for the RGB and RGBA internal formats (rem¢
that texture mapping doesn’t work in color-index mode). With the RGB internal format, the «
that would have been painted in the absence of any texture mapping (the fragment’s color)
replaced by the texture color, and its alpha is unchanged. With the RGBA internal format, tl
fragment’s color is blended with the texture color in a ratio determined by the texture alpha,
fragment’s alpha is unchanged. You use the decal texture function in situations where you"
apply an opaque texture to an object - if you were drawing a soup can with an opaque labe
example. The decal texture function also can be used to apply an alpha blended texture, st
insignia onto an airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, the
exactly the same. With all the internal formats, the component values are either replaced o
alone.

For modulation, the fragment’s color is modulated by the contents of the texture map. If the
internal format is GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the cols

values are multiplied by the same value, so the texture map modulates between the fragme
(if the luminance or intensity is 1) to black (if it's 0). For the GL_RGB and GL_RGBA intern:
formats, each of the incoming color components is multiplied by a corresponding (possibly
different) value in the texture. If there’s an alpha value, it's multiplied by the fragment’s alpf
Modulation is a good texture function for use with lighting, since the lit polygon color can be
to attenuate the texture color. Most of the texture-mapping examples in the color plates use
modulation for this reason. White, specular polygons are often used to render lit, textured o
and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color specified by
GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color value is used somewhat li
alpha value to blend the fragment’s color with the GL_ TEXTURE_ENV_COLOR."&aaple
Uses of Blending" in Chapterfér the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object coordinates and te»
coordinates for each vertex. After transformation, the object coordinates determine where ¢
screen that particular vertex is rendered. The texture coordinates determine which texel in f
texture map is assigned to that vertex. In exactly the same way that colors are interpolated
two vertices of shaded polygons and lines, texture coordinates are also interpolated betwee
vertices. (Remember that textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They’re usually refe
as thes, t, r,andq coordinates to distinguish them from object coordinateg, (z,andw) and from
evaluator coordinates @ndv; seeChapter 12 For one-dimensional textures, you useshe
coordinate; for two-dimensional textures, you ss@dt. In Release 1.1, thecoordinate is
ignored. (Some implementations have 3D texture mapping as an extension, and that exten
ther coordinate.) The coordinate, likaw, is typically given the value 1 and can be used to cre
homogeneous coordinates; it's described as an advanced fedfline iip Coordinate.The
command to specify texture coordinatgld,exCoord*(), is similar toglVertex*(), glColor*(), and
glNormal*() - it comes in similar variations and is used the same way betj@egin() and
glEnd() pairs. Usually, texture-coordinate values range from O to 1; values can be assigned
this range, however, with the results describeétRigpeating and Clamping Textures."

void gl TexCoord{1234}{sifd}(TYPEcoords;

void gl TexCoord{1234}sifdv(TYPE*coord9;
Sets the current texture coordinatsst(r, 9. Subsequent calls gVertex*() result in those
vertices being assigned the current texture coordinates. §MigxCoord1* (), thes
coordinate is set to the specified valuandr are set to 0, and is set to 1. Using
gl TexCoord2*() allows you to specifyandt; r andq are set to 0 and 1, respectively. Witt
glTexCoord3*(), qis set to 1 and the other coordinates are set as specified. You can s|
all coordinates withgl TexCoord4* (). Use the appropriate suffix (s, i, f, or d) and the
corresponding value foFYPE(GLshort, GLint, GLfloat, or GLdouble) to specify the
coordinates’ data type. You can supply the coordinates individually, or you can use th
version of the command to supply them in a single array. Texture coordinates are mul
by the 4 x 4 texture matrix before any texture mapping occurs."TBeelexture Matrix
Stack.) Note that integer texture coordinates are interpreted directly rather than being
mapped to the range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of exj
assigning them yourself, you can choose to have texture coordinates calculated automatice
OpenGL as a function of the vertex coordinates. (Batomatic Texture-Coordinate Generatiol

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically mapped to th
polygons that make up a polygonal model. In the simplest case, you're mapping a rectangL
texture onto a model that’s also rectangular - for example, your texture is a scanned image
brick wall, and your rectangle is to represent a brick wall of a building. Suppose the brick w.
square and the texture is square, and you want to map the whole texture to the whole wall.
texture coordinates of the texture square are (0, 0), (1, 0), (1, 1), and (0O, 1) in counterclock\
order. When you're drawing the wall, just give those four coordinate sets as the texture coc
as you specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the texture is again st
avoid distorting the texture, you need to map the wall to a portion of the texture map so tha
aspect ratio of the texture is preserved. Suppose that you decide to use the lower two-third
texture map to texture the wall. In this case, use texture coordinates of (0,0), (1,0), (1,2/3), .
(0,2/3) for the texture coordinates as the wall vertices are traversed in a counterclockwise ¢

As a slightly more complicated example, suppose you'd like to display a tin can with a label
wrapped around it on the screen. To obtain the texture, you purchase a can, remove the lal
scan it in. Suppose the label is 4 units tall and 12 units around, which yields an aspect ratic
1. Since textures must have aspect ratios of 2n to 1, you can either simply not use the top t
the texture, or you can cut and paste the texture until it has the necessary aspect ratio. Sug
decide not to use the top third. Now suppose the tin can is a cylinder approximated by thirty
polygons of length 4 units (the height of the can) and width 12/30 (1/30 of the circumferenc
can). You can use the following texture coordinates for each of the thirty approximating rec

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)
2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a flat surface w
geodesic distortion. Any other shape requires some distortion. In general, the higher the cu
of the surface, the more distortion of the texture is required.

If you don’t care about texture distortion, it’s often quite easy to find a reasonable mapping.
example, consider a sphere whose surface coordinates are given by (cos &thgr; cos &phgr
&thgr; sin &phgr; , sin &thgr;), where 0 ≤ &thgr; ≤ 2 &pgr; , and 0 ≤ &phgr; ≤ &pc¢
The &thgr; - &phgr; rectangle can be mapped directly to a rectangular texture map, but the
you get to the poles, the more distorted the texture is. The entire top edge of the texture me
mapped to the north pole, and the entire bottom edge to the south pole. For other surfaces.
that of a torus (doughnut) with a large hole, the natural surface coordinates map to the text

coordinates in a way that produces only a little distortion, so it might be suitable for many
applicationsFigure 9-6shows two tori, one with a small hole (and therefore a lot of distortion
the center) and one with a large hole (and only a little distortion).

Figure 9-6 : Texture-Map Distortion

If you're texturing spline surfaces generated with evaluatorsdkaepter 1), theu andv
parameters for the surface can sometimes be used as texture coordinates. In general, how
there’s a large artistic component to successfully mapping textures to polygonal approxima
curved surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,1] and have them either clamp or |
the texture map. With repeating textures, if you have a large plane with texture coordinates
from 0.0 to 10.0 in both directions, for example, you'll get 100 copies of the texture tiled tog
on the screen. During repeating, the integer part of texture coordinates is ignored, and copi
texture map tile the surface. For most applications where the texture is to be repeated, the
the top of the texture should match those at the bottom, and similarly for the left and right e

The other possibility is to clamp the texture coordinates: Any values greater than 1.0 are se
and any values less than 0.0 are set to 0.0. Clamping is useful for applications where you v
single copy of the texture to appear on a large surface. If the surface-texture coordinates re
0.0 to 10.0 in both directions, one copy of the texture appears in the lower corner of the sur
you've chosen GL_LINEAR as the filtering method (8Ektering™), an equally weighted
combination of the border color and the texture color is used, as follows.

® When repeating, the 2 x 2 array wraps to the opposite edge of the texture. Thus, texe
right edge are averaged with those on the left, and top and bottom texels are also ave

® |[f there is a border, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR is used. (If you've chosen GL_NEAREST as the
filtering method, the border color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected b
texture. To do this, use alpha values of O for the edges (or borders, if they are specified) of
texture. The decal texture function directly uses the texture’s alpha value in its calculations.
are using one of the other texture functions, you may also need to enable blending with goc
and destination factors. (S&&lending” in Chapter §

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.(
Start withExample 9-1and modify the texture coordinates for the squares by mapping the te
coordinates from 0.0 to 3.0 as follows:

gl Begi n(GL_QUADS) ;
gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

.0); glVertex3f(-2.0, -1.0, 0.0);
0); gl Vertex3f(-2.0, 1.0, 0.0);
0); gl Vertex3f (0. O 1.0, 0.0);
0); gl Vertex3f(0.0, -1.0, 0.0);

gl TexCoor d2f (0.
gl TexCoor d2f (0.
gl TexCoor d2f (3.
gl TexCoor d2f (3.

; gl Vertex3f(1.0, -1.0, 0.0);
0); gl Vertex3f(1.0, 1.0, 0.0);
0); gl Vertex3f(2.41421, 1.0, -1.41421);
.0); gl Vertex3f(2.41421, -1.0, -1.41421); gl End();

0000 o000
CWWO owwo
(=]
N

With GL_REPEAT wrapping, the result is as showirigure 9-7

Figure 9-7 : Repeating a Texture

In this case, the texture is repeated in botls#uedt directions, since the following calls are ma
to gl TexParameter*():

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE WRAP_S, GL._REPEAT);
gl TexPar anet eri (GL_TEXTURE_2D, G._TEXTURE WRAP_T, G._REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see something simila
Figure 9-8

Figure 9-8 : Clamping a Texture

You can also clamp in one direction and repeat in the other, as shéwguia 9-9

Figure 9-9 : Repeating and Clamping a Texture

You've now seen all the possible argumentsgfdexPar ameter * (), which is summarized here.

void gl TexParameter{if}(GLenumtarget GLenumpname TYPE paranj

void gl TexParameter{if} v(GLenumtarget, GLenumpname

TYPE *parany,
Sets various parameters that control how a texture is treated as it's applied to a fragm
stored in a texture object. Thargetparameter is either GL_ TEXTURE_2D or
GL_TEXTURE_1D to indicate a two- or one-dimensional texture. The possible values
pnameand paramare shown ifrable 9-4 You can use the vector version of the commat
supply an array of values for GL_TEXTURE_BORDER_COLOR, or you can supply
individual values for other parameters using the nonvector version. If these values are
supplied as integers, they’re converted to floating-point accordifigbde 4-1 they're also
clamped to the range [0,1].

Table 9-4 : glTexParameter*() Parameters

Parameter Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT
GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR| any four values in [0.0, 1.0]

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Try This

Figure 9-8andFigure 9-9are drawn using GL_NEAREST for the minification and magnificati
filter. What happens if you change the filter values to GL_LINEAR? Why?

Automatic Texture-Coordinate Gener ation

You can use texture mapping to make contours on your models or to simulate the reflectior
an arbitrary environment on a shiny model. To achieve these effects, let OpenGL automatic
generate the texture coordinates for you, rather than explicitly assigning theghTveit@oor d* ().
To generate texture coordinates automatically, use the conglibadsen().

void glTexGen{ifd}(GLenumcoord, GLenumpname TYPEparam);

void gl TexGen{ifd} v(GLenumcoord, GLenumpname TYPE* param);
Specifies the functions for automatically generating texture coordinates. The first para
coord must be GL_S, GL_T, GL_R, or GL_Q to indicate whether texture coordjrtateor
g is to be generated. Tipameparameter is GL_ TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. Ifit's GL_TEXTURE_GEN_MQiaeamis
an integer (or, in the vector version of the command, points to an integer) that’s either
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. These symbolic cc
determine which function is used to generate the texture coordinate. With either of the
possible values fgpname paramis a pointer to an array of values (for the vector versiol
specifying parameters for the texture-generation function.

The different methods of texture-coordinate generation have different uses. Specifying the
reference plane in object coordinates is best for when a texture image remains fixed to a m
object. Thus, GL_OBJECT_LINEAR would be used for putting a wood grain on a table top.
Specifying the reference plane in eye coordinates (GL_EYE_LINEAR) is best for producing

dynamic contour lines on moving objects. GL_EYE_LINEAR may be used by specialists in
geosciences, who are drilling for oil or gas. As the drill goes deeper into the ground, the dril
be rendered with different colors to represent the layers of rock at increasing depths.
GL_SPHERE_MAP is predominantly used for environment mapping."Saeronment

Mapping.”
Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generatic
function is a linear combination of the object coordinates of the veaeyo(zo,wo):

generated coordinatepix0 + p2y0 + p3z0 + p4w0

Thepl, ...,p4 values are supplied as tharamargument t@lTexGen*v(), with pnameset to
GL_OBJECT_PLANE. Withp1l, ...,p4 correctly normalized, this function gives the distance fr
the vertex to a plane. For examplepZ = p3 =p4 = 0 andpl = 1, the function gives the distanc
between the vertex and the place 0. The distance is positive on one side of the plane, negs
on the other, and zero if the vertex lies on the plane.

Initially in Example 9-6equally spaced contour lines are drawn on a teapot; the lines indicai
distance from the plane= 0. The coefficients for the plame= 0 are in this array:

static G.float xequal zero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a one-dimensional te
map suffices. The texture map is a constant green color, except that at equally spaced inte
includes a red mark. Since the teapot is sitting ox-hplane, the contours are all perpendicul:
its base''Plate 18" in Appendix shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the reference plane t
static G.float slanted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plarey +z= 0, slicing across the teapot at an angle, a
shown in"Plate 18" in Appendix.ITo restore the reference plane to its initial vakre 0, press th
‘X' key.

Example 9-6 : Automatic Texture-Coordinate Generation: texgen.c

#i nclude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#define stripel mageWdth 32
GLubyte stripel mage[4*stri pel mageW dt h];

static GLuint texNane;
voi d makeStri pel nage(voi d)
{

int j;

for (j = 0; j < stripelmageWdth; j++) {

stripelmage[4*j] = (Gubyte) ((j<=4) ? 255 : 0);
stripel mage[4*j +1] = (G.ubyte) ((j>4) ? 255 : 0);
stripel mage[4*j +2] = (G.ubyte) O;
stripel mage[4*j +3] = (G.ubyte) 255;
}
}

/* planes for texture coordinate generation */
static G.float xequal zero[] = {1.0, 0.0, 0.0, 0.0};
static Gfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static G.float *current Coeff;

static GLenum current Pl ane;

static GLint current GenMode;

void init(void)

{
gl CearColor (0.0, 0.0, 0.0, 0.0);
gl Enabl e(G._DEPTH_TEST) ;
gl ShadeModel (GL_SMOOTH) ;

makeSt ri pel mage() ;
gl Pi xel St orei (GL_UNPACK_ALI GNMENT, 1);

gl GenTextures(1, &texName);
gl Bi ndText ure(GL_TEXTURE_1D, texNane);
gl TexParamet eri (GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, G._REPEAT);
gl TexPar anmet eri (GL_TEXTURE_1D, G._TEXTURE_MAG FI LTER,
GL_LI NEAR);
gl TexParamet eri (GL_TEXTURE_1D, GL_TEXTURE_M N_FI LTER,
GL_LI NEAR);
gl Texl magelD(GL_TEXTURE 1D, 0, G.L_RGBA, stripelmgeWdth, O,
GL_RGBA, GL_UNSI GNED _BYTE, stri pel nage);

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, G._MODULATE);
current Coeff = xequal zero;

current GenMbde = GL_OBJECT_LI NEAR,

current Pl ane = GL_OBJECT_PLANE;

gl TexGeni (G_S, G._TEXTURE GEN MODE, current Genhode);

gl TexGenfv(G._S, currentPl ane, current Coeff);

gl Enabl e(G._TEXTURE_CEN_S);

gl Enabl e(GL_TEXTURE_1D);

gl Enabl e(G._CULL_FACE) ;

gl Enabl e(GL_LI GHTI NG ;

gl Enabl e(G_LI GHTO) ;

gl Enabl e(GL_AUTO NORMAL) ;

gl Enabl e(GL_NORMALI ZE) ;

gl Front Face(G._CW;

gl Cul | Face(GL_BACK) ;

gl Materialf (G._FRONT, G._SHI NI NESS, 64.0);

voi d di spl ay(voi d)
gl d ear(G_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl Pushiatrix ();
gl Rotatef(45.0, 0.0, 0.0, 1.0);
gl Bi ndText ure(GL_TEXTURE_1D, texNane);
gl ut Sol i dTeapot (2. 0);
gl PopMatrix ();
gl Fl ush();
}

void reshape(int w, int h)

gl Vi ewport (0, O,
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
if (w<=h)

glOtho (-3.5, 3.5,

el se

(GLsizei) w, (GL.sizei) h);

-3.5*(CG.float)h/ (Gfl oat)w,
3.5*(G.float)h/ (G.float)w,

-3.5, 3.5);

gl Ortho (-3.5%(GLfloat)w (GLfl oat)h,

3.5*(G.fl oat)w (G.float) h,

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}

voi d keyboard (unsigned char key,
switch (key) {
case ‘e’
case ‘F
current GenMode =
current Pl ane = GL_EYE PLANE;

gl TexGeni (GL_S, GL_TEXTURE_GEN_MODE,

gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;

case ‘0’

case ‘'O :
current GenMode =
current Pl ane =

gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case ‘s’
case 'S
current Coeff = slanted;
gl TexGenfv(G._S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case ‘Xx’
case ‘X
current Coeff = xequal zero;
gl TexGenfv(G&_S, currentPl ane,
gl ut Post Redi spl ay() ;
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;

}
}
int main(int argc, char** argv)
glutlnit(&argc, argv);
glutlnitD spl ayMbde (GLUT_SI NGLE
gl utlnit WndowSi ze(256, 256);
gl utlnit WndowPosition(100, 100);
gl ut Cr eat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Mai nLoop() ;

int Xx,

GL_EYE_LI NEAR

GLUT_RGB |

-3.5, 3.5, -3.5, 3.5);

int y)

cur rent GenMode) ;
current Coeff);

GL_OBJECT LI NEAR,
GL_OBJECT_PLANE;
gl TexGeni (GL_S, GL_TEXTURE_GEN_MODE,

cur rent GenMode) ;
current Coeff);

current Coeff);

current Coeff);

GLUT_DEPTH) ;

return O;

}

You enable texture-coordinate generation forsheordinate by passing GL_TEXTURE_GEN_
to glEnable(). To generate other coordinates, enable them with GL_ TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q. UglDisable() with the appropriate
constant to disable coordinate generation. Also note the use of GL_REPEAT to cause the «
lines to be repeated across the teapot.

The GL_OBJECT_LINEAR function calculates the texture coordinates in the model’s coord
system. Initially inExample 9-6the GL_OBJECT _LINEAR function is used, so the contour il
remain perpendicular to the base of the teapot, no matter how the teapot is rotated or views
However, if you press the ‘e’ key, the texture generation mode is changed from
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calculated relative tc
eye coordinate system. (Pressing the ‘0’ key restores GL_OBJECT_LINEAR as the texture
generation mode.) If the reference plane #s0, the result is a teapot with red stripes parallel t
y-z plane from the eye’s point of view, as showrifthate 18" in Appendix.IMathematically, you
are multiplying the vectompllp2p3p4) by the inverse of the modelview matrix to obtain the val
used to calculate the distance to the plane. The texture coordinate is generated with the fol
function:

generated coordinatepl’ xe +p2'ye +p3'ze +pd’'we

where 01’ p2’ p3’ p4’) = (plp2p3p4)M-1

In this case,Xg, ye, ze,we) are the eye coordinates of the vertex, ahd..,p4 are supplied as the
paramargument t@lTexGen* () with pnameset to GL_EYE_PLANE. The primed values are
calculated only at the time they’re specified so this operation isn’'t as computationally exper
it looks.

In all these examples, a single texture coordinate is used to generate contosemdittexture
coordinates can be generated independently, however, to indicate the distances to two diffe
planes. With a properly constructed two-dimensional texture map, the resulting two sets of
can be viewed simultaneously. For an added level of complexity, you can calcuatedneinate
using GL_OBJECT_LINEAR and thecoordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were perfectly reflective, so
colors on its surface are those reflected to the eye from its surroundings. In other words, if
at a perfectly polished, perfectly reflective silver object in a room, you see the walls, floor, a
other objects in the room reflected off the object. (A classic example of using environment
is the evil, morphing cyborg in the filfherminator 2) The objects whose reflections you see
depend on the position of your eye and on the position and surface angles of the silver obje
perform environment mapping, all you have to do is create an appropriate texture map and
have OpenGL generate the texture coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the

environment are far away compared to the surfaces of the shiny object - that is, it's a small
a large room. With this assumption, to find the color of a point on the surface, take the ray f
eye to the surface, and reflect the ray off the surface. The direction of the reflected ray com
determines the color to be painted there. Encoding a color for each direction on a flat textul

equivalent to putting a polished perfect sphere in the middle of the environment and taking
of it with a camera that has a lens with a very long focal length placed far away. Mathemati
the lens has an infinite focal length and the camera is infinitely far away. The encoding ther
covers a circular region of the texture map, tangent to the top, bottom, left, and right edges
map. The texture values outside the circle make no difference, as they are never accessed
environment mapping.

To make a perfectly correct environment texture map, you need to obtain a large silvered s
take a photograph of it in some environment with a camera located an infinite distance awa
with a lens that has an infinite focal length, and scan in the photograph. To approximate thi
you can use a scanned-in photograph of an environment taken with an extremely wide-ang
fish-eye) lens. Plate 21 shows a photograph taken with such a lens and the results when th
is used as an environment map.

Once you've created a texture designed for environment mapping, you need to invoke Ope
environment-mapping algorithm. This algorithm finds the point on the surface of the sphere
the same tangent surface as the point on the object being rendered, and it paints the objec
with the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use thi
your program:

gl TexGeni (GL_S, G._TEXTURE_GEN MODE, GL_SPHERE_MAP);
gl TexGeni (GL_T, G._TEXTURE_GEN MODE, GL_SPHERE_MAP);
gl Enabl e(G._TEXTURE _GEN_S);
gl Enabl e(GL_TEXTURE_GEN_T) ;

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environme
mapping. As shown, you need to specify it for bothsthadt directions. However, you don’t ha
to specify any parameters for the texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following
mathematical steps.

1. uis the unit vector pointing from the origin to the vertex (in eye coordinates).

2. n’ is the current normal vector, after transformation to eye coordinates.

w

. I is the reflection vectoryXxryrz)T, which is calculated by - 2n’n’ Tu.

4. Then an interim valuan, is calculated by

m:EJri+ri+(r5+ 1?

o

. Finally, thes andt texture coordinates are calculated by

F=r./m +lf

and

— 1
r—r},x“m +3

Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how to gisedhdinate.
Both techniques are considered advanced, since you don’t need them for many application
texture mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture
coordinates are multiplied by a 4 x 4 matrix before any texture mapping occurs. By default,
texture matrix is the identity, so the texture coordinates you explicitly assign or those that a
automatically generated remain unchanged. By modifying the texture matrix while redrawin
object, however, you can make the texture slide over the surface, rotate around it, stretch
shrink, or any combination of the three. In fact, since the texture matrix is a completely gen
4 matrix, effects such as perspective can be achieved.

When the four texture coordinates {, r, 9 are multiplied by the texture matrix, the resulting
vector €' t' ' q') is interpreted as homogeneous texture coordinates. In other words, the tex
map is indexed by'/q’ andt’/q’ . (Remember that/q’ is ignored in standard OpenGL, but may
used by implementations that support a 3D texture extension.) The texture matrix is actuall
matrix on a stack, which must have a stack depth of at least two matrices. All the standard
matrix-manipulation commands suchghBushMatrix(), glPopMatrix(), giMultMatrix(), and
glRotate* () can be applied to the texture matrix. To modify the current texture matrix, you n
set the matrix mode to GL_TEXTURE, as follows:

gl Matri xMode(GL_TEXTURE); /* enter texture matrix node */
gl Rotated(...);

[* ... other matrix nanipulations ... */

gl Matri xMode(GL_MODELVIEW ; /* back to nodel vi ew node */

The q Coordinate

The mathematics of thepcoordinate in a general four-dimensional texture coordinate is as
described in the previous section. You can make ugemnotases where more than one projecti
or perspective transformation is needed. For example, suppose you want to model a spotlic
has some nonuniform pattern - brighter in the center, perhaps, or noncircular, because of fl
lenses that modify the shape of the beam. You can emulate shining such a light on a flat st
making a texture map that corresponds to the shape and intensity of a light, and then proje
the surface in question using projection transformations. Projecting the cone of light onto st
in the scene requires a perspective transformagi@mé; 1), since the lights might shine on
surfaces that aren’t perpendicular to them. A second perspective transformation occurs bec

viewer sees the scene from a different (but perspective) point of view'Rlae=27" in Appendix
| for an example, and see "Fast Shadows and Lighting Effects Using Texture Mapping" by |
Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli, SIGGRAPH 1992
Proceedings,Gomputer Graphics26:2, July 1992, p. 249-252) for more details.)

Another example might arise if the texture map to be applied comes from a photograph tha
was taken in perspective. As with spotlights, the final view depends on the combination of t
perspective transformations.

OpenGL Programming Guide
(Addison-Wesley Publishing Company)

