[+ OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 5
Lighting
Chapter Objectives
After reading this chapter, you’ll be able to do the following:

® Understand how real-world lighting conditions are approximated by OpenGL

® Render illuminated objects by defining the desired light sources and lighting model

® Define the material properties of the objects being illuminated

® Manipulate the matrix stack to control the position of light sources
As you saw irChapter 40penGL computes the color of each pixel in a final, displayed scen:
that's held in the framebuffer. Part of this computation depends on what lighting is used in t
scene and on how objects in the scene reflect or absorb that light. As an example of this, re
the ocean has a different color on a bright, sunny day than it does on a gray, cloudy day. Tl
presence of sunlight or clouds determines whether you see the ocean as bright turquoise o

gray-green. In fact, most objects don’t even look three-dimensional until theyFiglite 5-1
shows two versions of the exact same scene (a single sphere), one with lighting and one w

Figure5-1: A Lit and an Unlit Sphere

As you can see, an unlit sphere looks no different from a two-dimensional disk. This demor
how critical the interaction between objects and light is in creating a three-dimensional scer

With OpenGL, you can manipulate the lighting and objects in a scene to create many differ

kinds of effects. This chapter begins with a primer on hidden-surface removal. Then it exple
to control the lighting in a scene, discusses the OpenGL conceptual model of lighting, and «
in detail how to set the numerous illumination parameters to achieve certain effects. Towar:
of the chapter, the mathematical computations that determine how lighting affects color are
presented.

This chapter contains the following major sections:

® "A Hidden-Surface Removal Survival Kitlescribes the basics of removing hidden surfa
from view.

® "Real-World and OpenGL Lightinggxplains in general terms how light behaves in the v
and how OpenGL models this behavior.

® "A Simple Example: Rendering a Lit Sphemetroduces the OpenGL lighting facility by
presenting a short program that renders a lit sphere.

® "Creating Light Sources#xplains how to define and position light sources.

® "Selecting a Lighting Modeltliscusses the elements of a lighting model and how to spe
them.

® "Defining Material Propertieséxplains how to describe the properties of objects so that
interact with light in a desired way.

® "The Mathematics of Lightingpresents the mathematical calculations used by OpenGL
determine the effect of lights in a scene.

® "Lighting in Color-Index Mode'tliscusses the differences between using RGBA mode ¢
color-index mode for lighting.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three-dimensional objects, in earnest. With sh
polygons, it becomes very important to draw the objects that are closer to our viewing posit
to eliminate objects obscured by others nearer to the eye.

When you draw a scene composed of three-dimensional objects, some of them might obsc
parts of others. Changing your viewpoint can change the obscuring relationship. For examg
you view the scene from the opposite direction, any object that was previously in front of ar
now behind it. To draw a realistic scene, these obscuring relationships must be maintained
your code works like this:

while (1) {
get _viewi ng_point_from nouse_position();
gl O ear (G._COLOR BUFFER BI T);
draw 3d_object A();
draw _3d_object _B();
}

For some mouse positions, object A might obscure object B. For others, the reverse may h
nothing special is done, the preceding code always draws object B second (and thus on toy
A) no matter what viewing position is selected. In a worst case scenario, if objects A and B
intersect one another so that part of object A obscures object B and part of B obscures A, ¢
the drawing order does not provide a solution.

The elimination of parts of solid objects that are obscured by others is lualied-surface
removal. (Hidden-line removal, which does the same job for objects represented as wirefrar
skeletons, is a bit trickier and isn’t discussed here."Siglelen-Line Removal" in Chapter Tdr
details.) The easiest way to achieve hidden-surface removal is to use the depth buffer (son
called a z-buffer). (Also se@éhapter 10

A depth buffer works by associating a depth, or distance, from the view plane (usually the r
clipping plane), with each pixel on the window. Initially, the depth values for all pixels are se
the largest possible distance (usually the far clipping plane) usigiGrear () command with
GL_DEPTH_BUFFER_BIT. Then the objects in the scene are drawn in any order.

Graphical calculations in hardware or software convert each surface that's drawn to a set o
on the window where the surface will appear if it isn’'t obscured by something else. In additi
distance from the view plane is computed. With depth buffering enabled, before each pixel
a comparison is done with the depth value already stored at the pixel. If the new pixel is clo
(in front of) what's there, the new pixel’s color and depth values replace those that are curre
written into the pixel. If the new pixel's depth is greater than what's currently there, the new
is obscured, and the color and depth information for the incoming pixel is discarded.

To use depth buffering, you need to enable depth buffering. This has to be done only once.
drawing, each time you draw the scene, you need to clear the depth buffer and then draw t
in the scene in any order.

To convert the preceding code example so that it performs hidden-surface removal, modify
following:

glutlnitD splayMbde (GLUT_DEPTH |);
gl Enabl e(G._DEPTH_TEST) ;

while (1) {
gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
get _vi ewi ng_poi nt_from nmouse_position();
draw_3d_object _A();
draw _3d_object _B();

}

The argument tglClear () clears both the depth and color buffers.

Depth-buffer testing can affect the performance of your application. Since information is dis
rather than used for drawing, hidden-surface removal can increase your performance slight
However, the implementation of your depth buffer probably has the greatest effect on perfo
A "software" depth buffer (implemented with processor memory) may be much slower than
implemented with a specialized hardware depth buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye’s perception of the color depends on the dis
of photon energies that arrive and trigger your cone cells."(3#er Perception” in Chapter)4

Those photons come from a light source or combination of sources, some of which are abs
and some of which are reflected by the surface. In addition, different surfaces may have ve
different properties - some are shiny and preferentially reflect light in certain directions, whi
others scatter incoming light equally in all directions. Most surfaces are somewhere in betw

OpenGL approximates light and lighting as if light can be broken into red, green, and blue
components. Thus, the color of light sources is characterized by the amount of red, green, .
light they emit, and the material of surfaces is characterized by the percentage of the incon
green, and blue components that is reflected in various directions. The OpenGL lighting eq
are just an approximation but one that works fairly well and can be computed relatively quic
you desire a more accurate (or just different) lighting model, you have to do your own calcu
in software. Such software can be enormously complex, as a few hours of reading any opti
textbook should convince you.

In the OpenGL lighting model, the light in a scene comes from several light sources that ca
individually turned on and off. Some light comes from a particular direction or position, and
light is generally scattered about the scene. For example, when you turn on a light bulb in ¢
most of the light comes from the bulb, but some light comes after bouncing off one, two, thr
more walls. This bounced light (called ambient) is assumed to be so scattered that there is
tell its original direction, but it disappears if a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular st
if it had been scattered so many times that its original source is impossible to determine.

In the OpenGL model, the light sources have an effect only when there are surfaces that al
reflect light. Each surface is assumed to be composed of a material with various properties
material might emit its own light (like headlights on an automobile), it might scatter some in
light in all directions, and it might reflect some portion of the incoming light in a preferential
direction like a mirror or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into four independent comg
emissive, ambient, diffuse, and specular. All four components are computed independently
added together.

Ambient, Diffuse, and Specular Light

Ambient illumination is light that's been scattered so much by the environment that its direci
impossible to determine - it seems to come from all directions. Backlighting in a room has &
ambient component, since most of the light that reaches your eye has first bounced off mar
surfaces. A spotlight outdoors has a tiny ambient component; most of the light travels in the
direction, and since you're outdoors, very little of the light reaches your eye after bouncing
other objects. When ambient light strikes a surface, it's scattered equally in all directions.

The diffuse component is the light that comes from one direction, so it's brighter if it comes
squarely down on a surface than if it barely glances off the surface. Once it hits a surface, |
it's scattered equally in all directions, so it appears equally bright, no matter where the eye
located. Any light coming from a particular position or direction probably has a diffuse comg

Finally, specular light comes from a particular direction, and it tends to bounce off the surfa

preferred direction. A well-collimated laser beam bouncing off a high-quality mirror produce
almost 100 percent specular reflection. Shiny metal or plastic has a high specular compone
chalk or carpet has almost none. You can think of specularity as shininess.

Although a light source delivers a single distribution of frequencies, the ambient, diffuse, ar
specular components might be different. For example, if you have a white light in a room w
walls, the scattered light tends to be red, although the light directly striking objects is white.
OpenGL allows you to set the red, green, and blue values for each component of light
independently.

Material Colors

The OpenGL lighting model makes the approximation that a material’s color depends on th
percentages of the incoming red, green, and blue light it reflects. For example, a perfectly r
reflects all the incoming red light and absorbs all the green and blue light that strikes it. If y«
such a ball in white light (composed of equal amounts of red, green, and blue light), all the
reflected, and you see a red ball. If the ball is viewed in pure red light, it also appears to be
however, the red ball is viewed in pure green light, it appears black (all the green is absorb
there’s no incoming red, so no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors, which determine
ambient, diffuse, and specular reflectances of the material. A material’'s ambient reflectance
combined with the ambient component of each incoming light source, the diffuse reflectanc
the light’s diffuse component, and similarly for the specular reflectance and component. An
and diffuse reflectances define the color of the material and are typically similar if not identi
Specular reflectance is usually white or gray, so that specular highlights end up being the c
the light source’s specular intensity. If you think of a white light shining on a shiny red plasti
sphere, most of the sphere appears red, but the shiny highlight is white.

In addition to ambient, diffuse, and specular colors, materials haaraissive color, which
simulates light originating from an object. In the OpenGL lighting model, the emissive color
surface adds intensity to the object, but is unaffected by any light sources. Also, the emissi
does not introduce any additional light into the overall scene.

RGB Valuesfor Lightsand Materials

The color components specified for lights mean something different than for materials. For
the numbers correspond to a percentage of full intensity for each color. If the R, G, and B v
a light’'s color are all 1.0, the light is the brightest possible white. If the values are 0.5, the ci
still white, but only at half intensity, so it appears gray. If R=G=1 and B=0 (full red and gree
no blue), the light appears yellow.

For materials, the numbers correspond to the reflected proportions of those colors. So if R=
G=0.5, and B=0 for a material, that material reflects all the incoming red light, half the incor
green, and none of the incoming blue light. In other words, if an OpenGL light has compong
(LR, LG, LB), and a material has corresponding components (MR, MG, MB), then, ignoring
other reflectivity effects, the light that arrives at the eye is given by (LR*MR, LG*MG, LB*MI

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to the eye, OpenG
the components, giving (R1+R2, G1+G2, B1+B2). If any of the sums are greater than 1
(corresponding to a color brighter than the equipment can display), the component is clamg

A Simple Example: Rendering a Lit Sphere
These are the steps required to add lighting to your scene.

1. Define normal vectors for each vertex of all the objects. These normals determine the
orientation of the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and selectieghting model, which defines the level of global ambient light and the
effective location of the viewpoint (for the purposes of lighting calculations).

4. Define material properties for the objects in the scene.

Example 5-laccomplishes these tasks. It displays a sphere illuminated by a single light sou
shown earlier irFigure 5-1

Example 5-1: Drawing a Lit Sphere: light.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>

void init(void)

G.float mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
G.float mat_shininess[] = { 50.0 };

G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);

gl ShadeMbdel (G._SMOOTH);

gl Material fv(G._FRONT, G._SPECULAR, nmat_specul ar);
gl Material fv(G._FRONT, G._SHI NI NESS, mat _shi ni ness);
gl Lightfv(G_LIGHTO, G._PCSITION, |ight_position);

gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G._LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

}

voi d di spl ay(voi d)

{
gl Cear (G_COLOR BUFFER BIT | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere (1.0, 20, 16);
gl Flush ();

}

void reshape (int w, int h)

{

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*(G.float)h/(G.float)w,
1.5*(C.float)h/(G.float)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.fl oat)w (G.float)h,

1.5*(CG.float)w (G float)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

}
int main(int argc, char** argv)

glutlnit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay) ;

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}

The lighting-related calls are in tidt() command; they’re discussed briefly in the following
paragraphs and in more detail later in the chapter. One thing to noteeaboytle 5-1is that it
uses RGBA color mode, not color-index mode. The OpenGL lighting calculation is different
two modes, and in fact the lighting capabilities are more limited in color-index mode. Thus,
is the preferred mode when doing lighting, and all the examples in this chapter use it. (See
"Lighting in Color-Index Mode'for more information about lighting in color-index mode.)

Define Normal Vectorsfor Each Vertex of Every Object

An object’s normals determine its orientation relative to the light sources. For each vertex, (
uses the assigned normal to determine how much light that particular vertex receives from
light source. In this example, the normals for the sphere are defined as part of the
glutSolidSpher () routine. (SeéNormal Vectors" in Chapter #r more details on how to define
normals.)

Create, Position, and Enable One or More Light Sources

Example 5-luses only one, white light source; its location is specified bglthightfv() call. This
example uses the default color for light zero (GL_LIGHTO), which is white; if you want a
differently colored light, usglLight*() to indicate this. You can include at least eight different
light sources in your scene of various colors; the default color of these other lights is black.
particular implementation of OpenGL you're using might allow more than eight.) You can al
locate the lights wherever you desire - you can position them near the scene, as a desk lan
be, or an infinite distance away, like the sun. In addition, you can control whether a light prc
narrow, focused beam or a wider beam. Remember that each light source adds significantl
calculations needed to render the scene, so performance is affected by the number of light:
scene. (Se&Creating Light Sourcedbr more information about how to create lights with the
desired characteristics.)

After you've defined the characteristics of the lights you want, you have to turn them on witl
glEnable() command. You also need to agllEnable() with GL_LIGHTING as a parameter to
prepare OpenGL to perform lighting calculations. (E&®abling Lighting"for more information.)
Select a Lighting Model

As you might expect, thglLightM odel* () command describes the parameters of a lighting m

In Example 5-1the only element of the lighting model that's defined explicitly is the global
ambient light. The lighting model also defines whether the viewer of the scene should be
considered to be an infinite distance away or local to the scene, and whether lighting calcul
should be performed differently for the front and back surfaces of objects in theEcample 5-
uses the default settings for these two aspects of the model - an infinite viewer and one-sid
lighting. Using a local viewer adds significantly to the complexity of the calculations that mu
performed, because OpenGL must calculate the angle between the viewpoint and each obj
an infinite viewer, however, the angle is ignored, and the results are slightly less realistic. F
since in this example, the back surface of the sphere is never seen (it's the inside of the sp
one-sided lighting is sufficient. (S&8electing a Lighting Modelfor a more detailed descriptior
of the elements of an OpenGL lighting model.)

Define Material Propertiesfor the Objectsin the Scene

An object’s material properties determine how it reflects light and therefore what material it
to be made of. Because the interaction between an object’s material surface and incident i
complex, specifying material properties so that an object has a certain desired appearance
You can specify a material’'s ambient, diffuse, and specular colors and how shiny it is. In thi
example, only these last two material properties - the specular material color and shininess
explicitly specified (with thglIM aterialfv() calls). (SeéDefining Material Propertiesfor a
description and examples of all the material-property parameters.)

Some | mportant Notes

As you write your own lighting program, remember that you can use the default values for <
lighting parameters; others need to be changed. Also, don’t forget to enable whatever lights
define and to enable lighting calculations. Finally, remember that you might be able to use
lists to maximize efficiency as you change lighting conditions. (Besplay-List Design
Philosophy" in Chapter.y

Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The follo\
sections explain how to control these properties and what the resulting light looks like. The
command used to specify all properties of lighigisght*(); it takes three arguments: to identi
the light whose property is being specified, the property, and the desired value for that prog

void glLight{if}(GLenum light, GLenum pname, TYPEparam);

void glLight{if}v(GLenum light, GLenum pname, TYPE * param);
Creates the light specified by light, which can be GL_LIGHTO, GL_LIGHTL, ..., or
GL_LIGHTY. The characteristic of the light being set is defined by pname, which specifiesa
named parameter (see Table 5-1). param indicates the values to which the pname
characteristic is set; it's a pointer to a group of values if the vector version is used, or the
value itself if the nonvector version is used. The nonvector version can be used to set only
single-valued light characteristics.

Table 5-1 : Default Values for pname Parameter of glLight*()

Parameter Name Default Value M eaning
GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient RGBA intensity of light
GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse RGBA intensity of light

GL_SPECULAR

(1.0, 1.0, 1.0, 1.0

specular RGBA intensity of
light

GL_POSITION (0.0, 0.0, 1.0, 0.0) (%,Y, z, w) position of light
GL_SPOT_DIRECTION (0.0, 0.0, -1.0) (X, y, 2) direction of spotlight
GL_SPOT_EXPONENT 0.0 spotlight exponent
GL_SPOT_CUTOFF 180.0 spotlight cutoff angle
GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor
GL_LINEAR_ATTENUATION 0.0 linear attenuation factor
GL_QUADRATIC_ATTENUATION | 0.0 guadratic attenuation factor

Note: The default values listed for GL_DIFFUSE and GL_SPECULARahle 5-1apply only to
GL_LIGHTO. For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE
GL_SPECULAR.

Example 5-Zhows how to usglLight*():

Example 5-2 : Defining Colors and Position for a Light Source

G.float light_anbient[] ={ 0.0, 0.0, 0.0, 1.0 };
G.float light_diffuse[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light _specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light_position[] ={ 1.0, 1.0, 1.0, 0.0}
ght _ambi ent) ;

gl Li ght fv(GL_LI GHTO, GL_AMBI ENT, | i
gl Li ght f v(GL_LI GHTO, GL_DI FFUSE, |ight _diffuse);
gl Li ght fv(G._LI GHTO, G__SPECULAR, |ight_specul ar);

gl Lightfv(G._LI GHTO, GL_PCSITION, |ight_position);

As you can see, arrays are defined for the parameter valueglagittfv() is called repeatedly tc
set the various parameters. In this example, the first three cgllsightfv() are superfluous, sin
they’re being used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and
GL_SPECULAR parameters.

Note: Remember to turn on each light wgtenable(). (See’Enabling Lighting"for more
information about how to do this.)

All the parameters faglLight*() and their possible values are explained in the following secti
These parameters interact with those that define the overall lighting model for a particular s
and an object’s material properties. (S8electing a Lighting Modeland"Defining Material
Properties'for more information about these two topi€Ehe Mathematics of Lightingéxplains
how all these parameters interact mathematically.)

Color

OpenGL allows you to associate three different color-related parameters - GL_AMBIENT,
GL_DIFFUSE, and GL_SPECULAR - with any patrticular light. The GL_AMBIENT parametse
refers to the RGBA intensity of the ambient light that a particular light source adds to the sc
you can see iitable 5-1 by default there is no ambient light since GL_AMBIENT is (0.0, 0.0,
1.0). This value was used bixample 5-11f this program had specified blue ambient light as

G.float light _anmbient[] ={ 0.0, 0.0, 1.0, 1.0};
gl Li ghtfv(GL_LI GHTO, GL_AMBI ENT, |ight_anbient);

the result would have been as shown in the left sidBlafe 13" in Appendix.|

The GL_DIFFUSE parameter probably most closely correlates with what you naturally thint
"the color of a light." It defines the RGBA color of the diffuse light that a particular light sour
adds to a scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO, which prot
bright, white light as shown in the left side"®late 13" in Appendix.IThe default value for any
other light (GL_LIGHTZ, ..., GL_LIGHT?7) is (0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object. Tyg
a real-world object such as a glass bottle has a specular highlight that’s the color of the ligr
on it (which is often white). Therefore, if you want to create a realistic effect, set the

GL_SPECULAR parameter to the same value as the GL_DIFFUSE parameter. By default,
GL_SPECULAR s (1.0, 1.0, 1.0, 1.0) for GL_LIGHTO and (0.0, 0.0, 0.0, 0.0) for any other |

Note: The alpha component of these colors is not used until blending is enableGhépeer 6
Until then, the alpha value can be safely ignored.

Position and Attenuation

As previously mentioned, you can choose whether to have a light source that’s treated as t
located infinitely far away from the scene or one that’'s nearer to the scene. The first type is
to as airectional light source; the effect of an infinite location is that the rays of light can be
considered parallel by the time they reach an object. An example of a real-world directional
source is the sun. The second type is callpdsdional light source, since its exact position witr
the scene determines the effect it has on a scene and, specifically, the direction from whick
rays come. A desk lamp is an example of a positional light source. You can see the differer
between directional and positional lights'®ate 12" in Appendix.IThe light used ifexample 5-:
is a directional one:

G.float light _position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl Lightfv(G_LIGHTO, G._POCSITION, |ight_position);

As shown, you supply a vector of four valugsy(z, w) for the GL_POSITION parameter. If the
last valuey, is zero, the corresponding light source is a directional one, anxl the)(values
describe its direction. This direction is transformed by the modelview matrix. By default,

GL_POSITION is (0, 0, 1, 0), which defines a directional light that points along the negakis:
(Note that nothing prevents you from creating a directional light with the direction of (0, O, O
such a light won'’t help you much.)

If the w value is nonzero, the light is positional, and the/,(2) values specify the location of the
light in homogeneous object coordinates. (8ppendix F) This location is transformed by the
modelview matrix and stored in eye coordinates. (Seatrolling a Light's Position and
Direction" for more information about how to control the transformation of the light’s locatior
Also, by default, a positional light radiates in all directions, but you can restrict it to producir
cone of illumination by defining the light as a spotlight. (S&@otlights"for an explanation of ho
to define a light as a spotlight.)

Note: Remember that the colors across the face of a smooth-shaded polygon are determint
colors calculated for the vertices. Because of this, you probably want to avoid using large p
with local lights. If you locate the light near the middle of the polygon, the vertices might be
away to receive much light, and the whole polygon will look darker than you intended. To a
this problem, break up the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases. Si
directional light is infinitely far away, it doesn’t make sense to attenuate its intensity over di
so attenuation is disabled for a directional light. However, you might want to attenuate the |
from a positional light. OpenGL attenuates a light source by multiplying the contribution of t
source by an attenuation factor:

|

attenuation factor = 5
o+ Fpd + Ryd

where

d = distance between the light’s position and the vertex
kc = GL_CONSTANT_ATTENUATION

ki = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

By default,kc is 1.0 and botkl andkq are zero, but you can give these parameters different v

gl Li ght f (GL_LI GHTO, GL_CONSTANT_ATTENUATI ON, 2.0);
gl Li ght f (GL_LI GHTO, GL_LI NEAR ATTENUATI ON, 1.0);
gl Li ght f (GL_LI GHTO, GL_QUADRATI C_ATTENUATI ON, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the emis:
global ambient values aren’t attenuated. Also note that since attenuation requires an additit
division (and possibly more math) for each calculated color, using attenuated lights may slc
application performance.

Spotlights

As previously mentioned, you can have a positional light source act as a spotlight - that is,

restricting the shape of the light it emits to a cone. To create a spotlight, you need to detern
spread of the cone of light you desire. (Remember that since spotlights are positional lights
also have to locate them where you want them. Again, note that nothing prevents you from
a directional spotlight, but it won’t give you the result you want.) To specify the angle betwe
axis of the cone and a ray along the edge of the cone, use the GL_SPOT_CUTOFF param
angle of the cone at the apex is then twice this value, as shéwgune 5-2

Gl SPOT_CUTOFF

Figure5-2: GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight feature
disabled because the GL_SPOT_CUTOFF parameter is 180.0. This value means that light
emitted in all directions (the angle at the cone’s apex is 360 degrees, so it isn’t a cone at al
value for GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it ha
special value 180.0). The following line sets the cutoff parameter to 45 degrees:

gl Li ght f (GL_LI GHTO, G._SPOT_CUTOFF, 45.0);
You also need to specify a spotlight’s direction, which determines the axis of the cone of lig

G.float spot_direction[] ={ -1.0, -1.0, 0.0 };
gl Lightfv(G _LIGHTO, G._SPOT_DI RECTI QN, spot _direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0), s
don’t explicitly set the value of GL_SPOT_DIRECTION, the light points down the negadixis.
Also, keep in mind that a spotlight’s direction is transformed by the modelview matrix just a
though it were a normal vector, and the result is stored in eye coordinaté C¢8telling a
Light's Position and Directionfor more information about such transformations.)

In addition to the spotlight’s cutoff angle and direction, there are two ways you can control t
intensity distribution of the light within the cone. First, you can set the attenuation factor des
earlier, which is multiplied by the light’s intensity. You can also set the GL_SPOT_EXPONE
parameter, which by default is zero, to control how concentrated the light is. The light’s inte
highest in the center of the cone. It's attenuated toward the edges of the cone by the cosine
angle between the direction of the light and the direction from the light to the vertex being li
to the power of the spot exponent. Thus, higher spot exponents result in a more focused lic
source. (Se&The Mathematics of Lightingfor more details on the equations used to calculate
intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly more, depending ¢
OpenGL implementation). Since OpenGL needs to perform calculations to determine how r
light each vertex receives from each light source, increasing the number of lights adversely
performance. The constants used to refer to the eight lights are GL_LIGHTO, GL_LIGHT1,
GL_LIGHT2, GL_LIGHTS3, and so on. In the preceding discussions, parameters related to
GL_LIGHTO were set. If you want an additional light, you need to specify its parameters; al
remember that the default values are different for these other lights than they are for GL_LI
as explained iTable 5-1 Example 5-3defines a white attenuated spotlight.

Example 5-3: Second Light Source

G.float lightl anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
G.float lightl_diffuse[] = 1.0, 1.0, 1.0, 1.0 };
G.float lightl_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float lightl position[] = -2.0, 2.0, 1.0, 1.0 };
G.float spot _direction[] ={ -1.0, -1.0, 0.0 };

gl Lightfv(G._LI GHT1, GL_AMBI ENT, |ightl_anbient);

gl Lightfv(G__LIGHT1, G._DI FFUSE, |ightl_diffuse);

gl Lightfv(G _LIGHT1l, G._SPECULAR, |ightl specul ar);
gl Lightfv(G_LIGHT1, GL_PCSITION, lightl position);
gl Li ght f (GL_LI GHT1, GL_CONSTANT_ATTENUATI ON, 1.5);
gl Li ght f (GL_LI GHT1, GL_LI NEAR_ATTENUATI ON, O0.5);

gl Li ght f (G._LI GHT1, GL_QUADRATI C_ATTENUATI ON, 0. 2);

gl Li ghtf(G._LI GHT1, GL_SPOT_CUTCFF, 45.0);
gl Lightfv(G _LI GAT1, G._SPOT_DI RECTI O\, spot _direction);
gl Li ghtf (G._LI GHT1, GL_SPOT_EXPONENT, 2.0);

gl Enabl e(GL_LI GHT1);

If these lines were added Example 5-1the sphere would be lit with two lights, one directione
and one spotlight.

Try This
Modify Example 5-1in the following manner:
® Change the first light to be a positional colored light rather than a directional white one

® Add an additional colored spotlight. Hint: Use some of the code shown in the precedir
section.

® Measure how these two changes affect performance.

Controlling aLight’s Position and Direction

OpenGL treats the position and direction of a light source just as it treats the position of a g
primitive. In other words, a light source is subject to the same matrix transformations as a
More specifically, whemlLight*() is called to specify the position or the direction of a light

source, the position or direction is transformed by the current modelview matrix and stored
coordinates. This means you can manipulate a light source’s position or direction by chang
contents of the modelview matrix. (The projection matrix has no effect on a light's position «
direction.) This section explains how to achieve the following three different effects by chan
the point in the program at which the light position is set, relative to modeling or viewing

transformations:
® A light position that remains fixed
® A light that moves around a stationary object
® A light that moves along with the viewpoint
Keeping the Light Stationary

In the simplest example, askixample 5-1the light position remains fixed. To achieve this effi
you need to set the light position after whatever viewing and/or modeling transformation yo
In Example 5-4the relevant code from theit() andreshape() routines might look like this.

Example 5-4 : Stationary Light Source

gl Viewport (0, 0, (GLsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
el se
gOtho (-1.5*wh, 1.5*wh, -1.5, 1.5, -10.0, 10.0);
gl Matri xMode (GL_MODELVI EW ;
gl Loadl dentity();

[* later ininit() */
G.float light_position[] = { 1.0, 1.0, 1.0, 1.0 };
gl Lightfv(G _LI GATO, GL_POSITI ON, position);

As you can see, the viewport and projection matrices are established first. Then, the identit
is loaded as the modelview matrix, after which the light position is set. Since the identity me
used, the originally specified light position (1.0, 1.0, 1.0) isn’t changed by being multiplied b
modelview matrix. Then, since neither the light position nor the modelview matrix is modifie
this point, the direction of the light remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or translate the light position so that the light moves relati
stationary object. One way to do this is to set the light position after the modeling transform
which is itself changed specifically to modify the light position. You can begin with the same
of calls ininit() early in the program. Then you need to perform the desired modeling
transformation (on the modelview stack) and reset the light position, probafpiay().
Example 5-5hows whatlisplay() might be.

Example 5-5 : Independently Moving Light Source

static G.doubl e spin;
voi d di spl ay(voi d)

G.float light_position[] ={ 0.0, 0.0, 1.5, 1.0 };
gl G ear (G._COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

gl PushMatri x();
gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gl PushiMatri x();
gl Rotated(spin, 1.0, 0.0, 0.0);
gl Li ghtfv(G._LIGHTO, GL_PCSITION, |ight_position);
gl PopMat ri x();
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMat ri x();
gl Fl ush();
}

spin is a global variable and is probably controlled by an input desisglay() causes the scene
be redrawn with the light rotategin degrees around a stationary torus. Note the two pairs of
glPushMatrix() andglPopMatrix() calls, which are used to isolate the viewing and modeling
transformations, all of which occur on the modelview stack. SinEgample 5-5he viewpoint
remains constant, the current matrix is pushed down the stack and then the desired viewing
transformation is loaded witluL ook At(). The matrix stack is pushed again before the mode
transformatiorglRotated() is specified. Then the light position is set in the new, rotated coor
system so that the light itself appears to be rotated from its previous position. (Remember t
light position is stored in eye coordinates, which are obtained after transformation by the
modelview matrix.) After the rotated matrix is popped off the stack, the torus is drawn.

Example 5-6Gs a program that rotates a light source around an object. When the left mouse
is pressed, the light position rotates an additional 30 degrees. A small, unlit, wireframe cub
drawn to represent the position of the light in the scene.

Example 5-6 : Moving a Light with Modeling Transformations: movelight.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i nclude "glut.h"

static int spin = 0;

voi d init(void)
{
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._SMOOTH);
gl Enabl e(G_LI GHTI NG ;
gl Enabl e(GL_LI GHTO) ;
gl Enabl e(G._DEPTH_TEST) ;

~

* % *

Here is where the light position is reset after the nodeling
transformation (gl Rotated) is called. This places the
light at a new position in world coordi nates. The cube
* represents the position of the light.
*/
voi d di spl ay(voi d)
{

G.float position[] ={ 0.0, 0.0, 1.5, 1.0 };

gl Cear (G_COLOR BUFFER BIT | GL_DEPTH BUFFER BIT);
gl Pushiatrix ();
gl Transl atef (0.0, 0.0, -5.0);

gl PushMvatrix ();
gl Rotated ((G.double) spin, 1.0, 0.0, 0.0);
glLightfv (GL_LIGHTO, G._PCSITIQN, position);

gl Translated (0.0, 0.0, 1.5);
gl Di sabl e (GL_LI GHTI NG ;

gl Col or3f (0.0, 1.0, 1.0);
gl utWreCube (0.1);

gl Enabl e (GL_LI GHTING);

gl PopMatrix ();

gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMatrix ();

gl Flush ();
}
void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (GL_PRQIECTI ON);
gl Loadl dentity();
gl uPerspective(40.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d nouse(int button, int state, int x, int y)

switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) ({
spin = (spin + 30) % 360;
gl ut Post Redi spl ay() ;

br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)
{
glutlnit(&argc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);
gl utlnit WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O,

}
Moving the Light Source Together with Your Viewpoint

To create a light that moves along with the viewpoint, you need to set the light position befc
viewing transformation. Then the viewing transformation affects both the light and the view
the same way. Remember that the light position is stored in eye coordinates, and this is on
few times when eye coordinates are criticaEkample 5-7the light position is defined imit(),
which stores the light position at (0, 0, 0) in eye coordinates. In other words, the light is shir
from the lens of the camera.

Example 5-7 : Light Source That Moves with the Viewpoint

G.float light position() ={ 0.0, 0.0, 0.0, 1.0 };

gl Viewport (0, 0, (Gint) w, (GLint) h);

gl Mat ri xMode(GL_PROQJECTI ON) ;

gl Loadl dentity();

gl uPerspective(40.0, (G.float) w (Gfloat) h, 1.0, 100.0);
gl Mat ri xMode(GL_MCODELVI EW ;

gl Loadl dentity();

gl Lightfv(G_LIGHTO, GL_PCSITION, |ight position);

If the viewpoint is now moved, the light will move along with it, maintaining (0, O, 0) distanct
relative to the eye. In the continuationEbfample 5-7which follows next, the global variablesx(
ey, €2) and (ipx, upy, upz) control the position of the viewpoint and up vector. digplay() routine
that’s called from the event loop to redraw the scene might be this:

static GL.double ex, ey, ez, upx, upy, upz;
voi d di spl ay(voi d)

gl O ear (GL_COLOR BUFFER _MASK | GL_DEPTH BUFFER MASK) ;
gl PushMatri x();
gl uLookAt (ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);
gl ut Sol i dTorus (0.275, 0.85, 8, 15);
gl PopMat ri x();
gl Fl ush();
}

When the lit torus is redrawn, both the light position and the viewpoint are moved to the sar
location. As the values passedjtal ookAt() change and the eye moves, the object will never
appear dark, because it is always being illuminated from the eye position. Even though you
respecified the light position, the light moves because the eye coordinate system has chan

This method of moving the light can be very useful for simulating the illumination from a mil
hat. Another example would be carrying a candle or lantern. The light position specified by
to glLightfv(GL_LIGHTI, GL_POSITION, position) would be the x, y, and z distance from th
position to the illumination source. Then as the eye position moves, the light will remain the
relative distance away.

Try This
Modify Example 5-@n the following manner:
® Make the light translate past the object instead of rotating around it. Hingd Trsenslated()
rather than the firgflRotated() in display(), and choose an appropriate value to use inst

of spin.

® Change the attenuation so that the light decreases in intensity as it's moved away fror
object. Hint: Add calls tglLight*() to set the desired attenuation parameters.

Selecting a Lighting M odel
The OpenGL notion of a lighting model has three components:

® The global ambient light intensity

® \Whether the viewpoint position is local to the scene or whether it should be considere
an infinite distance away

® \Whether lighting calculations should be performed differently for both the front and ba
faces of objects

This section explains how to specify a lighting model. It also discusses how to enable lightil
is, how to tell OpenGL that you want lighting calculations performed.

The command used to specify all properties of the lighting mod#l ightM odel* ().
glLightM odel* () has two arguments: the lighting model property and the desired value for tl

property.

void glLightModel{if}(GLenum pname, TYPEparam);

void glLightModel{if}v(GLenum pname, TYPE * param);
Sets properties of the lighting model. The characteristic of the lighting model being set is
defined by pname, which specifies a named parameter (see Table 5-2). param indicates the
values to which the pname characteristic is set; it'sa pointer to a group of values if the
vector version is used, or the value itself if the nonvector version is used. The nonvector
version can be used to set only single-valued lighting model characteristics, not for
GL_LIGHT _MODEL_AMBIENT.

Table 5-2 : Default Values for pname Parameter of glLightModel*()

Parameter Name Default Value Meaning

GL_LIGHT _MODEL_AMBIENT (0.2,0.2,0.2, 1.0)| ambient RGBA intensity of
the entire scene

GL_LIGHT_MODEL_LOCAL_VIEWER || 0.0 or GL_FALSE| how specular reflection
angles are computed

GL_LIGHT_MODEL_TWO_SIDE 0.0 or GL_FALSE| choose between one-sideq
or two-sided lighting

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition,
be other ambient light that’s not from any particular source. To specify the RGBA intensity «
global ambient light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

G.float | nodel _anbient[] ={ 0.2, 0.2, 0.2, 1.0 };
gl Li ght Model f v(G._LI GHT_MODEL_AMBI ENT, | nodel _anbi ent) ;

In this example, the values used fioodel_ambient are the default values for
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white ambie
light, even if you don’t add a specific light source to your scene, you can still see the object
scene!'Plate 14" in Appendix shows the effect of different amounts of global ambient light.

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights produced by specular
reflectance. More specifically, the intensity of the highlight at a particular vertex depends or
normal at that vertex, the direction from the vertex to the light source, and the direction fron
vertex to the viewpoint. Keep in mind that the viewpoint isn’t actually being moved by calls -
lighting commands (you need to change the projection transformation, as desctPmgeiction
Transformations” in Chapte);3dnstead, different assumptions are made for the lighting
calculations as if the viewpoint were moved.

With an infinite viewpoint, the direction between it and any vertex in the scene remains con
local viewpoint tends to yield more realistic results, but since the direction has to be calcula
each vertex, overall performance is decreased with a local viewpoint. By default, an infinite
viewpoint is assumed. Here’s how to change to a local viewpoint:

gl Li ght Model i (GL_LI GHT_MODEL_LOCAL_VI EWVER, GL_TRUE);

This call places the viewpoint at (0, O, 0) in eye coordinates. To switch back to an infinite
viewpoint, pass in GL_FALSE as the argument.

Two-sided Lighting

Lighting calculations are performed for all polygons, whether they’re front-facing or back-fas
Since you usually set up lighting conditions with the front-facing polygons in mind, however
back-facing ones typically aren’t correctly illuminatedElxample 5-lwhere the object is a sphe
only the front faces are ever seen, since they’re the ones on the outside of the sphere. So,
case, it doesn’t matter what the back-facing polygons look like. If the sphere is going to be
away so that its inside surface will be visible, however, you might want to have the inside s
be fully lit according to the lighting conditions you've defined; you might also want to supply
different material description for the back faces. When you turn on two-sided lighting with

gl Li ght Model i (GL_LI GHT_MODEL_TWOD SI DE, GL_TRUE);

OpenGL reverses the surface normals for back-facing polygons; typically, this means that t
surface normals of visible back- and front-facing polygons face the viewer, rather than poin
away. As a result, all polygons are illuminated correctly. However, these additional operatic
usually make two-sided lighting perform more slowly than the default one-sided lighting.

To turn two-sided lighting off, pass in GL_FALSE as the argument in the preceding call. (S¢
"Defining Material Propertiesfor information about how to supply material properties for bott
faces.) You can also control which faces OpenGL considers to be front-facing with the com
glFrontFace(). (Se€'Reversing and Culling Polygon Faces" in Chaptéranore information.)

Enabling Lighting

With OpenGL, you need to explicitly enable (or disable) lighting. If lighting isn’t enabled, the
current color is simply mapped onto the current vertex, and no calculations concerning norr
light sources, the lighting model, and material properties are performed. Here’s how to enal
lighting:

gl Enabl e(GL_LI GHTI NG) ;

To disable lighting, calyiDisable() with GL_LIGHTING as the argument.

You also need to explicitly enable each light source that you define, after you've specified t
parameters for that sourdexample 5-luses only one light, GL_LIGHTO:

gl Enabl e(G._LI GHTO) ;

Defining Material Properties

You've seen how to create light sources with certain characteristics and how to define the ¢
lighting model. This section describes how to define the material properties of the objects ir
scene: the ambient, diffuse, and specular colors, the shininess, and the color of any emitte
(See"The Mathematics of Lightingfor the equations used in the lighting and material-propert
calculations.) Most of the material properties are conceptually similar to ones you've alread
to create light sources. The mechanism for setting them is similar, except that the comman
calledgiMaterial* ().

void glMaterial{if}(GLenum face, GLenum pname, TYPE param);

void glMaterial{if}v(GLenum face, GLenum pname, TYPE * param);
Secifies a current material property for usein lighting calculations. face can be
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the
material should be applied to. The particular material property being set isidentified by
pname and the desired values for that property are given by param, which is either a pointer
to a group of values (if the vector version is used) or the actual value (if the nonvector version
is used). The nonvector version works only for setting GL_SHININESS. The possible values
for pname are shown in Table 5-3. Note that GL_ AMBIENT_AND_DIFFUSE allows you to
set both the ambient and diffuse material colors simultaneously to the same RGBA value.

Table 5-3 : Default Values for pname Parameter of glMaterial*()

Parameter Name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0)| diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of materig

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_COLOR_INDEXES (0,1,1) arg_bient, diffuse, and specular colo
indices

As discussed ifiSelecting a Lighting Model,{you can choose to have lighting calculations
performed differently for the front- and back-facing polygons of objects. If the back faces m
indeed be seen, you can supply different material properties for the front and the back surf:
using theface parameter oflM aterial* (). Se€'Plate 14" in Appendix for an example of an
object drawn with different inside and outside material properties.

To give you an idea of the possible effects you can achieve by manipulating material prope
"Plate 16" in Appendix.IThis figure shows the same object drawn with several different sets
material properties. The same light source and lighting model are used for the entire figure.
sections that follow discuss the specific properties used to draw each of these spheres.

Note that most of the material properties set gitMaterial*() are (R, G, B, A) colors. Regardle
of what alpha values are supplied for other parameters, the alpha value at any particular ve
the diffuse-material alpha value (that is, the alpha value given to GL_DIFFUSE with the
glMaterial*() command, as described in the next section). (Bleading" in Chapter @or a
complete discussion of alpha values.) Also, none of the RGBA material properties apply in
color-index mode. (Set.ighting in Color-Index Mode'for more information about what
parameters are relevant in color-index mode.)

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set vgitl aterial* () affect the color of the
diffuse and ambient light reflected by an object. Diffuse reflectance plays the most importar
determining what you perceive the color of an object to be. It's affected by the color of the i
diffuse light and the angle of the incident light relative to the normal direction. (It's most inte
where the incident light falls perpendicular to the surface.) The position of the viewpoint dot
affect diffuse reflectance at all.

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is br

where an object is directly illuminated, ambient reflectance is most noticeable where an obj
receives no direct illumination. An object’s total ambient reflectance is affected by the globe
ambient light and ambient light from individual light sources. Like diffuse reflectance, ambie
reflectance isn’t affected by the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same color. For thi
OpenGL provides you with a convenient way of assigning the same value to both simultane
with giMaterial*():

Gfloat mat_anb diff[] = { 0.1, 0.5, 0.8, 1.0 };
gl Materi al f v(GL_FRONT_AND BACK, G._AMBI ENT_AND DI FFUSE
mat _anb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the curi
ambient and diffuse reflectance for both the front- and back-facing polygons.

In "Plate 16" in Appendix,lthe first row of spheres has no ambient reflectance (0.0, 0.0, 0.0,
and the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0).

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse reflectiol
amount of specular reflection seen by a viewer does depend on the location of the viewpoir
brightest along the direct angle of reflection. To see this, imagine looking at a metallic ball ¢
in the sunlight. As you move your head, the highlight created by the sunlight moves with yo
some extent. However, if you move your head too much, you lose the highlight entirely.

OpenGL allows you to set the effect that the material has on reflected light (with GL_SPEC
and control the size and brightness of the highlight (with GL_SHININESS). You can assign
number in the range of [0.0, 128.0] to GL_SHININESS - the higher the value, the smaller a
brighter (more focused) the highlight. (S&&e Mathematics of Lightingfor the details of how
specular highlights are calculated.)

In "Plate 16" in Appendix,Ithe spheres in the first column have no specular reflection. In the
second column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

G.float mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float |low shininess[] ={ 5.0 };

gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material fv(G._FRONT, G__SHI NI NESS, | ow_shi ni ness);

In the third column, the GL_SHININESS parameter is increased to 100.0.
Emission

By specifying an RGBA color for GL_EMISSION, you can make an object appear to be givi
light of that color. Since most real-world objects (except lights) don’t emit light, you'll probat
use this feature mostly to simulate lamps and other light sources in a scéhatdri6" in

Appendix | the spheres in the fourth column have a reddish, grey value for GL_EMISSION:

G.float mat_emission[] = {0.3, 0.2, 0.2, 0.0};
gl Material fv(G._FRONT, G._EM SSI ON, mat_eni ssion);

Notice that the spheres appear to be slightly glowing; however, they’re not actually acting a
sources. You would need to create a light source and position it at the same location as the
create that effect.

Changing M aterial Properties

Example 5-luses the same material properties for all vertices of the only object in the scene
sphere). In other situations, you might want to assign different material properties for differe
vertices on the same object. More likely, you have more than one object in the scene, and «
object has different material properties. For example, the code that proélatedl 6" in
Appendix lhas to draw twelve different objects (all spheres), each with different material
propertiesExample 5-8&hows a portion of the codedisplay().

Example 5-8 : Different Material Properties: material.c

G.float no_mat[] = { 0.0,
G.float mat_anmbient[] = {
GLfl oat mat _anbi ent _col or[
G.float mat_diffuse[] = {
GL.fl oat mat_specul ar[]
GLfl oat no_shi ni ness|[] . ;
GLfl oat | ow_shininess[] = { 5.0 };
GLfl oat hi gh_shi ni ness[] = { 100.0 };

G.fl oat mat_emi ssion[] {0.3, 0.2, 0.2, 0.0};

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);

/* draw sphere in first row, first columm
* diffuse reflection only; no anbient or specul ar
*/
gl PushiMat ri x();
gl Transl atef (-3.75, 3.0, 0.0);
gl Material f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, GL DI FFUSE, mat _di ffuse)
gl Material fv(G._FRONT, G._SPECULAR, no_mat);
gl Material fv(GL_FRONT, GL_SHI NI NESS, no_shi ni ness);
gl Material fv(G_FRONT, G._EM SSION, no_nmt);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

/* draw sphere in first row, second col um
* diffuse and specul ar reflection; |ow shininess; no anbient
*/
gl PushiMatri x();
gl Transl atef (-1.25, 3.0, 0.0);
gl Material f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, G._DI FFUSE, mat _di ffuse);
gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material f v(GL._FRONT, G._SHI NI NESS, | ow_shi ni ness);
gl Material fv(GL_FRONT, G._EM SSION, no_mat);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

/* draw sphere in first row, third colum
* diffuse and specul ar reflection; high shininess; no anbient
*/

gl PushMatri x();

gl Transl atef (1.25, 3.0, 0.0);

gl Material fv(G._FRONT, G._AMBI ENT, no_nat);

gl Material fv(GL_FRONT, GL_DI FFUSE, mat _di ffuse)

gl Material fv(G._FRONT, GL_SPECULAR, nat_specul ar);

gl Material fv(G._FRONT, G__SHI NI NESS, hi gh_shi ni ness);
gl Material fv(G._FRONT, G._EM SSION, no_mat);

gl ut Sol i dSphere(1.0, 16, 16);

gl PopMat ri x();

/* draw sphere in first row, fourth colum
* diffuse reflection; enission; no anbient or specular refl.
*/
gl PushiMatri x();
gl Transl atef (3.75, 3.0, 0.0);
gl Materi al f v(GL_FRONT, G._AMBI ENT, no_nat);
gl Material fv(G._FRONT, G _DI FFUSE, nmat _diffuse);
gl Material fv(G _FRONT, G._SPECULAR, no_mat);
gl Material fv(G._FRONT, G._SHI NI NESS, no_shi ni ness);
gl Material fv(G._FRONT, G._EM SSI ON, mat _eni ssion);
gl ut Sol i dSphere(1.0, 16, 16);
gl PopMat ri x();

As you can seglMaterialfv() is called repeatedly to set the desired material property for ear
sphere. Note that it only needs to be called to change a property that needs to be respecifi
second, third, and fourth spheres use the same ambient and diffuse properties as the first ¢
these properties do not need to be respecified. §iivtaterial* () has a performance cost

associated with its usExample 5-&ould be rewritten to minimize material-property changes.

Another technique for minimizing performance costs associated with changing material pro
is to useglColorMaterial().

void glColorMaterial (GLenum face, GLenum mode);
Causes the material property (or properties) specified by mode of the specified material face
(or faces) specified by face to track the value of the current color at all times. A change to the
current color (using glColor*()) immediately updates the specified material properties. The
face parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default).
The mode parameter can be GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE
(the default), GL_SPECULAR, or GL_EMISION. At any given time, only one mode is active.
glColorMaterial () has no effect on color-index lighting.

Note thatglColorMaterial() specifies two independent values: the first specifies which face ¢
faces are updated, and the second specifies which material property or properties of those
updated. OpenGL doest maintain separat@ode variables for each face.

After callingglColorMaterial(), you need to catjlEnable() with GL_COLOR_MATERIAL as
the parameter. Then, you can change the current colorgl§iobpr*() (or other material
properties, usinglM aterial*()) as needed as you draw:

gl Enabl e(G._COLOR_NMATERI AL) ;

gl Col or Mat eri al (GL._FRONT, G._DI FFUSE);

/* now gl Col or* changes diffuse reflection */
gl Col or3f(0.2, 0.5, 0.8);

/* draw sone objects here */

gl Col or Mat eri al (GL_FRONT, G._SPECULAR);

/* gl Color* no | onger changes diffuse reflection */
/* now gl Col or* changes specul ar reflection */
gl Col or3f(0.9, 0.0, 0.2);

/* draw ot her objects here */

gl D sabl e(G._CO_LOR _MATERI AL) ;

You should usglColorMaterial() whenever you need to change a single material parameter

most vertices in your scene. If you need to change more than one material parameter, as w
case for'Plate 16" in Appendix,luseglMaterial*(). When you don’t need the capabilities of
glColorMaterial() anymore, be sure to disable it so that you don’t get undesired material pri
and don't incur the performance cost associated with it. The performance value in using
glColorMaterial() varies, depending on your OpenGL implementation. Some implementatio
may be able to optimize the vertex routines so that they can quickly update material proper
based on the current color.

Example 5-3hows an interactive program that ugkolor M aterial() to change material
parameters. Pressing each of the three mouse buttons changes the color of the diffuse refl

Example 5-9 : Using glColorMaterial(): colormat.c

#i nclude <@./gl. h>

#i ncl ude <@/ gl u. h>

#i ncl ude "glut.h"

G.float diffusewaterial[4] ={ 0.5, 0.5, 0.5 1.0 };

void init(void)

{
G.float mat_specular[] ={ 1.0, 1.0, 1.0, 1.0 };
G.float light position[] ={ 1.0, 1.0, 1.0, 0.0 };
gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._SMOOTH);
gl Enabl e(G._DEPTH_TEST) ;
gl Material fv(G._FRONT, G._DI FFUSE, diffuseMaterial);
gl Material fv(G._FRONT, G._SPECULAR, mat_specul ar);
gl Material f (G._FRONT, G._SHI NI NESS, 25.0);
gl Lightfv(G._LI GHTO, G__PCSITION, |ight_position);
gl Enabl e(G_LI GHTI NG ;
gl Enabl e(G _LI GHTO) ;
gl Col or Mat eri al (GL_FRONT, GL_DI FFUSE)
gl Enabl e(G._COLOR_MATERI AL) ;
}
voi d di spl ay(voi d)
{
gl dear(G_CO.OR BUFFER BI T | G._DEPTH BUFFER BIT);
gl ut Sol i dSphere(1.0, 20, 16);
gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity();
if (w<=h)
glOtho (-1.5, 1.5, -1.5*(G.float)h/(G.float)w,
1.5*(G.float)h/(Gfloat)w, -10.0, 10.0);
el se
glOtho (-1.5*(G.fl oat)w (G.fl oat) h,
1.5*(Gfloat)w (Gfloat)h, -1.5, 1.5, -10.0, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}

voi d nouse(int button, int state, int x, int y)

switch (button) {
case GLUT_LEFT_BUTTON
if (state == GLUT_DOWN) ({ /* change red */
di ffuseivaterial [0] += 0.1;
if (diffuseMaterial[0] > 1.0)
di ffusemvaterial [0] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case GLUT_M DDLE_BUTTON
if (state == GLUT_DOWN) ({ /* change green */
di ffusewvaterial[1] += 0.1;
if (diffuseMaterial[1l] > 1.0)
di ffusematerial [1] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;
}
br eak;
case GLUT_RI GHT_BUTTON
if (state == GLUT_DOWN) ({ /* change blue */
di f fuseMvaterial [2] += 0. 1;
if (diffuseMaterial[2] > 1.0)
di ffuseivaterial[2] = 0.0;
gl Col or4fv(diffuseMaterial);
gl ut Post Redi spl ay() ;

br eak;
defaul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);
gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut MouseFunc(nouse) ;

gl ut Mai nLoop() ;

return O;

}
Try This

Modify Example 5-8n the following manner:

® Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

® Change the diffuse, ambient, and specular reflection parameters, the shininess expon
the emission color. Hint: Use tigiM aterial* () command, but avoid making excessive ca

® Use two-sided materials and add a user-defined clipping plane so that you can see th
and outside of a row or column of spheres. (Seklitional Clipping Planes" in Chapter 3
you need to recall user-defined clipping planes.) Hint: Turn on two-sided lighting with

GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a clipp
plane.

® Remove all thg@lMaterialfv() calls, and use the more efficieggColor M aterial() calls to
achieve the same lighting.

The Mathematics of Lighting
Advanced

This section presents the equations used by OpenGL to perform lighting calculations to det
colors when in RGBA mode. (S&€Ehe Mathematics of Color-Index Mode Lightinfgr
corresponding calculations for color-index mode.) You don’t need to read this section if you
willing to experiment to obtain the lighting conditions you want. Even after reading this sect
you'll probably have to experiment, but you'll have a better idea of how the values of param
affect a vertex’s color. Remember that if lighting is not enabled, the color of a vertex is simg
current color; if it is enabled, the lighting computations described here are carried out in eye
coordinates.

In the following equations, mathematical operations are performed separately on the R, G,
components. Thus, for example, when three terms are shown as added together, the R val
values, and the B values for each term are separately added to form the final RGB color
(R1+R2+R3, G1+G2+G3, B1+B2+B3). When three terms are multiplied, the calculation is
(R1R2R3, G1G2G3, B1B2B3). (Remember that the final A or alpha component at a vertex
to the material’s diffuse alpha value at that vertex.)
The color produced by lighting a vertex is computed as follows:
vertex color =

the material emission at that vertex +

the global ambient light scaled by the material’'s ambient property at that vertex +

the ambient, diffuse, and specular contributions from all the light sources, properly att

After lighting calculations are performed, the color values are clamped (in RGBA mode) to i
range [0,1].

Note that OpenGL lighting calculations don’t take into account the possibility of one object
blocking light from another; as a result shadows aren’t automatically createdS{Beews" in
Chapter 14or a technique to create shadows.) Also keep in mind that with OpenGL, illumin:
objects don't radiate light onto other objects.

Material Emission

The material emission term is the simplest. It's the RGB value assigned to the GL_EMISSI(
parameter.

Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as defined by the
GL_LIGHT_MODEL_AMBIENT parameter) by the material’s ambient property (GL_AMBIE
value as assigned wittM aterial*()):

ambientlight model * ambientmaterial

Each of the R, G, and B values for these two parameters are multiplied separately to comp
final RGB value for this term: (R1R2, G1G2, B1B2).

Contributionsfrom Light Sources

Each light source may contribute to a vertex’s color, and these contributions are added tog:
The equation for computing each light source’s contribution is as follows:

contribution = attenuation factor * spotlight effect *
(ambient term + diffuse term + specular term)
Attenuation Factor

The attenuation factor was described itPosition and Attenuation”

1

attenuation factor = 5
R

where
d = distance between the light’s position and the vertex
kc = GL_CONSTANT_ATTENUATION
kl = GL_LINEAR_ATTENUATION
kq = GL_QUADRATIC_ATTENUATION
If the light is a directional one, the attenuation factor is 1.
Spotlight Effect
The spotlight effect evaluates to one of three possible values, depending on whether the ligh
actually a spotlight and whether the vertex lies inside or outside the cone of illumination prc
by the spotlight:
® 1 if the light isn’t a spotlight (GL_SPOT_CUTOFF is 180.0)

® 0 if the light is a spotlight, but the vertex lies outside the cone of illumination produced
spotlight.

® (max {v -d, 0})GL_SPOT_EXPONENT where:
Vv = (v, vy, vz) is the unit vector that points from the spotlight (GL_POSITION) to the v

d = (dx, dy, dz) is the spotlight’s direction (GL_SPOT_DIRECTION), assuming the ligh
spotlight and the vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectorsandd varies as the cosine of the angle between ther
hence, objects directly in line get maximum illumination, and objects off the axis have
illumination drop as the cosine of the angle.
To determine whether a particular vertex lies within the cone of illumination, OpenGL evalu
(max {v -d, 0}) wherev andd are as defined in the preceding discussion. If this value is less
the cosine of the spotlight’s cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside
cone; otherwise, it's inside the cone.
Ambient Term
The ambient term is simply the ambient color of the light scaled by the ambient material prc
ambientlight *ambientmaterial

Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diff
color of the light, and the diffuse material property:

(max {L -n, 0}) * diffuselight * diffusematerial
where:

L =(Lx, Ly, Lz) is the unit vector that points from the vertex to the light position
(GL_POSITION).

n = (nx, ny, nz) is the unit normal vector at the vertex.
Specular Term
The specular term also depends on whether light falls directly on the vettexa I§ less than or
equal to zero, there is no specular component at the vertex. (If it's less than zero, the light i
wrong side of the surface.) If there’s a specular component, it depends on the following:
® The unit normal vector at the vertex(ny, nz).
® The sum of the two unit vectors that point between (1) the vertex and the light positior
light direction) and (2) the vertex and the viewpoint (assuming that
GL_LIGHT_MODEL_LOCAL_VIEWER is true; if it's not true, the vector (0, 0, 1) is use
as the second vector in the sum). This vector sum is normalized (by dividing each con
by the magnitude of the vector) to yied (sx, sy, sz).

® The specular exponent (GL_SHININESS).

® The specular color of the light (GL_SPECULARIight).

® The specular property of the material (GL_SPECULARmMaterial).
Using these definitions, here’s how OpenGL calculates the specular term:
(max {s - n, O})shininess * specularlight * specularmaterial

However, ifL -n = 0, the specular term is 0.

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represe
entire lighting calculation in RGBA mode:

vertex color = emissionmaterial +

ambientlight model * ambientmaterial +

-1
! (1)* (spotlight effect), *
o Fo+ R + I::gc:!2 ;

[ambientlight *fambientmaterial +

(max {L -n, 0}) * diffuselight * diffusematerial +

(max {s-n, 0})shininess * specularlight * specularmaterial] i

Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have no effect or have
special interpretation. Since it's much harder to achieve certain effects in color-index mode
should use RGBA whenever possible. In fact, the only light-source, lighting-model, or mate
parameters in an RGBA form that are used in color-index mode are the light-source param
GL_DIFFUSE and GL_SPECULAR and the material parameter GL_SHININESS. GL_DIFF
and GL_SPECULARdI andd, respectively) are used to compute color-index diffuse and spe
light intensities dci andsci) as follows:

dci = 0.30 R¢l) + 0.59 G(lI) + 0.11 Bdl)

sci = 0.30 R§) + 0.59 G§) + 0.11 BH)

where RK), G(x), and B§) refer to the red, green, and blue components, respectively, ofkcolc
The weighting values 0.30, 0.59, and 0.11 reflect the "perceptual” weights that red, green,

have for your eye - your eye is most sensitive to green and least sensitive to blue.

To specify material colors in color-index mode, g aterial* () with the special parameter

GL_COLOR_INDEXES, as follows:

G.float mat_colormap[] = { 16.0, 47.0, 79.0 };
gl Material fv(G._FRONT, G._COLOR | NDEXES, nat_col ormap);

The three numbers supplied for GL_COLOR_INDEXES specify the color indices for the arr
diffuse, and specular material colors, respectively. In other words, OpenGL regards the cols
associated with the first index (16.0 in this example) as the pure ambient color, with the sec
index (47.0) as the pure diffuse color, and with the third index (79.0) as the pure specular ¢
default, the ambient color index is 0.0, and the diffuse and specular color indices are both 1
thatglColorMaterial() has no effect on color-index lighting.)

As it draws a scene, OpenGL uses colors associated with indices in between these numbe
objects in the scene. Therefore, you must build a color ramp between the indicated indices
example, between indices 16 and 47, and then between 47 and 79). Often, the color ramp
smoothly, but you might want to use other formulations to achieve different effects. Here’s
example of a smooth color ramp that starts with a black ambient color and goes through a |
diffuse color to a white specular color:

* (i/32.0), 0.0, 1.0 * (i/32.0));

for (i = 0; i < 32; i++)
i 0
i 0, 1.0 * (i/32.0), 1.0);

{
glutSetColor (16 + i, 1.
gl ut Set Col or (48 + 1.

}

The GLUT library commandlutSetColor () takes four arguments. It associates the color inde:
indicated by the first argument to the RGB triplet specified by the last three arguments.3\(h
the color index 16 is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp build:
smoothly up to the diffuse material color at index 47 (whei31), which is assigned the pure
magenta RGB value (1.0, 0.0, 1.0). The second loop builds the ramp between the magenta
color and the white (1.0, 1.0, 1.0) specular color (index'P3ate 15" in Appendix shows the
result of using this color ramp with a single lit sphere.

The Mathematics of Color-Index Mode Lighting
Advanced

As you might expect, since the allowable parameters are different for color-index mode tha
RGBA mode, the calculations are different as well. Since there’s no material emission and

ambient light, the only terms of interest from the RGBA equations are the diffuse and spect
contributions from the light sources and the shininess. Even these need to be modified, ho\
explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the diffuse term, ins
diffuselight * diffusematerial, substitutiei as defined in the previous section for color-index
mode. Similarly, in the specular term, instead of specularlight * specularmaterisdi asalefinec
in the previous section. (Calculate the attenuation, spotlight effect, and all other component
these terms as before.) Call these modified diffuse and speculaidtands, respectively. Now l¢
s =min{ s, 1}, and then compute

¢ =am +d(1-s')(dm-am) + s (sm-am)

wheream, dm, andsm are the ambient, diffuse, and specular material indexes specified usin
GL_COLOR_INDEXES. The final color index is

¢ =min{c,sm}

After lighting calculations are performed, the color-index values are converted to fixed-poin
an unspecified number of bits to the right of the binary point). Then the integer portion is m:
(bitwise ANDed) with 2n-1, where is the number of bits in a color in the color-index buffer.

OpenGL Programming Guide
(Addison-Wedley Publishing Company)

