[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and | mages

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Position and draw bitmapped data

® Read pixel data (bitmaps and images) from the framebuffer into processor memory ar
memory into the framebuffer

® Copy pixel data from one color buffer to another, or to another location in the same bt
® Magnify or reduce an image as it's written to the framebuffer

® Control pixel-data formatting and perform other transformations as the data is moved
from the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geometric data
lines, and polygons. Two other important classes of data that can be rendered by OpenGL

® Bitmaps, typically used for characters in fonts
® Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference |
them is that a bitmap consists of a single bit of information about each pixel, and image dat
typically includes several pieces of data per pixel (the complete red, green, blue, and alpha
components, for example). Also, bitmaps are like masks in that they’re used to overlay ano
image, but image data simply overwrites or is blended with whatever data is in the framebu

This chapter describes how to draw pixel data (bitmaps and images) from processor mema
framebuffer and how to read pixel data from the framebuffer into processor memory. It also
describes how to copy pixel data from one position to another, either from one buffer to anc
within a single buffer. This chapter contains the following major sections:

® "Bitmaps and Fontstlescribes the commands for positioning and drawing bitmapped d
Such data may describe a font.

® "Images"presents the basic information about drawing, reading and copying pixel date

® "Imaging Pipeline'describes the operations that are performed on images and bitmaps
they are read from the framebuffer and when they are written to the framebuffer.

® "Reading and Drawing Pixel Rectanglesivers all the details of how pixel data is stored
memory and how to transform it as it's moved into or out of memory.

® "Tips for Improving Pixel Drawing Ratedists tips for getting better performance when
drawing pixel rectangles.

In most cases, the necessary pixel operations are simple, so the first three sections might t
need to read for your application. However, pixel manipulation can be complex - there are r
ways to store pixel data in memory, and you can apply any of several transformations to pi:
they’re moved to and from the framebuffer. These details are the subject of the fourth secti
this chapter. Most likely, you'll want to read this section only when you actually need to mal
of the information. The last section provides useful tips to get the best performance when re
bitmaps and images.

Bitmaps and Fonts

A bitmap is a rectangular array of Os and 1s that serves as a drawing mask for a correspon
rectangular portion of the window. Suppose you're drawing a bitmap and that the current re
color is red. Wherever there’s a 1 in the bitmap, the corresponding pixel is replaced by a re
(or combined with a red pixel, depending on which per-fragment operations are in effect. (S
"Testing and Operating on Fragments" in Chaptey It€here’s a 0 in the bitmap, the contents ¢
the pixel are unaffected. The most common use of bitmaps is for drawing characters on the

OpenGL provides only the lowest level of support for drawing strings of characters and
manipulating fonts. The commang&aster Pos* () andglBitmap() position and draw a single
bitmap on the screen. In addition, through the display-list mechanism, you can use a seque
character codes to index into a corresponding series of bitmaps representing those charact
Chapter #or more information about display lists.) You'll have to write your own routines to
provide any other support you need for manipulating bitmaps, fonts, and strings of characte

ConsiderExample 8-1which draws the character F three times on the sdfégure 8-1shows the
F as a bitmap and its corresponding bitmap data.

Oxff, Qa0
O EE, Q2o
O, Qx00
Oxol, (200
O, 0200
OxEE, (200
OxEE, (200
O, 0200
O, Qx00
Oxol, (200
O, 0200
O, Qx00

Figure 8-1: Bitmapped F and Its Data

Example 8-1 : Drawing a Bitmapped Character: drawf.c

#i ncl ude <G/ gl . h>

#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>
#i ncl ude <stdlib. h>

GLubyte rasters[24] = {
Oxc0, 0x00, OxcO, 0x00, OxcO, 0x00, 0Oxc0O, 0x00, OxcO, 0xo00,
oxff, 0Ox00, Oxff, 0Ox00, OxcO, 0x00, OxcO, 0x00, 0OxcO, 0xO00,
oxff, OxcO, Oxff, OxcO};

voi d init(void)

gl Pi xel Storei (G._UNPACK_ALI GNMENT, 1);
gl earColor (0.0, 0.0, 0.0, 0.0);

voi d di spl ay(voi d)

gl d ear (G._COLOR BUFFER BIT);

gl Color3f (1.0, 1.0, 1.0);

gl Rast er Pos2i (20, 20);

glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
gl Bitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
gl Fl ush();

void reshape(int w, int h)

gl Viewport (0, O, (CGLsizei) w, (Gsizei) h);
gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

glOtho (0, w, 0, h, -1.0, 1.0);

gl Mat ri xMode(GL_MCDELVI EW ;

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)

{
glutinit(&argc, argv);
glutlinitD spl ayMde(GLUT_SINGLE | GLUT_RGB)
gl utlnit WndowSi ze(100, 100);
gl ut I ni t WndowPosi tion(100, 100);
gl ut Creat eW ndow(argv[0]);
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay) ;
gl ut Mai nLoop() ;
return O;

}

In Figure 8-1 note that the visible part of the F character is at most 10 bits wide. Bitmap dat
always stored in chunks that are multiples of 8 bits, but the width of the actual bitmap does
to be a multiple of 8. The bits making up a bitmap are drawn starting from the lower-left cor
First, the bottom row is drawn, then the next row above it, and so on. As you can tell from tl

the bitmap is stored in memory in this order - the array of rasters begins with Oxc0, 0x00, O:
0x00 for the bottom two rows of the F and continues to Oxff, 0xc0, 0xff, OxcO for the top two

The commands of interest in this exampleghRaster Pos2i() andglBitmap(); they’re discussed
detail in the next section. For now, ignore the cafllRixelStorei(); it describes how the bitmap
data is stored in computer memory. (S€entrolling Pixel-Storage Modegbr more information.

The Current Raster Position

The current raster position is the origin where the next bitmap (or image) is to be drawn. In
example, the raster position was set by calyjiiRpster Pos* () with coordinates (20, 20), which is
where the lower-left corner of the F was drawn:

gl Rast er Pos2i (20, 20);

void glRaster Pos{234}{sifd}(TYPE x, TYPE y, TYPE z TYPE w);

void glRaster Pos{234}{sifd}v(TYPE * coords);
Setsthe current raster position. The x, y, z, and w arguments specify the coordinates of the
raster position. If the vector form of the function is used, the coords array contains the
coordinates of the raster position. If giIRasterPos2* () is used, zisimplicitly set to zero and w
isimplicitly set to one; similarly, with glRasterPos3* (), wis set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the
as coordinates supplied withlgh/ertex* () command (that is, with the modelview and perspect
matrices). After transformation, they either define a valid spot in the viewport, or they're clig
out because the coordinates were outside the viewing volume. If the transformed point is cl
out, the current raster position is invalid.

Note: If you want to specify the raster position in screen coordinates, you'll want to make st
you've specified the modelview and projection matrices for simple 2D rendering, with some
like this sequence of commands, wherdth andheight are also the size (in pixels) of the
viewport:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gluOrtho2D(0.0, (G.float) width, 0.0, (G.float) height);
gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

To obtain the current raster position, you can use the query conghetéloatv() with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should |
pointer to an array that can hold tixey(, z, w) values as floating-point numbers. Call
glGetBooleanv() with GL_CURRENT _RASTER_POSITION_VALID as the first argument to
determine whether the current raster position is valid.

Drawing the Bitmap
Once you've set the desired raster position, you can uggBhenap() command to draw the dat
void gIBitmap(GLsizel width, GLsizei height, GLfloat xbo,

GLfloat ybo, GLfloat xbi,
GLfloat ybi, const GLubyte * bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The origin of
the bitmap is placed at the current raster position. If the current raster position isinvalid,
nothing is drawn, and the raster position remains invalid. The width and height arguments
indicate the width and height, in pixels, of the bitmap. The width need not be a multiple of 8,
although the data is stored in unsigned characters of 8 bits each. (In the F example, it
wouldn’t matter if there were garbage bits in the data beyond the tenth bit; since glBitmap()
was called with a width of 10, only 10 bits of the row are rendered.) Use xbo and ybo to
define the origin of the bitmap (positive values move the origin up and to the right of the
raster position; negative values move it down and to the left); xbi and ybi indicate the x and y
increments that are added to the raster position after the bitmap is rasterized (see Figure
8-2).

(o Ypo) = (0, 0)
(g Wpp = (11, 0)

M
11T

Figure 8-2: Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to exte
below the origin (typically used for characters with descenders, such as g, j, and y), or to &
beyond the left of the origin (used for various swash characters, which have extended flour
for characters in fonts that lean to the left).

After the bitmap is drawn, the current raster position is advancghli layndybi in thex- and
y-directions, respectively. (If you just want to advance the current raster position without dr¢
anything, calglBitmap() with thebitmap parameter set to NULL and with tiaédth andheight set
to zero.) For standard Latin fontdi is typically 0.0 andkbi is positive (since successive charac
are drawn from left to right). For Hebrew, where characters go from right to lethithalues
would typically be negative. Fonts that draw successive characters vertically in columns wc
zero forxbi and nonzero values fgbi. In Figure 8-2 each time the F is drawn, the current rast
position advances by 11 pixels, allowing a 1-pixel space between successive characters.

Sincexbo, ybo, xbi, andybi are floating-point values, characters need not be an integral numl
pixels apart. Actual characters are drawn on exact pixel boundaries, but the current raster |
kept in floating point so that each character is drawn as close as possible to where it belong
example, if the code in the F example was modified saxthag 11.5 instead of 12, and if more
characters were drawn, the space between letters would alternate between 1 and 2 pixels,
best approximation to the requested 1.5-pixel space.

Note: You can't rotate bitmap fonts because the bitmap is always drawn alignedktarttig
framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with usinglColor*() andgll ndex*() to set the current color or index to draw
geometric primitives. The same commands are used to set different state variables,
GL_CURRENT_RASTER_COLOR and GL_CURRENT_RASTER_INDEX, for rendering
bitmaps. The raster color state variables are set glRaster Pos* () is called, which can lead to
trap. In the following sequence of code, what is the color of the bitmap?

glColor3f(1.0, 1.0, 1.0); /* white */
gl Rast er Pos3f v(position);

gl Color3f(1.0, 0.0, 0.0); /* red */
gl Bitmap(....);

The bitmap is white! The GL_CURRENT_RASTER_COLOR is set to white when

glRaster Pos3fv() is called. The second call g¢Color 3f() changes the value of
GL_CURRENT_COLOR for future geometric rendering, but the color used to render the bit
unchanged.

To obtain the current raster color or index, you can use the query comgh@etfdoatv() or
glGetintegerv() with GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDE
as the first argument.

Fontsand Display Lists

Display lists are discussed in general termShiapter 7However, a few of the display-list
management commands have special relevance for drawing strings of characters. As you 1
section, keep in mind that the ideas presented here apply equally well to characters that ar
using bitmap data and those drawn using geometric primitives (points, lines, and polygons)
"Executing Multiple Display Lists" in Chapterf@r an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying nun
(usually the ASCII code) and a drawing method. For a standard ASCII character set, the ce
letter A is number 65, B is 66, and so on. The string "DAB" would be represented by the thr
indices 68, 65, 66. In the simplest approach, display-list number 65 draws an A, number 66
B, and so on. Then to draw the string 68, 65, 66, just execute the corresponding display list

You can use the commagtCallLists() in just this way:
void gl CallLists(G.sizei n, G.enumtype, const G.void *lists);

The first argumenty, indicates the number of characters to be dréype,is usually GL_BYTE,
andlistsis an array of character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this sim
approach isn’t convenient. Instead, you'd like to use 65 as A no matter what font is current!
You could force font 1 to encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 20¢
but then any numbers larger than 256 would no longer fit in an 8-bit byte. A better solution i
an offset to every entry in the string and to choose the display list. In this case, font 1 has A
C represented by 1065, 1066, and 1067, and in font 2, they might be 2065, 2066, and 2067
draw characters in font 1, set the offset to 1000 and draw display lists 65, 66, and 67. To dr
same string in font 2, set the offset to 2000 and draw the same lists.

To set the offset, use the commaghidistBase(). For the preceding examples, it should be calle
with 1000 or 2000 as the (only) argument. Now what you need is a contiguous list of unuse

display-list numbers, which you can obtain frglGenLists():
GLui nt gl GenLi sts(G.si zei range);

This function returns a block oénge display-list identifiers. The returned lists are all marked ¢
"used" even though they’re empty, so that subsequent caliSénL ists() never return the same
lists (unless you've explicitly deleted them previously). Therefore, if you use 4 as the argurr
if glGenLists() returns 81, you can use display-list identifiers 81, 82, 83, and 84 for your
characters. 1§lGenLists() can’t find a block of unused identifiers of the requested length, it re
0. (Note that the commamgtiDeletel ists() makes it easy to delete all the lists associated with
in a single operation.)

Most American and European fonts have a small number of characters (fewer than 256), st
to represent each character with a different code that can be stored in a single byte. Asian-
among others, may require much larger character sets, so a byte-per-character encoding is
impossible. OpenGL allows strings to be composed of 1-, 2-, 3-, or 4-byte characters throu
type parameter iglCallLists(). This parameter can have any of the following values:

GL_BYTE GL_UNSIGNED_BYTE
GL_SHORT GL_UNSIGNED_SHORT
GL_INT GL_UNSIGNED_INT
GL_FLOAT GL_2_BYTES

GL_3 BYTES GL_4 BYTES

(See"Executing Multiple Display Lists" in Chapterf@r more information about these values.)
Defining and Using a Complete Font

TheglBitmap() command and the display-list mechanism described in the previous section
easy to define a raster font.Eixample 8-2the upper-case characters of an ASCII font are def
In this example, each character has the same width, but this is not always the case. Once t
characters are defined, the program prints the message "THE QUICK BROWN FOX JUMP
OVER A LAZY DOG".

The code irExample 8-3s similar to the F example, except that each character’s bitmap is s
in its own display list. The display list identifier, when combined with the offset returned by
glGenLists(), is equal to the ASCII code for the character.

Example 8-2 : Drawing a Complete Font: font.c

#i nclude <@/ gl . h>

#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

GLubyte space[] =
{0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00, Ox00, OxO
GLubyte letters[][13] = {

} .

{0x00, 0x00, 0Oxc3, 0xc3, 0xc3, 0xc3, Oxff, O0xc3, 0xc3,
{0x00, 0x00, Oxfe, Oxc7, 0Oxc3, 0xc3, Oxc7, Oxfe, O0xc7,
{0x00, 0x00, Ox7e, Oxe7, OxcO, OxcO, OxcO, OxcO, OxcO
{0x00, 0x00, Oxfc, Oxce, Oxc7, 0xc3, Oxc3, 0xc3, 0xc3,
{0x00, 0x00, Oxff, OxcO, OxcO, 0OxcO, OxcO, Oxfc, 0xcO
{0x00, 0x00, 0OxcO, 0xcO, 0xcO, 0xcO, 0Oxc0, 0xcO0, Oxfc
{0x00, 0Ox00, Ox7e, Oxe7, Oxc3, 0xc3, Oxcf, OxcO, 0xcO,
{0x00, 0x00, Oxc3, 0xc3, O0xc3, 0xc3, O0xc3, Oxff, 0Oxc3,
{0x00, 0x00, Ox7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
{0x00, 0x00, Ox7c, Oxee, 0Oxc6, 0x06, 0x06, 0x06, 0xO06,
{0x00, 0x00, Oxc3, Oxc6, Oxcc, 0xd8, OxfO, Oxe0, OxfO,
{0x00, 0x00, Oxff, OxcO, OxcO, OxcO, OxcO, OxcO, OxcO
{0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb
{0x00, 0x00, Oxc7, Oxc7, Oxcf, Oxcf, Oxdf, Oxdb, Oxfb,
{0x00, 0x00, Ox7e, Oxe7, Oxc3, 0xc3, O0xc3, 0xc3, 0xc3,
{0x00, 0x00, 0OxcO, 0OxcO, OxcO, 0xcO, OxcO, Oxfe, Oxc7
{0x00, 0x00, Ox3f, Ox6e, Oxdf, Oxdb, Oxc3, 0xc3, 0xc3,
{0x00, 0x00, 0Oxc3, 0xc6, Oxcc, 0xd8, Oxf0, Oxfe, Oxc7,
{0x00, 0x00, Ox7e, Oxe7, 0x03, 0x03, 0x07, Ox7e, 0xeO,
{0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
{0x00, 0x00, Ox7e, Oxe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3,
{0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3,
{0x00, 0x00, Oxc3, Oxe7, Oxff, Oxff, Oxdb, Oxdb, Oxc3,
{0x00, 0x00, Oxc3, 0x66, 0x66, O0x3c, Ox3c, 0x18, 0x3c,
{0x00, 0x00, O0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c,
{0x00, 0x00, Oxff, OxcO, OxcO, 0x60, 0x30, Ox7e, O0xOc,

Guint fontOfset;

voi d makeRast er Font (voi d)

{

Voi

voi

~

* %k %k X X

Guint i, j;
gl Pi xel St orei (GL_UNPACK_ALI GNMENT, 1);

fontOFfset = gl GenLists (128);

for (i =0,j = A i <26; i++j++) {
gl NewLi st (fontOffset + j, G._COWPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters[i]);
gl EndLi st ();

gl NewLi st (fontOffset + ° *, G._COWPI LE)
gl Bitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);
gl EndLi st ();

d init(void)

gl ShadeMbdel (GL_FLAT);
makeRast er Font () ;

d printString(char *s)

gl PushAttrib (G_LIST_BIT);

gl Li st Base(fontOffset);

gl Cal I Lists(strlen(s), G._UNSI GNED BYTE, (GLubyte *) s);
gl PopAttrib ();

Everyt hi ng above this line could be in a library
that defines a font. To make it work, you’ve got
to call makeRasterFont() before you start naking
calls to printString().

0Oxc3,
0Oxc3,
0xcO,
0xc3,
0xcO,
0OxcO,
0xcO,
0xc3,
0x18,
0x06,
0xd8,
0OxcO,
Oxff,
oxf 3,
0xc3,
0xc3,
0Oxc3,
0Oxc3,
0xcO,
0x18,
0Oxc3,
0Oxc3,
0xc3,
0x3c,
0Ox3c,
0x06,

0x66,
0Oxc3,
0xcO,
Oxc7,
0xcO,
0OxcO,
0xcO,
0xc3,
0x18,
0x06,
Oxcc,
0OxcO,
Oxff,
oxf 3,
0xc3,
0xc3,
0Oxc3,
Oxc3,
0xcO,
0x18,
0Oxc3,
Oxc3,
0xc3,
0x66,
0x66,
0x03,

0Ox3c,
Oxc7,
Ooxe7,
Oxce,
0xcO,
0OxcO,
Ooxe7,
0xc3,
0x18,
0x06,
0xc6,
0OxcO,
Oxe7,
Oxe3,
Ooxe7,
Oxc7,
0x66,
Oxc7,
Ooxe7,
0x18,
0Oxc3,
Oxc3,
0xc3,
0x66,
0x66,
0x03,

Ox 1.
Oxf
Ox7:
Oxf «
Oxf 1
Oxf |
Ox7:
Oxc.
Ox7:
0x Ot
Oxc:
Oxc!
Oxc.
Oxe.
Ox7:
Oxf «
0x 3
Oxf
Ox7:
Oxf 1
Oxc.
Oxc.
Oxc:
Oxc.
Oxc.
Oxf |

voi d di spl ay(voi d)
{
G.float white[3] ={ 1.0, 1.0, 1.0 };

gl A ear (G._COLOR BUFFER BI T);
gl Col or 3fv(white);

gl Rast er Pos2i (20, 60);

printString("THE QU CK BROAN FOX JUWPS");
gl Rast er Pos2i (20, 40);

printString("OVER A LAZY DOG');

gl Flush ();

void reshape(int w, int h)

gl Viewport (0, O, (Gsizei) w, (Gsizei) h);
gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

glOrtho (0.0, w, 0.0, h, -1.0, 1.0);

gl Matri xMode(GL_MODELVI EW ;

voi d keyboard(unsi gned char key, int x, int vy)

switch (key) {
case 27:
exit(0);

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlnitD splayMode(GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze(300, 100);
gl utl ni t WndowPosition (100, 100);
gl ut Cr eat eW ndow(argv[0]);
init();
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Di spl ayFunc(di spl ay);
gl ut Mai nLoop() ;
return O;

| mages
An image is similar to a bitmap, but instead of containing only a single bit for each pixel in &
rectangular region of the screen, an image can contain much more information. For examp
image can contain a complete (R, G, B, A) color stored at each pixel. Images can come fro
several sources, such as

® A photograph that’s digitized with a scanner

® An image that was first generated on the screen by a graphics program using the grag
hardware and then read back, pixel by pixel

® A software program that generated the image in memory pixel by pixel

The images you normally think of as pictures come from the color buffers. However, you ce
or write rectangular regions of pixel data from or to the depth buffer or the stencil buffer. (Si
Chapter 1Gor an explanation of these other buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, i
case they're essentially pasted onto polygons that are rendered on the screen in the norme
(SeeChapter Jor more information about this technique.)

Reading, Writing, and Copying Pixel Data
OpenGL provides three basic commands that manipulate image data:

® glReadPixels() - Reads a rectangular array of pixels from the framebuffer and stores tr
in processor memory.

® glDrawPixels() - Writes a rectangular array of pixels from data kept in processor mem
into the framebuffer at the current raster position specifiegl Rgster Pos* ().

® glCopyPixels() - Copies a rectangular array of pixels from one part of the framebuffer t
another. This command behaves similarly to a cajlReadPixels() followed by a call to
glDrawPixels(), but the data is never written into processor memory.

For the aforementioned commands, the order of pixel data processing operations is $shgune
8-3.

Per-Veriex
g[HﬂﬁarFus*= Operatlons &
+ Primitive
Assembly

Per-
|Haater1m1lun | = Frogment e Frame

*{log, lexture) Buffer
Frocessor | glDrawPixels Operatians
Mamary |

giReadPixels -

giCopyPixels

Figure 8-3: Simplistic Diagram of Pixel Data Flow

The basic ideas iRigure 8-3are correct. The coordinatesgbRaster Pos* (), which specify the
current raster position used g\DrawPixels() andglCopyPixels(), are transformed by the
geometric processing pipeline. BaibrawPixels() andglCopyPixels() are affected by
rasterization and per-fragment operations. (But when drawing or copying a pixel rectangle,
almost never a reason to have fog or texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many w
store pixel information in computer memory, and various data conversions that can be perfi
during the reading, writing, and copying operations. These possibilities translate to many di
modes of operation. If all your program does is copy images on the screen or read them int
memory temporarily so that they can be copied out later, you can ignore most of these moc
However, if you want your program to modify the data while it's in memory - for example, if
have an image stored in one format but the window requires a different format - or if you we

save image data to a file for future restoration in another session or on another kind of mac
significantly different graphical capabilities, you have to understand the various modes.

The rest of this section describes the basic commands in detail. The following sections disc
details of the series of imaging operations that comprise the Imaging Pipeline: pixel-storage
pixel-transfer operations, and pixel-mapping operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizel height,

GLenum format, GLenum type, GLvoid * pixels);
Reads pixel data from the framebuffer rectangle whose lower-left corner isat (x, y) and
whose dimensions are width and height and stores it in the array pointed to by pixels. format
indicates the kind of pixel data elementsthat areread (anindex valueor an R, G, B, or A
component value, aslisted in Table 8-1), and type indicates the data type of each element (see
Table 8-2).

If you are usingylReadPixels() to obtain RGBA or color-index information, you may need to
clarify which buffer you are trying to access. For example, if you have a double-buffered wil
you need to specify whether you are reading data from the front buffer or back buffer. To cc
the current read source buffer, ggiReadBuffer (). (See'Selecting Color Buffers for Writing anc
Reading" in Chapter 1D

Table 8-1 : Pixel Formats for gIReadPixels() or glDrawPixels()

format Constant

Pixel Format

GL_COLOR_INDEX

A single color index

GL_RGB A red color component, followed by a green color compong
followed by a blue color component

GL_RGBA A red color component, followed by a green color compong
followed by a blue color component, followed by an alpha
color component

GL_RED A single red color component

GL_GREEN A single green color component

GL_BLUE A single blue color component

GL_ALPHA A single alpha color component

GL_LUMINANCE

A single luminance component

GL_LUMINANCE_ALPHA

A luminance component followed by an alpha color
component

GL_STENCIL_INDEX

A single stencil index

GL_DEPTH_COMPONENT

A single depth component

Table 8-2 : Data Types for gIReadPixels() or glIDrawPixels()

type Constant Data Type

GL_UNSIGNED _BYTE | unsigned 8-bit integer

GL_BYTE signed 8-bit integer
GL_BITMAP single bits in unsigned 8-bit integers using the same format a
glBitmap()

GL_UNSIGNED_SHORT| unsigned 16-bit integer

GL_SHORT signed 16-bit integer
GL_UNSIGNED _INT unsigned 32-bit integer
GL_INT signed 32-bit integer
GL_FLOAT single-precision floating point

Remember that, depending on the format, anywhere from one to four elements are read (o
For example, if the format is GL_RGBA and you're reading into 32-bit integers (thatyjs i§
equal to GL_UNSIGNED _INT or GL_INT), then every pixel read requires 16 bytes of storag
(four components x four bytes/component).

Each element of the image is stored in memory as indicatédldg 8-2 If the element represen
a continuous value, such as a red, green, blue, or luminance component, each value is sca
into the available number of bits. For example, assume the red component is initially specif
floating-point value between 0.0 and 1.0. If it needs to be packed into an unsigned byte, on
of precision are kept, even if more bits are allocated to the red component in the framebuff
GL_UNSIGNED_SHORT and GL_UNSIGNED_INT give 16 and 32 bits of precision,
respectively. The normal (signed) versions of GL_BYTE, GL_SHORT, and GL_INT have 7,
and 31 bits of precision, since the negative values are typically not used.

If the element is an index (a color index or a stencil index, for example), and the type is not
GL_FLOAT, the value is simply masked against the available bits in the type. The signed v
GL_BYTE, GL_SHORT, and GL_INT - have masks with one fewer bit. For example, if a co
index is to be stored in a signed 8-bit integer, it’s first masked against Ox7f. If the type is
GL_FLOAT, the index is simply converted into a single-precision floating-point number (for
example, the index 17 is converted to the float 17.0).

Writing Pixel Data from Processor M emory to Frame Buffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,

GLenum type, const GLvoid * pixels);
Draws a rectangle of pixel data with dimensions width and height. The pixel rectangleis
drawn with its lower-left corner at the current raster position. format and type have the same
meaning as with glReadPixels(). (For legal values for format and type, see Table 8-1 and

Table 8-2.) The array pointed to by pixels contains the pixel data to be drawn. If the current
raster position isinvalid, nothing is drawn, and the raster position remains invalid.

Example 8-3s a portion of a program, which uggBrawPixels() to draw an pixel rectangle in t
lower-left corner of a windownakeCheckl mage() creates a 64-by-64 RGB array of a
black-and-white checkerboard imagiRaster Pos2i(0,0) positions the lower-left corner of the
image. For now, ignorglPixelStorei().

Example 8-3 : Use of gIDrawPixels(): image.c

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
GLubyt e checkl mage[checkl nageHei ght] [checkl mageW dt h] [3] ;

voi d makeCheckl mage(voi d)

{

int i, j, c;

for (i = 0; i < checklmageHeight; i++) {
for (j = 0; j < checklmageWdth; j++) {
c = ((((i&x8)==0)"((j&0x8))==0))*255;

checklmage[i][j][0] = (G.ubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i][j][2] = (G.ubyte) c;

}
}
}

void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);

gl ShadeMovdel (GL_FLAT);

makeCheckl mage() ;

gl Pi xel St orei (GL_UNPACK_ALI GNMVENT, 1);

voi d di spl ay(void)

gl d ear (GL_COLOR BUFFER BI T);

gl Rast er Pos2i (0, 0);

gl Dr awPi xel s(checkl mageW dt h, checkl nageHei ght, G._RGB
GL_UNSI GNED_BYTE, checkl mage);

gl Fl ush();

When usingglDrawPixels() to write RGBA or color-index information, you may need to contr
the current drawing buffers witiiDrawBuffer (), which, along wittglReadBuffer (), is also
described inSelecting Color Buffers for Writing and Reading" in Chapter 10

Copying Pixel Data within the Frame Buffer

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,

GLenum buffer);
Copies pixel data from the framebuffer rectangle whose lower-left corner isat (x, y) and
whose dimensions are width and height. The data is copied to a hew position whose lower -l eft
corner isgiven by the current raster position. buffer iseither GL_COLOR, GL_STENCIL, or
GL_DEPTH, specifying the framebuffer that is used. glCopyPixels() behaves similarly to a
glReadPixels() followed by a glDrawPixels(), with the following translation for the buffer to
format parameter:

® |f buffer is GL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or
GL_STENCIL_INDEX is used, respectively.

® |[f GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on
whether the system is in RGBA or color-index mode.

Note that there’s no need forfarmat or data parameter foglCopyPixels(), since the data is nev
copied into processor memory. The read source buffer and the destination bgifopyfPixels()
are specified bglReadBuffer () andglDrawBuffer () respectively. BotlylDrawPixels() and
glCopyPixels() are used ifExample 8-4

For all three functions, the exact conversions of the data going to or from the framebuffer d
on the modes in effect at the time. See the next section for details.

| maging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-tr
operations, which include how to set up an arbitrary mapping to convert pixel data. You car
magnify or reduce a pixel rectangle before it's drawn by cagfiRgxelZoom(). The order of thes:
operations is shown iRigure 8-4

unpack
w| Pixel |m Flxel-Transfar Rasterlzatlon Par-
P;:'ﬂ?“m Storage Operalions ™ (including % Fragment [:r:fr;;:
sald :Fﬂﬁk Modes [*{{and Plxel Map) Plxel Zoom) Qperations
A + f 'y
Taxture
Mamory

Figure 8-4 : Imaging Pipeline

WhenglDrawPixels() is called, the data is first unpacked from processor memory according
pixel-storage modes that are in effect and then the pixel-transfer operations are applied. TF
resulting pixels are then rasterized. During rasterization, the pixel rectangle may be zoome:
down, depending on the current state. Finally, the fragment operations are applied and the
written into the framebuffer. (Sé&esting and Operating on Fragments" in Chaptefiot@
discussion of the fragment operations.)

WhenglReadPixels() is called, data is read from the framebuffer, the pixel-transfer operatior
performed, and then the resulting data is packed into processor memory.

glCopyPixels() applies all the pixel-transfer operations during what would bgl ReadPixels()
activity. The resulting data is written as it would begiyrawPixels(), but the transformations
aren’'t applied a second tim@gure 8-5shows howglCopyPixels() moves pixel data, starting frc
the frame buffer.

Pixel-Transler Rasterization Per- Frame
Operationa {including | Fragment == Buffer
Hand Pixel Map) Pixal Zoam) Opearatlona {atart)

Figure 8-5: glCopyPixels() Pixel Path

From"Drawing the Bitmap'andFigure 8-6 you see that rendering bitmaps is simpler than
rendering images. Neither the pixel-transfer operations nor the pixel-zoom operation are af

unpack Pixal Per-
s »! Storage » Rasterization [Fragment = Frore
Modes Operations

Figure 8-6 : gIBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as t
read from or written to texture memomjigure 8-7shows the effect ogl TexI mage* (),
gl TexSublmage* (), andglGet TexI mage().

unpack p— 31-

r Plxal wel-Transler

P::;:im " Storage Operationa
¥ Modes (and Pixe! Map)
pack 'L +

Texture

Mamary

Figure 8-7 : glTexImage*(), glTexSublmage*(), and glGetTexIimage() Pixel Paths

As seen irFigure 8-8 when pixel data is copied from the framebuffer into texture memory
(glCopyTexImage* () or giCopyTexSubl mage*()), only pixel-transfer operations are applied. (
Chapter Yor more information on textures.)

Pixel-Transfer Frame
Operationa Buffer
Kand Pixel Map) {=tart)
h +
Texture
Mamary

Figure 8-8 : glCopyTeximage*() and glCopyTexSubimage*() Pixel Paths

Pixel Packing and Unpacking

Packing and unpacking refer to the way that pixel data is written to and read from processac
memory.

An image stored in memory has between one and four chunks of datagsstiends. The data
might consist of just the color index or the luminance (luminance is the weighted sum of the
green, and blue values), or it might consist of the red, green, blue, and alpha components f
pixel. The possible arrangements of pixel datedpomats, determine the number of elements
stored for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as
green, blue, and alpha components, or the depth component) are floating-point values, typi
ranging between 0.0 and 1.0. Floating-point components are usually stored in the framebuf
lower resolution than a full floating-point number would require (for example, color compont
may be stored in 8 bits). The exact number of bits used to represent the components depel
particular hardware being used. Thus, it's often wasteful to store each component as a full
floating-point number, especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit
or floating-point numbers. OpenGL explicitly defines the conversion of each component in ¢
format to each of the possible data types. Keep in mind that you may lose data if you try to
high-resolution component in a type represented by a small number of bits.

Controlling Pixel-Storage M odes

Image data is typically stored in processor memory in rectangular two- or three-dimensiona
Often, you want to display or store a subimage that corresponds to a subrectangle of the ai
addition, you might need to take into account that different machines have different byte-or
conventions. Finally, some machines have hardware that is far more efficient at moving dat
from the framebuffer if the data is aligned on 2-byte, 4-byte, or 8-byte boundaries in proces
memory. For such machines, you probably want to control the byte alignment. All the issue
in this paragraph are controlled as pixel-storage modes, which are discussed in the next su
You specify these modes by usigiixel Store* (), which you've already seen used in a couple
example programs.

All the possible pixel-storage modes are controlled withgtRixel Stor e* () command. Typically,
several successive calls are made with this command to set several parameter values.

void glPixel Store{if}(GLenum pname, TYPE param);

Sets the pixel-storage modes, which affect the operation of glDrawPixels(), glReadPixels(),
glBitmap(), glPolygonStipple(), gl Texl magelD(), glTexl mage2D(), gl TexSubl magelD(),
gl TexSubl mage2D(), and glGetTexl mage(). The possible parameter names for pname are
shown in Table 8-3, along with their data type, initial value, and valid range of values. The
GL_UNPACK* parameters control how data is unpacked from memory by glDrawPixel (),
glBitmap(), glPolygonStipple(), glTexl magelD(), gl Texl mage2D(), gl TexSubl magelD(),
and gl TexSublmage2D(). The GL_PACK* parameters control how data is packed into
memory by glReadPixels() and glGetTexI mage().

Table 8-3: glPixelStore() Parameters

Parameter Name Type Initial Valid Range
Value
GL_UNPACK_SWAP_BYTES, GLboolean| FALSE TRUE/FALSE
GL_PACK_SWAP_BYTES
GL_UNPACK_LSB_FIRST, GLboolean| FALSE TRUE/FALSE
GL_PACK _LSB_FIRST
GL_UNPACK_ROW_LENGTH, GLint 0 any nonnegative
GL_PACK _ROW_LENGTH integer
GL_UNPACK_SKIP_ROWS, GLint 0 any nonnegative
GL_PACK_SKIP_ROWS integer
GL_UNPACK_SKIP_PIXELS, GLint 0 any nonnegative
GL_PACK_SKIP_PIXELS integer
GL_UNPACK_ALIGNMENT, GLint 4 1,2,4,8
GL_PACK_ALIGNMENT

Since the corresponding parameters for packing and unpacking have the same meanings,
discussed together in the rest of this section and referred to without the GL_PACK or
GL_UNPACK prefix. For example, *SWAP_BYTES refers to GL_PACK_SWAP_BYTES an
GL_UNPACK_SWAP_BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the bytes in memo
whatever is native for the OpenGL client; otherwise, the bytes are reversed. The byte rever
applies to any size element, but really only has a meaningful effect for multibyte elements.

Note: As long as your OpenGL application doesn’t share images with other machines, you
ignore the issue of byte ordering. If your application must render an OpenGL image that we
created on a different machine and the "endianness"” of the two machines differs, byte orde
be swapped using *SWAP_BYTES. However, *SWAP_BYTES does not allow you to reord
elements (for example, to swap red and green).

The *LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for \
single bit of data is saved or restored for each pixel. If *LSB_FIRST is FALSE (the default),
bits are taken from the bytes starting with the most significant bit; otherwise, they’re taken i
opposite order. For example, if *LSB_FIRST is FALSE, and the byte in question is 0x31, th
in order, are {0, 0, 1, 1,0, 0, O, 1}. If *LSB_FIRST is TRUE, the orderis {1,0,0,0,1, 1,0, C

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image d
stored in memory. If the rectangle in memory is larger than the subrectangle that's being dr
read, you need to specify the actual length (measured in pixels) of the larger rectangle with
*ROW_LENGTH. If *‘ROW_LENGTH is zero (which it is by default), the row length is
understood to be the same as the width that's specifiedjiiigadPixels(), glDrawPixels(), or

glCopyPixels(). You also need to specify the number of rows and pixels to skip before starti
copy the data for the subrectangle. These numbers are set using the parameters *SKIP_R(
*SKIP_PIXELS, as shown ifigure 8-9 By default, both parameters are 0, so you start at the
lower-left corner.

*ROW_LENGTH

sublmage

*SKIP_PIXELS

A

*SKIP_ROWS image

Figure 8-9: *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine’s hardware is optimized for moving pixel data to and from memc
the data is saved in memory with a particular byte alignment. For example, in a machine wi
words, hardware can often retrieve data much faster if it's initially aligned on a 32-bit bounc
which typically has an address that is a multiple of 4. Likewise, 64-bit architectures might w
better when the data is aligned to 8-byte boundaries. On some machines, however, byte al
makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte bou
Images are most efficiently saved by forcing the data for each row of the image to begin on
boundary. If the image is 5 pixels wide and each pixel consists of 1 byte each of red, green
blue information, a row requires 5 x 3 = 15 bytes of data. Maximum display efficiency can kt
achieved if the first row, and each successive row, begins on a 4-byte boundary, so there is
of waste in the memory storage for each row. If your data is stored like this, set the *ALIGN
parameter appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byte is used. If it's 2, a byte is skipped if nece
at the end of each row so that the first byte of the next row has an address that’'s a multiple
the case of bitmaps (or 1-bit images) where a single bit is saved for each pixel, the same b
alignment works, although you have to count individual bits. For example, if you're saving &
bit per pixel, the row length is 75, and the alignment is 4, then each row requires 75/8, or 9
bytes. Since 12 is the smallest multiple of 4 that is bigger than 9 3/8, 12 bytes of memory a
for each row. If the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is roundec
the next byte. (There is a simple us@léfixelStorei() in Example 8-9

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the framebuffer intc
memory, OpenGL can perform several operations on it. For example, the ranges of compoil
be altered - normally, the red component is between 0.0 and 1.0, but you might prefer to ke
some other range; or perhaps the data you’re using from a different graphics system stores

component in a different range. You can even create maps to perform arbitrary conversion
indices or color components during pixel transfer. Conversions such as these performed dt
transfer of pixels to and from the framebuffer are called pixel-transfer operations. They're
controlled with theglPixel Transfer* () andglPixelM ap* () commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they do
behave identically, and a few of the modes have special cases for special buffers. All the
details are covered in this section and the sections that follow, including all the special case

Some of the pixel-transfer function characteristics are setghRilkel Transfer*(). The other
characteristics are specified wtPixelMap* (), which is described in the next section.

void glPixel Transfer{if}(GLenum pname, TYPE param);
Sets pixel-transfer modes that affect the operation of glDrawPixels(), glReadPixels(),
glCopyPixels(), gl TexlmagelD(), gl Texl mage2D(), glCopyTexl magelD(),
glCopyTexImage2D(), gl TexSubl magelD(), gl TexSubl mage2D(),
glCopyTexSubl magelD(), glCopyTexSubl mage2D(), and glGetTexl mage(). The parameter
pname must be one of those listed in the first column of Table 8-4, and its value, param, must
be in the valid range shown.

Table 8-4 : glPixelTransfer*() Parameters (continued)

Parameter Name Type Initial Value | Valid Range
GL_MAP_COLOR GLboolean| FALSE TRUE/FALSE
GL_MAP_STENCIL | GLboolean| FALSE TRUE/FALSE
GL_INDEX_SHIFT GLint 0 (- ∞ , ∞)
GL_INDEX_OFFSET| GLint 0 (- ∞ , ∞)
GL_RED_SCALE GLfloat 1.0 (- ∞ , ∞)
GL_GREEN_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_BLUE_SCALE GLfloat 1.0 (- &Infin; , ∞)
GL_ALPHA_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_DEPTH_SCALE | GLfloat 1.0 (- ∞ , ∞)
GL_RED_BIAS GLfloat 0 (- ∞ , ∞)
GL_GREEN_BIAS GLfloat 0 (- ∞ , ∞)
GL_BLUE_BIAS GLfloat 0 (- &Infin; , ∞)
GL_ALPHA_BIAS GLfloat 0 (- &Infin; , ∞)
GL_DEPTH_BIAS GLfloat 0 (- ∞ , ∞)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabl
See the next subsection to learn how the mapping is done and how to change the contents
maps. All the other parameters directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For
you may wish to scale red, green, and blue components that were read from the framebuffe
converting them to a luminance format in processor memory. Luminance is computed as th
the red, green, and blue components, so if you use the default value for GL_RED_SCALE,
GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the 1
intensity or luminance value. If you want to convert RGB to luminance, according to the NT
standard, you set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SC
to .11.

Indices (color and stencil) can also be transformed. In the case of indices a shift and offset
applied. This is useful if you need to control which portion of the color table is used during

rendering.
Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of a 1
lookup before they are placed in screen memory. The command for controlling this mappin
glPixelMap*().

void glPixelMap{ui us f}v(GLenum map, GLint mapsize,

const TYPE *values);
Loads the pixel map indicated by map with mapsize entries, whose values are pointed to by
values. Table 8-5 lists the map names and values; the default sizesare all 1 and the default
values are all 0. Each map’s size must be a power of 2.

Table 8-5 : glPixelMap*() Parameter Names and Values

Map Name Address Value

GL_PIXEL_MAP_|I TO | color index color index

GL_PIXEL_MAP_S TO_S | stencil index | stencil index

GL_PIXEL_MAP_I_TO_R | color index R

GL_PIXEL_MAP_| TO_G | colorindex | G

GL_PIXEL_MAP_I TO_B | color index B

GL_PIXEL_MAP_I TO_A | color index A

GL_PIXEL_MAP_R_TO R| R R
GL_PIXEL_MAP_G_TO G| G G
GL_PIXEL_MAP_B_TO B| B B
GL_PIXEL_MAP_A TO A| A A

The maximum size of the maps is machine-dependent. You can find the sizes of the pixel r
supported on your machine wighGetlntegerv(). Use the query argument
GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the pixel map tables, ant
GL_PIXEL_MAP_* TO_* SIZE to obtain the current size of the specified map. The six ma|
whose address is a color index or stencil index must always be sized to an integral power ¢
four RGBA maps can be any size from 1 through GL_MAX_PIXEL_MAP_TABLE.

To understand how a table works, consider a simple example. Suppose that you want to cr

256-entry table that maps color indices to color indices using GL_PIXEL_MAP_I_TO_1. Yol
create a table with an entry for each of the values between 0 and 255 and initialize the tabls
glPixelMap*(). Assume you're using the table for thresholding and want to map indices belc
(indices 0 to 100) to 0, and all indices 101 and above to 255. In this case, your table consis
Os and 155 255s. The pixel map is enabled using the rgli@nel Transfer*() to set the
parameter GL_MAP_COLOR to TRUE. Once the pixel map is loaded and enabled, incomir
indices below 101 come out as 0, and incoming pixels between 101 and 255 are mapped t
the incoming pixel is larger than 255, it’s first masked by 255, throwing out all the bits abow
eighth, and the resulting masked value is looked up in the table. If the incoming index is a
floating-point value (say 88.14585), it's rounded to the nearest integer value (giving 88), an
number is looked up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices to RGER¢&dag
and Drawing Pixel Rectangle®r information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmag
rasterized. Normally, each pixel in an image is written to a single pixel on the screen. Howe
can arbitrarily magnify, reduce, or even flip (reflect) an image by wigelZoom().

void glPixelZoom(GLfloat zoomx, GLfloat zoomy);
Sets the magnification or reduction factors for pixel-write operations (glDrawPixels() or
glCopyPixels()), in the x- and y-dimensions. By default, zoomx and zoomy are 1.0. If they're
both 2.0, each image pixel is drawn to 4 screen pixels. Note that fractional magnification or
reduction factors are allowed, as are negative factors. Negative zoom factors reflect the
resulting image about the current raster position.

During rasterization, each image pixel is treated zmix x zoomy rectangle, and fragments ar
generated for all the pixels whose centers lie within the rectangle. More specificahyp |gti)
be the current raster position. If a particular group of elements (index or componentsjhsrite
row and belongs to theth column, consider the region in window coordinates bounded by th
rectangle with corners at

(xrp +zoomx * n, yrp +zoomy * m) and &rp +zoomx(n+1), yrp +zoomy(nm+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) €
produced in correspondence with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the b
row of pixels to the top (and from left to right). If you have a "top to bottom" image, such as
frame of video, you may want to ugé’ixelZoom(1.0, -1.0) to make the image right side up fo
OpenGL. Be sure that you reposition the current raster position appropriately, if needed.

Example 8-4shows the use @lPixelZoom(). A checkerboard image is initially drawn in the
lower-left corner of the window. Pressing a mouse button and moving the mouse uses
glCopyPixels() to copy the lower-left corner of the window to the current cursor location. (If
copy the image onto itself, it looks wacky!) The copied image is zoomed, but initially it is zo
by the default value of 1.0, so you won’t notice. The ‘z’ and ‘Z’ keys increase and decrease
zoom factors by 0.5. Any window damage causes the contents of the window to be redrawi
Pressing the ‘I’ key resets the image and the zoom factors.

Example 8-4 : Drawing, Copying, and Zooming Pixel Data: image.c

#i ncl ude <@/ gl . h>
#i ncl ude <@/ gl u. h>
#i ncl ude <G/ gl ut. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

#def i ne checkl mageW dt h 64
#def i ne checkl mageHei ght 64
GLubyt e checkl mage[checkl nageHei ght] [checkl mageW dt h] [3] ;

stati c GL.doubl e zoonfFactor = 1.0;
static GLint height;

voi d makeCheckl mage(voi d)

r
int i, j, c;
for (i = 0; i < checklnageHei ght; i++) {
for (j = 0; j < checklnageWdth; j++)
c = ((((i &x8)==0)"((]j &0x8))==0)) *255;
checklmage[i][j][0] = (GLubyte) c;
checklmage[i][j][1] = (G.ubyte) c;
checklmage[i]l[j][2] = (G.ubyte) c;
}
}
}
voi d init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (GL_FLAT);
makeCheckl mage() ;
gl Pi xel St orei (GL_UNPACK_ALI GNVENT, 1);
}
voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BIT);
gl Rast er Pos2i (0, 0);
gl Dr awPi xel s(checkl nageW dt h, checkl mageHei ght, G._RGB,
GL_UNSI GNED_BYTE, checkl mage);
gl Flush();
}
void reshape(int w, int h)
{
gl Viewport (0, O, (G.sizei) w, (Gsizei) h);
height = (GLint) h;
gl Mat ri xMode(GL_PROQJECTI ON) ;
gl Loadl dentity();
gluOrtho2D(0.0, (G.double) w, 0.0, (G.double) h);
gl Mat ri xMode(GL_MCDELVI EW ;
gl Loadl dentity();
}
void notion(int x, int vy)
{

static Gint screeny;

screeny = height - (GLint) vy;
gl Rast er Pos2i (x, screeny);
gl Pi xel Zoom (zoonfFact or, zoonfactor);

gl CopyPi xel s (0, 0, checkl mageW dt h, checkl nageHei ght,
G_COR);

gl Pi xel Zoom (1.0, 1.0);

gl Flush ();

voi d keyboard(unsi gned char key, int x, int y)

switch (key) {
case ‘r’:
case ‘R:
zoonfFactor = 1.0;
gl ut Post Redi spl ay() ;
printf ("zoonFactor reset to 1.0\n");
br eak;
case ‘'z’
zoonfactor += 0.5;
if (zoonfFactor >= 3.0)
zoonfFactor = 3.0;
printf ("zoonFactor is now %. 1f\n", zoonFactor);
br eak;
case ‘Z
zoonfFactor -= 0.5;
if (zoonfFactor <= 0.5)
zoonfFactor = 0.5;
printf ("zoonFactor is now %l. 1f\n", zoonfFactor);
br eak;
case 27:
exit(0);
br eak;
defaul t:
br eak;

}
}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutlinitD splayMde(GLUT_SI NGLE | GLUT_RGB)
gl utlnit WndowSi ze(250, 250);
gl ut I ni t WndowPosi tion(100, 100);
gl ut Cr eat eW ndow(argv[0]);
init();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut Keyboar dFunc(keyboar d) ;
gl ut Moti onFunc(noti on);
gl ut Mai nLoop() ;
return O;

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions

performed when going from framebuffer to memory (reading) are similar but not identical to
conversions performed when going in the opposite direction (drawing), as explained in the

following sections. You may wish to skip this section the first time through, especially if you
plan to use the pixel-transfer operations right away.

The Pixel Rectangle Drawing Process
Figure 8-10and the following list describe the operation of drawing pixels into the framebuff

byte short int float
Dala Stream
({index or component}

¥

unpack
| reBAL.Z
convart
to[D, 1]
-
convert .
L-*=REBA Pixal-
= Storage
Modes
Pixal-
kL Y Transfar
sgale shitt Modes
) hias . ofiset
L ¥
RGEBA*RGBA index*RGBA index*index
lookup o lockup Inokup
¥ l
clamp mask 1o
. to[0, 1] [0.0, 2n-1]
RGBA Index
Z {=tancil, color indax)

Pixel Data Out

Figure 8-10 : Drawing Pixels with gIDrawPixels()

1. If the pixels aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the first step is to convert the components to floating-point for
necessary. (Seeable 4-1for the details of the conversion.)

2. If the format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance elemen
converted into R, G, and B, by using the luminance value for each of the R, G, and B
components. In GL_LUMINANCE_ALPHA format, the alpha value becomes the A val
GL_LUMINANCE is specified, the A value is set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the
appropriate bias is added. For example, the R component is multiplied by the value

corresponding to GL_RED_SCALE and added to the value corresponding to
GL_RED_BIAS.

4. If GL_MAP_COLOR is true, each of the R, G, B, and A components is clamped to the
[0.0,1.0], multiplied by an integer one less than the table size, truncated, and looked u
table. (SeéTips for Improving Pixel Drawing Rate$r more details.)

5. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren’t already,
converted to fixed-point with as many bits to the left of the binary point as there are in
corresponding framebuffer component.

6. If you're working with index values (stencil or color indices), then the values are first
converted to fixed-point (if they were initially floating-point numbers) with some unspe
bits to the right of the binary point. Indices that were initially fixed-point remain so, anc
bits to the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of
GL_INDEX_SHIFT bits; the value is shifted left if GL_INDEX_SHIFT > 0 and right
otherwise. Finally, GL_INDEX_ OFFSET is added to the index.

7. The next step with indices depends on whether you're using RGBA mode or color-ind
mode. In RGBA mode, a color index is converted to RGBA using the color component
specified by GL_PIXEL_MAP_| TO R, GL_PIXEL MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_|_TO_A. (Sérixel Mapping"for
details.) Otherwise, if GL_MAP_COLOR is GL_TRUE, a color index is looked up throt
the table GL_PIXEL_MAP_|_TO_I. (If GL_MAP_COLOR is GL_FALSE, the index is
unchanged.) If the image is made up of stencil indices rather than color indices, and if
GL_MAP_STENCIL is GL_TRUE, the index is looked up in the table corresponding to
GL_PIXEL_MAP_S TO_S. If GL_MAP_STENCIL is FALSE, the stencil index is
unchanged.

8. Finally, if the indices haven’t been converted to RGBA, the indices are then masked tc
number of bits of either the color-index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process
Many of the conversions done during the pixel rectangle drawing process are also done du

pixel rectangle reading process. The pixel reading process is shéigure 8-11and described i
the following list.

Pixels from Framebuffar

RGEA Index
rd {stancil, color indax}
¥
map
1[0, 1]
]
scale shift
bias offsat
" B |
¥ ¥
RGBA-=RGBA Index -=RGBA index -*index
lnokup b lookup lookup
ju [
] 1
¥ 44
clamp mask to Pixal-
te[o, 1] [0.0, 2n-1] Transter
= = Modes
L Pixal-
convert Storage
oL Modes
= RGBA
Z
L o Index
. pack |
"_'.........I......m
bwie short int float
Data Stream
(index or componant)
{0 memary

Figure 8-11 : Reading Pixels with glReadPixels()

1. If the pixels to be read aren’t indices (that is, the format isn't GL_COLOR_INDEX or
GL_STENCIL_INDEX), the components are mapped to [0.0,1.0] - that is, in exactly th
opposite way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is
GL_TRUE, they’re mapped and again clamped to [0.0,1.0]. If luminance is desired ins
RGB, the R, G, and B components are added (L =R + G + B).

3. If the pixels are indices (color or stencil), they’re shifted, offset, and, if GL_MAP_COL!(
GL_TRUE, also mapped.

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel
indices are masked to the number of bits of the storage type (1, 8, 16, or 32) and pacl
memory as previously described.

5. If the storage format is one of the component kind (such as luminance or RGB), the pi
always mapped by the index-to-RGBA maps. Then, they’re treated as though they ha
RGBA pixels in the first place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into memory accor
the GL_PACK* modes set withi Pixel Stor e* ().

The scaling, bias, shift, and offset values are the same as those used when drawing pixels,
you're both reading and drawing pixels, be sure to reset these components to the appropric
before doing a read or a draw. Similarly, the various maps must be properly reset if you inte
use maps for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing
operations. For example, luminance is not usually equally dependent on the R, G, and B
components as it may be assumed from Bajhre 8-10andFigure 8-11 If you wanted your
luminance to be calculated such that the R component contributed 30 percent, the G 59 pe
the B 11 percent, you can set GL_RED_SCALE to .30, GL_RED_BIAS t0 0.0,andsoon. T
computed L is then .30R + .59G + .11B.

Tipsfor Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing and manipulating [
Although these features are often very useful, they can also decrease performance. Here a
tips for improving pixel draw rates.

® For best performance, set all pixel-transfer parameters to their default values, and set
zoom to (1.0,1.0).

® A series of fragment operations is applied to pixels as they are drawn into the framebt
(See'"Testing and Operating on Fragments" in Chaptey B6r optimum performance disa
all fragment operations.

® While performing pixel operations, disable other costly states, such as texturing and li

® If you use an image format and type that matches the framebuffer, you can reduce the
of work that the OpenGL implementation has to do. For example, if you are writing imi
an RGB framebuffer with 8 bits per component, gllrawPixels() with format set to RGB
andtype set to UNSIGNED_BYTE.

® For some implementations, unsigned image formats are faster to use than signed ima
formats.

® [t is usually faster to draw a large pixel rectangle than to draw several small ones, sinc
cost of transferring the pixel data can be amortized over many pixels.

® |f possible, reduce the amount of data that needs to be copied by using small data typ
example, use GL_UNSIGNED_BYTE) and fewer components (for example, use form:
GL_LUMINANCE_ALPHA).

® Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, ar
other than the defaults, may decrease performance.

OpenGL Programming Guide
(Addison-Wedley Publishing Company)

