|+ OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 2
State Management and Drawing Geometric
Objects

Chapter Objectives
After reading this chapter, you’ll be able to do the following:
® Clear the window to an arbitrary color
® Force any pending drawing to complete
® Draw with any geometric primitive - points, lines, and polygons - in two or three dimension
® Turn states on and off and query state variables
® Control the display of those primitives - for example, draw dashed lines or outlined polygol
® Specify normal vectors at appropriate points on the surface of solid objects
® Usevertex arraydo store and access a lot of geometric data with only a few function calls
® Save and restore several state variables at once
Although you can draw complex and interesting pictures using OpenGL, they’re all constructed
small number of primitive graphical items. This shouldn’t be too surprising - look at what Leonair
Vinci accomplished with just pencils and paintbrushes.
At the highest level of abstraction, there are three basic drawing operations: clearing the windo\
drawing a geometric object, and drawing a raster object. Raster objects, which include such thit
two-dimensional images, bitmaps, and character fonts, are covezédpter 8In this chapter, you
learn how to clear the screen and to draw geometric objects, including points, straight lines, anc
polygons.
You might think to yourself, "Wait a minute. I've seen lots of computer graphics in movies and o
television, and there are plenty of beautifully shaded curved lines and surfaces. How are those
all OpenGL can draw are straight lines and flat polygons?" Even the image on the cover of this
includes a round table and objects on the table that have curved surfaces. It turns out that all th

lines and surfaces you've seen are approximated by large numbers of little flat polygons or stral
in much the same way that the globe on the cover is constructed from a large set of rectangular

The globe doesn’t appear to have a smooth surface because the blocks are relatively large con
the globe. Later in this chapter, we show you how to construct curved lines and surfaces from Ic
small geometric primitives.

This chapter has the following major sections:

® "A Drawing Survival Kit"explains how to clear the window and force drawing to be comple:
also gives you basic information about controlling the color of geometric objects and desct
coordinate system.

® "Describing Points, Lines, and Polygorssfows you what the set of primitive geometric objec
and how to draw them.

® "Basic State Managemerdéscribes how to turn on and off some states (modes) and query
variables.

® "Displaying Points, Lines, and PolygoreXplains what control you have over the details of h
primitives are drawn - for example, what diameter points have, whether lines are solid or o
and whether polygons are outlined or filled.

® "Normal Vectors'discusses how to specify normal vectors for geometric objects and (briefl
what these vectors are for.

® "Vertex Arrays"shows you how to put lots of geometric data into just a few arrays and how
only a few function calls, to render the geometry it describes. Reducing function calls may
increase the efficiency and performance of rendering.

® "Attribute Groups'reveals how to query the current value of state variables and how to sav
restore several related state values all at once.

® "Some Hints for Building Polygonal Models of Surfacegplores the issues and techniques
involved in constructing polygonal approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless you ¢
otherwise, every time you issue a drawing command, the specified object is drawn. This might ¢
obvious, but in some systems, you first make a list of things to draw. When your list is complete
tell the graphics hardware to draw the items in the list. The first style is taleediate-modgraphics
and is the default OpenGL style. In addition to using immediate mode, you can choose to save

commands in a list (calleddasplay lis) for later drawing. Immediate-mode graphics are typically e
to program, but display lists are often more effici@itapter #ells you how to use display lists and

why you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color of object:
are to be drawn, and force drawing to be completed. None of these subjects has anything to do
geometric objects in a direct way, but any program that draws geometric objects has to deal wit

issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts out wt
all you have to do is draw the picture. On a computer, the memory holding the picture is usually
with the last picture you drew, so you typically need to clear it to some background color before
start to draw the new scene. The color you use for the background depends on the application.
word processor, you might clear to white (the color of the paper) before you begin to draw the t¢
you're drawing a view from a spaceship, you clear to the black of space before beginning to dra
stars, planets, and alien spaceships. Sometimes you might not need to clear the screen at all; fi
example, if the image is the inside of a room, the entire graphics window gets covered as you d
the walls.

At this point, you might be wondering why we keep talking alstearingthe window - why not just
draw a rectangle of the appropriate color that’s large enough to cover the entire window? First,
command to clear a window can be much more efficient than a general-purpose drawing comm
addition, as you'll see i@hapter 30penGL allows you to set the coordinate system, viewing posi
and viewing direction arbitrarily, so it might be difficult to figure out an appropriate size and loca
a window-clearing rectangle. Finally, on many machines, the graphics hardware consists of mul
buffers in addition to the buffer containing colors of the pixels that are displayed. These other bt
must be cleared from time to time, and it's convenient to have a single command that can clear
combination of them. (Se@hapter 1Gor a discussion of all the possible buffers.)

You must also know how the colors of pixels are stored in the graphics hardware krinipfaass
There are two methods of storage. Either the red, green, blue, and alpha (RGBA) values of a pi
be directly stored in the bitplanes, or a single index value that references a color lookup table is
RGBA color-display mode is more commonly used, so most of the examples in this book use it.
Chapter 4or more information about both display modes.) You can safely ignore all references f
values untilChapter 6

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
gl G ear (G._COLOR BUFFER BIT);

The first line sets the clearing color to black, and the next command clears the entire window to
current clearing color. The single parametegl@ear () indicates which buffers are to be cleared. Ir
this case, the program clears only the color buffer, where the image displayed on the screen is
Typically, you set the clearing color once, early in your application, and then you clear the buffe
often as necessary. OpenGL keeps track of the current clearing color as a state variable rather
requiring you to specify it each time a buffer is cleared.

Chapter 4andChapter 1Qalk about how other buffers are used. For now, all you need to know is
clearing them is simple. For example, to clear both the color buffer and the depth buffer, you wc
the following sequence of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
gl C earDept h(1.0);

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

In this case, the call giClear Color () is the same as before, tji€lear Depth() command specifies tl
value to which every pixel of the depth buffer is to be set, and the parametegliCldae() command
now consists of the bitwise OR of all the buffers to be cleared. The following sumnuhG/ ez ()
includes a table that lists the buffers that can be cleared, their names, and the chapter where e
buffer is discussed.

void glClearColor(GLclampfred, GLclampfgreen GLclampfblue,

GLclampfalpha);
Sets the current clearing color for use in clearing color buffers in RGBA modeCli@peer 4for
more information on RGBA mode.) Trieel, green blue, andalphavalues are clamped if
necessary to the range [0,1]. The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask;
Clears the specified buffers to their current clearing values.midskargument is a bitwise-OR«
combination of the values listedTiable 2-1

Table 2-1 : Clearing Buffers

Buffer Name Reference
Color buffer GL_COLOR_BUFFER_BIT | Chapter 4
Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer| GL_ACCUM_BUFFER_BIT | Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT| Chapter 10

Before issuing a command to clear multiple buffers, you have to set the values to which each bi
be cleared if you want something other than the default RGBA color, depth value, accumulation
and stencil index. In addition to tigeClear Color () andglClear Depth() commands that set the curre
values for clearing the color and depth buffgr€lear I ndex(), glClear Accum(), andglClear Stencil()
specify thecolor index accumulation color, and stencil index used to clear the corresponding buf
(SeeChapter 4andChapter 1Gor descriptions of these buffers and their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow operation, s
every pixel in the window (possibly millions) is touched, and some graphics hardware allows se
buffers to be cleared simultaneously. Hardware that doesn’t support simultaneous clears perfor
sequentially. The difference between

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

and

gl d ear (GL_COLOR_BUFFER BI T);
gl O ear (GL_DEPTH_BUFFER BI T);

is that although both have the same final effect, the first example might run faster on many mac
certainly won’t run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of the desc
its color. Whenever a particular geometric object is drawn, it's drawn using the currently specifie
coloring scheme. The coloring scheme might be as simple as "draw everything in fire-engine re
might be as complicated as "assume the object is made out of blue plastic, that there’s a yellow
pointed in such and such a direction, and that there’s a general low-level reddish-brown light
everywhere else." In general, an OpenGL programmer first sets the color or coloring scheme ar
draws the objects. Until the color or coloring scheme is changed, all objects are drawn in that cc
using that coloring scheme. This method helps OpenGL achieve higher drawing performance tt
would result if it didn’t keep track of the current color.

For example, the pseudocode

set _current_color(red);
draw_obj ect (A);

draw_obj ect (B);

set _current_col or(green);
set _current_col or (bl ue);
draw _object (C);

draws objects A and B in red, and object C in blue. The command on the fourth line that sets th
color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections devotec
To draw geometric primitives that can be seen, however, you need some basic knowledge of he
the current color; this information is provided in the next paragraphsCtsaster 4andChapter Sor
details on these topics.)

To set a color, use the commagi@olor 3f(). It takes three parameters, all of which are floating-poi
numbers between 0.0 and 1.0. The parameters are, in order, the red, green, @rdgouentsf the
color. You can think of these three values as specifying a "mix" of colors: 0.0 means don't use ¢
that component, and 1.0 means use all you can of that component. Thus, the code

gl Col or3f (1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All zeros mak
in contrast, all ones makes white. Setting all three components to 0.5 yields gray (halfway betw:
and white). Here are eight commands and the colors they would set.

gl Col or3f (0.0, 0.0, 0.0); bl ack

gl Color3f(1.0, 0.0, 0.0); red

gl Color3f(0.0, 1.0, 0.0); green

gl Color3f(1.0, 1.0, 0.0); yel | ow
gl Col or3f (0.0, 0.0, 1.0); bl ue

gl Color3f(1.0, 0.0, 1.0); magent a

gl Color3f(0.0, 1.0, 1.0); cyan

gl Color3f(1.0, 1.0, 0); white

You might have noticed earlier that the routine to set the clearing gisidear Color (), takes four
parameters, the first three of which match the parametegiGotor 3f(). The fourth parameter is the
alpha value; it's covered in detail IBlending" in Chapter 6For now, set the fourth parameter of
glClear Color() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw if'OpenGL Rendering Pipeline" in Chaptemiost modern graphics systems can be
thought of as an assembly line. The main central processing unit (CPU) issues a drawing comn
Perhaps other hardware does geometric transformations. Clipping is performed, followed by sh:
and/or texturing. Finally, the values are written into the bitplanes for display. In high-end archite
each of these operations is performed by a different piece of hardware that's been designed to
its particular task quickly. In such an architecture, there’s no need for the CPU to wait for each «
command to complete before issuing the next one. While the CPU is sending a vertex down the
the transformation hardware is working on transforming the last one sent, the one before that is
clipped, and so on. In such a system, if the CPU waited for each command to complete before i
the next, there could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example, suppose
main program is running elsewhere (on a machine called the client) and that you're viewing the
of the drawing on your workstation or terminal (the server), which is connected by a network to-
client. In that case, it might be horribly inefficient to send each command over the network one
since considerable overhead is often associated with each network transmission. Usually, the ¢
gathers a collection of commands into a single network packet before sending it. Unfortunately,
network code on the client typically has no way of knowing that the graphics program is finishec
drawing a frame or scene. In the worst case, it waits forever for enough additional drawing com
fill a packet, and you never see the completed drawing.

For this reason, OpenGL provides the comngltlish(), which forces the client to send the netwo
packet even though it might not be full. Where there is no network and all commands are truly €
immediately on the serveglFlush() might have no effect. However, if you're writing a program the
you want to work properly both with and without a network, include a cglHaish() at the end of
each frame or scene. Note tigitlush() doesn’t wait for the drawing to complete - it just forces the
drawing to begin execution, thereby guaranteeing that all previous comexauigan finite time evel
if no further rendering commands are executed.

There are other situations wheté&lush() is useful.

® Software renderers that build image in system memory and don’t want to constantly updat
screen.

® Implementations that gather sets of rendering commands to amortize start-up costs. The
aforementioned network transmission example is one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus guaranteeing that t
complete in finite time.

A few commands - for example, commands that swap buffers in double-buffer mode - automati
flush pending commands onto the network before they can occur.

If glFlush() isn’t sufficient for you, tryglFinish(). This command flushes the networkgislush() does
and then waits for notification from the graphics hardware or network indicating that the drawing
complete in the framebuffer. You might need to gisenish() if you want to synchronize tasks - for

example, to make sure that your three-dimensional rendering is on the screen before you use C
PostScript to draw labels on top of the rendering. Another example would be to ensure that the
is complete before it begins to accept user input. After you isgil@rash() command, your graphics
process is blocked until it receives notification from the graphics hardware that the drawing is cc
Keep in mind that excessive useglifinish() can reduce the performance of your application, espe
if you’re running over a network, because it requires round-trip communicat@gfluh() is sufficien
for your needs, use it insteadgbFinish().

void glFinish(void);
Forces all previously issued OpenGL commands to complete. This command doesn’t retu
all effects from previous commands are fully realized.

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, the window system \
send an event to notify you. If you are using GLUT, the notification is automated; whatever rout
been registered tglutReshapeFunc() will be called. You must register a callback function that will

® Reestablish the rectangular region that will be the new rendering canvas
® Define the coordinate system to which objects will be drawn

In Chapter 3you’ll see how to define three-dimensional coordinate systems, but right now, just c
simple, basic two-dimensional coordinate system into which you can draw a few objects. Call
glutReshapeFunc(reshape), wherer eshape() is the following function shown iBExample 2-1

Example 2-1: Reshape Callback Function

void reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Matri xMode (GL_PRQIECTI ON);
gl Loadl dentity ();
gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);

}

The internals of GLUT will pass this function two arguments: the width and height, in pixels, of t
new, moved, or resized windoglViewport() adjusts the pixel rectangle for drawing to be the entii
new window. The next three routines adjust the coordinate system for drawing so that the lowetr
corner is (0, 0), and the upper-right cornemish) (SeeFigure 2-).

To explain it another way, think about a piece of graphing papemvEmelh values inreshape()
represent how many columns and rows of squares are on your graph paper. Then you have to |
on the graph paper. TighuOrtho2D() routine puts the origin, (0, 0), all the way in the lowest, leftrr
square, and makes each square represent one unit. Now when you render the points, lines, anc
in the rest of this chapter, they will appear on this paper in easily predictable squares. (For now
your objects two-dimensional.)

{50, 50)

{0, 0)

Figure 2-1: Coordinate System Defined by w = 50, h =50

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric primitives are
eventually described in terms of theartices- coordinates that define the points themselves, the
endpoints of line segments, or the corners of polygons. The next section discusses how these
are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by thetentéine, and
polygon. The OpenGL meanings are similar, but not quite the same.

One difference comes from the limitations of computer-based calculations. In any OpenGL
implementation, floating-point calculations are of finite precision, and they have round-off errors
Consequently, the coordinates of OpenGL points, lines, and polygons suffer from the same prol

Another more important difference arises from the limitations of a raster graphics display. On st
display, the smallest displayable unit is a pixel, and although pixels might be less than 1/100 of
wide, they are still much larger than the mathematician’s concepts of infinitely small (for points)
infinitely thin (for lines). When OpenGL performs calculations, it assumes points are represente
vectors of floating-point numbers. However, a point is typically (but not always) drawn as a sing
and many different points with slightly different coordinates could be drawn by OpenGL on the ¢
pixel.

Points

A point is represented by a set of floating-point numbers called a vertex. All internal calculations
done as if vertices are three-dimensional. Vertices specified by the user as two-dimensional (th
only x andy coordinates) are assigned eoordinate equal to zero by OpenGL.

Advanced

OpenGL works in the homogeneous coordinates of three-dimensional projective geometry, so f
internal calculations, all vertices are represented with four floating-point coordirages (). If wis
different from zero, these coordinates correspond to the Euclidean three-dimensional\womi(
z/w). You can specify the coordinate in OpenGL commands, but that’s rarely done. ivtb@ordinat:
isn't specified, it's understood to be 1.0. (2gmendix Ffor more information about homogeneous
coordinate systems.)

Lines

In OpenGL, the terrine refers to dine segmentnot the mathematician’s version that extends to
infinity in both directions. There are easy ways to specify a connected series of line segments, «
closed, connected series of segmentskgpae 2-3. In all cases, though, the lines constituting the
connected series are specified in terms of the vertices at their endpoints.

>

Figure 2-2: Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line segme
specified by the vertices at their endpoints. Polygons are typically drawn with the pixels in the ir
filled in, but you can also draw them as outlines or a set of points'P8kgon Details.)

In general, polygons can be complicated, so OpenGL makes some strong restrictions on what ¢
a primitive polygon. First, the edges of OpenGL polygons can’t intersect (a mathematician woul
polygon satisfying this conditionsample polygoj Second, OpenGL polygons mustdoavex
meaning that they cannot have indentations. Stated precisely, a region is convex if, given any t\
in the interior, the line segment joining them is also in the interiorFeee 2-3for some examples ¢
valid and invalid polygons. OpenGL, however, doesn’t restrict the number of line segments mak
the boundary of a convex polygon. Note that polygons with holes can’t be described. They are
nonconvex, and they can’'t be drawn with a boundary made up of a single closed loop. Be awar
you present OpenGL with a nonconvex filled polygon, it might not draw it as you expect. For ins
on most systems no more than the convex hull of the polygon would be filled. On some system:
than the convex hull might be filled.

IO XEQ

Valid Invaltd

Figure 2-3: Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon types is that it's simpler to provide fast
polygon-rendering hardware for that restricted class of polygons. Simple polygons can be rende
quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL c
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons witt
Since all such polygons can be formed from unions of simple convex polygons, some routines t
more complex objects are provided in the GLU library. These routines take complex description
tessellate them, or break them down into groups of the simpler OpenGL polygons that can then
rendered. (Se&olygon Tessellation" in Chapter #dr more information about the tessellation
routines.)

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a part
polygon don’t necessarily lie on the same plane in space. (Of course, they do in many cases zif
coordinates are zero, for example, or if the polygon is a triangle.) If a polygon’s vertices don't lie
same plane, then after various rotations in space, changes in the viewpoint, and projection ontc
display screen, the points might no longer form a simple convex polygon. For example, imagine
four-pointquadrilateralwhere the points are slightly out of plane, and look at it almost edge-on. *
can get a nonsimple polygon that resembles a bow tie, as shéwgure 2-4 which isn’t guaranteed 1
be rendered correctly. This situation isn’t all that unusual if you approximate curved surfaces by
guadrilaterals made of points lying on the true surface. You can always avoid the problem by us
triangles, since any three points always lie on a plane.

Figure 2-4 : Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a filled-rectangle d
primitive, glRect*(). You can draw a rectangle as a polygon, as descrid€@penGL Geometric
Drawing Primitives,"but your particular implementation of OpenGL might have optimgRect* ()
for rectangles.

void glRect{sifd}(TYPE1, TYPE/1, TYPE2 TYPE/2);

void glRect{sifd}\(TYPEV1, TYPEV2);
Draws the rectangle defined by the corner poirtls) and &2, y9. The rectangle lies in the
planez=0 and has sides parallel to the andy-axes. If the vector form of the function is used
corners are given by two pointers to arrays, each of which contains ghpair.

Note that although the rectangle begins with a particular orientation in three-dimensional space
x-y plane and parallel to the axes), you can change this by applying rotations or other transform
(SeeChapter Jor information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated - to any arbitrary degree of accuracy
short line segments or small polygonal regions. Thus, subdividing curved lines and surfaces sui
and then approximating them with straight line segments or flat polygons makes them appear c
(seeFigure 2-5. If you're skeptical that this really works, imagine subdividing until each line segr
or polygon is so tiny that it's smaller than a pixel on the screen.

Figure 2-5: Approximating Curves

Even though curves aren’t geometric primitives, OpenGL does provide some direct support for
subdividing and drawing them. (S€aapter 1Zor information about how to draw curves and curve
surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of vertices. You
glVertex*() command to specify a vertex.

void glVertex{234}{sifd}[v](TYPEcoord9;
Specifies a vertex for use in describing a geometric object. You can supply up to four coor
(x,y, z, Wfor a particular vertex or as few as twg, §) by selecting the appropriate version of
command. If you use a version that doesn’t explicitly speoifyv, zis understood to be 0 and
is understood to be 1. Calls ghVertex* () are only effective betweergiBegin() andglEnd()
pair.

Example 2-2orovides some examples of usgly ertex*().

Example 2-2 : Legal Uses of glVertex*()

gl Vertex2s(2, 3);
gl Vertex3d(0.0, O.
gl Vertex4f (2.3, 1.

0, 3.1415926535898);
0, -2.2, 2.0);

GLdoubl e dvect[3] = {5.0, 9.0, 1992.0};
gl Vert ex3dv(dvect);

The first example represents a vertex with three-dimensional coordinates (2, 3, 0). (Remember
isn't specified, the coordinate is understood to be 0.) The coordinates in the second example ar
0.0, 3.1415926535898) (double-precision floating-point numbers). The third example represent:
vertex with three-dimensional coordinates (1.15, 0.5, -1.1). (Remember tikajth@dz coordinates
are eventually divided by the coordinate.) In the final exampldyectis a pointer to an array of three
double-precision floating-point numbers.

On some machines, the vector forngbfertex*() is more efficient, since only a single parameter n
to be passed to the graphics subsystem. Special hardware might be able to send a whole serie:
coordinates in a single batch. If your machine is like this, it's to your advantage to arrange your
that the vertex coordinates are packed sequentially in memory. In this case, there may be some
performance by using the vertex array operations of OpenGL:'{8eex Arrays.)

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how to tell OpenGL to cree
of points, a line, or a polygon from those vertices. To do this, you bracket each set of vertices b
call toglBegin() and a call tglEnd(). The argument passeddiBegin() determines what sort of
geometric primitive is constructed from the vertices. For exariplemnple 2-3pecifies the vertices f
the polygon shown ifigure 2-6

Example 2-3 : Filled Polygon

gl Begi n(GL_POLYGON) ;
gl Vertex2f (0.0,
gl Vertex2f (0.0,
gl Vertex2f (4.0,
gl Vertex2f (6.0
gl Vertex2f (4.0,
gl End() ;

CRWWwo
o
N

N
s

GL_POLYGON GL_FOINTS

Figure 2-6 : Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been simply t|
points shown irFigure 2-6 Table 2-2in the following function summary f@iBegin() lists the ten
possible arguments and the corresponding type of primitive.

void glBegin(GLenummode;
Marks the beginning of a vertex-data list that describes a geometric primitive. The type of
primitive is indicated bynode which can be any of the values showmaile 2-2

Table 2-2 : Geometric Primitive Names and Meanings

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line segments
GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP same as above, with a segment added between last and first vgrtice
GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP || linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS guadruples of vertices interpreted as four-sided polygons
GL_QUAD_STRIP linked strip of quadrilaterals
GL_POLYGON boundary of a simple, convex polygon

void glEnd(void);
Marks the end of a vertex-data list.

Figure 2-7shows examples of all the geometric primitives listetlahle 2-2 The paragraphs that
follow the figure describe the pixels that are drawn for each of the objects. Note that in addition
points, several types of lines and polygons are defined. Obviously, you can find many ways to ¢
same primitive. The method you choose depends on your vertex data.

[2]
i -yd
vie my2

GL_FOINTS

GL_LINES

Wi VB
<7
D

GL_TRIANGLES

vh
w2
iy
v

GL_QUADS

wil ',
.bg:g
o . i vz

GL_LINE_STRIP

v v w4 vi -
X
w7 ﬂg 5 vt

¥6

GL_TRIAMGLE_STRIP GL_TRIANGLE_FARN
w7
’
ﬁ vG v v2
v2 v U
w3
GL_QUAD_STRIP GL_POLYEON

Figure 2-7 : Geometric Primitive Types

As you read the following descriptions, assume thadrtices (vO, v1, v2, ..., vn-1) are described
between aBegin() andglEnd() pair.

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

Draws a point at each of timevertices.

Draws a series of unconnected line segments. Segments are drawr
between vO and v1, between v2 and v3, and so orislbdd, the last
segment is drawn between vn-3 and vn-2, and vn-1 is ignored.

Draws a line segment from vO to v1, then from v1 to v2, and so on,
finally drawing the segment from vn-2 to vn-1. Thus, a totatbline
segments are drawn. Nothing is drawn untesslarger than 1. There
are no restrictions on the vertices describing a line strip (or a line lo
the lines can intersect arbitrarily.

Same as GL_LINE_STRIP, except that a final line segment is draw
from vn-1 to vO, completing a loop.

Draws a series of triangles (three-sided polygons) using vertices vO
v2, then v3, v4, v5, and so onnlisn’t an exact multiple of 3, the final
one or two vertices are ignored.

Draws a series of triangles (three-sided polygons) using vertices vO

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

GL_POLYGON

v2, then v2, v1, v3 (note the order), then v2, v3, v4, and so on. The
ordering is to ensure that the triangles are all drawn with the same
orientation so that the strip can correctly form part of a surface.
Preserving the orientation is important for some operations, such as
culling. (Se€'Reversing and Culling Polygon Facga"'must be at least
3 for anything to be drawn.

Same as GL_TRIANGLE_STRIP, except that the vertices are vO, Vv:
v2, then vO, v2, v3, then vO, v3, v4, and so on Sgare 2-7.

Draws a series of quadrilaterals (four-sided polygons) using vertice:
vl, v2, v3, then v4, v5, v6, v7, and so om Ién’t a multiple of 4, the
final one, two, or three vertices are ignored.

Draws a series of quadrilaterals (four-sided polygons) beginning wit
v0, v1, v3, v2, then v2, v3, v5, v4, then v4, v5, v7, v6, and so on (se
Figure 2-7. n must be at least 4 before anything is drawn.i$f odd,

the final vertex is ignored.

Draws a polygon using the points vO, ..., vn-1 as verticesist be at
least 3, or nothing is drawn. In addition, the polygon specified must
intersect itself and must be convex. If the vertices don’t satisfy thest
conditions, the results are unpredictable.

Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which are specified by the

glVertex*() command. You can also supply additional vertex-specific data for each vertex - a cc
normal vector, texture coordinates, or any combination of these - using special commands. In a
few other commands are valid betweegiBegin() andglEnd() pair. Table 2-3contains a complete lis

of such valid commands.

Table 2-3: Valid Commands between glBegin() and glEnd()

Command Purpose of Command Reference
glVertex*() set vertex coordinates Chapter 2
glColor*() set current color Chapter 4
glindex*() set current color index Chapter 4
gINormal*() set normal vector coordinategs Chapter 2
glTexCoord*() set texture coordinates Chapter 9
glEdgeFlag*() control drawing of edges Chapter 2
glMaterial*() set material properties Chapter 5
glArrayElement() extract vertex array data Chapter 2
glEvalCoord*(), glEvalPoint*()| generate coordinates Chapter 12
glCallList(), glCallLists() execute display list(s) Chapter 7

No other OpenGL commands are valid betwegtBagin() andglEnd() pair, and making most other
OpenGL calls generates an error. Some vertex array commands, gliehaideClientState() and
glVertexPointer (), when called betweegiBegin() andglEnd(), have undefined behavior but do not
necessarily generate an error. (Also, routines related to OpenGL, sul&tf @goutines have undefine
behavior betweeglBegin() andglEnd().) These cases should be avoided, and debugging them m
more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include other
programming-language constructs (except for calls, such as the aforemegkin@doutines). For
example Example 2-4raws an outlined circle.

Example 2-4 : Other Constructs between gIiBegin() and glEnd()

#define Pl 3.1415926535898

Gint circle_points = 100;

gl Begi n(GL_LI NE_LCOP) ;

for (i = 0; i <circle_points; i++) {
angle = 2*Pl*i/circl e_points;
gl Vertex2f (cos(angle), sin(angle));

}
gl End() ;

Note: This example isn’t the most efficient way to draw a circle, especially if you intend to do it

repeatedly. The graphics commands used are typically very fast, but this code calculates an an
calls thesin() andcos() routines for each vertex; in addition, there’s the loop overhead. (Another v
calculate the vertices of a circle is to use a GLU routine;@aadrics: Rendering Spheres, Cylinder
and Disks" in Chapter 1}1If you need to draw lots of circles, calculate the coordinates of the verti
once and save them in an array and create a display lisTiiagéer J, or use vertex arrays to render
them.

Unless they are being compiled into a display listgldlertex* () commands should appear between
someglBegin() andglEnd() combination. (If they appear elsewhere, they don’t accomplish anythi
they appear in a display list, they are executed only if they appear betgi@agia() and aglEnd().
(SeeChapter #or more information about display lists.)

Although many commands are allowed betwgi@egin() andglEnd(), vertices are generated only
when aglVertex* () command is issued. At the momeh¥ertex*() is called, OpenGL assigns the
resulting vertex the current color, texture coordinates, normal vector information, and so on. To
look at the following code sequence. The first point is drawn in red, and the second and third or
blue, despite the extra color commands.

gl Begi n(GL_PQA NTS) ;

gl Color3f(0.0, 1.0, 0.0); /* green */
gl Col or3f (1.0, 0.0, 0.0); [* red */

gl Vertex(...);

gl Color3f(1.0, 1.0, 0.0); /* yellow */
gl Color3f (0.0, 0.0, 1.0); /* blue */
gl Vertex(...);

gl Vertex(...);

gl End() ;

You can use any combination of the 24 versions offtffertex* () command betweegiBegin() and
glEnd(), although in real applications all the calls in any particular instance tend to be of the san
If your vertex-data specification is consistent and repetitive (for exagi@lelor*, glVertex*,
glColor*, glVertex*,...), you may enhance your program’s performance by using vertex arrays. (
"Vertex Arrays.)

Basic State M anagement

In the previous section, you saw an example of a state variable, the current RGBA color, and h¢
be associated with a primitive. OpenGL maintains many states and state variables. An object m
rendered with lighting, texturing, hidden surface removal, fog, or some other states affecting its
appearance.

By default, most of these states are initially inactive. These states may be costly to activate; for
turning on texture mapping will almost certainly slow down the speed of rendering a primitive.
However, the quality of the image will improve and look more realistic, due to the enhanced gra
capabilities.

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenumcap);

void glDisable(GLenumcap);
glEnable() turns on a capability, andIDisable() turns it off. There are over 40 enumerated
values that can be passed as a parametgtiEnable() or glDisable(). Some examples of these
are GL_BLEND (which controls blending RGBA values), GL_DEPTH_TEST (which contro
depth comparisons and updates to the depth buffer), GL_FOG (which controls fog),
GL_LINE_STIPPLE (patterned lines), GL_LIGHTING (you get the idea), and so forth.

You can also check if a state is currently enabled or disabled.

GLbooleangll sEnabled(GLenumcapability)
Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is curre
activated.

The states you have just seen have two settings: on and off. However, most OpenGL routines ¢
for more complicated state variables. For example, the roglt@etor 3f() sets three values, which ar
part of the GL_CURRENT_COLOR state. There are five querying routines used to find out wha
are set for many states:

void glGetBooleanv(GLenumpname GLboolean paramg;

void gl Getl ntegerv(GLenumpname GLint *paramg;

void glGetFloatv(GLenumpname GLfloat *paramg;

void glGetDoublev(GLenumpname GLdouble paramsg;

void glGetPointerv(GLenumpname GLvoid **paramg;
Obtains Boolean, integer, floating-point, double-precision, or pointer state variablegnginee
argument is a symbolic constant indicating the state variable to returnparainsis a pointer tc
an array of the indicated type in which to place the returned data. See the taBlgseindix Bfor
the possible values fgname For example, to get the current RGBA color, a tablappendix B
suggests you usgGetl ntegerv(GL_CURRENT_COLORyarams or
glGetFloatv(GL_CURRENT_COLORaramg. A type conversion is performed if necessary t
return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state informatitfh¢See
Query Commands" in Appendix r an additional 16 querying routines.)

Displaying Points, Lines, and Polygons
By default, a point is drawn as a single pixel on the screen, a line is drawn solid and one pixel w

polygons are drawn solidly filled in. The following paragraphs discuss the details of how to char
these default display modes.

Point Detalils

To control the size of a rendered point, gdeintSize() and supply the desired size in pixels as the
argument.

void glPointSize(GLfloatsizé;
Sets the width in pixels for rendered poirsigemust be greater than 0.0 and by default is 1.0

The actual collection of pixels on the screen which are drawn for various point widths depends «
whether antialiasing is enabled. (Antialiasing is a technique for smoothing points and lines as th
rendered; se®Antialiasing” in Chapter @or more detail.) If antialiasing is disabled (the default),
fractional widths are rounded to integer widths, and a screen-aligned square region of pixels is |
Thus, if the width is 1.0, the square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels
pixels, and so on.

With antialiasing enabled, a circulgroup of pixels is drawn, and the pixels on the boundaries are
typically drawn at less than full intensity to give the edge a smoother appearance. In this mode,
non-integer widths aren’t rounded.

Most OpenGL implementations support very large point sizes. The maximum size for antialiase
is queryable, but the same information is not available for standard, aliased points. A particular
implementation, however, might limit the size of standard, aliased points to not less than its ma:
antialiased point size, rounded to the nearest integer value. You can obtain this floating-point ve
using GL_POINT_SIZE_RANGE withlGetFloatv().

Line Detalils

With OpenGL, you can specify lines with different widths and lines thagtgmgledin various ways -
dotted, dashed, drawn with alternating dots and dashes, and so on.

WidelLines

void glLineWidth(GLfloat width);
Sets the width in pixels for rendered lineggith must be greater than 0.0 and by default is 1.0

The actual rendering of lines is affected by the antialiasing mode, in the same way as for points
"Antialiasing” in Chapter § Without antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixel
wide. With antialiasing enabled, non-integer line widths are possible, and pixels on the boundar
typically drawn at less than full intensity. As with point sizes, a particular OpenGL implementatic
might limit the width of nonantialiased lines to its maximum antialiased line width, rounded to th
nearest integer value. You can obtain this floating-point value by using GL_LINE_WIDTH_RAN
with glGetFloatv().

Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on lower-resoluti
screens. For computer displays, this isn’t typically an issue, but if you're using OpenGL to rende
high-resolution plotter, 1-pixel lines might be nearly invisible. To obtain resolution-independent |
widths, you need to take into account the physical dimensions of pixels.

Advanced
With nonantialiased wide lines, the line width isn’t measured perpendicular to the line. Instead, |

measured in thg direction if the absolute value of the slope is less than 1.0; otherwise, it's meas
thex direction. The rendering of an antialiased line is exactly equivalent to the rendering of a fills

rectangle of the given width, centered on the exact line.
Stippled Lines

To make stippled (dotted or dashed) lines, you use the comgHameStipple() to define the stipple
pattern, and then you enable line stippling witBnable().

gl Li neSti ppl e(1, Ox3F07);
gl Enabl e(G._LI NE_STI PPLE) ;

void glLineStipple(GLint factor, GLushortpatterr);

Sets the current stippling pattern for lines. gadternargument is a 16-bit series of Os and 1s
and it's repeated as necessary to stipple a given line. A 1 indicates that drawing occurs, al
it does not, on a pixel-by-pixel basis, beginning with the low-order bit of the pattern. The pi
can be stretched out by usifgctor, which multiplies each subseries of consecutive 1s and C
Thus, if three consecutive 1s appear in the pattern, they’re stretched tdesitoifis 2. factor is
clamped to lie between 1 and 255. Line stippling must be enabled by passing GL_LINE_S
to glEnable(); it's disabled by passing the same argumerdl @isable().

With the preceding example and the pattern 0x3F07 (which translates to 0011111100000111 in
a line would be drawn with 3 pixels on, then 5 off, 6 on, and 2 off. (If this seems backward, reme
that the low-order bit is used first.) iéctor had been 2, the pattern would have been elongated: 6
on, 10 off, 12 on, and 4 offigure 2-8shows lines drawn with different patterns and repeat factors
you don’t enable line stippling, drawing proceeds gmtternwere OxFFFF andiactor 1. (Use
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling can be used in
combination with wide lines to produce wide stippled lines.

PATTERM FACTOR

Ox00FF 1

0x00FF 2

OxOCOF L - — - —

OxOCOF g — -

OXAAAA e
OxARAS, 8 - — e e e e = =
OXAARA i - — - — - — —
OxAARA 4 - — — — — =

Figure 2-8 : Stippled Lines

One way to think of the stippling is that as the line is being drawn, the pattern is shifted by 1 bit
time a pixel is drawn (ofactor pixels are drawn, ifactorisn’t 1). When a series of connected line
segments is drawn between a sirgiigegin() andglEnd(), the pattern continues to shift as one seqgi
turns into the next. This way, a stippling pattern continues across a series of connected line sec
WhenglEnd() is executed, the pattern is reset, and - if more lines are drawn before stippling is ¢
- the stippling restarts at the beginning of the pattern. If you're drawing lines with GL_LINES, thq
pattern resets for each independent line.

Example 2-Sllustrates the results of drawing with a couple of different stipple patterns and line v
It also illustrates what happens if the lines are drawn as a series of individual segments instead

single connected line strip. The results of running the program appgegune 2-9

Figure 2-9: Wide Stippled Lines

Example 2-5: Line Stipple Patterns: lines.c

#i nclude <@./gl. h>
#i ncl ude <G/ gl ut. h>

#def i ne drawOnelLi ne(x1,yl, x2,y2) glBegin(G_LINES); \
gl Vertex2f ((x1),(yl)); gl Vertex2f ((x2),(y2)); gl End();

void init(void)

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeModel (G._FLAT);

voi d di spl ay(voi d)
int i;

gl Clear (G_COLOR BUFFER BIT);
/* select white for all lines */
gl Color3f (1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple */
gl Enabl e (G._LI NE_STI PPLE)

gl LineStipple (1, 0x0101); /* dotted */
dr awOneLi ne (50.0, 125.0, 150.0, 125.0);
gl LineStipple (1, OxO0FF); [/* dashed */
drawOneLi ne (150.0, 125.0, 250.0, 125.0);
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */
dr awOneLi ne (250.0, 125.0, 350.0, 125.0);
/* in 2nd row, 3 wide lines, each with different stipple */
gl LineWdth (5.0);
gl LineStipple (1, 0x0101); /* dotted */
dr awOneLi ne (50.0, 100.0, 150.0, 100.0);
gl LineStipple (1, OxO0FF); [/* dashed */
dr awOnelLi ne (150.0, 100.0, 250.0, 100.0);
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */
dr awOnelLi ne (250.0, 100.0, 350.0, 100.0);
gl LineWdth (1.0);

in 3rd row, 6 lines, with dash/dot/dash stipple */
as part of a single connected line strip */
gl LineStipple (1, 0x1C47); [/* dash/dot/dash */

*

~ ~

gl Begin (G._LI NE_STRI P)
for (i =0; i <7; i++4)

gl Vertex2f (50.0 + ((CG.float) i * 50.0), 75.0);
gl End ();

/* in 4th row, 6 independent |ines with sane stipple */
for (i =0; i <6; i++) {
drawOneLi ne (50.0 + ((G.float) i * 50.0), 50.0,
50.0 + ((Q.float)(i+1) * 50.0), 50.0);
}

in 5th row, 1 line, with dash/dot/dash stipple */
and a stipple repeat factor of 5 */
gl LineStipple (5 0x1C47); [/* dash/dot/dash */
drawOneLi ne (50.0, 25.0, 350.0, 25.0);

*

~ ~

gl Di sabl e (GL_LI NE_STI PPLE);

gl Flush ();
}
voi d reshape (int w, int h)
{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);
gl Mat ri xMode (G._PRQIECTI ON);
gl Loadl dentity ();
gluOrtho2D (0.0, (G.double) w, 0.0, (G.double) h);
}

int main(int argc, char** argv)

glutinit(&rgc, argv);

glutinitD spl ayMbde (GLUT_SINGLE | GLUT_RGB)
gl utlni t WndowSi ze (400, 150);

gl utlni t WndowPosition (100, 100);

gl ut Cr eat eW ndow (argv[0]);

init ();

gl ut Di spl ayFunc(di spl ay);

gl ut ReshapeFunc(reshape);

gl ut Mai nLoop() ;

return O;

}
Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but you cat
draw them as outlined polygons or simply as points at the vertices. A filled polygon might be sol
filled or stippled with a certain pattern. Although the exact details are omitted here, filled polygol
drawn in such a way that if adjacent polygons share an edge or vertex, the pixels making up the
vertex are drawn exactly once - they’re included in only one of the polygons. This is done so the¢
partially transparent polygons don’t have their edges drawn twice, which would make those edg
appear darker (or brighter, depending on what color you're drawing with). Note that it might rest
narrow polygons having no filled pixels in one or more rows or columns of pixels. Antialiasing
polygons is more complicated than for points and lines. '(&ealiasing” in Chapter Gor details.)

Polygons as Points, Outlines, or Solids

A polygon has two sides - front and back - and might be rendered differently depending on whic
facing the viewer. This allows you to have cutaway views of solid objects in which there is an ot

distinction between the parts that are inside and those that are outside. By default, both front ar
faces are drawn in the same way. To change this, or to draw only outlines or vertices, use
glPolygonM ode().

void glPolygonMode(GLenumface GLenummode);
Controls the drawing mode for a polygon’s front and back faces. The parafaetsan be
GL_FRONT_AND_BACK, GL_FRONT, or GL_BAGHKodecan be GL_POINT, GL_LINE, or
GL_FILL to indicate whether the polygon should be drawn as points, outlined, or filled. By
default, both the front and back faces are drawn filled.

For example, you can have the front faces filled and the back faces outlined with two calls to thi
routine:

gl Pol ygonMbde(GL_FRONT, G._FILL);
gl Pol ygonMbde(GL_BACK, G__LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen are ca
front-facing. You can construct the surface of any "reasonable” solid - a mathematician would c
a surface an orientable manifold (spheres, donuts, and teapots are orientable; Klein bottles and
strips aren’t) - from polygons of consistent orientation. In other words, you can use all clockwise
polygons, or all counterclockwise polygons. (This is essentially the mathematical definition of
orientable)

Suppose you've consistently described a model of an orientable surface but that you happen to
clockwise orientation on the outside. You can swap what OpenGL considers the back face by u
functionglFrontFace(), supplying the desired orientation for front-facing polygons.

void glFrontFace(GLenunmmodse;
Controls how front-facing polygons are determined. By defandteis GL_CCW, which
corresponds to a counterclockwise orientation of the ordered vertices of a projected polygt
window coordinates. khodeis GL_CW, faces with a clockwise orientation are considered
front-facing.

In a completely enclosed surface constructed from opaque polygons with a consistent orientatic
of the back-facing polygons are ever visible - they’re always obscured by the front-facing polygc
you are outside this surface, you might enable culling to discard polygons that OpenGL determi
back-facing. Similarly, if you are inside the object, only back-facing polygons are visible. To inst
OpenGL to discard front- or back-facing polygons, use the comgi@udl Face() and enable culling
with glEnable().

void glCullFace(GLenummods);
Indicates which polygons should be discarded (culled) before they’re converted to screen
coordinates. The mode is either GL_FRONT, GL_BACK, or GL_FRONT_AND_ BACK to ir
front-facing, back-facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled wighDisable() and the same argument.

Advanced

In more technical terms, the decision of whether a face of a polygon is front- or back-facing dep
the sign of the polygon’s area computed in window coordinates. One way to compute this area

n-1

_1
A=7T E¥irla L1 d
i=0

wherexi andyi are thex andy window coordinates of thigh vertex of then-vertex polygon and

iel 18 (i+]) mod »

Assuming that GL_CCW has been specifie@>d, the polygon corresponding to that vertex is
considered to be front-facing; otherwise, it's back-facing. If GL_CW is specified aq@,ithen the
corresponding polygon is front-facing; otherwise, it's back-facing.

Try This

Modify Example 2-5y adding some filled polygons. Experiment with different colors. Try differel
polygon modes. Also enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a 32-bit by
window-aligned stipple pattern, which you specify wgtRolygonStipple().

void glPolygonStipple(const GLubyte rhask;
Defines the current stipple pattern for filled polygons. The argumeaskis a pointer to a 32 x
32 bitmap that’s interpreted as a mask of Os and 1s. Where a 1 appears, the correspondin
the polygon is drawn, and where a 0 appears, nothing is drigigare 2-10shows how a stipple
pattern is constructed from the charactersnask Polygon stippling is enabled and disabled t
usingglEnable() andglDisable() with GL_POLYGON_STIPPLE as the argument. The
interpretation of thenaskdata is affected by thgiPixelStore* () GL_UNPACK* modes. (See
"Controlling Pixel-Storage Modes" in Chapter) 8

In addition to defining the current polygon stippling pattern, you must enable stippling:
gl Enabl e(G._POLYGON_STI PPLE) ;

UseglDisable() with the same argument to disable polygon stippling.

Figure 2-11shows the results of polygons drawn unstippled and then with two different stippling
patterns. The program is shownBrample 2-6 The reversal of white to black (froRigure 2-10to
Figure 2-1) occurs because the program draws in white over a black background, using the pat
Figure 2-10as a stencil.

. & | T

12968 32 18 @ 4 2 1128%1!21! 8 4 2 11288432168 8 4 2 11)BBA3Z9E B 4 2 1

/
/

/
/
/ \

128 64 32 16 8 4 2 1

,\//

By default, for each byte the moat significant bit is firat,
Bit ordering can be changed by calling glPixelStore*(}.

Figure 2-10 : Constructing a Polygon Stipple Pattern

AN

Lemn) Lemn) e

Figure2-11: Stippled Polygons

Example 2-6 : Polygon Stipple Patterns:

#i nclude <@/ gl . h>
#i ncl ude <G/ gl ut.
voi d di spl ay(voi d)

GLubyte flyJ[]

0x00,
0x03,
0x04,
0x04,
0x04,
0x44,
0x44,
0x44,
0x66,
0x19,
0x07,
0x03,
0x06,
0x18,
0x10,
0x10,

0x00,
0x80,
0x60,
0x18,
0x06,
0x01,
0x01,
0x01,
0x01,
0x81,
Oxel,
0x31,
0x64,
Oxcc,
0x63,
0x18,

h>

{
0x00,

0x01,
0x06,
0x18,
0x60,
0x80,
0x80,
0x80,
0x80,
0x81,
0x87,
0x8c,
0x26,
0x33,
0xCe6,
0x18,

GLubyte hal ftone[] =

OxAA,
OxAA,
OxAA,
OXAA,
OxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

gl C ear

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

0x00,
0xCo,
0x20,
0x20,
0x20,
0x22,
0x22,
0x22,
0x66,
0x98,
Oxe0,
0xcO,
0x60,
0x18,
0x08,
0x08,
{

OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,
OXxAA,
OxAA,
OxAA,
OXAA,

gl Color3f (1.0, 1.0, 1.0);

~ ~
*

draw one solid,
then two stippled rectangles

0x00,
0x06,
0x04,
0x04,
0x44,
0x44,
0x44,
0x44,
0x33,
0x0C,
0x03,
0x03,
0xO0c,
0x10,
0x10,
0x10,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

(GL_COLOR_BUFFER BI T);

polys.c

0x00,
0xCo,
0x30,
0x0C,
0x03,
0x01,
0x01,
0x01,
0x01,
0xC1,
0x3f,
0x33,
Oxcc,
Oxc4,
0x30,
0x00,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

unsti ppl ed rectangl e,

gl Rectf (25.0, 25.0, 125.0, 125.0);
gl Enabl e (G._POLYGON STI PPLE)
gl Pol ygonStipple (fly);
gl Rectf (125.0, 25.0, 225.0, 125.0);
gl Pol ygonSti ppl e (hal ftone);
25.0, 325.0, 125.0);
gl Di sabl e (G._POLYGON STl PPLE) ;

gl Rectf (225.0

gl Flush ();

}

void init (void)

0x00,
0x03,
0x0C,
0x30,
0xCo,
0x80,
0x80,
0x80,
0x80,
0x83,
oxf c,
Oxcc,
0x33,
0x23,
0x0c,
0x00,

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,

0x00,
0x60,
0x20,
0x20,
0x22,
0x22,
0x22,
0x22,
0xCC,
0x30,
0xcO,
0xcO,
0x30,
0x08,
0x08,
0x08};

0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
0x55,
Ox55}

*/

glClearColor (0.0, 0.0, 0.0, 0.0);
gl ShadeMbdel (G._FLAT);

}
void reshape (int w, int h)

gl Viewport (0, 0, (Gsizei) w, (Gsizei) h);

gl Matri xMode (GL_PRQIECTI ON);

gl Loadl dentity ();

gluGrtho2D (0.0, (G.double) w, 0.0, (G.double) h);

}

int main(int argc, char** argv)

{
glutinit(&rgc, argv);
glutlnitD splayMbde (GLUT_SINGLE | GLUT_RGB);
gl utlnit WndowSi ze (350, 150);
gl ut Cr eat eW ndow (argv[0]);
init ();
gl ut Di spl ayFunc(di spl ay) ;
gl ut ReshapeFunc(reshape);
gl ut Mai nLoop() ;
return O;

}

You might want to use display lists to store polygon stipple patterns to maximize efficiency. (Se:
"Display-List Design Philosophy" in Chaptel) 7

Mar king Polygon Boundary Edges
Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in practice. To
these nonconvex polygons, you typically subdivide them into convex polygons - usually triangle
shown inFigure 2-12- and then draw the triangles. Unfortunately, if you decompose a general pc
into triangles and draw the triangles, you can'’t reallygliBelygonM ode() to draw the polygon’s
outline, since you get all the triangle outlines inside it. To solve this problem, you can tell Open(
whether a particular vertex precedes a boundary edge; OpenGL keeps track of this information
passing along with each vertex a bit indicating whether that vertex is followed by a boundary ed
Then, when a polygon is drawn in GL_LINE mode, the nonboundary edges aren’t dr&igurén
2-12 the dashed lines represent added edges.

Figure 2-12 : Subdividing a Nonconvex Polygon

By default, all vertices are marked as preceding a boundary edge, but you can manually control

setting of the edge flag with the commaghEdgeFlag* (). This command is used betwegiBegin() anc
glEnd() pairs, and it affects all the vertices specified after it until the giexigeFlag() call is made. It
applies only to vertices specified for polygons, triangles, and quads, not to those specified for st
triangles or quads.

void glEdgeFlag(GLbooleanflag);

void glEdgeFlagv(const GLboolean flag);
Indicates whether a vertex should be considered as initializing a boundary edge of a polyg
flag is GL_TRUE, the edge flag is set to TRUE (the default), and any vertices created are
considered to precede boundary edges until this function is called agaifiagtbeing
GL_FALSE.

As an examplekxample 2-Mraws the outline shown Figure 2-13

Va2

/.

Vo
Figure 2-13 : Outlined Polygon Drawn Using Edge Flags

Example 2-7 : Marking Polygon Boundary Edges

gl Pol ygonMbde(GL_FRONT_AND BACK, G._LINE);
gl Begi n(GL_POLYGON) ;

gl EdgeFl ag(G._TRUE) ;

gl Vert ex3fv(V0);

gl EdgeFl ag(G._FALSE) ;

gl Vertex3fv(V1);

gl EdgeFl ag(G_._TRUE) ;

gl Vertex3fv(V2);
gl End() ;

Normal Vectors

A normal vector(or normal, for short) is a vector that points in a direction that’s perpendicular to
surface. For a flat surface, one perpendicular direction is the same for every point on the surfac
a general curved surface, the normal direction might be different at each point on the surface. V
OpenGL, you can specify a normal for each polygon or for each vertex. Vertices of the same pc
might share the same normal (for a flat surface) or have different normals (for a curved surface’
you can’'t assign normals anywhere other than at the vertices.

An object’s normal vectors define the orientation of its surface in space - in particular, its oriente
relative to light sources. These vectors are used by OpenGL to determine how much light the ol
receives at its vertices. Lighting - a large topic by itself - is the subj&hagfter Sand you might war

to review the following information after you've read that chapter. Normal vectors are discussed
here because you define normal vectors for an object at the same time you define the object’s ¢

You useglNormal*() to set the current normal to the value of the argument passed in. Subseque
to glVertex* () cause the specified vertices to be assigned the current normal. Often, each verte:
different normal, which necessitates a series of alternating callsEaanmple 2-8

Example 2-8 : Surface Normals at Vertices

gl Begin (G_POLYGON);
gl Nor mal 3f v(n0);
gl Vertex3fv(v0);
gl Nor mal 3f v(nl);
gl Vertex3fv(vl);
gl Nor mal 3f v(n2);
gl Vertex3fv(v2);
gl Nor mal 3f v(n3);
gl Vertex3fv(v3);

gl End() ;

void gINormal 3{bsidf}{(TYPEx, TYPEy, TYPEZ);

void gINormal 3{bsidf}v(constTYPE*Vv);
Sets the current normal vector as specified by the arguments. The nonvector version (with
V) takes three arguments, which specify @ Qy, ngz vector that's taken to be the normal.
Alternatively, you can use the vector version of this function (with) thied supply a single arra
of three elements to specify the desired normal bJ'geandi versions scale their parameter
values linearly to the range [-1.0,1.0].

There’s no magic to finding the normals for an object - most likely, you have to perform some
calculations that might include taking derivatives - but there are several techniques and tricks y«
use to achieve certain effecégppendix Eexplains how to find normal vectors for surfaces. If you
already know how to do this, if you can count on always being supplied with normal vectors, or
don’t want to use the lighting facility provided by OpenGL lighting facility, you don’t need to reac
appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and they ¢
opposite directions. By convention, the normal is the one that points to the outside of the surfac
modeled. (If you get inside and outside reversed in your model, just change every normal vectq

Yy, 9 to (-&xgr; , -y,-2)).

Also, keep in mind that since normal vectors indicate direction only, their length is mostly irrelev
You can specify normals of any length, but eventually they have to be converted to having a ler
before lighting calculations are performed. (A vector that has a length of 1 is said to be of unit le
normalized.) In general, you should supply normalized normal vectors. To make a normal vecto
length, divide each of its y, zcomponents by the length of the normal:

Length = N+ ¥+ 7

Normal vectors remain normalized as long as your model transformations include only rotations

translations. (Se€hapter Jor a discussion of transformations.) If you perform irregular
transformations (such as scaling or multiplying by a shear matrix), or if you specify nonunit-leng
normals, then you should have OpenGL automatically normalize your normal vectors after the
transformations. To do this, callEnable() with GL_NORMALIZE as its argument. By default,
automatic normalization is disabled. Note that automatic normalization typically requires additio
calculations that might reduce the performance of your application.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render geometric primitives
Drawing a 20-sided polygon requires 22 function calls: one cglBegin(), one call for each of the
vertices, and a final call g End(). In the two previous code examples, additional information (pol
boundary edge flags or surface normals) added function calls for each vertex. This can quickly
triple the number of function calls required for one geometric object. For some systems, functiol
have a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between adjacen
polygons. For example, the cubeHigure 2-14has six faces and eight shared vertices. Unfortunate
using the standard method of describing this object, each vertex would have to be specified thre
once for every face that uses it. So 24 vertices would be processed, even though eight would b

Figure 2-14 : Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify a lot of vertex-related data with just
arrays and to access that data with equally few function calls. Using vertex array routines, all 2(
in a 20-sided polygon could be put into one array and called with one function. If each vertex al
surface normal, all 20 surface normals could be put into another array and also called with one

Arranging data in vertex arrays may increase the performance of your application. Using vertex
reduces the number of function calls, which improves performance. Also, using vertex arrays m
non-redundant processing of shared vertices. (Vertex sharing is not supported on all implement
OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the OpenGL 1.0
specification. With OpenGL 1.0, some vendors have implemented vertex arrays as an extensiol

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex coordinates

colors, color indices, surface normals, texture coordinates, or polygon edge flags.

2. Put data into the array or arrays. The arrays are accessed by the addresses of (that is, pol
their memory locations. In the client-server model, this data is stored in the client’'s addres

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays by derefe
the pointers. In the client-server model, the data is transferred to the server's address spa
are three ways to do this:

1. Accessing individual array elements (randomly hopping around)
2. Creating a list of individual array elements (methodically hopping around)
3. Processing sequential array elements
The dereferencing method you choose may depend upon the type of problem you encoun

Interleaved vertex array data is another common method of organization. Instead of having up t
different arrays, each maintaining a different type of data (color, surface normal, coordinate, ant
you might have the different types of data mixed into a single array'l(8edeaved Arraysfor two
methods of solving this.)

Step 1. Enabling Arrays

The first step is to cafjlEnableClientState() with an enumerated parameter, which activates the ¢
array. In theory, you may need to call this up to six times to activate the six available arrays. In |
you’'ll probably activate only between one to four arrays. For example, it is unlikely that you wou
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, since your program’s display mod
supports either RGBA mode or color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenumarray)
Specifies the array to enable. Symbolic constants GL_VERTEX_ARRAY, GL_COLOR_AF
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and
GL_EDGE_FLAG_ARRAY are acceptable parameters.

If you use lighting, you may want to define a surface normal for every vertexX'NBewmal Vectors.)
To use vertex arrays for that case, you activate both the surface normal and vertex coordinate ¢

gl Enabl ed i ent St at e(G._NORNMAL_ARRAY) ;
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;

Suppose that you want to turn off lighting at some point and just draw the geometry using a sing
You want to calglDisable() to turn off lighting states (s&ehapter . Now that lighting has been
deactivated, you also want to stop changing the values of the surface normal state, which is wa
effort. To do that, you call

gl Di sabl ed i ent St at e(G._NORVAL_ARRAY) ;

void glDisableClientState(GLenumarray);

Specifies the array to disable. Accepts the same symbolic constghiEnalsleClientState().

You might be asking yourself why the architects of OpenGL created these new (and long!) com
namesgl* ClientState(). Why can’t you just calylEnable() andglDisable()? One reason is that
glEnable() andglDisable() can be stored in a display list, but the specification of vertex arrays ca
because the data remains on the client’s side.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single array in the client
There are six different routines to specify arrays - one routine for each kind of array. There is al:
command that can specify several client-space arrays at once, all originating from a single inter
array.

void glVertexPointer(GLint size GLenuntype GLsizeistride

const GLvoidpointer);
Specifies where spatial coordinate data can be accepsatteris the memory address of the f
coordinate of the first vertex in the arraypespecifies the data type (GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE) of each coordinate in the arrgiyeis the number of coordinate
per vertex, which must be 2, 3, orstrideis the byte offset between consecutive vertexssidé
is 0, the vertices are understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer(GLint size GLenuntype GLsizeistride,

const GLvoid pointer);

void gll ndexPointer(GLenumtype GLsizeistride, const GLvoid pointer);
void gINormalPointer (GLenuntype GLsizeistride,

const GLvoid pointer);

void gl TexCoordPointer (GLint size GLenuntype GLsizeistride,

const GLvoid pointer);

void glEdgeFlagPointer(GLsizeistride, const GLvoid pointer);

The main differences among the routines are whether size and type are unique or must be spec
example, a surface normal always has three components, so it is redundant to specify its size. ,
flag is always a single Boolean, so neither size nor type needs to be merfairie®-4displays legal
values for size and data types.

Table 2-4 : Vertex Array Sizes (Values per Vertex) and Data Types(continued)

Command Sizes Valuesfor type Argument

glVertexPointer | 2, 3,4 | GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

gIiNormalPointer | 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glColorPointer 3,4 GL_BYTE, GL_UNSIGNED_ BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, GL_DOUBLE

glindexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glTexCoordPointer| 1, 2, 3, 4| GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer| 1 no type argument (type of data must be GLboolean)

Example 2-Qses vertex arrays for both RGBA colors and vertex coordinates. RGB floating-poir
values and their corresponding (X, y) integer coordinates are loaded into the GL_COLOR_ARR.
GL_VERTEX_ARRAY.

Example 2-9 : Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
100, 325,
175, 25,

static G float colors[] = {1.0, 0.2: 0. 2,

gl Enabl e ientState (G._COLOR _ARRAY);
gl Enabl ed i ent St at e (G._VERTEX ARRAY);

gl Col or Poi nter (3, G._FLOAT, 0, colors);
gl VertexPointer (2, G__INT, 0, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex coordinate, and ¢
must be tightly packed. The data in the array must be homogeneous; that is, the data must be ¢
color values, all vertex coordinates, or all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved arrays.
following array of GLfloats, there are six vertices. For each vertex, there are three RGB color ve
which alternate with the (X, y, z) vertex coordinates.

static G.float intertwined[] =

{1. 100. 0, 100.0,
0.0, 200.0, O.
100. 0, 300.0,
200. 0, 300.0,
300. 0, 200.0,
200. 0, 100.0,

epPrEPoo

NoooNN
Prooop
coNNNO
cooooo
cooo ©

coorkR
dMhhOoOoo

b

Stride allows a vertex array to access its desired data at regular intervals in the array. For exarnr
reference only the color values in théertwinedarray, the following call starts from the beginning ¢
the array (which could also be passed&imertwined[0]) and jumps ahead 6sfzeof (GLfloat) bytes,
which is the size of both the color and vertex coordinate values. This jump is enough to get to tt
beginning of the data for the next vertex.

gl Col orPoi nter (3, G._FLQAT, 6 * sizeof (G.float), intertw ned);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth eleme
intertwined(remember that C programmers start counting at zero).

gl Vert exPoi nter (3, G._FLQOAT, 6*si zeof (GLfloat), & ntertw ned[3]);
Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client side, ar
contents are easily changed. In Step 3, contents of the arrays are obtained, sent down to the se
then sent down the graphics processing pipeline for rendering.

There are three ways to obtain data: from a single array element (indexed location), from a seq
array elements, and from an ordered list of array elements.

Dereference a Single Array Element

void glArrayElement(GLint ith)

Obtains the data of one (tlith) vertex for all currently enabled arrays. For the vertex coordir
array, the corresponding command wouldgbeertex[sizd[typd v(), wheresizeis one of [2,3,4],
andtypeis one of [s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively. Both size
type were defined bytVertexPointer(). For other enabled arrayglArrayElement() calls
glEdgeFlagv(), glTexCoord[sizd[typd (), glColor[sizd[typd v(), gll ndex[typdv(), and
glNormal[typd V(). If the vertex coordinate array is enabled, th€ertex*v() routine is executec
last, after the execution (if enabled) of up to five corresponding array values.

glArrayElement() is usually called betweeagiBegin() andglEnd(). (If called outside,
glArrayElement() sets the current state for all enabled arrays, except for vertex, which has no c
state.) InExample 2-10a triangle is drawn using the third, fourth, and sixth vertices from enabled
vertex arrays (again, remember that C programmers begin counting array locations with zero).

Example 2-10 : Using glArrayElement() to Define Colors and Vertices

gl Enabl el ientState (G._COLOR _ARRAY);

gl Enabl ed i ent St ate (G._VERTEX ARRAY);

gl Col or Poi nter (3, G._FLOAT, 0, colors);
gl VertexPointer (2, G__INT, 0, vertices);

gl Begi n(GL_TRI ANGLES)
gl ArrayEl enent (2);

gl ArrayEl enent (3);

gl ArrayEl enent (5);
gl End() ;

When executed, the latter five lines of code has the same effect as

gl Begi n(GL_TRI ANGLES) ;

gl Col or 3f v(col ors+(2*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(2*2*sizeof (Gint));
gl Col or 3f v(col ors+(3*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(3*2*si zeof (Aint));
gl Col or 3f v(col ors+(5*3*si zeof (G.fl oat));
gl Vertex3fv(vertices+(5*2*sizeof (GLint));
gl End() ;

SinceglArrayElement() is only a single function call per vertex, it may reduce the number of fun:
calls, which increases overall performance.

Be warned that if the contents of the array are changed begh&sgin() andglEnd(), there is no
guarantee that you will receive original data or changed data for your requested element. To be
don’t change the contents of any array element which might be accessed until the primitive is
completed.

Dereferencealist of Array Elements

glArrayElement() is good for randomly "hopping around" your data arrays. A similar routine,
glDrawElements(), is good for hopping around your data arrays in a more orderly manner.

void glDrawElements(GLenummode GLsizeicount GLenuntype

void *indiceg;
Defines a sequence of geometric primitives usoyntnumber of elements, whose indices are
stored in the arrayndices typemust be one of GL_UNSIGNED_ BYTE, GL_UNSIGNED_SF
or GL_UNSIGNED_INT, indicating the data type of itngicesarray. modespecifies what kind «
primitives are constructed and is one of the same values that is accepj&tedin(); for
example, GL_POLYGON, GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect ofglDrawElements() is almost the same as this command sequence:

int i;
gl Begi n (node);
for (i = 0; i < count; i++)
gl ArrayEl enent (i ndices[i]);
gl End() ;

glDrawElements() additionally checks to make surede count andtypeare valid. Also, unlike the
preceding sequence, executgirawElements() leaves several states indeterminate. After execul
of giIDrawElements(), current RGB color, color index, normal coordinates, texture coordinates, a
edge flag are indeterminate if the corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in an array of indic
Example 2-1shows two ways to uggDrawElements() to render the cub&igure 2-15hows the
numbering of the vertices usedimample 2-11

Back

Front

Figure 2-15: Cube with Numbered Vertices

Example 2-11 : Two Ways to Use glDrawElements()

static Gubyte frontlndices = {4, 5, 6, 7};

static Gubyte rightlindices = {1, 2, 6, 5};

static GLubyte bottom ndices = {0, 1, 5, 4};

static GLubyte backlndices = {0, 3, 2, 1};

static Gubyte leftindices = {0, 4, 7, 3};

static Gubyte toplndices = {2, 3, 7, 6};

gl DrawEl ement s(GL_QUADS, 4, GL_UNSI GNED BYTE, frontlndices);

gl Dr awEl enent s(G__QUADS
gl Dr anEl enent s(GL_QUADS
gl Dr awEl enent s(G._QUADS
gl Dr awEl enent s(G._QUADS
gl Dr awkl enent s(G__QUADS

, GL_UNSI GNED_BYTE,

GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,
GL_UNSI GNED_BYTE,

ri ghtlndices);
bott onl ndi ces) ;
backl ndi ces);

| eft I ndices);

t opl ndi ces);

Or better still, crunch all the indices together:

static Gubyte alllndices = {4, 5, 6, 7,
0, 1, 5 4, 0, 3, 2, 1,
0, 4 7, 3, 2, 3, 7, 6};

1, 2, 6, 5,

gl Drawkl enent s(G._QUADS, 24, G._UNSI GNED BYTE, alllndices);

Note: It is an error to encapsulageDrawElements() between @lBegin()/glEnd() pair.

With bothglArrayElement() andglDrawElements(), it is also possible that your OpenGL
implementation caches recently processed vertices, allowing your application to "share" or "reu:
vertices. Take the aforementioned cube, for example, which has six faces (polygons) but only e
vertices. Each vertex is used by exactly three faces. WighautayElement() or glDrawElements(),
rendering all six faces would require processing twenty-four vertices, even though sixteen vertic
would be redundant. Your implementation of OpenGL may be able to minimize redundancy anc

as few as eight vertices. (Reuse of vertices may be limited to all vertices within a single
olDrawElements() call or, forglArrayElement(), within oneglBegin()/glEnd() pair.)

Der eference a Sequence of Array Elements

While glArrayElement() andglDrawElements() "hop around” your data arraygPrawArrays()
plows straight through them.

void glDrawArrays(GLenummode GLint first, GLsizeicouny;
Constructs a sequence of geometric primitives using array elements starfirgj ahd ending a
first+countl of each enabled arraynodespecifies what kinds of primitives are constructed ¢
is one of the same values acceptedBegin(); for example, GL_POLYGON, GL_LINE_LOO
GL_LINES, GL_POINTS, and so on.

The effect ofglDrawArrays() is almost the same as this command sequence:

int i;

gl Begi n (node);

for (i =0; i < count; i++)
gl ArrayEl ement (first + i);

gl End() ;

As is the case withlDrawElements(), glDrawArrays() also performs error checking on its parame
values and leaves the current RGB color, color index, normal coordinates, texture coordinates,
flag with indeterminate values if the corresponding array has been enabled.

Try This
® Change the icosahedron drawing routin&xample 2-130 use vertex arrays.

Interleaved Arrays
Advanced

Earlier in this chapter (ifStride"), the special case of interleaved arrays was examined. In that se
the arrayintertwined which interleaves RGB color and 3D vertex coordinates, was accessed by
glColor Pointer () andglVertexPointer (). Careful use of stride helped properly specify the arrays.

static G.float intertwined[] =

{1. 100. 0, 100. 0,
0.0, 200.0, O.
100. 0, 300. 0,
200. 0, 300.0,
300. 0, 200.0,
200. 0, 100.0,

coorkp
INTSINEXSYS
orrroo
nooonN
rrooop
conNNO
cooooo
cooo ©

b

There is also a behemoth routig nterleavedArrays(), that can specify several vertex arrays at ol
glinterleavedArrays() also enables and disables the appropriate arrays (so it combines both Ste
2). The arrayntertwinedexactly fits one of the fourteen data interleaving configurations supporte:
glinterleavedArrays(). So to specify the contents of the ariratgrtwinedinto the RGB color and

vertex arrays and enable both arrays, call
gl I nterl eavedArrays (G._C3F _V3F, 0, intertw ned);

This call togll nterleavedArrays() enables the GL_COLOR_ARRAY and GL_VERTEX_ARRAY
arrays. It disables the GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY,
GL_NORMAL_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calji@@plor Pointer () andglVertexPointer () to specify the
values for six vertices into each array. Now you are ready for Step 3: GaincgayElement(),
glDrawElements(), orglDrawArrays() to dereference array elements.

void gll nterleavedArrays(GLenumformat GLsizeistride void *pointer)
Initializes all six arrays, disabling arrays that are not specifiedarmat, and enabling the array
that are specifiedformatis one of 14 symbolic constants, which represent 14 data configur:
Table 2-5displaysformatvalues.stride specifies the byte offset between consecutive vertexe
strideis 0, the vertexes are understood to be tightly packed in the goayteris the memory
address of the first coordinate of the first vertex in the array.

Note thatll nterleavedArrays() does not support edge flags.

The mechanics djll nterleavedArrays() are intricate and require referencdet@mple 2-12andTable
2-5. In that example and table, you'll see et, ec, and en, which are the boolean values for the er
disabled texture coordinate, color, and normal arrays, and you'll see st, sc, and sv, which are th
(number of components) for the texture coordinate, color, and vertex arrays. tc is the data type
RGBA color, which is the only array that can have non-float interleaved values. pc, pn, and pv ¢
calculated strides for jumping over individual color, normal, and vertex values, and s is the strid:
is not specified by the user) to jump from one array element to the next.

The effect ofglinterleavedArrays() is the same as calling the command sequenégample 2-12vith
many values defined ifiable 2-5 All pointer arithmetic is performed in units of
sizeof (GL_UNSIGNED_BYTE).

Example 2-12 : Effect of glinterleavedArrays(format, stride, pointer)

t str;
set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s
as a function of Table 2-5 and the val ue of format
/
str = stride;
if (str == 0)
str = s;
gl Di sabl ed i ent St at e(GL_EDGE_FLAG _ARRAY) ;
gl Di sabl ed i ent St at e(GL_I NDEX_ARRAY) ;
if (et) {
gl Enabl ed i ent St at e(G._ TEXTURE_COORD_ARRAY) ;
gl TexCoor dPoi nter(st, G._FLQOAT, str, pointer);

[
/

* % * 3

}

el se

gl Di sabl ed i ent St at e(G._TEXTURE _COORD_ARRAY)
if (ec) {

gl Enabl ed i ent St at e(G._COLOR_ARRAY) ;

gl Col or Poi nter(sc, tc, str, pointer+pc);

el se
gl Di sabl ed i ent St at e(GL_COLOR_ARRAY) ;
if (en) {
gl Enabl ed i ent St at e(G._NORMAL_ARRAY) ;
gl Nor mal Poi nt er (GL_FLQAT, str, pointer+pn);
}
el se
gl Di sabl ed i ent St at e(G._NORVAL_ARRAY) ;
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;
gl Vert exPoi nter(sv, G._FLOAT, str, pointer+pv);

In Table 2-5 T and F are True and False. &izeof (GL_FLOAT). c is 4 times
sizeof (GL_UNSIGNED_BYTE), rounded up to the nearest multiple of f.

Table 2-5: (continued) Variables that Direct glinterleavedArrays()

format et lec|en|st|sc|sv]|tc pc
GL_V2F F|F | F 2
GL_V3F F|F | F 3
GL_C4UB_V2F F|T|F 4 | 2 GL_UNSIGNED_BYTE | O
GL_C4UB_V3F F|T|F 4 | 3 | GL_UNSIGNED BYTE| 0
GL_C3F V3F FIT|F 3 | 3 | GL_FLOAT 0
GL_N3F_V3F FIF |T 3
GL_C4F_N3F_V3F FlT|T 4 | 3 | GL_FLOAT 0
GL_T2F_V3F T|F | F 2 3
GL_T4F_VA4F T|F | F 4 4

GLT2F C4UB V3F | T |T |F |2] 4 |3 | GL_UNSIGNED BYTE| 2f
GL_T2F_C3F_V3F T|IT|F |2]3 |3 | GLFLOAT 2f
GL_T2F_N3F_V3F TIF|T |2 3 of
GL T2F C4F N3F V3A| T | T | T |2 | 4 | 3 | GL_FLOAT 2f | of
GL TAF CAF N3F VAR T | T | T |4 | 4 | 4 | GL_FLOAT 4f | 8f

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use any of tt
formats with C4UB, you may have to use a struct data type or do some delicate type casting an
math to pack four unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase application perforn
With an interleaved array, the exact layout of your data is known. You know your data is tightly
and may be accessed in one chunk. If interleaved arrays are not used, the stride and size inforr
to be examined to detect whether data is tightly packed.

Note: glinterleavedArrays() only enables and disables vertex arrays and specifies values for the
vertex-array data. It does not render anything. You must still complete Step 3 and call
glArrayElement(), glDrawElements(), orglDrawArrays() to dereference the pointers and render
graphics.

Attribute Groups

In "Basic State Managemengbu saw how to set or query an individual state or state variable. W
you can also save and restore the values of a collection of related state variables with a single ¢

OpenGL groups related state variables into an attribute group. For example, the GL_LINE_BIT
consists of five state variables: the line width, the GL_LINE_STIPPLE enable status, the line sti
pattern, the line stipple repeat counter, and the GL_LINE_SMOOQOTH enable statuar{tta&asing”
in Chapter § With the commandglPushAttrib() andglPopAttrib(), you can save and restore all fi
state variables, all at once.

Some state variables are in more than one attribute group. For example, the state variable,
GL_CULL_FACE, is part of both the polygon and the enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the original a
stack (which saves the values of server state variables), there is also a client attribute stack, ac

the commandglPushClientAttrib() andglPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore the values yourself.
values might be maintained in the hardware, and getting them might be expensive. Also, if you’
operating on a remote client, all the attribute data has to be transferred across the network cont
and back as it is obtained, saved, and restored. However, your OpenGL implementation keeps
attribute stack on the server, avoiding unnecessary network delays.

There are about twenty different attribute groups, which can be saved and resigiRagshéttrib()
andglPopAttrib(). There are two client attribute groups, which can be saved and restored by
glPushClientAttrib() andglPopClientAttrib(). For both server and client, the attributes are storec
stack, which has a depth of at least 16 saved attribute groups. (The actual stack depths for you
implementation can be obtained using GL_MAX_ATTRIB_STACK_ DEPTH and
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH withglGetIntegerv().) Pushing a full stack or
popping an empty one generates an error.

(See the tables iAppendix Bto find out exactly which attributes are saved for particular mask val
that is, which attributes are in a particular attribute group.)

void glPushAttrib(GLbitfield mash;

void glPopAttrib(void);
glPushAttrib() saves all the attributes indicated by bitsnaskby pushing them onto the attribi
stack.glPopAttrib() restores the values of those state variables that were saved with the las
glPushAttrib(). Table 2-7lists the possible mask bits that can be logically ORed together to
any combination of attributes. Each bit corresponds to a collection of individual state varial
For example, GL_LIGHTING_BIT refers to all the state variables related to lighting, which
include the current material color, the ambient, diffuse, specular, and emitted light, a list of
lights that are enabled, and the directions of the spotlights. \WiRapAttrib() is called, all thos:
variables are restored.

The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state variables ir
attribute groups.

Table 2-6 : (continued) Attribute Groups

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS -

GL_COLOR_BUFFER_BIT color-buffer

GL _CURRENT _BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

GL_ENABLE_BIT enable
GL_EVAL_BIT eval
GL_FOG_BIT fog
GL_HINT_BIT hint
GL_LIGHTING_BIT lighting
GL_LINE_BIT line
GL_LIST BIT list
GL_PIXEL_MODE_BIT pixel
GL_POINT BIT point
GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT| polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER _BIT | stencil-buffer

GL_TEXTURE_BIT texture
GL_TRANSFORM_BIT transform
GL_VIEWPORT_BIT viewport

void glPushClientAttrib(GLbitfield mask;

void glPopClientAttrib(void);
glPushClientAttrib() saves all the attributes indicated by bitsnaskby pushing them onto the
client attribute stackglPopClientAttrib() restores the values of those state variables that wel
saved with the lagilPushClientAttrib(). Table 2-7lists the possible mask bits that can be
logically ORed together to save any combination of client attributes.
There are two client attribute groups, feedback and select, that cannot be saved or restore
the stack mechanism.

Table 2-7 : Client Attribute Groups

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT | pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT | vertex-array

GL_ALL_CLIENT_ATTRIB_BITS -

can’'t be pushed or popped feedback

can’t be pushed or popped select

Some Hints for Building Polygonal M odels of Surfaces

Following are some techniques that you might want to use as you build polygonal approximatio
surfaces. You might want to review this section after you've Gkapter Son lighting andChapter 7on
display lists. The lighting conditions affect how models look once they’re drawn, and some of th
following techniques are much more efficient when used in conjunction with display lists. As yol
these techniques, keep in mind that when lighting calculations are enabled, normal vectors mus
specified to get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute for expel
This section, however, lists a few pointers that might make it a bit easier to get started.

® Keep polygon orientations consistent. Make sure that when viewed from the outside, all th
polygons on the surface are oriented in the same direction (all clockwise or all countercloc
Consistent orientation is important for polygon culling and two-sided lighting. Try to get thi:
the first time, since it's excruciatingly painful to fix the problem later. (If youglSeale* () to
reflect geometry around some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

® When you subdivide a surface, watch out for any nontriangular polygons. The three vertice
triangle are guaranteed to lie on a plane; any polygon with four or more vertices might not.
Nonplanar polygons can be viewed from some orientation such that the edges cross each
and OpenGL might not render such polygons correctly.

® There’s always a trade-off between the display speed and the quality of the image. If you
subdivide a surface into a small number of polygons, it renders quickly but might have a ja
appearance; if you subdivide it into millions of tiny polygons, it probably looks good but mit

take a long time to render. Ideally, you can provide a parameter to the subdivision routines
indicates how fine a subdivision you want, and if the object is farther from the eye, you car
coarser subdivision. Also, when you subdivide, use large polygons where the surface is re
flat, and small polygons in regions of high curvature.

® For high-quality images, it's a good idea to subdivide more on the silhouette edges than in
interior. If the surface is to be rotated relative to the eye, this is tougher to do, since the sill
edges keep moving. Silhouette edges occur where the normal vectors are perpendicular te
vector from the surface to the viewpoint - that is, when their vector dot product is zero. Yot
subdivision algorithm might choose to subdivide more if this dot product is near zero.

® Try to avoid T-intersections in your models (§&gure 2-16. As shown, there’s no guarantee t
the line segments AB and BC lie on exactly the same pixels as the segment AC. Sometim
do, and sometimes they don’t, depending on the transformations and orientation. This can
cracks to appear intermittently in the surface.

-
~

Figure 2-16 : Modifying an Undesirable T-intersection

® |f you're constructing a closed surface, make sure to use exactly the same numbers for co
at the beginning and end of a closed loop, or you can get gaps and cracks due to numeric
round-off. Here’s a two-dimensional example of bad code:

/* don’t use this code */
#define Pl 3.14159265
#defi ne EDGES 30

/* draw a circle */
gl Begi n(GL_LI NE_STRI P) ;
for (i = 0; i <= EDCES; i++)
gl Vertex2f (cos((2*PI*i)/EDGES), sin((2*Pl*i)/EDGES));
gl End();

The edges meet exactly only if your machine manages to calculate the sine and cosine of
(2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the floating-point uni
your machine to do this right, the authors have a bridge they’'d like to sell you.... To correc
code, make sure that wher= EDGES, you use 0 for the sine and cosine, not
2*PI*EDGES/EDGES. (Or simpler still, use GL_LINE_LOOP instead of GL_LINE_STRIP,
change the loop termination condition to i < EDGES.)

An Example: Building an | cosahedron

To illustrate some of the considerations that arise in approximating a surface, let’s look at some
code sequences. This code concerns the vertices of a regular icosahedron (which is a Platonic
composed of twenty faces that span twelve vertices, each face of which is an equilateral triangl
icosahedron can be considered a rough approximation for a spkRaneple 2-13lefines the vertices

and triangles making up an icosahedron and then draws the icosahedron.

Example 2-13 : Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static G.float vdata[12][3] = {
{-X 0.0, 2z}, {X 0.0, Z}, {-X 0.0, -2}, {X 0.0, -2},
{0.0, z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
{z, X, 0.0}, {-2Z, X 0.0}, {Z, -X 0.0}, {-2Z, -X 0.0}

itatic GLuint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8, 10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0, 1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
int i;
gl Begi n(GL_TRI ANGLES)
for (i =0; i < 20; i++) {
[* color information here */
gl Vertex3fv(&vdata[tindices[i][0]][0]);
gl Vertex3fv(&vdata[tindices[i][1]][0]);
gl Vertex3fv(&vdata[tindices[i][2]][0]);

}
gl End() ;

The strange numbebsandZ are chosen so that the distance from the origin to any of the vertices
icosahedron is 1.0. The coordinates of the twelve vertices are given in thedatay{] , where the
zeroth vertex is {&Xgr; , 0.0, &Zgr; }, the first is {X, 0.0, 4, and so on. The arrayndices[][] tells
how to link the vertices to make triangles. For example, the first triangle is made from the zerott
and first vertex. If you take the vertices for triangles in the order given, all the triangles have the
orientation.

The line that mentions color information should be replaced by a command that sets the colidin o
face. If no code appears here, all faces are drawn in the same color, and it'll be impossible to di
three-dimensional quality of the object. An alternative to explicitly specifying colors is to define ¢
normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only once,
should probably save the calculated vertex and normal coordinates so that the calculations don
be repeated each time that the surface is drawn. This can be done using your own data structul
constructing display lists. (S&hapter 7)

Calculating Normal Vectorsfor a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating the norr
cross product of two vectors on that surface provides normal vector. With the flat surfaces of an

icosahedron, all three vertices defining a surface have the same normal vector. In this case, the
needs to be specified only once for each set of three vertices. The €oderiple 2-14an replace the
"color information here" line ikexample 2-13or drawing the icosahedron.

Example 2-14 : Generating Normal Vectors for a Surface

G.float di[3], d2[3], norni3];

for (j =0; j <3; j++) {

di[j] vdata[tindices[i][O]][j] - vdata[tindices[i][1]
d2[j] vdata[tindices[i][1]][j] - vdata[tindices[i][2]

1[i];
10i];

nor ncrossprod(dl, d2, norm;
gl Nor mal 3f v(nornj;

The functionnor mcrossprod() produces the normalized cross product of two vectors, as shown il
Example 2-15

Example 2-15 : Calculating the Normalized Cross Product of Two Vectors

void nornalize(float v[3])
Gfloat d = sqrt(v[O]*v[O] +v[1]*v[1]+v[2]*Vv[2]);

if (d ==0.0) {
error("zero length vector");
return;

i[m [=d; v[1] /=4d; v[2] /= d;

voi d norntrossprod(float vi[3], float v2[3], float out[3])

Gint i, j;
G.float |ength;

out[0] = vi[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] - v1[O0]*v2[2];
out[2] = v1[0]*v2[1] - vi1[1]*v2[O];

normal i ze(out);

}

If you're using an icosahedron as an approximation for a shaded sphere, you'll want to use norr
vectors that are perpendicular to the true surface of the sphere, rather than being perpendicular
faces. For a sphere, the normal vectors are simple; each points in the same direction as the ve«
the origin to the corresponding vertex. Since the icosahedron vertex data is for an icosahedron
1, the normal and vertex data is identical. Here is the code that would draw an icosahedral
approximation of a smoothly shaded sphere (assuming that lighting is enabled, as desChiagtein
5):

gl Begi n(G._TRI ANGLES)

for (i =0; i < 20; i++) {
gl Nor mal 3f v(&vdat a[ti ndi ces|
gl Vertex3fv(&vdata[tindices|
gl Nor mal 3f v(& dat a[ti ndi ces|
gl Vertex3fv(&vdata[tindices|
gl Nor mal 3f v(&vdat a[ti ndi ces|

oy
][
][
11
i

gl Vertex3fv(&data[tindices[i]]

gl End() ;

Improving the M odel

A twenty-sided approximation to a sphere doesn’t look good unless the image of the sphere on
screen is quite small, but there’s an easy way to increase the accuracy of the approximation. Irr
icosahedron inscribed in a sphere, and subdivide the triangles as sHeagurén2-17 The newly
introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing the
(dividing them by a factor to make them have length 1). This subdivision process can be repeat
arbitrary accuracy. The three objects showhigure 2-17use 20, 80, and 320 approximating triang|
respectively.

Figure 2-17 : Subdividing to Improve a Polygonal Approximation to a Surface

Example 2-16erforms a single subdivision, creating an 80-sided spherical approximation.

Example 2-16 : Single Subdivision

void drawtriangl e(float *vl1, float *v2, float *v3)

gl Begi n(G._TRI ANGLES)
gl Normal 3fv(vl); vl Vertex3fv(vl);
gl Normal 3fv(v2); vl Vertex3fv(v2);
gl Normal 3fv(v3); vl Vertex3fv(v3);
gl End() ;

voi d subdivide(float *vi1, float *v2, float *v3)

{ G float v12[3], v23[3], v31[3];

Gint i;

for (i =0; i <3; i++) {
v12[i] = vi[i]+v2[i];
v23[i] = v2[i]+v3[i];

v31[i] = v3[i]+vl[i];

normal i ze(v12);
normal i ze(v23);
normal i ze(v31);
drawt ri angl e(vl, v12, v31);
drawt ri angl e(v2, v23, v12);
draw ri angl e(v3, v31, v23);
drawt ri angl e(v12, v23, v3l);
}

for (i =0; i <20; i++) {
subdi vi de(&vdat a[ti ndi ces|
&dat a[ti ndi ces|
&vdata[tindi ces[

——
—————
N~ O
—e
——
—————
o OO
[P P

}

Example 2-17s a slight modification oExample 2-16vhich recursively subdivides the triangles to
proper depth. If the depth value is 0, no subdivisions are performed, and the triangle is drawn a
depth is 1, a single subdivision is performed, and so on.

Example 2-17 : Recursive Subdivision

voi d subdivide(float *vi1, float *v2, float *v3, |ong depth)

{
G.float v12[3], v23[3], v31[3];
Gint i;
if (depth == 0) {
drawt ri angl e(vl, v2, v3);
return,
b . .
for (i =0; i <3; i++) {
v12[i] = vi[i]+v2[i];
v23[i] = v2[i]+v3[i];
v31[i] = v3[i]+vi[i];
normal i ze(v12);
normal i ze(v23);
normal i ze(v3l);
subdi vide(vl, v12, v31, depth-1);
subdi vide(v2, v23, v12, depth-1);
subdi vi de(v3, v31, v23, depth-1);
subdi vi de(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one descriltecdmple 2-1tan be used for other tyy
of surfaces. Typically, the recursion ends either if a certain depth is reached or if some conditiol
curvature is satisfied (highly curved parts of surfaces look better with more subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary surface
parameterized by two variablaf] andu[l]. Suppose that two routines are provided:

void surf(G.float u[2], G.float vertex[3], Gfloat normal[3]);
float curv(G.float u[2]);

If surf() is passedi[], the corresponding three-dimensional vertex and normal vectors (of length
returned. Ifu[] is passed tourv(), the curvature of the surface at that point is calculated and retur
(See an introductory textbook on differential geometry for more information about measuring su
curvature.)

Example 2-1&hows the recursive routine that subdivides a triangle either until the maximum de
reached or until the maximum curvature at the three vertices is less than some cutoff.

Example 2-18 : Generalized Subdivision

voi d subdivide(float ul[2], float u2[2], float u3[2],
float cutoff, |ong depth)

{
G.float vi[3], v2[3], v3[3], nl[3], n2[3], n3[3];
G.float ul2[2], u23[2], u32[2];
Gint i;
if (depth == maxdepth || (curv(ul) < cutoff &&
curv(u2) < cutoff && curv(u3) < cutoff)) {
surf(ul, vi1, nl); surf(u2, v2, n2); surf(u3, v3, n3);
gl Begi n(GL_POLYGON) ;
gl Normal 3fv(nl); gl Vertex3fv(vl);
gl Nor mal 3f v(n2); gl Vertex3fv(v2);
gl Normal 3fv(n3); gl Vertex3fv(v3);
gl End() ;
return;
}
for (i =0; i < 2; i++) {
ul2[i] = (ul[i] + u2[i])/2.0;
u23[i] = (u2[i] + u3[i])/2.0;
u3l[i] = (u3[i] + ul[i])/2.0;
subdi vi de(ul, ul2, u3l, cutoff, depth+l);
subdi vi de(u2, u23, ul2, cutoff, depth+l);
subdi vi de(u3, u3l, u23, cutoff, depth+l);
subdi vide(ul2, u23, u3l, cutoff, depth+l);
}
OpenGL Programming Guide (Addison-Wesley

Publishing Company)

