OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 3

Viewing

Chapter Objectives

After reading this chapter, you’ll be able to do the following:
® View ageometric modah any orientation by transforming it in three-dimensional space
® Control the location in three-dimensional space from which the model is viewed
® Clip undesired portions of the model out of the scene that’s to be viewed

® Manipulate the appropriate matrix stacks that control model transformation for viewing anc
project the model onto the screen

® Combine multiple transformations to mimic sophisticated systems in motion, such as a sol
system or an articulated robot arm

® Reverse or mimic the operations of the geometric processing pipeline

Chapter Zxplained how to instruct OpenGL to draw the geometric models you want displayed i
scene. Now you must decide how you want to position the models in the scene, and you must ¢
vantage point from which to view the scene. You can use the default positioning and vantage pt
most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained &
geometric description of a building block. Each block was carefully positioned in the scene: Son
blocks were scattered on the floor, some were stacked on top of each other on the table, and s«
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wat
look at the corner of the room containing the globe. But how far away from the scene - and whe
exactly - should the viewer be? We wanted to make sure that the final image of the scene conte
good view out the window, that a portion of the floor was visible, and that all the objects in the s
were not only visible but presented in an interesting arrangement. This chapter explains how to
OpenGL to accomplish these tasks: how to position and orient models in three-dimensional spa
how to establish the location - also in three-dimensional space - of the viewpoint. All of these fa
help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two-dimensional image
three-dimensional objects (it has to be two-dimensional because it's drawn on a flat screen), bu
need to think in three-dimensional coordinates while making many of the decisions that determi

gets drawn on the screen. A common mistake people make when creating three-dimensional gi
to start thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid t
about which pixels need to be drawn, and instead try to visualize three-dimensional space. Crei
models in some three-dimensional universe that lies deep inside your computer, and let the cor
its job of calculating which pixels to color.

A series of three computer operations convert an object’s three-dimensional coordinates to pixe
positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing
projection operations. Such operations include rotation, translation, scaling, reflecting,
orthographic projection, and perspective projection. Generally, you use a combination of s
transformations to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie
the window must be clipped. In three-dimensional computer graphics, clipping occurs by ti
out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and
pixels. This is known as\aewporttransformation.

This chapter describes all of these operations, and how to control them, in the following major s

"Overview: The Camera Analogyives an overview of the transformation process by descri
the analogy of taking a photograph with a camera, presents a simple example program th:
transforms an object, and briefly describes the basic OpenGL transformation commands.

"Viewing and Modeling Transformationgiplains in detail how to specify and to imagine the
effect of viewing and modeling transformations. These transformations orient the model ar
camera relative to each other to obtain the desired final image.

"Projection Transformationgiescribes how to specify the shape and orientation eidigng
volume The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped ol
scene.

"Viewport Transformationexplains how to control the conversion of three-dimensional moc
coordinates to screen coordinates.

"Troubleshooting Transformationptesents some tips for discovering why you might not be
getting the desired effect from your modeling, viewing, projection, and viewport transforme

"Manipulating the Matrix Stacksdiscusses how to save and restore certain transformations
is particularly useful when you’re drawing complicated objects that are built up from simple

"Additional Clipping Planestiescribes how to specify additional clipping planes beyond tho:
defined by the viewing volume.

® "Examples of Composing Several Transformatiomalks you through a couple of more
complicated uses for transformations.

® "Reversing or Mimicking Transformationshows you how to take a transformed point in win
coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can also be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a p
with a camera. As shown Kigure 3-1 the steps with a camera (or a computer) might be the follov

1. Set up your tripod and pointing the camera at the scene (viewing transformation).
2. Arrange the scene to be photographed into the desired composition (modeling transforma
3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph to be - for example, you might want it
enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

With a Camera With a Computer
1& viewing
| _ |] =

positiening the viewing volume
in the world

‘ ’
!

madeling

&

—

posilioning the modeals
In ﬂl% world

prajection

T

determining shape of viewing volums
photograph viewport

Figure 3-1: The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations
program, not necessarily the order in which the relevant mathematical operations are performec
object’s vertices. The viewing transformations must precede the modeling transformations in yo
but you can specify the projection and viewport transformations at any point before drawing occ
Figure 3-2shows the order in which these operations occur on your computer.

Viewport hY
' ATransfarmation I;‘

| . | Modalview ([
VERTEX.- Matrix [)

X
¥
z
W eya clip normelized device window
coordinates coordinates coordingtes coordinetes
object
coordinates

Figure 3-2: Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4 x 4 khawixich is
then multiplied by the coordinates of each vextéxthe scene to accomplish the transformation

Vv'=Mv

(Remember that vertices always have four coordinates ¢, W}, though in most casesis 1 and for
two-dimensional datais 0.) Note that viewing and modeling transformations are automatically af
to surface normal vectors, in addition to vertices. (Normal vectors are used only in eye coordina
This ensures that the normal vector’s relationship to the vertex data is properly preserved.

The viewing and modeling transformations you specify are combined to form the modelview ma
which is applied to the incoming object coordinates to yield eye coordinates. Next, if you've spe
additional clipping planes to remove certain objects from the scene or to provide cutaway views
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yigig coordinatesThis transformation defines
viewing volume; objects outside this volume are clipped so that they’re not drawn in the final sc
After this point, the perspective division is performed by dividing coordinate valugstbyproduce
normalized device coordinatg$SeeAppendix Ffor more information about the meaning of the
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are ¢
to window coordinates by applying the viewport transformation. You can manipulate the dimens
the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that th@ndy coordinates are sufficient to determine which pixels ne
to be drawn on the screen. However, all the transformations are performedzaodhginates as well
This way, at the end of this transformation processz tladues correctly reflect the depth of a given
vertex (measured in distance away from the screen). One use for this depth value is to eliminat
unnecessary drawing. For example, suppose two vertices have the aadyevalues but different
values. OpenGL can use this information to determine which surfaces are obscured by other su
and can then avoid drawing the hidden surfaces.C8apter 1Gor more information about this
technique, which is calledidden-surface removal

As you've probably guessed by now, you need to know a few things about matrix mathematics
most out of this chapter. If you want to brush up on your knowledge in this area, you might cons

textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-Idraws a cube that’s scaled by a modeling transformatioriF{gees 3-3. The viewing
transformationgluL ook At(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this secti
you throughExample 3-1and briefly explains the transformation commands it uses. The succeed
sections contain the complete, detailed discussion of all OpenGL'’s transformation commands.

Figure 3-3: Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ gl ut. h>

voi d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)
{

gl Cear (G_COLOR BUFFER BIT);

gl Color3f (1.0, 1.0, 1.0);

gl Loadl dentity (); /[* clear the matrix */
/* viewing transformation */

gl uLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

gl Scalef (1.0, 2.0, 1.0); /* nodeling transformation */
gl ut WreCube (1.0);
gl Flush ();

}

voi d reshape (int w, int h)

{
gl Viewport (0, 0, (GLsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
gl Frustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
gl Mat ri xMode (GL_MODELVI EW ;

}

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutlnitD splayMdde (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);

gl utlnit WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this «
example, before the viewing transformation can be specified, the current matrix is set to the ide
matrix withglL oadl dentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matri:
don’t clear the current matrix by loading it with the identity matrix, you continue to combine prev
transformation matrices with the new one you supply. In some cases, you do want to perform si
combinations, but you also need to clear the matrix sometimes.

In Example 3-1after the matrix is initialized, the viewing transformation is specified glith ook At ().
The arguments for this command indicate where the camera (or eye position) is placed, where |
aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), aim the ce
towards (0, O, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientat
the camera.

If gluL ookAt() was not called, the camera has a default position and orientation. By default, the
is situated at the origin, points down the negatiagis, and has an up-vector of (0, 1, 0). SExample
3-1, the overall effect is thafuL ook At() moves the camera 5 units along the z-axis. (8m®ving and
Modeling Transformationsfor more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can ro
translate, or scale the model - or perform some combination of these operatixemiple 3-1

glScalef() is the modeling transformation that is used. The arguments for this command specify
scaling should occur along the three axes. If all the arguments are 1.0, this command has no ef
Example 3-1the cube is drawn twice as large in ytdirection. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The e
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular bo:

Try This
Change thg@luL ookAt() call inExample 3-1o the modeling transformatiahT randatef() with
parameters (0.0, 0.0, -5.0). The result should look exactly the same as when ygluluseldAt().

Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could
viewed, you could have moved the cube away from the camera (with a modeling transformatior

duality in the nature of viewing and modeling transformations is why you need to think about the
of both types of transformations simultaneously. It doesn’t make sense to try to separate the eff
sometimes it's easier to think about them one way rather than the other. This is also why model
viewing transformations are combined into thedelview matridoefore the transformations are appl
(See"Viewing and Modeling Transformationgdr more detail on how to think about modeling and
viewing transformations and how to specify them to get the result you want.)

Also note that the modeling and viewing transformations are included dafiay() routine, along
with the call that's used to draw the cugkitWireCube(). This way,display() can be used repeated
to draw the contents of the window if, for example, the window is moved or uncovered, and you
ensured that each time, the cube is drawn in the desired way, with the appropriate transformatic
potential repeated use display() underscores the need to load the identity matrix before perform
the viewing and modeling transformations, especially when other transformations might be perf
between calls tdisplay().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of tt
transformation as determining what the field of view or viewing volume is and therefore what ob
are inside it and to some extent how they look. This is equivalent to choosing among wide-angl
normal, and telephoto lenses, for example. With a wide-angle lens, you can include a wider sce
final photograph than with a telephoto lens, but a telephoto lens allows you to photograph objec
though they’re closer to you than they actually are. In computer graphics, you don’t have to pay
for a 2000-millimeter telephoto lens; once you've bought your graphics workstation, all you neet
is use a smaller number for your field of view.

In addition to the field-of-view considerations, the projection transformation determines how obj
projectedonto the screen, as its name suggests. Two basic types of projections are provided fol
OpenGL, along with several corresponding commands for describing the relevant parameters ir
different ways. One type is theerspectivgorojection, which matches how you see things in daily i
Perspective makes objects that are farther away appear smaller; for example, it makes railroad
appear to converge in the distance. If you're trying to make realistic pictures, you’ll want to choc
perspective projection, which is specified with ghérustum() command in this code example.

The other type of projection is orthographic, which maps objects directly onto the screen withou
affecting their relative size. Orthographic projection is used in architectural and computer-aided
applications where the final image needs to reflect the measurements of objects rather than ho
might look. Architects create perspective drawings to show how particular buildings or interior s
look when viewed from various vantage points; the need for orthographic projection arises whel
blueprint plans or elevations are generated, which are used in the construction of buildings. (Se
"Projection Transformationgor a discussion of ways to specify both kinds of projection
transformations.)

BeforeglFrustum() can be called to set the projection transformation, some preparation needs t
happen. As shown in thr@shape() routine inExample 3-1the command calleglM atrixM ode() is
used first, with the argument GL_PROJECTION. This indicates that the current matrix specifies
projection transformation; the following transformation calls then affect the projection matrix. As
can see, a few lines latgiM atrixM ode() is called again, this time with GL_MODELVIEW as the

argument. This indicates that succeeding transformations now affect the modelview matrix inste
projection matrix. (SeBManipulating the Matrix Stackgbr more information about how to control t
projection and modelview matrices.)

Note thatglL oadl dentity() is used to initialize the current projection matrix so that only the specif
projection transformation has an effect. Nghwrustum() can be called, with arguments that define
parameters of the projection transformation. In this example, both the projection transformation
viewport transformation are contained in tleshape() routine, which is called when the window is fi
created and whenever the window is moved or reshaped. This makes sense, since both project
width to height aspect ratio of the projection viewing volume) and applying the viewport relate d
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change th@lFrustum() call in Example 3-1to the more commonly used Utility Library routine
gluPer spective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially forfovyandaspect

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene
mapped onto the computer screen. The projection transformation specifies the mechanics of hc
mapping should occur, and the viewport indicates the shape of the available screen area into w
scene is mapped. Since the viewport specifies the region the image occupies on the computer ¢
you can think of the viewport transformation as defining the size and location of the final proces
photograph - for example, whether the photograph should be enlarged or shrunk.

The arguments tglViewport() describe the origin of the available screen space within the windo
0) in this example - and the width and height of the available screen area, all measured in pixel
screen. This is why this command needs to be called wighdnape() - if the window changes size, tr
viewport needs to change accordingly. Note that the width and height are specified using the ac
width and height of the window; often, you want to specify the viewport this way rather than givi
absolute size. (Se¥iewport Transformationfor more information about how to define the viewpo

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, t¢
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scel
modeling and viewing transformations. Each vertex is then transformed as specified by the proj
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are divideddmyg mapped onto the
viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desi
transformations. You've already seen a couple of these comnuhluidsgy ixM ode() and
glL oadl dentity(). The other two commands described heagik oadM atrix* () andglMultM atrix*() -

allow you to specify any transformation matrix directly and then to multiply the current matrix by
specified matrix. More specific transformation commands - sughua®okAt() andglScale*() - are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the model
projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode(). When you use nested sets of OpenGL commands that might be called repeate
remember to reset the matrix mode correctly. (@MeatrixM ode() command can also be used to
indicate the texture matrix; texturing is discussed in detdilire Texture Matrix Stack” in Chapter)9

void glMatrixMode(GLenunmmode;
Specifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURHETode Subsequent
transformation commands affect the specified matrix. Note that only one matrix can be mc
a time. By default, the modelview matrix is the one that’'s modifiable, and all three matrices
contain the identity matrix.

You use thalL oadl dentity() command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you alw
this command before specifying projection or viewing transformations, but you might also call it
specifying a modeling transformation.

void glLoadl dentity(void);
Sets the currently modifiable matrix to the 4 x 4 identity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, usegIMultMatrix* () to multiply the current matrix by the matrix passe
in as an argument. The argument for both these commands is a vector of sixteenmialu2s.(. ,
m16) that specifies a matrM as follows:

i ms me M3
Wz Mg Mo mi4
3 omy oml ms
4 Mg Mz mig

Remember that you might be able to maximize efficiency by using display lists to store frequent
matrices (and their inverses) rather than recomputing them'' P®&g®ay-List Design Philosophy" in
Chapter 7 (OpenGL implementations often must compute the inverse of the modelview matrix ¢
normals and clipping planes can be correctly transformed to eye coordinates.)

Caution: If you're programming in C and you declare a matrixnpd[4], then the element[i][j] is in
theith column andth row of the OpenGL transformation matrix. This is the reverse of the standa
convention in whichm([i][j] is in rowi and columrj. To avoid confusion, you should declare your
matrices asn16].

void glLoadMatrix{fd}(constTYPE*m);
Sets the sixteen values of the current matrix to those specified by

void giMultMatrix{fd}(constTYPE*m);
Multiplies the matrix specified by the sixteen values pointed tolipythe current matrix and
stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matthaisd the
matrix specified witlglMultM atrix* () or any of the transformation command#flisAfter
multiplication, the final matrix is alwaySM. Since matrix multiplication isn’t generally commutativ
the order makes a difference.

Viewing and Modeling Transfor mations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combi
a single modelview matrix. (SéA Simple Example: Drawing a Cub&One of the toughest problernr
newcomers to computer graphics face is understanding the effects of combined three-dimensio
transformations. As you've already seen, there are alternative ways to think about transformatic
you want to move the camera in one direction, or move the object in the opposite direction? Eas
thinking about transformations has advantages and disadvantages, but in some cases one way
naturally matches the effect of the intended transformation. If you can find a natural approach fc
particular application, it's easier to visualize the necessary transformations and then write the
corresponding code to specify the matrix manipulations. The first part of this section discusses |
think about transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you've already seen. Finally, keep in mind that you must call
glMatrixM ode() with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transfor mations

Let’s start with a simple case of two transformations: a 45-degree counterclockwise rotation abc
origin around the-axis, and a translation down tkaxis. Suppose that the object you're drawing is
small compared to the translation (so that you can see the effect of the translation), and that it's
originally located at the origin. If you rotate the object first and then translate it, the rotated obje«
appears on the-axis. If you translate it down theaxis first, however, and then rotate about the ori
the object is on the ling=x, as shown ifrigure 3-4 In general, the order of transformations is critic
If you do transformation A and then transformation B, you almost always get something differen
you do them in the opposite order.

Fotate then Translate Translate then Rotate

Figure 3-4 : Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented as 4 x 4 matrices. Each sugtbtsitie atrix* () or
transformation command multiplies a new 4 x 4 mad#tiky the current modelview matrX to yield
CM. Finally, verticess are multiplied by the current modelview matrix. This process means that t
transformation command called in your program is actually the first one applied to the vEiMces:
Thus, one way of looking at it is to say that you have to specify the matrices in the reverse orde
many other things, however, once you've gotten used to thinking about this correctly, backward
seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl Mul t Mat ri xf (N)

gl Mul tiatrixf(M;

gl Mul t Mat ri xf (L);

gl Begi n(GL_PO NTS) ;

gl Vert ex3f (v); /* draw transforned vertex v */
gl End() ;

apply transformation N */
apply transformation M */
apply transformation L */

~~
* %k X

With this code, the modelview matrix successively contgiNs NM, and finallyNML, wherel
represents the identity matrix. The transformed vert&Md.v. Thus, the vertex transformation is
N(M(Lv)) - that is,v is multiplied first byL, the resultind-v is multiplied byM, and the resultinylLv
is multiplied byN. Notice that the transformations to vertegffectively occur in the opposite order
than they were specified. (Actually, only a single multiplication of a vertex by the modelview ma
occurs; in this example, tid M, andL matrices are already multiplied into a single matrix before
applied tov.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system - in which matrix multiplica
affect the position, orientation, and scaling of your model - you have to think of the multiplicatior
occurring in the opposite order from how they appear in the code. Using the simple example sh
the left side ofFigure 3-4(a rotation about the origin and a translation alonghes), if you want the

object to appear on the axis after the operations, the rotation must occur first, followed by the
translation. To do this, you'll need to reverse the order of operations, so the code looks somethi
this (whereR is the rotation matrix and is the translation matrix):

gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Mul t Matri xf(T); /* translation */
gl Mul tMatri xf (R); /* rotation */
draw_t he_object();

Moving a L ocal Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in
your model is transformed and instead imagine that a local coordinate system is tied to the obje
drawing. All operations occur relative to this changing coordinate system. With this approach, tt
matrix multiplications now appear in the natural order in the code. (Regardless of which analogy
using, the code is the same, but how you think about it differs.) To see this in the translation-rot
example, begin by visualizing the object with a coordinate system tied to it. The translation opetr
moves the object and its coordinate system dowr-thas. Then, the rotation occurs about the
(now-translated) origin, so the object rotates in place in its position on the axis.

This approach is what you should use for applications such as articulated robot arms, where the
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips
fingers go relative to the body, you'd like to start at the shoulder, go down to the wrist, and so ol
applying the appropriate rotations and translations at each joint. Thinking about it in reverse wo
far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especi
when the scaling is nonuniform (scaling different amounts along the different axes). After unifor
scaling, translations move a vertex by a multiple of what they did before, since the coordinate s'
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate s
nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program be
modeling transformations. This way, a vertex in a model is first transformed into the desired orie
and then transformed by the viewing operation. Since the matrix multiplications must be specifie
reverse order, the viewing commands need to come first. Note, however, that you don’'t need to
either viewing or modeling transformations if you're satisfied with the default conditions. If there
viewing transformation, the "camera" is left in the default position at the origin, pointed toward tt
negativez-axis; if there’s no modeling transformation, the model isn’t moved, and it retains its sp
position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations diseussedirst, even if viewing transformations are
actuallyissuedfirst. This order for discussion also matches the way many programmers think wh
planning their code: Often, they write all the code necessary to compose the scene, which invol
transformations to position and orient objects correctly relative to each other. Next, they decide
they want the viewpoint to be relative to the scene they’ve composed, and then they write the vi
transformations accordingly.

Modeling Transfor mations

The three OpenGL routines for modeling transformationgldneanslate* (), glRotate* (), and
glScale* (). As you might suspect, these routines transform an object (or coordinate system, if yc
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three comme
are equivalent to producing an appropriate translation, rotation, or scaling matrix, and then callii
glMultMatrix* () with that matrix as the argument. However, these three routines might be faste
usingglMultM atrix* (). OpenGL automatically computes the matrices for you. Appendix Fif
you're interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what
to the vertices of a geometric object using the fixed coordinate system approach, and in terms ¢
does to the local coordinate system that’s attached to an object.

Trandate

void glTrandate{fd}(TYPE, TYPE yTYPE);
Multiplies the current matrix by a matrix that moves (translates) an object by thexgiweandz
values (or moves the local coordinate system by the same amounts).

Figure 3-5shows the effect aji Trandate*().

Figure 3-5: Translating an Object

Note that using (0.0, 0.0, 0.0) as the argumenglfbranslate* () is the identity operation - that is, it h
no effect on an object or its local coordinate system.

Rotate

void glRotate{fd}(TYPEangle TYPEx, TYPEy, TYPEZ);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate syst:
a counterclockwise direction about the ray from the origin through the pqigt §. Theangle
parameter specifies the angle of rotation in degrees.

The effect ofglRotatef(45.0, 0.0, 0.0, 1)0which is a rotation of 45 degrees aboutzais, is shown
in Figure 3-6

Figure 3-6 : Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a |
orbit) than an object drawn near the axis. Also, ifahgleargument is zero, trgtRotate* () command
has no effect.

Scale

void glScale{fd}(TYPEx, TYPE y TYPE);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along

axes. Eaclx, y, andz coordinate of every point in the object is multiplied by the correspondi
argumentx, y, or z. With the local coordinate system approach, the local coordinate axes ar
stretched, shrunk, or reflected by the/, andz factors, and the associated object is transform

with them.

Figure 3-7shows the effect ajlScalef(2.0, -0.5, 1.0

¥

% wy x

Figure 3-7: Scaling and Reflecting an Object

glScale*() is the only one of the three modeling transformations that changes the apparent size
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0
Scaling with a -1.0 value reflects an object across an axis. The identity values for scaling are (1
1.0). In general, you should limit your usegbcale* () to those cases where it is necessary. Using
glScale* () decreases the performance of lighting calculations, because the normal vectors have
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It's usually n
good idea to do this, because such an operation cannot be undone. Mathematically speaking, t
cannot be inverted, and inverse matrices are required for certain lighting operatiohdfes 5
Sometimes collapsing coordinates does make sense, however; the calculation of shadows on &
surface is a typical application. (S&hadows" in Chapter 14In general, if a coordinate system is t
be collapsed, the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-3s a portion of a program that renders a triangle four times, as shéwjune 3-8 These
are the four transformed triangles.

® A solid wireframe triangle is drawn with no modeling transformation.

® The same triangle is drawn again, but with a dashed line stipple and translated (to the left
the negative x-axis).

® A triangle is drawn with a long dashed line stipple, with its heigtaix(s) halved and its width
(x-axis) increased by 50%.

® A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 : Modeling Transformation Example

Example 3-2 : Using Modeling Transformations: model.c

gl Loadl dentity();
gl Color3f(1.0, 1.0, 1.0);
draw triangl e(); /* solid lines */

gl Enabl e(GL_LI NE_STI PPLE) ; /* dashed lines */
gl LineStippl e(1, OxFOFO);

gl Loadl dentity();

gl Transl atef (-20.0, 0.0, 0.0);

draw_ triangl e();

gl LineStippl e(1, OxFOOF); /*1 ong dashed |ines */
gl Loadl dentity();

gl Scalef(1.5, 0.5, 1.0);

draw triangl e();

gl LineStipple(l, 0x8888); /[* dotted lines */
gl Loadl dentity();

gl Rotatef (90.0, 0.0, 0.0, 1.0);

draw triangle ();

gl Di sabl e (G_LI NE_STI PPLE) ;

Note the use oflL oadldentity() to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even thoug
glL oadl dentity() repeatedly has the desired effect, it may be inefficient, because you may have
respecify viewing or modeling transformations. (Sdanipulating the Matrix Stackgbr a better way
to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this
repeatedly applying a rotation matrix that has small values. The problem with this technique is t
because of round-off errors, the product of thousands of tiny rotations gradually drifts away fron
value you really want (it might even become something that isn’t a rotation). Instead of using thi
technique, increment the angle and issue a new rotation command with the new angle at each 1
step.

Viewing Transfor mations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the
analogy, the viewing transformation positions the camera tripod, pointing the camera toward the
Just as you move the camera to some position and rotate it until it points in the desired directiot
viewing transformations are generally composed of translations and rotations. Also remember t|
achieve a certain scene composition in the final image or photograph, you can either move the
move all the objects in the opposite direction. Thus, a modeling transformation that rotates an o
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, fc
example. Finally, keep in mind that the viewing transformation commands must be called befor¢
modeling transformations are performed, so that the modeling transformations take effect on th:
first.

You can manufacture a viewing transformation in any of several ways, as described next. You ¢
choose to use the default location and orientation of the viewpoint, which is at the origin, looking
the negative-axis.

® Use one or more modeling transformation commands (thgiffisanslate* () andglRotate*()).
You can think of the effect of these transformations as moving the camera position or as n
all the objects in the world, relative to a stationary camera.

® Use the Utility Library routingluL ookAt() to define a line of sight. This routine encapsulate
series of rotation and translation commands.

® Create your own utility routine that encapsulates rotations and translations. Some applicat
might require custom routines that allow you to specify the viewing transformation in a con

way. For example, you might want to specify the roll, pitch, and heading rotation angles of
in flight, or you might want to specify a transformation in terms of polar coordinates for a c.
that’s orbiting around an object.

Using glTrangdlate* () and glRotate* ()

When you use modeling transformation commands to emulate viewing transformations, you'’re 1
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed the
well (seeFigure 3-9, in general you have to perform some transformation so that the objects car
viewed. Note that, as shown in the figure, the camera initially points down the negmtigse(You're
seeing the back of the camera.)

Figure 3-9: Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the
effect as moving the objects forward, or away from the viewpoint. Remember that by default for
down the negative-axis; if you rotate the viewpoint, forward has a different meaning. So, to put £
of distance between the viewpoint and the objects by moving the viewpoint, as sHogurén3-10
use

gl Transl atef (0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units alorggetkis. This is also equivalent to moving
the camera +5 units along theaxis.

Figure 3-10 : Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command
after the translate command? If you're thinking in terms of a grand, fixed coordinate system, firs
imagine both the object and the camera at the origin. You could rotate the object first and then |
away from the camera so that the desired side is visible. Since you know that with the fixed coo
system approach, commands have to be issued in the opposite order in which they should take
you know that you need to write the translate command first in your code and follow it with the r
command.

Now let’s use the local coordinate system approach. In this case, think about moving the object
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in wh
they’re applied, so once again the translate command comes first. Thus, the sequence of transt
commands to produce the desired result is

gl Transl atef (0.0, 0.0, -5.0);
gl Rotatef(90.0, 0.0, 1.0, 0.0);

If you're having trouble keeping track of the effect of successive matrix multiplications, try using
the fixed and local coordinate system approaches and see whether one makes more sense to)
that with the fixed coordinate system, rotations always occur about the grand origin, whereas w
local coordinate system, rotations occur about the origin of the local system. You might also try
thegluL ook At() utility routine described in the next section.

Using the gluL ook At() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, the
want to look at it from an arbitrary point to get a good view of it. As its name suggegjisiltbek At()
utility routine is designed for just this purpose. It takes three sets of arguments, which specify th
location of the viewpoint, define a reference point toward which the camera is aimed, and indice

direction is up. Choose the viewpoint to yield the desired view of the scene. The reference poin
typically somewhere in the middle of the scene. (If you've built your scene at the origin, the refe
point is probably the origin.) It might be a little trickier to specify the correct up-vector. Again, if \
built some real-world scene at or around the origin and if you've been taking the ppsitiggo point
upward, then that’'s your up-vector fgiuL ook At(). However, if you're designing a flight simulator,
is the direction perpendicular to the plane’s wings, from the plane toward the sky when the plan
right-side up on the ground.

ThegluL ookAt() routine is particularly useful when you want to pan across a landscape, for inst
With a viewing volume that's symmetric in botlandy, the gyex, eyey, eyepoint specified is alway:
in the center of the image on the screen, so you can use a series of commands to move this po
thereby panning across the scene.

void gluLookAt(GLdoubleeyex GLdoubleeyey GLdoubleeyez GLdoublecenterx GLdoublecentery
GLdoublecenterz GLdoubleupx, GLdoubleupy, GLdoubleup2);
Defines a viewing matrix and multiplies it to the right of the current matrix. The desired vie'
is specified bgyex eyey andeyez Thecenterx centery andcenterzarguments specify any poil
along the desired line of sight, but typically they’re some point in the center of the scene b
looked at. Theipx upy, andupzarguments indicate which direction is up (that is, the directio
from the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negatig and has the
positivey-axis as straight up. This is the same as calling

gl uLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

Thez value of the reference point is -100.0, but could be any negatreeause the line of sight will
remain the same. In this case, you don’t actually want talcdllookAt(), because this is the default
(seeFigure 3-1) and you are already there! (The lines extending from the camera represent the
volume, which indicates its field of view.)

¥

Figure 3-11 : Default Camera Position

Figure 3-12shows the effect of a typicgluL ookAt() routine. The camera positioayex, eyey, eyes
at (4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2,

An orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-degree angle.

Figure 3-12 : Using gluLookAt()

So, to achieve this effect, call
gl uLookAt (4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note thatgluL ook At() is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it's not useful, but because it encapsulates several basic OpenGL commands - specifir
glTrandate* () andglRotate* (). To see this, imagine a camera located at an arbitrary viewpoint a
oriented according to a line of sight, both as specified ghithookAt() and a scene located at the
origin. To "undo" whagluL ookAt() does, you need to transform the camera so that it sits at the ¢
and points down the negatizeaxis, the default position. A simple translate moves the camera to t
origin. You can easily imagine a series of rotations about each of the three axes of a fixed coort
system that would orient the camera so that it pointed toward negaauges. Since OpenGL allows
rotation about an arbitrary axis, you can accomplish any desired rotation of the camera with a s
glRotate* () command.

Note: You can have only one active viewing transformation. You cannot try to combine the effec
two viewing transformations, any more than a camera can have two tripods. If you want to chan
position of the camera, make sure you gHlloadl dentity() to wipe away the effects of any current
viewing transformation.

Advanced

To transform any arbitrary vector so that it's coincident with another arbitrary vector (for instanc
negativez-axis), you need to do a little mathematics. The axis about which you want to rotate is «
by the cross product of the two normalized vectors. To find the angle of rotation, normalize the |
two vectors. The cosine of the desired angle between the vectors is equal to the dot product of
normalized vectors. The angle of rotation around the axis given by the cross product is always |
and 180 degrees. (SAppendix Efor definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of |
product is not very accurate, especially for small angles. But it should work well enough to get'y

started.
Creating a Custom Utility Routine
Advanced

For some specialized applications, you might want to define your own transformation routine. S
is rarely done and in any case is a fairly advanced topic, it's left mostly as an exercise for the re
following exercises suggest two custom viewing transformations that might be useful.

Try This

® Suppose you're writing a flight simulator and you’d like to display the world from the point «
view of the pilot of a plane. The world is described in a coordinate system with the origin o
runway and the plane at coordinatesy(2. Suppose further that the plane has sootfiepitch,
andheading(these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

voi d pil otVi ew{ GLdoubl e pl anex, G.doubl e pl aney,
GLdoubl e pl anez, G.double roll
GLdoubl e pitch, G.doubl e headi ng)

{

gl Rotated(roll, 0.0, 0.0, 1.0);

gl Rotated(pitch, 0.0, 1.0, 0.0);

gl Rot at ed(heading, 1.0, 0.0, 0.0);

gl Transl at ed(- pl anex, -planey, -planez);
}

® Suppose your application involves orbiting the camera around an object that’s centered at
origin. In this case, you'd like to specify the viewing transformation by using polar coordine
Let thedistancevariable define the radius of the orbit, or how far the camera is from the ori
(Initially, the camera is movedistanceunits along the positiveaxis.) Theazimuthdescribes the
angle of rotation of the camera about the object irxthelane, measured from the positiaxis
Similarly, elevationis the angle of rotation of the camera in yheplane, measured from the
positivez-axis. Finally twist represents the rotation of the viewing volume around its line of

Show that the following routine could serve as the viewing transformation:

voi d pol ar Vi ew{ GLdoubl e di stance, G.double tw st,
GLdoubl e el evati on, G.doubl e azi nut h)

{
gl Transl ated(0.0, 0.0, -distance);
gl Rotated(-twist, 0.0, 0.0, 1.0);
gl Rot at ed(-el evation, 1.0, 0.0, 0.0);
gl Rot ated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the corre
modeling and viewing transformations are applied. This section explains how to define the desil
projection matrix, which is also used to transform the vertices in your scene. Before you issue a
transformation commands described in this section, remember to call

gl Matri xMode(GL_PRQIECTI ON) ;
gl Loadl dentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that
avoid compound projection transformations. Since each projection transformation command co
describes a particular transformation, typically you don’t want to combine a projection transform
with another transformation.

The purpose of the projection transformation is to defiievaing volumewhich is used in two ways.
The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects ar
out of the final image. You can think of the viewpoint we’ve been talking about as existing at on
the viewing volume. At this point, you might want to rereddimple Example: Drawing a Cub&dr
its overview of all the transformations, including projection transformations.

Per spective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an
from the camera, the smaller it appears in the final image. This occurs because the viewing volt
perspective projection is a frustum of a pyramid (a truncated pyramid whose top has been cut o
plane parallel to its base). Objects that fall within the viewing volume are projected toward the a
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear |
because they occupy a proportionally larger amount of the viewing volume than those that are f
away, in the larger part of the frustum. This method of projection is commonly used for animatic
visual simulation, and any other applications that strive for some degree of realism because it's
to how our eye (or a camera) works.

The command to define a frustughk-rustum(), calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall t
theviewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its tc
its base correspond to the six clipping planes of the viewing volume, as shbigana 3-13 Objects ¢
parts of objects outside these planes are clipped from the final image. Ngi&thatum() doesn’t
require you to define a symmetric viewing volume.

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdoubleleft, GLdoubleright, GLdoublebottom

GLdoubletop, GLdoublenear, GLdoublefar);
Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameté&; pottom-near) and fight, top, -neay
specify theX, y, 2 coordinates of the lower-left and upper-right corners of the near clipping
plane;nearand far give the distances from the viewpoint to the near and far clipping plane:
They should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn’'t necessarily aligned w1éxithe
For example, you can ugt-rustum() to draw a picture as if you were looking through a rectangul
window of a house, where the window was above and to the right of you. Photographers use st
viewing volume to create false perspectives. You might use it to have the hardware calculate i
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an
that has twice the resolution of your screen, draw the same picture four times, each time using
frustum to cover the entire screen with one-quarter of the image. After each quarter of the imag
rendered, you can read the pixels back to collect the data for the higher-resolution imaghafeet
for more information about reading pixel data.)

Although it's easy to understand conceptualfirustum() isn't intuitive to use. Instead, you might t
the Utility Library routinegluPer spective(). This routine creates a viewing volume of the same she
glFrustum() does, but you specify it in a different way. Rather than specifying corners of the nee
clipping plane, you specify the angle of the field of view (&THgr; , or thetBigare 3-14 in they

direction and the aspect ratio of the width to heighf) ((For a square portion of the screen, the asf
ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the
sight, as shown ifigure 3-14 You also specify the distance between the viewpoint and the near

clipping planes, thereby truncating the pyramid. Notedhe®er spective() is limited to creating
frustums that are symmetric in both theandy-axes along the line of sight, but this is usually what
want.

- near L

-

far

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdoublefovy, GLdoubleaspect

GLdoublenear, GLdoublefar);
Creates a matrix for a symmetric perspective-view frustum and multiplies the current matri
fovyis the angle of the field of view in tka plane; its value must be in the range [0.0,180.0]
aspects the aspect ratio of the frustum, its width divided by its henglat: and far values the
distances between the viewpoint and the clipping planes, along the neggtisge They should
always be positive.

Just as withlglFrustum(), you can apply rotations or translations to change the default orientation
viewing volume created byluPer spective(). With no such transformations, the viewpoint remains
the origin, and the line of sight points down the negatiagis.

With gluPer spective(), you need to pick appropriate values for the field of view, or the image ma
distorted. For example, suppose you're drawing to the entire screen, which happens to be 11 in
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screer
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.)
is farther from the screen, as it usually is, the perspective doesn’t look right. If your drawing are:
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view
out how far your eye normally is from the screen and how big the window is, and calculate the ¢
window subtends at that size and distance. It's probably smaller than you would guess. Anothel
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimet
which is a very wide-angle lens. (S8eoubleshooting Transformationfir more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to dc
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches
kilometers, or leagues, it's up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.
Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more inf
a box (sed-igure 3-15%. Unlike perspective projection, the size of the viewing volume doesn’t cha
from one end to the other, so distance from the camera doesn’t affect how large an object appe
type of projection is used for applications such as creating architectural blueprints and compute
design, where it’s crucial to maintain the actual sizes of objects and angles between them as th
projected.

)ton
AL
laﬂ—Sb
- A
ﬁ‘e;rd 4L rlght
vlewpoint
; viewing valume
botiom E 5
near far

Figure 3-15: Orthographic Viewing Volume

The commandg)lOrtho() creates an orthographic parallel viewing volume. As giinustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdoubleleft, GLdoubleright, GLdoublebottom

GLdoubletop, GLdoublenear, GLdoublefar);
Creates a matrix for an orthographic parallel viewing volume and multiplies the current ma
it. (left, bottom, -negrand ight, top, -neaj are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectsfe]y. (
bottom, -faj and ¢ight, top, -far) are points on the far clipping plane that are mapped to the
respective corners of the viewport. Bagmar and far can be positive or negative.

With no other transformations, the direction of projection is parallel te-&éixés, and the viewpoint
faces toward the negatizeaxis. Note that this means that the values passed farf@ndnear are usel
as negative values if these planes are in front of the viewpoint, and positive if they’re behind the
viewpoint.

For the special case of projecting a two-dimensional image onto a two-dimensional screen, use
Utility Library routinegluOrtho2D(). This routine is identical to the three-dimensional version,
glOrtho(), except that all the coordinates for objects in the scene are assumed to lie between -1
1.0. If you're drawing two-dimensional objects using the two-dimensional vertex commandszall
coordinates are zero; thus, none of the objects are clipped becauseoidhess.

void gluOrtho2D(GLdoubleleft, GLdoubleright,

GLdoublebottom GLdoubletop);
Creates a matrix for projecting two-dimensional coordinates onto the screen and multiplies
current projection matrix by it. The clipping region is a rectangle with the lower-left corner i
(left, bottom and the upper-right corner atight, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and proj
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes
those that define the sides and ends of the viewing volume. You can specify additional clipping
and locate them wherever you choose. (3eklitional Clipping Planesfor information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that ¢
clipped.

Viewport Transfor mation

Recalling the camera analogy, you know that the viewport transformation corresponds to the st
where the size of the developed photograph is chosen. Do you want a wallet-size or a poster-si
photograph? Since this is computer graphics, the viewport is the rectangular region of the windc
the image is drawrkigure 3-16shows a viewport that occupies most of the screen. The viewport
measured in window coordinates, which reflect the position of pixels on the screen relative to th
lower-left corner of the window. Keep in mind that all vertices have been transformed by the mc
and projection matrices by this point, and vertices outside the viewing volume have been clippe

e

Figure 3-16 : Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However
default the viewport is set to the entire pixel rectangle of the window that’s opened. You use the
glViewport() command to choose a smaller drawing region; for example, you can subdivide the
to create a split-screen effect for multiple views in the same window.

void glViewport(GLint x, GLinty, GLsizewidth, GLsizeiheighi;

Defines a pixel rectangle in the window into which the final image is mappedx, Wh@dramete
specifies the lower-left corner of the viewport, andth andheightare the size of the viewport
rectangle. By default, the initial viewport values abe(, winWidth, winHeight wherewinWidth
andwinHeightare the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If t
ratios are different, the projected image will be distorted when mapped to the viewport, as show
Figure 3-17 Note that subsequent changes to the size of the window don’t explicitly affect the vi
Your application should detect window resize events and modify the viewport appropriately.

undistorted distorted

Figure 3-17 : Mapping the Viewing Volume to the Viewport

In Figure 3-17 the left figure shows a projection that maps a square image onto a square viewpc
these routines:

gl uPerspective(fovy, 1.0, near, far);
gl Vi ewport (0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewp
the projection is unchanged. The image appears compressed aleraxibe

gl uPer spective(fovy, 1.0, near, far);
gl Viewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gl uPer spective(fovy, 2.0, near, far);
gl Vi ewport (0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might di

object with different projection and/or viewing transformations for each viewport. To create two
side-by-side viewports, you might issue these commands, along with the appropriate modeling,
and projection transformations:

gl Viewport (0, 0, sizex/2, sizey);

gl Vi ewport (sizex/2, . 0, sizex/2, sizey);
The Transformed Depth Coordinate

The depthZ) coordinate is encoded during the viewport transformation (and later stored in the di
buffer). You can scalevalues to lie within a desired range with thBepthRange() command.
(Chapter 1@iscusses the depth buffer and the corresponding uses for the depth coordinatex) Ur
andy window coordinatesg, window coordinates are treated by OpenGL as though they always re
from 0.0 to 1.0.

void glDepthRange(GLclampdnear, GLclampdfar);
Defines an encoding farcoordinates that's performed during the viewport transformation. T
nearand far values represent adjustments to the minimum and maximum values that can |
in the depth buffer. By default, they’re 0.0 and 1.0, respectively, which work for most appli
These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (likedhdy coordinates) is subject to
perspective division by th& coordinate. As the transformed depth coordinate moves farther awa
the near clipping plane, its location becomes increasingly less precis€idGexe3-18)

depth coordinats spacing

Figure 3-18 : Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transforn
coordinate, especially depth-buffering, which is used for hidden surface removal.

Troubleshooting Transfor mations

It's pretty easy to get a camera pointed in the right direction, but in computer graphics, you hav¢
specify position and direction with coordinates and angles. As we can attest, it'’s all too easy to

the well-known black-screen effect. Although any number of things can go wrong, often you get
effect - which results in absolutely nothing being drawn in the window you open on the screen -
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar proble
arises if you don’t choose a field of view that’'s wide enough to view your objects but narrow enc
they appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you're dr
your objects with a color that's different from the color with which you're clearing the scree
Make sure that whatever states you're using (such as lighting, texturing, alpha blending, Ic
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure dist:
the viewpoint and that (by default) you're looking down the negatasas. Thus, if the near val
is 1.0 and the far 3.0, objects must haeeordinates between -1.0 and -3.0 in order to be vis
To ensure that you haven't clipped everything out of your scene, temporarily set the near ¢
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alte
appearance for operations such as depth-buffering and fog, but it might uncover inadverte
clipped objects.

3. Determine where the viewpoint is, in which direction you're looking, and where your object
It might help to create a real three-dimensional space - using your hands, for instance - to
these things out.

4. Make sure you know where you’re rotating about. You might be rotating about some arbitr
location unless you translated back to the origin first. It's OK to rotate about any point unle
you’re expecting to rotate about the origin.

5. Check your aim. UsgluL ookAt() to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and gb€ransate* () as a viewing transformation to move the
camera far enough in tlzadirection only so that the objects fall within the viewing volume. O
you’'ve managed to make your objects visible, try to change the viewing volume increment
achieve the exact result you want, as described next.

Even after you’'ve aimed the camera in the correct direction and you can see your objects, they
appear too small or too large. If you're usgigPer spective(), you might need to alter the angle
defining the field of view by changing the value of the first parameter for this command. You car
trigonometry to calculate the desired field of view given the size of the object and its distance fr
viewpoint: The tangent of half the desired angle is half the size of the object divided by the diste
the object (se€igure 3-19. Thus, you can use an arctangent routine to compute half the desired
Example 3-3assumes such a routiraan?2(), which calculates the arctangent given the length of tr
opposite and adjacent sides of a right triangle. This result then needs to be converted from radi
degrees.

Distanes ————|— =

Figure 3-19 : Using Trigonometry to Calculate the Field of View

Example 3-3: Calculating Field of View

#define Pl 3.1415926535

doubl e cal cul at eAngl e(doubl e si ze, doubl e di stance)

{
doubl e radt heta, degtheta;

r adt het a 2.0 * atan2 (size/2.0, distance);
degt het a (180.0 * radtheta) / PI
return (degtheta);

}

Of course, typically you don’t know the exact size of an object, and the distance can only be de
between the viewpoint and a single point in your scene. To obtain a fairly good approximate val
the bounding box for your scene by determining the maximum and minknyrandz coordinates of
all the objects in your scene. Then calculate the radius of a bounding sphere for that box, and u
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equationsx<e3, 5 ≤y
≤ 7, and -5 &lez ≤ 5. Then the center of the bounding box is (1, 6, 0), and the radius of a
bounding sphere is the distance from the center of the box to any corner - say (3, 7, 5) - or

Jo e 76245 0 = JF0= 5477

If the viewpoint is at (8, 9, 10), the distance between it and the center is

Jo12 4 ©- 62+ (10- 02 = J58 = 12,570

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle
degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if you're try
achieve a realistic image. For example, if your calculations indicate that you need a 179-degree

view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your calc
field of view is too large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you've been creating, loading, and multiplying have onl
the visible tips of their respective icebergs. Each of these matrices is actually the topmost mem|
stack of matrices (sdagure 3-20.

projection

. . madalview ¢ matrix staok

P]S e 4> Wanaticw
3
1] E |
mnop

Figure 3-20 : Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects :
constructed from simpler ones. For example, suppose you're drawing an automobile that has fc
wheels, each of which is attached to the car with five bolts. You have a single routine to draw a
and another to draw a bolt, since all the wheels and all the bolts look the same. These routines
wheel or a bolt in some convenient position and orientation, say centered at the origin with its a
coincident with the axis. When you draw the car, including the wheels and bolts, you want to ca
wheel-drawing routine four times with different transformations in effect each time to position th
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time tran
appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this:

® Draw the car body. Remember where you are, and translate to the right front wheel. Draw
wheel and throw away the last translation so your current position is back at the origin of tl
body. Remember where you are, and translate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successiv
translate to each of the positions that bolts are drawn, throwing away the transformations after ¢
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism f
this sort of successive remembering, translating, and throwing away. All the matrix operations tl
been described so fagliLcadMatrix(), giMultMatrix(), glL oadl dentity() and the commands that

create specific transformation matrices) deal with the current matrix, or the top matrix on the ste
can control which matrix is on top with the commands that perform stack opergtRumiM atrix(),
which copies the current matrix and adds the copy to the top of the stacgkPaphll atrix(), which
discards the top matrix on the stack, as showsgare 3-21 (Remember that the current matrix is
always the matrix on the top.) In effegtPushM atrix() means "remember where you are" and
glPopMatrix() means "go back to where you were."

Figure 3-21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined b
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the to|
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was
second-from-the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calligdPopMatrix() generates an error.

Example 3-4draws an automobile, assuming the existence of routines that draw the car body, a
and a bolt.

Example 3-4 : Pushing and Popping the Matrix

draw wheel _and_bol t s()
{

long i;

dr aw_wheel ();
for(i=0;i<5;i++){
gl Pushiatri x();
gl Rotatef(72.0*i,0.0,0.0,1.0);
gl Transl atef (3.0,0.0,0.0);
draw bol t();
gl PopMat ri x();

}
draw _body and wheel _and_bol ts()
draw _car _body();

gl PushiMatri x();
gl Transl at ef (40, 0, 30); /*move to first wheel position*/

draw wheel _and_bol ts();
gl PopMat ri x();
gl PushMatri x();
gl Transl at ef (40, 0, - 30) ; /*move to 2nd wheel position*/
draw wheel _and_bol ts();
gl PopMat ri x();
C /*draw | ast two wheels sinilarly*/

}

This code assumes the wheel and bolt axes are coincident withttse that the bolts are evenly
spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the fror
are 40 units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in hard
When you push a matrix, you don’t need to copy the current data back to the main process, anc
hardware may be able to copy more than one element of the matrix at a time. Sometimes you n
to keep an identity matrix at the bottom of the stack so that you don’t needdt.callil dentity()
repeatedly.

The Moddview Matrix Stack

As you've seen earlier ifWiewing and Modeling Transformationgfie modelview matrix contains tf
cumulative product of multiplying viewing and modeling transformation matrices. Each viewing t
modeling transformation creates a new matrix that multiplies the current modelview matrix; the |
which becomes the new current matrix, represents the composite transformation. The modelvie
stack contains at least thirty-two 4 x 4 matrices; initially, the topmost matrix is the identity matrix
implementations of OpenGL may support more than thirty-two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH GLint * params.

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the vi
volume. Generally, you don’t want to compose projection matrices, so yowlitsae | dentity()
before performing a projection transformation. Also for this reason, the projection matrix stack n
only two levels deep; some OpenGL implementations may allow more than two 4 x 4 matrices.
the stack depth, callGetlntegerv(GL_MAX PROJECTION_STACK DEPTHGLInt * params.

One use for a second matrix in the stack would be an application that needs to display a help w
with text in it, in addition to its normal window showing a three-dimensional scene. Since text is
easily positioned with an orthographic projection, you could change temporarily to an orthograp
projection, display the help, and then return to your previous projection:

gl Mat ri xMode(GL_PRQIECTI ON) ;

gl PushMatri x(); /*save the current projection*/
gl Loadl dentity();
glOtho(...); /*set up for displaying hel p*/

di spl ay_the_hel p():
gl PopMatri x();

Note that you'd probably have to also change the modelview matrix appropriately.

Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbit
projective transformations. For example, the OpenGL and its Utility Library have no built-in mec
for two-point perspective. If you were trying to emulate the drawings in drafting texts, you might
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far
can define up to six additional clipping planes to further restrict the viewing volume, as sHagurée
3-22 This is useful for removing extraneous objects in a scene - for example, if you want to disg
cutaway view of an object.

Each plane is specified by the coefficients of its equatiorrB&+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping
becomes the intersection of the viewing volume and all half-spaces defined by the additional cli
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

N S
e e
o Y T
i o _
@k,__:;’:___ — .:_\ lv/T
] ——_,=_—.~_—_:._______:T__ - \ \ \“\\
”““—-E—:::_——aﬂ N

Figure 3-22 : Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenumplang const GLdoubl&equation);
Defines a clipping plane. Theguationargument points to the four coefficients of the plane
equation, A+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that satisfy (A E
D)M-1 (xe ye ze we)T >= 0 lie in the half-space defined by the plane, where M is the curre
modelview matrix at the tingtClipPlang() is called. All points not in this half-space are clippe
away. Theplaneargument is GL_CLIP_PLANEwherei is an integer specifying which of the
available clipping planes to definieis a number between 0 and one less than the maximum
number of additional clipping planes.

You need to enable each additional clipping plane you define:

gl Enabl e(GL_CLI P_PLANEi) ;

You can disable a plane with
gl Di sabl e(G._CLI P_PLANEI) ;

All implementations of OpenGL must support at least six additional clipping planes, although so
implementations may allow more. You can gieetlntegerv() with GL_MAX_CLIP_PLANES to fin
how many clipping planes are supported.

Note: Clipping performed as a result giClipPlane() is done in eye coordinates, not in clip

coordinates. This difference is noticeable if the projection matrix is singular (that is, a real projec
matrix that flattens three-dimensional coordinates to two-dimensional ones). Clipping performec
coordinates continues to take place in three dimensions even when the projection matrix is sing

A Clipping Plane Code Example

Example 3-5enders a wireframe sphere with two clipping planes that slice away three-quarters
original sphere, as shown kigure 3-23

Figure 3-23 : Clipped Wireframe Sphere

Example 3-5 : Wireframe Sphere with Two Clipping Planes: clip.c

#i ncl ude <G/ gl . h>
#i ncl ude <@/ gl u. h>
#i nclude <@/ glut. h>

void init(void)

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)

G.doubl e egn[4] = {0.0, 1.0, 0.0, 0.0};
GL.doubl e egn2[4] = {1.0, 0.0, 0.0, 0.0};

gl G ear (G._COLOR BUFFER BIT);
gl Color3f (1.0, 1.0, 1.0);

gl PushiMatri x();

gl Transl atef (0.0, 0.0, -5.0);

[* clip lower half -- y <0 */
gl dipPlane (G._CLI P_PLANEO, eqn);
gl Enabl e (G._CLI P_PLANEO);

/* clip left half -- x <0 */
gl dipPlane (G._CLI P_PLANE1l, eqn2);
gl Enabl e (GL_CLI P_PLANEl);

gl Rotatef (90.0, 1.0, 0.0, 0.0);
gl ut WreSphere(1.0, 20, 16);
gl PopMat ri x();

gl Flush ();
}
void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity ();
gl uPerspective(60.0, (G.float) w (Gfloat) h, 1.0, 20.0);
gl Matri xMode (GL_MODELVI EW ;
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutinitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlni t WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}
Try This

® Try changing the coefficients that describe the clipping planEgample 3-5

® Try calling a modeling transformation, suchgiRotate* (), to affectglClipPlane(). Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular resul
two examples discussed are a solar system, in which objects need to rotate on their axes as we
orbit around each other, and a robot arm, which has several joints that effectively transform coc
systems as they move relative to each other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, bot
the same sphere-drawing routine. To write this program, you need gtRatate* () for the revolution
of the planet around the sun and for the rotation of the planet around its own axis. You also nee

glTrandlate*() to move the planet out to its orbit, away from the origin of the solar system. Reme
that you can specify the desired size of the two spheres by supplying the appropriate argument:
glutWireSpherg() routine.

To draw the solar system, you first want to set up a projection and a viewing transformation. Fo
example gluPer spective() andgluL ookAt() are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed co
system, which is where the sphere routine places it. Thus, drawing the sun doesn’t require tran:
you can us@lRotate* () to make the sun rotate about an arbitrary axis. To draw a planet rotating
the sun, as shown Figure 3-24 requires several modeling transformations. The planet needs to |
about its own axis once a day. And once a year, the planet completes one revolution around the

AT ~ ™ Rotate (pay)
/
‘ .-f"/ \\ CE ﬁlﬂﬂl\J‘ N
H '\-\. A E"\-u..\
(sun | Translate " _

— N

A Revalva (Vear)
AN e
Figure 3-24 : Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordi
system. An initiaglRotate* () rotates the local coordinate system that initially coincides with the g
coordinate system. NexdlTranslate*() moves the local coordinate system to a position on the ple
orbit; the distance moved should equal the radius of the orbit. Thus, thegifttoshte* () actually
determines where along the orbit the planet is (or what time of year it is).

A secondylRotate* () rotates the local coordinate system around the local axes, thus determining
time of day for the planet. Once you've issued all these transformation commands, the planet ci
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is <
Example 3-6

gl PushiMat ri x();

glutVVreSphere(20, 16); /* draw sun */

gl Rotatef ((G.fl o t) year, 0.0, 1.0, 0.0);

gl Transl atef (2.0, 0.0, 0.0);

gl Rotatef ((G.floa t) day, 0.0, 1.0, 0.0);

gl ut WreSphere(0 10, 8); /* draw smal | er pl anet */

gl PopMat ri x();
Example 3-6 : Planetary System: planet.c

#i nclude <@./gl. h>
#i ncl ude <@/ gl u. h>

#i nclude <@/ gl ut. h>

static int year = 0, day = O;

VOi

{

voi

VOi

VOi

}

i nt

d init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

d di splay(void)

gl C ear
gl Col or3f (1.0, 1.0, 1.0);

gl PushiMatri x();
gl ut WreSphere(1.0,
gl Rotatef ((G.float) year,

gl Rotatef ((G.float) day,
gl ut WreSphere(0.2, 10, 8);
gl PopMat ri x();

gl ut SwapBuffers();

d reshape (int w, int h)

gl Viewport (0, O,
gl Loadl dentity ();
gl uPer specti ve(60. 0,
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

gl uLookAt (0.0,

d keyboard (unsigned char

switch (key) {
case ‘d’:
day = (day + 10)
gl ut Post Redi spl ay() ;
br eak;
case ‘D :

day = (day - 10) % 360:

gl ut Post Redi spl ay() ;
br eak;

case ‘y’:
year = (year + 5)
gl ut Post Redi spl ay() ;
br eak;

case ‘'Y':
year = (year - 5)
gl ut Post Redi spl ay() ;
br eak;

defaul t:
br eak;

}

mai n(i nt argc,

(GL_COLOR BUFFER BI T);

20, 16);
0.0, 1.0, 0.0);
gl Transl atef (2.0, 0.0, 0.0);

0.0, 1.0, 0.0);

(GLsizei) w,
gl Matri xMode (GL_PRQIECTI ON);

(GLfloat) w (G.float) h,

0.0, 5.0, 0.0,

key,

% 360;

% 360;

% 360;

char** argv)

/* draw sun */

/* draw smal |l er planet */

(GLsizei) h);
1.0, 20.0);
0.0, 0.0, 0.0, 1.0, 0.0);

int x, int y)

glutinit(&rgc, argv);
glutlinitD spl ayMbde (G.UT_DOUBLE | GLUT_RGB)
gl utl ni t WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}
Try This

® Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() andglPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you’re going to draw several moons around
you need to save the coordinate system prior to positioning each moon and restore the co
system after each moon is drawn.

® Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segme
arm should be connected with pivot points at the shoulder, elbow, or otherkagote 3-25shows a
single joint of such an arm.

Figure 3-25: Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriat
modeling transformations to orient each segment. Since the origin of the local coordinate syster
initially at the center of the cube, you need to move the local coordinate system to one edge of
Otherwise, the cube rotates about its center rather than the pivot point.

After you callglTrandate*() to establish the pivot point agbRotate* () to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it is drav
glPushMatrix() andglPopMatrix() restrict the effect afl Scale* (). Here’s what your code might loo
like for this first segment of the arm (the entire program is showxample 3-7-

gl Transl atef (
gl Rotatef ((GL
gl Transl atef (

- 0.0, O. O)
fl o) sho Ide 0.0, 0.0, 1.0);
1.0, 0.0, 0.0);

gl Pushiatri x();

gl Scal ef (2.0, 0.4, 1.0);
gl ut WreCube (1.0);

gl PopMat ri x();

To build a second segment, you need to move the local coordinate system to the next pivot poi
the coordinate system has previously been rotated;dles is already oriented along the length of t
rotated arm. Therefore, translating alongstrexis moves the local coordinate system to the next p
point. Once it’s at that pivot point, you can use the same code to draw the second segment as)
for the first one. This can be continued for an indefinite number of segments (shoulder, elbow, v
fingers).

gl Transl atef (1.0, 0.0, 0.0);
gl Rotatef ((G.float) elbow, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushMatri x()
gl Scal ef (2.0, 0.4, 1.0);
gl ut WreCube (1.0);

gl PopMat ri x();

Example 3-7 : Robot Arm: robot.c

#i ncl ude <G/ gl . h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G/ glut. h>

static int shoulder = 0, el bow = 0;
void init(void)

gl earColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
voi d di spl ay(voi d)
{

gl dear (G_COLOR BUFFER BIT);

gl PushiMatri x();

gl Transl atef (-1.0, 0.0, 0.0);

gl Rotatef ((G.float) shoulder, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushiMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl ut WreCube (1.0);

gl PopMat ri x();

gl Translatef (1.0, 0.0, 0.0);

gl Rotatef ((G.float) elbow, 0.0, 0.0, 1.0);
gl Transl atef (1.0, 0.0, 0.0);

gl PushiMatri x();

gl Scalef (2.0, 0.4, 1.0);

gl ut WreCube (1.0);

gl PopMat ri x();

gl PopMat ri x();
gl ut SwapBuf fers();
}

voi d reshape (int w, int h)

gl Viewport (0, 0, (CGLsizei) w, (Gsizei) h);

gl Matri xMode (GL_PRQIECTI ON);

gl Loadl dentity ();

gl uPerspective(65.0, (Gfloat) w (Gfloat) h, 1.0, 20.0);
gl Mat ri xMode(GL_MODELVI EW ;

gl Loadl dentity();

gl Transl atef (0.0, 0.0, -5.0);

}

voi d keyboard (unsigned char key, int x, int y)

switch (key) {

case ‘s’: /* s key rotates at shoul der */
shoul der = (shoul der + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case 'S':
shoul der = (shoul der - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case ‘e': /* e key rotates at el bow */
el bow = (el bow + 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

case ‘E':
el bow = (el bow - 5) % 360;
gl ut Post Redi spl ay() ;
br eak;

def aul t:
br eak;

}
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutlinitD splayMbde (G.UT_DOUBLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);

gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Keyboar dFunc(keyboar d) ;

gl ut Mai nLoop() ;

return O;

}
Try This

® Modify Example 3-%o add additional segments onto the robot arm.

® Modify Example 3-7o add additional segments at the same position. For example, give the
arm several "fingers" at the wrist, as showirigure 3-26 Hint: UseglPushMatrix() and
glPopMatrix() to save and restore the position and orientation of the coordinate system at
wrist. If you’re going to draw fingers at the wrist, you need to save the current matrix prior-
positioning each finger and restore the current matrix after each finger is drawn.

Figure 3-26 : Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A commc
situation is when an application user utilizes the mouse to choose a location in three dimension
mouse returns only a two-dimensional value, which is the screen location of the cursor. Therefc
application will have to reverse the transformation process to determine from where in
three-dimensional space this screen location originated.

The Utility Library routinegluUnPr oject() performs this reversal of the transformations. Given the
three-dimensional window coordinates for a location and all the transformations that affected th
gluUnProj ect() returns the world coordinates from where it originated.

int gluUnProject(GLdoublewinx, GLdoublewiny, GLdoublewinz const GLdoublenodelMatrix[16],

const GLdoublgrojMatrix[16], const GLintviewport[4], GLdouble*objx, GLdouble*objy, GLdouble

*0bj2);
Map the specified window coordinategrix, winy, winginto object coordinates, using
transformations defined by a modelview matnpoflelMatriy, projection matrix projMatrix),
and viewport yiewpor). The resulting object coordinates are returnealjx, objy,andobjz The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewpc
eliminate depth values that fall outsidegbtbepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two-dimensiona
location could have originated from anywhere on an entire line in three-dimensional space. To
disambiguate the resutfluUnProject() requires that a window depth coordinatén@) be provided an
thatwinz be specified in terms gfDepthRange(). For the default values gfDepthRange(), winzat
0.0 will request the world coordinates of the transformed point at the near clipping planeyinhde
1.0 will request the point at the far clipping plane.

Example 3-8lemonstrategluUnProject() by reading the mouse position and determining the
three-dimensional points at the near and far clipping planes from which it was transformed. The

computed world coordinates are printed to standard output, but the rendered window itself is jus

Example 3-8 . Reversing the Geometric Processing Pipeline: unproject.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl u. h>
#i ncl ude <G./glut. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

voi d di spl ay(voi d)
{
gl G ear (G._COLOR BUFFER BIT);

gl Fl ush();
}
void reshape(int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode(GL_PROJECTI ON) ;
gl Loadl dentity();
gl uPerspective (45.0, (G.float) w (G.float) h, 1.0, 100.0);
gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();
}
voi d nouse(int button, int state, int x, int y)
{

GLint viewport[4];

GLdoubl e nvrmatri x[16], projmatrix[16];

Gint realy; [/* OpenG y coordinate position */

GLdouble wx, wy, wz; /* returned world x, y, z coords */

switch (button) {
case GLUT_LEFT_BUTTON
if (state == GLUT_DOWN) ({

gl Get I ntegerv (G._VI EWPORT, viewport);

gl Get Doubl ev (GL_MODELVI EW MATRI X, nvnatr|x)

gl Get Doubl ev (G._ PRQIECTI ON_MATRI X, prOJnatr|x)

/* note viewport[3] is height of windowin pixels */

realy =V|wmmt[$ - (&int) y - 1;

printf ("Coordinates at cursor are (%id, %d)\n",
X, realy);

gl uUnProj ect ((G.double) x, (G.double) realy, 0.0,
nvmatri x, projmatrix, viewport, &w, &wy, &wz);

printf ("World coords at z=0.0 are (%, %, %)\n",
WX, Wy, wz);

gl uUnProj ect ((G.double) x, (G.double) realy, 1.0,
nvmatri x, projmatrix, viewport, &w, &wy, &wz);

printf ("World coords at z=1.0 are (%, %, %)\n",
WX, Wy, wz);

br eak;
case GLUT_RI GHT_BUTTON
if (state == G.UT_DOWN)
exit(0);
br eak;
defaul t:
br eak;

}

int main(int argc, char** argv)
{
glutinit(&rgc, argv);
glutinitD splayMode (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (500, 500);
gl utlni t WndowPosition (100, 100);
gl ut Creat eW ndow (argv[0]);
gl ut Di spl ayFunc(di spl ay);
gl ut ReshapeFunc(reshape);
gl ut MouseFunc(nouse) ;
gl ut Mai nLoop() ;
return O;

}

gluProject() is another Utility Library routine, which is relatedgimUnPr oj ect().gluProject() mimics
the actions of the transformation pipeline. Given three-dimensional world coordinates and all th
transformations that affect thegluPr oject() returns the transformed window coordinates.

int gluProject(GLdoubleobjx, GLdoubleobjy, GLdoubleobjz, const GLdoublenodelMatrix[16],const
GLdoubleprojMatrix[16], const GLintviewport[4], GLdouble*winx, GLdouble*winy, GLdouble
*Winz);
Map the specified object coordinatebjx, objy, objzinto window coordinates, using
transformations defined by a modelview matnpo{lelMatriy, projection matrix projMatrix),
and viewport yiewpor). The resulting window coordinates are returneavinx, winy,andwinz
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

OpenGL Programming Guide (Addison-Wesley
Publishing Company)

