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Chapter 3
Viewing
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

View a geometric model in any orientation by transforming it in three-dimensional space

Control the location in three-dimensional space from which the model is viewed

Clip undesired portions of the model out of the scene that’s to be viewed

Manipulate the appropriate matrix stacks that control model transformation for viewing and
project the model onto the screen

Combine multiple transformations to mimic sophisticated systems in motion, such as a solar
system or an articulated robot arm

Reverse or mimic the operations of the geometric processing pipeline

Chapter 2 explained how to instruct OpenGL to draw the geometric models you want displayed in your
scene. Now you must decide how you want to position the models in the scene, and you must choose a
vantage point from which to view the scene. You can use the default positioning and vantage point, but
most likely you want to specify them. 

Look at the image on the cover of this book. The program that produced that image contained a single
geometric description of a building block. Each block was carefully positioned in the scene: Some
blocks were scattered on the floor, some were stacked on top of each other on the table, and some were
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wanted to
look at the corner of the room containing the globe. But how far away from the scene - and where
exactly - should the viewer be? We wanted to make sure that the final image of the scene contained a
good view out the window, that a portion of the floor was visible, and that all the objects in the scene
were not only visible but presented in an interesting arrangement. This chapter explains how to use
OpenGL to accomplish these tasks: how to position and orient models in three-dimensional space and
how to establish the location - also in three-dimensional space - of the viewpoint. All of these factors
help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two-dimensional image of
three-dimensional objects (it has to be two-dimensional because it’s drawn on a flat screen), but you
need to think in three-dimensional coordinates while making many of the decisions that determine what



gets drawn on the screen. A common mistake people make when creating three-dimensional graphics is
to start thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid thinking
about which pixels need to be drawn, and instead try to visualize three-dimensional space. Create your
models in some three-dimensional universe that lies deep inside your computer, and let the computer do
its job of calculating which pixels to color.

A series of three computer operations convert an object’s three-dimensional coordinates to pixel
positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing, and
projection operations. Such operations include rotation, translation, scaling, reflecting,
orthographic projection, and perspective projection. Generally, you use a combination of several
transformations to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie outside
the window must be clipped. In three-dimensional computer graphics, clipping occurs by throwing
out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and screen
pixels. This is known as a viewport transformation.

This chapter describes all of these operations, and how to control them, in the following major sections:

"Overview: The Camera Analogy" gives an overview of the transformation process by describing
the analogy of taking a photograph with a camera, presents a simple example program that
transforms an object, and briefly describes the basic OpenGL transformation commands.

"Viewing and Modeling Transformations" explains in detail how to specify and to imagine the
effect of viewing and modeling transformations. These transformations orient the model and the
camera relative to each other to obtain the desired final image. 

"Projection Transformations" describes how to specify the shape and orientation of the viewing
volume. The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped out of the
scene.

"Viewport Transformation" explains how to control the conversion of three-dimensional model
coordinates to screen coordinates.

"Troubleshooting Transformations" presents some tips for discovering why you might not be
getting the desired effect from your modeling, viewing, projection, and viewport transformations.

"Manipulating the Matrix Stacks" discusses how to save and restore certain transformations. This
is particularly useful when you’re drawing complicated objects that are built up from simpler ones.

"Additional Clipping Planes" describes how to specify additional clipping planes beyond those
defined by the viewing volume. 



"Examples of Composing Several Transformations" walks you through a couple of more
complicated uses for transformations.

"Reversing or Mimicking Transformations" shows you how to take a transformed point in window
coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can also be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a photograph
with a camera. As shown in Figure 3-1, the steps with a camera (or a computer) might be the following. 

1. Set up your tripod and pointing the camera at the scene (viewing transformation). 

2. Arrange the scene to be photographed into the desired composition (modeling transformation). 

3. Choose a camera lens or adjust the zoom (projection transformation). 

4. Determine how large you want the final photograph to be - for example, you might want it
enlarged (viewport transformation). 

After these steps are performed, the picture can be snapped or the scene can be drawn.



Figure 3-1 : The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in your
program, not necessarily the order in which the relevant mathematical operations are performed on an
object’s vertices. The viewing transformations must precede the modeling transformations in your code,
but you can specify the projection and viewport transformations at any point before drawing occurs.
Figure 3-2 shows the order in which these operations occur on your computer.



Figure 3-2 : Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4 × 4 matrix M, which is
then multiplied by the coordinates of each vertex v in the scene to accomplish the transformation 

v’=Mv

(Remember that vertices always have four coordinates (x, y, z, w), though in most cases w is 1 and for
two-dimensional data z is 0.) Note that viewing and modeling transformations are automatically applied
to surface normal vectors, in addition to vertices. (Normal vectors are used only in eye coordinates.)
This ensures that the normal vector’s relationship to the vertex data is properly preserved. 

The viewing and modeling transformations you specify are combined to form the modelview matrix,
which is applied to the incoming object coordinates to yield eye coordinates. Next, if you’ve specified
additional clipping planes to remove certain objects from the scene or to provide cutaway views of
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yield clip coordinates. This transformation defines a
viewing volume; objects outside this volume are clipped so that they’re not drawn in the final scene.
After this point, the perspective division is performed by dividing coordinate values by w, to produce
normalized device coordinates. (See Appendix F for more information about the meaning of the w
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are converted
to window coordinates by applying the viewport transformation. You can manipulate the dimensions of
the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that the x and y coordinates are sufficient to determine which pixels need
to be drawn on the screen. However, all the transformations are performed on the z coordinates as well.
This way, at the end of this transformation process, the z values correctly reflect the depth of a given
vertex (measured in distance away from the screen). One use for this depth value is to eliminate
unnecessary drawing. For example, suppose two vertices have the same x and y values but different z
values. OpenGL can use this information to determine which surfaces are obscured by other surfaces
and can then avoid drawing the hidden surfaces. (See Chapter 10 for more information about this
technique, which is called hidden-surface removal.)

As you’ve probably guessed by now, you need to know a few things about matrix mathematics to get the
most out of this chapter. If you want to brush up on your knowledge in this area, you might consult a



textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that’s scaled by a modeling transformation (see Figure 3-3). The viewing
transformation, gluLookAt(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section walks
you through Example 3-1 and briefly explains the transformation commands it uses. The succeeding
sections contain the complete, detailed discussion of all OpenGL’s transformation commands.

Figure 3-3 : Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void) 
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
   glLoadIdentity ();             /* clear the matrix */
           /* viewing transformation  */
   gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
   glScalef (1.0, 2.0, 1.0);      /* modeling transformation */ 
   glutWireCube (1.0);
   glFlush ();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
   glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);



   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this code
example, before the viewing transformation can be specified, the current matrix is set to the identity
matrix with glLoadIdentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. If you
don’t clear the current matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to perform such
combinations, but you also need to clear the matrix sometimes.

In Example 3-1, after the matrix is initialized, the viewing transformation is specified with gluLookAt().
The arguments for this command indicate where the camera (or eye position) is placed, where it is
aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), aim the camera lens
towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientation for
the camera.

If gluLookAt() was not called, the camera has a default position and orientation. By default, the camera
is situated at the origin, points down the negative z-axis, and has an up-vector of (0, 1, 0). So in Example
3-1, the overall effect is that gluLookAt() moves the camera 5 units along the z-axis. (See "Viewing and
Modeling Transformations" for more information about viewing transformations.) 

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can rotate,
translate, or scale the model - or perform some combination of these operations. In Example 3-1,
glScalef() is the modeling transformation that is used. The arguments for this command specify how
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effect. In
Example 3-1, the cube is drawn twice as large in the y direction. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular box. 

Try This

Change the gluLookAt() call in Example 3-1 to the modeling transformation glTranslatef() with
parameters (0.0, 0.0, -5.0). The result should look exactly the same as when you used gluLookAt().
Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation). This



duality in the nature of viewing and modeling transformations is why you need to think about the effect
of both types of transformations simultaneously. It doesn’t make sense to try to separate the effects, but
sometimes it’s easier to think about them one way rather than the other. This is also why modeling and
viewing transformations are combined into the modelview matrix before the transformations are applied.
(See "Viewing and Modeling Transformations" for more detail on how to think about modeling and
viewing transformations and how to specify them to get the result you want.) 

Also note that the modeling and viewing transformations are included in the display() routine, along
with the call that’s used to draw the cube, glutWireCube(). This way, display() can be used repeatedly
to draw the contents of the window if, for example, the window is moved or uncovered, and you’ve
ensured that each time, the cube is drawn in the desired way, with the appropriate transformations. The
potential repeated use of display() underscores the need to load the identity matrix before performing
the viewing and modeling transformations, especially when other transformations might be performed
between calls to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of this
transformation as determining what the field of view or viewing volume is and therefore what objects
are inside it and to some extent how they look. This is equivalent to choosing among wide-angle,
normal, and telephoto lenses, for example. With a wide-angle lens, you can include a wider scene in the
final photograph than with a telephoto lens, but a telephoto lens allows you to photograph objects as
though they’re closer to you than they actually are. In computer graphics, you don’t have to pay $10,000
for a 2000-millimeter telephoto lens; once you’ve bought your graphics workstation, all you need to do
is use a smaller number for your field of view. 

In addition to the field-of-view considerations, the projection transformation determines how objects are
projected onto the screen, as its name suggests. Two basic types of projections are provided for you by
OpenGL, along with several corresponding commands for describing the relevant parameters in
different ways. One type is the perspective projection, which matches how you see things in daily life.
Perspective makes objects that are farther away appear smaller; for example, it makes railroad tracks
appear to converge in the distance. If you’re trying to make realistic pictures, you’ll want to choose
perspective projection, which is specified with the glFrustum() command in this code example.

The other type of projection is orthographic, which maps objects directly onto the screen without
affecting their relative size. Orthographic projection is used in architectural and computer-aided design
applications where the final image needs to reflect the measurements of objects rather than how they
might look. Architects create perspective drawings to show how particular buildings or interior spaces
look when viewed from various vantage points; the need for orthographic projection arises when
blueprint plans or elevations are generated, which are used in the construction of buildings. (See
"Projection Transformations" for a discussion of ways to specify both kinds of projection
transformations.) 

Before glFrustum() can be called to set the projection transformation, some preparation needs to
happen. As shown in the reshape() routine in Example 3-1, the command called glMatrixMode() is
used first, with the argument GL_PROJECTION. This indicates that the current matrix specifies the
projection transformation; the following transformation calls then affect the projection matrix. As you
can see, a few lines later glMatrixMode() is called again, this time with GL_MODELVIEW as the



argument. This indicates that succeeding transformations now affect the modelview matrix instead of the
projection matrix. (See "Manipulating the Matrix Stacks" for more information about how to control the
projection and modelview matrices.)

Note that glLoadIdentity() is used to initialize the current projection matrix so that only the specified
projection transformation has an effect. Now glFrustum() can be called, with arguments that define the
parameters of the projection transformation. In this example, both the projection transformation and the
viewport transformation are contained in the reshape() routine, which is called when the window is first
created and whenever the window is moved or reshaped. This makes sense, since both projecting (the
width to height aspect ratio of the projection viewing volume) and applying the viewport relate directly
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change the glFrustum() call in Example 3-1 to the more commonly used Utility Library routine
gluPerspective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially for fovy and aspect.

The Viewport Transformation 

Together, the projection transformation and the viewport transformation determine how a scene gets
mapped onto the computer screen. The projection transformation specifies the mechanics of how the
mapping should occur, and the viewport indicates the shape of the available screen area into which the
scene is mapped. Since the viewport specifies the region the image occupies on the computer screen,
you can think of the viewport transformation as defining the size and location of the final processed
photograph - for example, whether the photograph should be enlarged or shrunk.

The arguments to glViewport() describe the origin of the available screen space within the window - (0,
0) in this example - and the width and height of the available screen area, all measured in pixels on the
screen. This is why this command needs to be called within reshape() - if the window changes size, the
viewport needs to change accordingly. Note that the width and height are specified using the actual
width and height of the window; often, you want to specify the viewport this way rather than giving an
absolute size. (See "Viewport Transformation" for more information about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, take the
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scene by the
modeling and viewing transformations. Each vertex is then transformed as specified by the projection
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are divided by w and mapped onto the
viewport. 

General-Purpose Transformation Commands 

This section discusses some OpenGL commands that you might find useful as you specify desired
transformations. You’ve already seen a couple of these commands, glMatrixMode() and
glLoadIdentity(). The other two commands described here - glLoadMatrix*() and glMultMatrix*() -



allow you to specify any transformation matrix directly and then to multiply the current matrix by that
specified matrix. More specific transformation commands - such as gluLookAt() and glScale*() - are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the modelview or
projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode(). When you use nested sets of OpenGL commands that might be called repeatedly,
remember to reset the matrix mode correctly. (The glMatrixMode() command can also be used to
indicate the texture matrix; texturing is discussed in detail in "The Texture Matrix Stack" in Chapter 9.)

void glMatrixMode(GLenum mode);
Specifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE for mode. Subsequent
transformation commands affect the specified matrix. Note that only one matrix can be modified at
a time. By default, the modelview matrix is the one that’s modifiable, and all three matrices
contain the identity matrix.

You use the glLoadIdentity() command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you always call
this command before specifying projection or viewing transformations, but you might also call it before
specifying a modeling transformation.

void glLoadIdentity(void); 
Sets the currently modifiable matrix to the 4 × 4 identity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, use glMultMatrix*() to multiply the current matrix by the matrix passed
in as an argument. The argument for both these commands is a vector of sixteen values (m1, m2, ... ,
m16) that specifies a matrix M as follows:

Remember that you might be able to maximize efficiency by using display lists to store frequently used
matrices (and their inverses) rather than recomputing them. (See "Display-List Design Philosophy" in
Chapter 7.) (OpenGL implementations often must compute the inverse of the modelview matrix so that
normals and clipping planes can be correctly transformed to eye coordinates.) 

Caution: If you’re programming in C and you declare a matrix as m[4][4], then the element m[i][j]  is in
the ith column and jth row of the OpenGL transformation matrix. This is the reverse of the standard C
convention in which m[i][j]  is in row i and column j. To avoid confusion, you should declare your
matrices as m[16]. 

void glLoadMatrix{fd}(const TYPE *m);
Sets the sixteen values of the current matrix to those specified by m.



void glMultMatrix{fd}(const TYPE *m);
Multiplies the matrix specified by the sixteen values pointed to by m by the current matrix and
stores the result as the current matrix. 

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matrix is C and the
matrix specified with glMultMatrix*() or any of the transformation commands is M. After
multiplication, the final matrix is always CM. Since matrix multiplication isn’t generally commutative,
the order makes a difference. 

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combined into
a single modelview matrix. (See "A Simple Example: Drawing a Cube.") One of the toughest problems
newcomers to computer graphics face is understanding the effects of combined three-dimensional
transformations. As you’ve already seen, there are alternative ways to think about transformations - do
you want to move the camera in one direction, or move the object in the opposite direction? Each way of
thinking about transformations has advantages and disadvantages, but in some cases one way more
naturally matches the effect of the intended transformation. If you can find a natural approach for your
particular application, it’s easier to visualize the necessary transformations and then write the
corresponding code to specify the matrix manipulations. The first part of this section discusses how to
think about transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you’ve already seen. Finally, keep in mind that you must call
glMatrixMode() with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45-degree counterclockwise rotation about the
origin around the z-axis, and a translation down the x-axis. Suppose that the object you’re drawing is
small compared to the translation (so that you can see the effect of the translation), and that it’s
originally located at the origin. If you rotate the object first and then translate it, the rotated object
appears on the x-axis. If you translate it down the x-axis first, however, and then rotate about the origin,
the object is on the line y=x, as shown in Figure 3-4. In general, the order of transformations is critical.
If you do transformation A and then transformation B, you almost always get something different than if
you do them in the opposite order.



Figure 3-4 : Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented as 4 × 4 matrices. Each successive glMultMatrix*() or
transformation command multiplies a new 4 × 4 matrix M by the current modelview matrix C to yield
CM. Finally, vertices v are multiplied by the current modelview matrix. This process means that the last
transformation command called in your program is actually the first one applied to the vertices: CMv.
Thus, one way of looking at it is to say that you have to specify the matrices in the reverse order. Like
many other things, however, once you’ve gotten used to thinking about this correctly, backward will
seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N);                /* apply transformation N */
glMultMatrixf(M);                /* apply transformation M */
glMultMatrixf(L);                /* apply transformation L */
glBegin(GL_POINTS);
glVertex3f(v);                   /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contains I, N, NM, and finally NML, where I
represents the identity matrix. The transformed vertex is NMLv. Thus, the vertex transformation is
N(M(Lv)) - that is, v is multiplied first by L, the resulting Lv is multiplied by M, and the resulting MLv
is multiplied by N. Notice that the transformations to vertex v effectively occur in the opposite order
than they were specified. (Actually, only a single multiplication of a vertex by the modelview matrix
occurs; in this example, the N, M, and L matrices are already multiplied into a single matrix before it’s
applied to v.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system - in which matrix multiplications
affect the position, orientation, and scaling of your model - you have to think of the multiplications as
occurring in the opposite order from how they appear in the code. Using the simple example shown on
the left side of Figure 3-4 (a rotation about the origin and a translation along the x-axis), if you want the



object to appear on the axis after the operations, the rotation must occur first, followed by the
translation. To do this, you’ll need to reverse the order of operations, so the code looks something like
this (where R is the rotation matrix and T is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(T);                /* translation */
glMultMatrixf(R);                /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in which
your model is transformed and instead imagine that a local coordinate system is tied to the object you’re
drawing. All operations occur relative to this changing coordinate system. With this approach, the
matrix multiplications now appear in the natural order in the code. (Regardless of which analogy you’re
using, the code is the same, but how you think about it differs.) To see this in the translation-rotation
example, begin by visualizing the object with a coordinate system tied to it. The translation operation
moves the object and its coordinate system down the x-axis. Then, the rotation occurs about the
(now-translated) origin, so the object rotates in place in its position on the axis. 

This approach is what you should use for applications such as articulated robot arms, where there are
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips of the
fingers go relative to the body, you’d like to start at the shoulder, go down to the wrist, and so on,
applying the appropriate rotations and translations at each joint. Thinking about it in reverse would be
far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especially so
when the scaling is nonuniform (scaling different amounts along the different axes). After uniform
scaling, translations move a vertex by a multiple of what they did before, since the coordinate system is
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate system
nonperpendicular. 

As mentioned earlier, you normally issue viewing transformation commands in your program before any
modeling transformations. This way, a vertex in a model is first transformed into the desired orientation
and then transformed by the viewing operation. Since the matrix multiplications must be specified in
reverse order, the viewing commands need to come first. Note, however, that you don’t need to specify
either viewing or modeling transformations if you’re satisfied with the default conditions. If there’s no
viewing transformation, the "camera" is left in the default position at the origin, pointed toward the
negative z-axis; if there’s no modeling transformation, the model isn’t moved, and it retains its specified
position, orientation, and size. 

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations are discussed first, even if viewing transformations are
actually issued first. This order for discussion also matches the way many programmers think when
planning their code: Often, they write all the code necessary to compose the scene, which involves
transformations to position and orient objects correctly relative to each other. Next, they decide where
they want the viewpoint to be relative to the scene they’ve composed, and then they write the viewing
transformations accordingly.



Modeling Transformations 

The three OpenGL routines for modeling transformations are glTranslate*(), glRotate*(), and
glScale*(). As you might suspect, these routines transform an object (or coordinate system, if you’re
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three commands
are equivalent to producing an appropriate translation, rotation, or scaling matrix, and then calling
glMultMatrix*() with that matrix as the argument. However, these three routines might be faster than
using glMultMatrix*(). OpenGL automatically computes the matrices for you. (See Appendix F if
you’re interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what it does
to the vertices of a geometric object using the fixed coordinate system approach, and in terms of what it
does to the local coordinate system that’s attached to an object.

Translate 

void glTranslate{fd}(TYPEx, TYPE y, TYPEz);
Multiplies the current matrix by a matrix that moves (translates) an object by the given x, y, and z
values (or moves the local coordinate system by the same amounts).

Figure 3-5 shows the effect of glTranslate*().

Figure 3-5 : Translating an Object

Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the identity operation - that is, it has
no effect on an object or its local coordinate system. 

Rotate

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate system) in
a counterclockwise direction about the ray from the origin through the point (x, y, z). The angle
parameter specifies the angle of rotation in degrees. 



The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees about the z-axis, is shown
in Figure 3-6.

Figure 3-6 : Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a larger
orbit) than an object drawn near the axis. Also, if the angle argument is zero, the glRotate*() command
has no effect.

Scale

void glScale{fd}(TYPEx, TYPE y, TYPEz);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along the
axes. Each x, y, and z coordinate of every point in the object is multiplied by the corresponding
argument x, y, or z. With the local coordinate system approach, the local coordinate axes are
stretched, shrunk, or reflected by the x, y, and z factors, and the associated object is transformed
with them.

Figure 3-7 shows the effect of glScalef(2.0, -0.5, 1.0).

Figure 3-7 : Scaling and Reflecting an Object



glScale*() is the only one of the three modeling transformations that changes the apparent size of an
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0 shrinks it.
Scaling with a -1.0 value reflects an object across an axis. The identity values for scaling are (1.0, 1.0,
1.0). In general, you should limit your use of glScale*() to those cases where it is necessary. Using
glScale*() decreases the performance of lighting calculations, because the normal vectors have to be
renormalized after transformation. 

Note: A scale value of zero collapses all object coordinates along that axis to zero. It’s usually not a
good idea to do this, because such an operation cannot be undone. Mathematically speaking, the matrix
cannot be inverted, and inverse matrices are required for certain lighting operations. (See Chapter 5.)
Sometimes collapsing coordinates does make sense, however; the calculation of shadows on a planar
surface is a typical application. (See "Shadows" in Chapter 14.) In general, if a coordinate system is to
be collapsed, the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-2 is a portion of a program that renders a triangle four times, as shown in Figure 3-8. These
are the four transformed triangles. 

A solid wireframe triangle is drawn with no modeling transformation. 

The same triangle is drawn again, but with a dashed line stipple and translated (to the left - along
the negative x-axis). 

A triangle is drawn with a long dashed line stipple, with its height (y-axis) halved and its width
(x-axis) increased by 50%. 

A rotated triangle, made of dotted lines, is drawn. 

Figure 3-8 : Modeling Transformation Example 

Example 3-2 : Using Modeling Transformations: model.c

glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle();                   /* solid lines */

glEnable(GL_LINE_STIPPLE);         /* dashed lines */
glLineStipple(1, 0xF0F0); 
glLoadIdentity();
glTranslatef(-20.0, 0.0, 0.0);
draw_triangle();



glLineStipple(1, 0xF00F);          /*long dashed lines */
glLoadIdentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();

glLineStipple(1, 0x8888);          /* dotted lines */
glLoadIdentity();
glRotatef (90.0, 0.0, 0.0, 1.0);
draw_triangle ();
glDisable (GL_LINE_STIPPLE);

Note the use of glLoadIdentity() to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even though using
glLoadIdentity() repeatedly has the desired effect, it may be inefficient, because you may have to
respecify viewing or modeling transformations. (See "Manipulating the Matrix Stacks" for a better way
to isolate transformations.) 

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this by
repeatedly applying a rotation matrix that has small values. The problem with this technique is that
because of round-off errors, the product of thousands of tiny rotations gradually drifts away from the
value you really want (it might even become something that isn’t a rotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new angle at each update
step.

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the camera
analogy, the viewing transformation positions the camera tripod, pointing the camera toward the model.
Just as you move the camera to some position and rotate it until it points in the desired direction,
viewing transformations are generally composed of translations and rotations. Also remember that to
achieve a certain scene composition in the final image or photograph, you can either move the camera or
move all the objects in the opposite direction. Thus, a modeling transformation that rotates an object
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, for
example. Finally, keep in mind that the viewing transformation commands must be called before any
modeling transformations are performed, so that the modeling transformations take effect on the objects
first.

You can manufacture a viewing transformation in any of several ways, as described next. You can also
choose to use the default location and orientation of the viewpoint, which is at the origin, looking down
the negative z-axis.

Use one or more modeling transformation commands (that is, glTranslate*() and glRotate*()).
You can think of the effect of these transformations as moving the camera position or as moving
all the objects in the world, relative to a stationary camera.

Use the Utility Library routine gluLookAt() to define a line of sight. This routine encapsulates a
series of rotation and translation commands.

Create your own utility routine that encapsulates rotations and translations. Some applications
might require custom routines that allow you to specify the viewing transformation in a convenient



way. For example, you might want to specify the roll, pitch, and heading rotation angles of a plane
in flight, or you might want to specify a transformation in terms of polar coordinates for a camera
that’s orbiting around an object. 

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations, you’re trying to
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed there as
well (see Figure 3-9), in general you have to perform some transformation so that the objects can be
viewed. Note that, as shown in the figure, the camera initially points down the negative z-axis. (You’re
seeing the back of the camera.)

Figure 3-9 : Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the same
effect as moving the objects forward, or away from the viewpoint. Remember that by default forward is
down the negative z-axis; if you rotate the viewpoint, forward has a different meaning. So, to put 5 units
of distance between the viewpoint and the objects by moving the viewpoint, as shown in Figure 3-10,
use

glTranslatef(0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units along the z axis. This is also equivalent to moving
the camera +5 units along the z axis.



Figure 3-10 : Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command before or
after the translate command? If you’re thinking in terms of a grand, fixed coordinate system, first
imagine both the object and the camera at the origin. You could rotate the object first and then move it
away from the camera so that the desired side is visible. Since you know that with the fixed coordinate
system approach, commands have to be issued in the opposite order in which they should take effect,
you know that you need to write the translate command first in your code and follow it with the rotate
command. 

Now let’s use the local coordinate system approach. In this case, think about moving the object and its
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in which
they’re applied, so once again the translate command comes first. Thus, the sequence of transformation
commands to produce the desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you’re having trouble keeping track of the effect of successive matrix multiplications, try using both
the fixed and local coordinate system approaches and see whether one makes more sense to you. Note
that with the fixed coordinate system, rotations always occur about the grand origin, whereas with the
local coordinate system, rotations occur about the origin of the local system. You might also try using
the gluLookAt() utility routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, then they
want to look at it from an arbitrary point to get a good view of it. As its name suggests, the gluLookAt()
utility routine is designed for just this purpose. It takes three sets of arguments, which specify the
location of the viewpoint, define a reference point toward which the camera is aimed, and indicate which



direction is up. Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If you’ve built your scene at the origin, the reference
point is probably the origin.) It might be a little trickier to specify the correct up-vector. Again, if you’ve
built some real-world scene at or around the origin and if you’ve been taking the positive y-axis to point
upward, then that’s your up-vector for gluLookAt(). However, if you’re designing a flight simulator, up
is the direction perpendicular to the plane’s wings, from the plane toward the sky when the plane is
right-side up on the ground. 

The gluLookAt() routine is particularly useful when you want to pan across a landscape, for instance.
With a viewing volume that’s symmetric in both x and y, the (eyex, eyey, eyez) point specified is always
in the center of the image on the screen, so you can use a series of commands to move this point slightly,
thereby panning across the scene.

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current matrix. The desired viewpoint
is specified by eyex, eyey, and eyez. The centerx, centery, and centerz arguments specify any point
along the desired line of sight, but typically they’re some point in the center of the scene being
looked at. The upx, upy, and upz arguments indicate which direction is up (that is, the direction
from the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negative z-axis, and has the
positive y-axis as straight up. This is the same as calling

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

The z value of the reference point is -100.0, but could be any negative z, because the line of sight will
remain the same. In this case, you don’t actually want to call gluLookAt(), because this is the default
(see Figure 3-11) and you are already there! (The lines extending from the camera represent the viewing
volume, which indicates its field of view.)

Figure 3-11 : Default Camera Position

Figure 3-12 shows the effect of a typical gluLookAt() routine. The camera position (eyex, eyey, eyez) is
at (4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2, 4, -3).



An orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-degree angle.

Figure 3-12 : Using gluLookAt()

So, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluLookAt() is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it’s not useful, but because it encapsulates several basic OpenGL commands - specifically,
glTranslate*() and glRotate*(). To see this, imagine a camera located at an arbitrary viewpoint and
oriented according to a line of sight, both as specified with gluLookAt() and a scene located at the
origin. To "undo" what gluLookAt() does, you need to transform the camera so that it sits at the origin
and points down the negative z-axis, the default position. A simple translate moves the camera to the
origin. You can easily imagine a series of rotations about each of the three axes of a fixed coordinate
system that would orient the camera so that it pointed toward negative z values. Since OpenGL allows
rotation about an arbitrary axis, you can accomplish any desired rotation of the camera with a single
glRotate*() command.

Note: You can have only one active viewing transformation. You cannot try to combine the effects of
two viewing transformations, any more than a camera can have two tripods. If you want to change the
position of the camera, make sure you call glLoadIdentity() to wipe away the effects of any current
viewing transformation.

Advanced

To transform any arbitrary vector so that it’s coincident with another arbitrary vector (for instance, the
negative z-axis), you need to do a little mathematics. The axis about which you want to rotate is given
by the cross product of the two normalized vectors. To find the angle of rotation, normalize the initial
two vectors. The cosine of the desired angle between the vectors is equal to the dot product of the
normalized vectors. The angle of rotation around the axis given by the cross product is always between 0
and 180 degrees. (See Appendix E for definitions of cross and dot products.) 

Note that computing the angle between two normalized vectors by taking the inverse cosine of their dot
product is not very accurate, especially for small angles. But it should work well enough to get you



started.

Creating a Custom Utility Routine

Advanced

For some specialized applications, you might want to define your own transformation routine. Since this
is rarely done and in any case is a fairly advanced topic, it’s left mostly as an exercise for the reader. The
following exercises suggest two custom viewing transformations that might be useful.

Try This

Suppose you’re writing a flight simulator and you’d like to display the world from the point of
view of the pilot of a plane. The world is described in a coordinate system with the origin on the
runway and the plane at coordinates (x, y, z). Suppose further that the plane has some roll , pitch,
and heading (these are rotation angles of the plane relative to its center of gravity). 

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
               GLdouble planez, GLdouble roll,
               GLdouble pitch, GLdouble heading)
{
      glRotated(roll, 0.0, 0.0, 1.0);
      glRotated(pitch, 0.0, 1.0, 0.0);
      glRotated(heading, 1.0, 0.0, 0.0);
      glTranslated(-planex, -planey, -planez);
}

Suppose your application involves orbiting the camera around an object that’s centered at the
origin. In this case, you’d like to specify the viewing transformation by using polar coordinates.
Let the distance variable define the radius of the orbit, or how far the camera is from the origin.
(Initially, the camera is moved distance units along the positive z-axis.) The azimuth describes the
angle of rotation of the camera about the object in the x-y plane, measured from the positive y-axis.
Similarly, elevation is the angle of rotation of the camera in the y-z plane, measured from the
positive z-axis. Finally, twist represents the rotation of the viewing volume around its line of sight.

Show that the following routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist, 
                 GLdouble elevation, GLdouble azimuth)
{
      glTranslated(0.0, 0.0, -distance);
      glRotated(-twist, 0.0, 0.0, 1.0);
      glRotated(-elevation, 1.0, 0.0, 0.0);
      glRotated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations



The previous section described how to compose the desired modelview matrix so that the correct
modeling and viewing transformations are applied. This section explains how to define the desired
projection matrix, which is also used to transform the vertices in your scene. Before you issue any of the
transformation commands described in this section, remember to call 

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that you
avoid compound projection transformations. Since each projection transformation command completely
describes a particular transformation, typically you don’t want to combine a projection transformation
with another transformation. 

The purpose of the projection transformation is to define a viewing volume, which is used in two ways.
The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects are clipped
out of the final image. You can think of the viewpoint we’ve been talking about as existing at one end of
the viewing volume. At this point, you might want to reread "A Simple Example: Drawing a Cube" for
its overview of all the transformations, including projection transformations. 

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an object is
from the camera, the smaller it appears in the final image. This occurs because the viewing volume for a
perspective projection is a frustum of a pyramid (a truncated pyramid whose top has been cut off by a
plane parallel to its base). Objects that fall within the viewing volume are projected toward the apex of
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear larger
because they occupy a proportionally larger amount of the viewing volume than those that are farther
away, in the larger part of the frustum. This method of projection is commonly used for animation,
visual simulation, and any other applications that strive for some degree of realism because it’s similar
to how our eye (or a camera) works.

The command to define a frustum, glFrustum(), calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall that
the viewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its top, and
its base correspond to the six clipping planes of the viewing volume, as shown in Figure 3-13. Objects or
parts of objects outside these planes are clipped from the final image. Note that glFrustum() doesn’t
require you to define a symmetric viewing volume. 



Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)
specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping
plane; near and far give the distances from the viewpoint to the near and far clipping planes.
They should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn’t necessarily aligned with the z-axis.
For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular
window of a house, where the window was above and to the right of you. Photographers use such a
viewing volume to create false perspectives. You might use it to have the hardware calculate images at
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image
that has twice the resolution of your screen, draw the same picture four times, each time using the
frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is
rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8
for more information about reading pixel data.) 

Although it’s easy to understand conceptually, glFrustum() isn’t intuitive to use. Instead, you might try
the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as
glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near
clipping plane, you specify the angle of the field of view ( &THgr; , or theta, in Figure 3-14) in the y
direction and the aspect ratio of the width to height (x/y). (For a square portion of the screen, the aspect
ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the line of
sight, as shown in Figure 3-14. You also specify the distance between the viewpoint and the near and far



clipping planes, thereby truncating the pyramid. Note that gluPerspective() is limited to creating
frustums that are symmetric in both the x- and y-axes along the line of sight, but this is usually what you
want. 

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdouble fovy, GLdouble aspect, 
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.
fovy is the angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z-axis. They should
always be positive. 

Just as with glFrustum(), you can apply rotations or translations to change the default orientation of the
viewing volume created by gluPerspective(). With no such transformations, the viewpoint remains at
the origin, and the line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values for the field of view, or the image may look
distorted. For example, suppose you’re drawing to the entire screen, which happens to be 11 inches high.
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screen for the
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.) If your eye
is farther from the screen, as it usually is, the perspective doesn’t look right. If your drawing area
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure
out how far your eye normally is from the screen and how big the window is, and calculate the angle the
window subtends at that size and distance. It’s probably smaller than you would guess. Another way to
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimeter lens,
which is a very wide-angle lens. (See "Troubleshooting Transformations" for more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,
kilometers, or leagues, it’s up to you. The only rule is that you have to use a consistent unit of



measurement. Then the resulting image is drawn to scale. 

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,
a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn’t change
from one end to the other, so distance from the camera doesn’t affect how large an object appears. This
type of projection is used for applications such as creating architectural blueprints and computer-aided
design, where it’s crucial to maintain the actual sizes of objects and angles between them as they’re
projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, 
GLdouble top, GLdouble near, GLdouble far); 

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by
it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,
bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same
respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint
faces toward the negative z-axis. Note that this means that the values passed in for far and near are used
as negative z values if these planes are in front of the viewpoint, and positive if they’re behind the
viewpoint. 

For the special case of projecting a two-dimensional image onto a two-dimensional screen, use the
Utility Library routine gluOrtho2D(). This routine is identical to the three-dimensional version,
glOrtho(), except that all the z coordinates for objects in the scene are assumed to lie between -1.0 and
1.0. If you’re drawing two-dimensional objects using the two-dimensional vertex commands, all the z
coordinates are zero; thus, none of the objects are clipped because of their z values.



void gluOrtho2D(GLdouble left, GLdouble right, 
GLdouble bottom, GLdouble top);

Creates a matrix for projecting two-dimensional coordinates onto the screen and multiplies the
current projection matrix by it. The clipping region is a rectangle with the lower-left corner at
(left, bottom) and the upper-right corner at (right, top). 

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and projection
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes used are
those that define the sides and ends of the viewing volume. You can specify additional clipping planes
and locate them wherever you choose. (See "Additional Clipping Planes" for information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that get
clipped. 

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds to the stage
where the size of the developed photograph is chosen. Do you want a wallet-size or a poster-size
photograph? Since this is computer graphics, the viewport is the rectangular region of the window where
the image is drawn. Figure 3-16 shows a viewport that occupies most of the screen. The viewport is
measured in window coordinates, which reflect the position of pixels on the screen relative to the
lower-left corner of the window. Keep in mind that all vertices have been transformed by the modelview
and projection matrices by this point, and vertices outside the viewing volume have been clipped. 

Figure 3-16 : Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However, by
default the viewport is set to the entire pixel rectangle of the window that’s opened. You use the
glViewport() command to choose a smaller drawing region; for example, you can subdivide the window
to create a split-screen effect for multiple views in the same window. 

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);



Defines a pixel rectangle in the window into which the final image is mapped. The (x, y) parameter
specifies the lower-left corner of the viewport, and width and height are the size of the viewport
rectangle. By default, the initial viewport values are (0, 0, winWidth, winHeight), where winWidth
and winHeight are the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If the two
ratios are different, the projected image will be distorted when mapped to the viewport, as shown in
Figure 3-17. Note that subsequent changes to the size of the window don’t explicitly affect the viewport.
Your application should detect window resize events and modify the viewport appropriately. 

Figure 3-17 : Mapping the Viewing Volume to the Viewport

In Figure 3-17, the left figure shows a projection that maps a square image onto a square viewport using
these routines:

gluPerspective(fovy, 1.0, near, far); 
glViewport(0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewport, but
the projection is unchanged. The image appears compressed along the x-axis.

gluPerspective(fovy, 1.0, near, far);
glViewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport: 

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might draw the



object with different projection and/or viewing transformations for each viewport. To create two
side-by-side viewports, you might issue these commands, along with the appropriate modeling, viewing,
and projection transformations:

glViewport (0, 0, sizex/2, sizey); 
                    . 
                    . 
                    . 
glViewport (sizex/2, 0, sizex/2, sizey);

The Transformed Depth Coordinate

The depth (z) coordinate is encoded during the viewport transformation (and later stored in the depth
buffer). You can scale z values to lie within a desired range with the glDepthRange() command.
(Chapter 10 discusses the depth buffer and the corresponding uses for the depth coordinate.) Unlike x
and y window coordinates, z window coordinates are treated by OpenGL as though they always range
from 0.0 to 1.0. 

void glDepthRange(GLclampd near, GLclampd far);
Defines an encoding for z coordinates that’s performed during the viewport transformation. The
near and far values represent adjustments to the minimum and maximum values that can be stored
in the depth buffer. By default, they’re 0.0 and 1.0, respectively, which work for most applications.
These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (like the x and y coordinates) is subject to
perspective division by the w coordinate. As the transformed depth coordinate moves farther away from
the near clipping plane, its location becomes increasingly less precise. (See Figure 3-18.)

Figure 3-18 : Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transformed depth
coordinate, especially depth-buffering, which is used for hidden surface removal.

Troubleshooting Transformations

It’s pretty easy to get a camera pointed in the right direction, but in computer graphics, you have to
specify position and direction with coordinates and angles. As we can attest, it’s all too easy to achieve



the well-known black-screen effect. Although any number of things can go wrong, often you get this
effect - which results in absolutely nothing being drawn in the window you open on the screen - from
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar problem
arises if you don’t choose a field of view that’s wide enough to view your objects but narrow enough so
they appear reasonably large. 

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you’re drawing
your objects with a color that’s different from the color with which you’re clearing the screen.
Make sure that whatever states you’re using (such as lighting, texturing, alpha blending, logical
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure distance from
the viewpoint and that (by default) you’re looking down the negative z axis. Thus, if the near value
is 1.0 and the far 3.0, objects must have z coordinates between -1.0 and -3.0 in order to be visible.
To ensure that you haven’t clipped everything out of your scene, temporarily set the near and far
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alters
appearance for operations such as depth-buffering and fog, but it might uncover inadvertently
clipped objects.

3. Determine where the viewpoint is, in which direction you’re looking, and where your objects are.
It might help to create a real three-dimensional space - using your hands, for instance - to figure
these things out.

4. Make sure you know where you’re rotating about. You might be rotating about some arbitrary
location unless you translated back to the origin first. It’s OK to rotate about any point unless
you’re expecting to rotate about the origin.

5. Check your aim. Use gluLookAt() to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and use glTranslate*() as a viewing transformation to move the
camera far enough in the z direction only so that the objects fall within the viewing volume. Once
you’ve managed to make your objects visible, try to change the viewing volume incrementally to
achieve the exact result you want, as described next. 

Even after you’ve aimed the camera in the correct direction and you can see your objects, they might
appear too small or too large. If you’re using gluPerspective(), you might need to alter the angle
defining the field of view by changing the value of the first parameter for this command. You can use
trigonometry to calculate the desired field of view given the size of the object and its distance from the
viewpoint: The tangent of half the desired angle is half the size of the object divided by the distance to
the object (see Figure 3-19). Thus, you can use an arctangent routine to compute half the desired angle.
Example 3-3 assumes such a routine, atan2(), which calculates the arctangent given the length of the
opposite and adjacent sides of a right triangle. This result then needs to be converted from radians to
degrees.



Figure 3-19 : Using Trigonometry to Calculate the Field of View

Example 3-3 : Calculating Field of View

#define PI 3.1415926535

double calculateAngle(double size, double distance)
{
    double radtheta, degtheta; 

    radtheta = 2.0 * atan2 (size/2.0, distance);
    degtheta = (180.0 * radtheta) / PI;
    return (degtheta);
}

Of course, typically you don’t know the exact size of an object, and the distance can only be determined
between the viewpoint and a single point in your scene. To obtain a fairly good approximate value, find
the bounding box for your scene by determining the maximum and minimum x, y, and z coordinates of
all the objects in your scene. Then calculate the radius of a bounding sphere for that box, and use the
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equations -1 &le; x &le; 3, 5 &le; y
&le; 7, and -5 &le; z &le; 5. Then the center of the bounding box is (1, 6, 0), and the radius of a
bounding sphere is the distance from the center of the box to any corner - say (3, 7, 5) - or

If the viewpoint is at (8, 9, 10), the distance between it and the center is

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle is 23.54
degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if you’re trying to
achieve a realistic image. For example, if your calculations indicate that you need a 179-degree field of



view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your calculated
field of view is too large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you’ve been creating, loading, and multiplying have only been
the visible tips of their respective icebergs. Each of these matrices is actually the topmost member of a
stack of matrices (see Figure 3-20).

Figure 3-20 : Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects are
constructed from simpler ones. For example, suppose you’re drawing an automobile that has four
wheels, each of which is attached to the car with five bolts. You have a single routine to draw a wheel
and another to draw a bolt, since all the wheels and all the bolts look the same. These routines draw a
wheel or a bolt in some convenient position and orientation, say centered at the origin with its axis
coincident with the z axis. When you draw the car, including the wheels and bolts, you want to call the
wheel-drawing routine four times with different transformations in effect each time to position the
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time translated
appropriately relative to the wheel. 

Suppose for a minute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this: 

Draw the car body. Remember where you are, and translate to the right front wheel. Draw the
wheel and throw away the last translation so your current position is back at the origin of the car
body. Remember where you are, and translate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successively
translate to each of the positions that bolts are drawn, throwing away the transformations after each bolt
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism for doing
this sort of successive remembering, translating, and throwing away. All the matrix operations that have
been described so far (glLoadMatrix(), glMultMatrix(), glLoadIdentity() and the commands that



create specific transformation matrices) deal with the current matrix, or the top matrix on the stack. You
can control which matrix is on top with the commands that perform stack operations: glPushMatrix(),
which copies the current matrix and adds the copy to the top of the stack, and glPopMatrix(), which
discards the top matrix on the stack, as shown in Figure 3-21. (Remember that the current matrix is
always the matrix on the top.) In effect, glPushMatrix() means "remember where you are" and
glPopMatrix() means "go back to where you were." 

Figure 3-21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined by
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the top and
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was the
second-from-the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix() generates an error.

Example 3-4 draws an automobile, assuming the existence of routines that draw the car body, a wheel,
and a bolt.

Example 3-4 : Pushing and Popping the Matrix

draw_wheel_and_bolts()
{
   long i;

   draw_wheel();
   for(i=0;i<5;i++){
      glPushMatrix();
         glRotatef(72.0*i,0.0,0.0,1.0);
         glTranslatef(3.0,0.0,0.0);
         draw_bolt();
      glPopMatrix();
   }
}

draw_body_and_wheel_and_bolts()
{
   draw_car_body();
   glPushMatrix();
      glTranslatef(40,0,30);    /*move to first wheel position*/



      draw_wheel_and_bolts();
   glPopMatrix();
   glPushMatrix();
      glTranslatef(40,0,-30);   /*move to 2nd wheel position*/
      draw_wheel_and_bolts();
   glPopMatrix();
   ...                    /*draw last two wheels similarly*/
}

This code assumes the wheel and bolt axes are coincident with the z-axis, that the bolts are evenly
spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the front wheels
are 40 units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in hardware.
When you push a matrix, you don’t need to copy the current data back to the main process, and the
hardware may be able to copy more than one element of the matrix at a time. Sometimes you might want
to keep an identity matrix at the bottom of the stack so that you don’t need to call glLoadIdentity()
repeatedly. 

The Modelview Matrix Stack

As you’ve seen earlier in "Viewing and Modeling Transformations," the modelview matrix contains the
cumulative product of multiplying viewing and modeling transformation matrices. Each viewing or
modeling transformation creates a new matrix that multiplies the current modelview matrix; the result,
which becomes the new current matrix, represents the composite transformation. The modelview matrix
stack contains at least thirty-two 4 × 4 matrices; initially, the topmost matrix is the identity matrix. Some
implementations of OpenGL may support more than thirty-two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, GLint * params).

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the viewing
volume. Generally, you don’t want to compose projection matrices, so you issue glLoadIdentity()
before performing a projection transformation. Also for this reason, the projection matrix stack need be
only two levels deep; some OpenGL implementations may allow more than two 4 × 4 matrices. To find
the stack depth, call glGetIntegerv(GL_MAX_PROJECTION_STACK_DEPTH, GLint * params).

One use for a second matrix in the stack would be an application that needs to display a help window
with text in it, in addition to its normal window showing a three-dimensional scene. Since text is most
easily positioned with an orthographic projection, you could change temporarily to an orthographic
projection, display the help, and then return to your previous projection:

glMatrixMode(GL_PROJECTION);
glPushMatrix();                  /*save the current projection*/
    glLoadIdentity();
    glOrtho(...);                /*set up for displaying help*/
    display_the_help();
glPopMatrix();

Note that you’d probably have to also change the modelview matrix appropriately.



Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbitrary
projective transformations. For example, the OpenGL and its Utility Library have no built-in mechanism
for two-point perspective. If you were trying to emulate the drawings in drafting texts, you might need
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far), you
can define up to six additional clipping planes to further restrict the viewing volume, as shown in Figure
3-22. This is useful for removing extraneous objects in a scene - for example, if you want to display a
cutaway view of an object. 

Each plane is specified by the coefficients of its equation: Ax+By+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping volume
becomes the intersection of the viewing volume and all half-spaces defined by the additional clipping
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

Figure 3-22 : Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenum plane, const GLdouble *equation);
Defines a clipping plane. The equation argument points to the four coefficients of the plane
equation, Ax+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that satisfy (A B C
D)M-1 (xe ye ze we)T >= 0 lie in the half-space defined by the plane, where M is the current
modelview matrix at the time glClipPlane() is called. All points not in this half-space are clipped
away. The plane argument is GL_CLIP_PLANEi, where i is an integer specifying which of the
available clipping planes to define. i is a number between 0 and one less than the maximum
number of additional clipping planes.

You need to enable each additional clipping plane you define: 

glEnable(GL_CLIP_PLANEi);



You can disable a plane with

glDisable(GL_CLIP_PLANEi);

All implementations of OpenGL must support at least six additional clipping planes, although some
implementations may allow more. You can use glGetIntegerv() with GL_MAX_CLIP_PLANES to find
how many clipping planes are supported. 

Note: Clipping performed as a result of glClipPlane() is done in eye coordinates, not in clip
coordinates. This difference is noticeable if the projection matrix is singular (that is, a real projection
matrix that flattens three-dimensional coordinates to two-dimensional ones). Clipping performed in eye
coordinates continues to take place in three dimensions even when the projection matrix is singular. 

A Clipping Plane Code Example

Example 3-5 renders a wireframe sphere with two clipping planes that slice away three-quarters of the
original sphere, as shown in Figure 3-23.

Figure 3-23 : Clipped Wireframe Sphere

Example 3-5 : Wireframe Sphere with Two Clipping Planes: clip.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void) 
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   GLdouble eqn[4] = {0.0, 1.0, 0.0, 0.0};
   GLdouble eqn2[4] = {1.0, 0.0, 0.0, 0.0};

   glClear(GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);
   glPushMatrix();
   glTranslatef (0.0, 0.0, -5.0);

/*    clip lower half -- y < 0          */
   glClipPlane (GL_CLIP_PLANE0, eqn);
   glEnable (GL_CLIP_PLANE0);



/*    clip left half -- x < 0           */
   glClipPlane (GL_CLIP_PLANE1, eqn2);
   glEnable (GL_CLIP_PLANE1);

   glRotatef (90.0, 1.0, 0.0, 0.0);
   glutWireSphere(1.0, 20, 16);
   glPopMatrix();
   glFlush ();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutMainLoop();
   return 0;
}

Try This

Try changing the coefficients that describe the clipping planes in Example 3-5. 

Try calling a modeling transformation, such as glRotate*(), to affect glClipPlane(). Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular result. The
two examples discussed are a solar system, in which objects need to rotate on their axes as well as in
orbit around each other, and a robot arm, which has several joints that effectively transform coordinate
systems as they move relative to each other. 

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, both using
the same sphere-drawing routine. To write this program, you need to use glRotate*() for the revolution
of the planet around the sun and for the rotation of the planet around its own axis. You also need



glTranslate*() to move the planet out to its orbit, away from the origin of the solar system. Remember
that you can specify the desired size of the two spheres by supplying the appropriate arguments for the
glutWireSphere() routine. 

To draw the solar system, you first want to set up a projection and a viewing transformation. For this
example, gluPerspective() and gluLookAt() are used. 

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed coordinate
system, which is where the sphere routine places it. Thus, drawing the sun doesn’t require translation;
you can use glRotate*() to make the sun rotate about an arbitrary axis. To draw a planet rotating around
the sun, as shown in Figure 3-24, requires several modeling transformations. The planet needs to rotate
about its own axis once a day. And once a year, the planet completes one revolution around the sun. 

Figure 3-24 : Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordinate
system. An initial glRotate*() rotates the local coordinate system that initially coincides with the grand
coordinate system. Next, glTranslate*() moves the local coordinate system to a position on the planet’s
orbit; the distance moved should equal the radius of the orbit. Thus, the initial glRotate*() actually
determines where along the orbit the planet is (or what time of year it is).

A second glRotate*() rotates the local coordinate system around the local axes, thus determining the
time of day for the planet. Once you’ve issued all these transformation commands, the planet can be
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is shown in
Example 3-6.

glPushMatrix();
glutWireSphere(1.0, 20, 16);     /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8);      /* draw smaller planet */
glPopMatrix();

Example 3-6 : Planetary System: planet.c

#include <GL/gl.h>
#include <GL/glu.h>



#include <GL/glut.h>

static int year = 0, day = 0;

void init(void) 
{
   glClearColor (0.0, 0.0, 0.0, 0.0);
   glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT);
   glColor3f (1.0, 1.0, 1.0);

   glPushMatrix();
   glutWireSphere(1.0, 20, 16);   /* draw sun */
   glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
   glTranslatef (2.0, 0.0, 0.0);
   glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
   glutWireSphere(0.2, 10, 8);    /* draw smaller planet */
   glPopMatrix();
   glutSwapBuffers();
}

void reshape (int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

void keyboard (unsigned char key, int x, int y)
{
   switch (key) {
      case ‘d’:
         day = (day + 10) % 360;
         glutPostRedisplay();
         break;
      case ‘D’:
         day = (day - 10) % 360;
         glutPostRedisplay();
         break;
      case ‘y’:
         year = (year + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘Y’:
         year = (year - 5) % 360;
         glutPostRedisplay();
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)



{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}

Try This

Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() and glPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you’re going to draw several moons around a planet,
you need to save the coordinate system prior to positioning each moon and restore the coordinate
system after each moon is drawn.

Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segments. The
arm should be connected with pivot points at the shoulder, elbow, or other joints. Figure 3-25 shows a
single joint of such an arm. 

Figure 3-25 : Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriate
modeling transformations to orient each segment. Since the origin of the local coordinate system is
initially at the center of the cube, you need to move the local coordinate system to one edge of the cube.
Otherwise, the cube rotates about its center rather than the pivot point. 

After you call glTranslate*() to establish the pivot point and glRotate*() to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it is drawn. The
glPushMatrix() and glPopMatrix() restrict the effect of glScale*(). Here’s what your code might look
like for this first segment of the arm (the entire program is shown in Example 3-7): 

glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);



glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

To build a second segment, you need to move the local coordinate system to the next pivot point. Since
the coordinate system has previously been rotated, the x-axis is already oriented along the length of the
rotated arm. Therefore, translating along the x-axis moves the local coordinate system to the next pivot
point. Once it’s at that pivot point, you can use the same code to draw the second segment as you used
for the first one. This can be continued for an indefinite number of segments (shoulder, elbow, wrist,
fingers). 

glTranslatef (1.0, 0.0, 0.0); 
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

Example 3-7 : Robot Arm: robot.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int shoulder = 0, elbow = 0;

void init(void) 
{
  glClearColor (0.0, 0.0, 0.0, 0.0);
  glShadeModel (GL_FLAT);
}

void display(void)
{
   glClear (GL_COLOR_BUFFER_BIT);
   glPushMatrix();
   glTranslatef (-1.0, 0.0, 0.0);
   glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
   glTranslatef (1.0, 0.0, 0.0);
   glPushMatrix();
   glScalef (2.0, 0.4, 1.0);
   glutWireCube (1.0);
   glPopMatrix();

   glTranslatef (1.0, 0.0, 0.0);
   glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
   glTranslatef (1.0, 0.0, 0.0);
   glPushMatrix();
   glScalef (2.0, 0.4, 1.0);
   glutWireCube (1.0);
   glPopMatrix();

   glPopMatrix();
   glutSwapBuffers();
}

void reshape (int w, int h)



{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h); 
   glMatrixMode (GL_PROJECTION);
   glLoadIdentity ();
   gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
   glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
   switch (key) {
      case ‘s’:   /*  s key rotates at shoulder  */
         shoulder = (shoulder + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘S’:
         shoulder = (shoulder - 5) % 360;
         glutPostRedisplay();
         break;
      case ‘e’:  /*  e key rotates at elbow  */
         elbow = (elbow + 5) % 360;
         glutPostRedisplay();
         break;
      case ‘E’:
         elbow = (elbow - 5) % 360;
         glutPostRedisplay();
         break;
      default:
         break;
   }
}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   init ();
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape);
   glutKeyboardFunc(keyboard);
   glutMainLoop();
   return 0;
}

Try This

Modify Example 3-7 to add additional segments onto the robot arm.

Modify Example 3-7 to add additional segments at the same position. For example, give the robot
arm several "fingers" at the wrist, as shown in Figure 3-26. Hint: Use glPushMatrix() and
glPopMatrix() to save and restore the position and orientation of the coordinate system at the
wrist. If you’re going to draw fingers at the wrist, you need to save the current matrix prior to
positioning each finger and restore the current matrix after each finger is drawn.



Figure 3-26 : Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a viewport
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A common
situation is when an application user utilizes the mouse to choose a location in three dimensions. The
mouse returns only a two-dimensional value, which is the screen location of the cursor. Therefore, the
application will have to reverse the transformation process to determine from where in
three-dimensional space this screen location originated.

The Utility Library routine gluUnProject() performs this reversal of the transformations. Given the
three-dimensional window coordinates for a location and all the transformations that affected them,
gluUnProject() returns the world coordinates from where it originated.

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble
*objz);

Map the specified window coordinates (winx, winy, winz) into object coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or
eliminate depth values that fall outside of glDepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen
location could have originated from anywhere on an entire line in three-dimensional space. To
disambiguate the result, gluUnProject() requires that a window depth coordinate (winz) be provided and
that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at
0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at
1.0 will request the point at the far clipping plane.

Example 3-8 demonstrates gluUnProject() by reading the mouse position and determining the
three-dimensional points at the near and far clipping planes from which it was transformed. The



computed world coordinates are printed to standard output, but the rendered window itself is just black.

Example 3-8 : Reversing the Geometric Processing Pipeline: unproject.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void display(void)
{
   glClear(GL_COLOR_BUFFER_BIT);
   glFlush();
}

void reshape(int w, int h)
{
   glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode(GL_PROJECTION);
   glLoadIdentity();
   gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
   glMatrixMode(GL_MODELVIEW);
   glLoadIdentity();
}

void mouse(int button, int state, int x, int y) 
{
   GLint viewport[4];
   GLdouble mvmatrix[16], projmatrix[16];
   GLint realy;  /*  OpenGL y coordinate position  */
   GLdouble wx, wy, wz;  /*  returned world x, y, z coords  */

   switch (button) {
      case GLUT_LEFT_BUTTON:
         if (state == GLUT_DOWN) {
            glGetIntegerv (GL_VIEWPORT, viewport);
            glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
            glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/*  note viewport[3] is height of window in pixels  */
            realy = viewport[3] - (GLint) y - 1;
            printf ("Coordinates at cursor are (%4d, %4d)\n", 
               x, realy);
            gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
               mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
            printf ("World coords at z=0.0 are (%f, %f, %f)\n",
               wx, wy, wz);
            gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
               mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
            printf ("World coords at z=1.0 are (%f, %f, %f)\n",     
               wx, wy, wz);
         }
         break;
      case GLUT_RIGHT_BUTTON:
         if (state == GLUT_DOWN)
            exit(0);
         break;
      default:
         break;
   }



}

int main(int argc, char** argv)
{
   glutInit(&argc, argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize (500, 500); 
   glutInitWindowPosition (100, 100);
   glutCreateWindow (argv[0]);
   glutDisplayFunc(display); 
   glutReshapeFunc(reshape); 
   glutMouseFunc(mouse);
   glutMainLoop();
   return 0;
}

gluProject() is another Utility Library routine, which is related to gluUnProject().gluProject() mimics
the actions of the transformation pipeline. Given three-dimensional world coordinates and all the
transformations that affect them, gluProject() returns the transformed window coordinates.

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16], const
GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble
*winz);

Map the specified object coordinates (objx, objy, objz) into window coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting window coordinates are returned in winx, winy, and winz.
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

  OpenGL Programming Guide (Addison-Wesley
Publishing Company)


