$\begin{array}{c} \text{Lecture 5} \\ \text{188 200} \\ \text{Discrete Mathematics and Linear Algebra} \end{array}$

Pattarawit Polpinit

Department of Computer Engineering Khon Kaen University

Latest update: June 10, 2013

Overview of This Lecture

Propositional Logic

- Definition
- Proposition
- Logical Opertors
- Translating English Sentences to propositions
- Evalutate Truth Values
- Logical Equivalence/Tautology/Conditional Statement/ Biconditional Statement
- CNF/DNF
- Arguments and How to validate Arguments

References

Chapter 1: Section 2.1-2.3

Logics?

- The rules of logic specify the meaning of mathematical statement.
- Practical applications in many areas such as
 - design of computing machine
 - specification systems
 - Al
 - computer programming
 - ect.
- Will be a fundamental tool to prove a theorem which is crucial in computer science.

Without Logic

I think you should be more explicit here in step two."

Pattarawit Polpinit

Lecture 5

Propositional Logic

Definition

Proposition (or statement) is a sentence that is true or false **but not both**.

Which one are propositions?

- $\sqrt{2} > 1$
- 1 + 1 = 1
- Pig can fly.
- What time is it?
- $5^3 + \frac{7^2}{\sqrt{2}} + 3$
- x + 1 = 2
- x + y > 0

Notations

- Use small English letters to represent a proposition, e.g. p, q, r, s, ...
 - Let *p* be "1 + 1 = 1"
 - Let q be "Pig can fly"
- The truth value of a proposition can be represented as "T" and "F" when
 - The truth value of p is T
 - The truth value of q is F

it is true and false respectively.

Compound Propositions

Proposition can be atomic or compound.

Atomic Propositions

- Peter hates Lewis
- $\sqrt{2} > 1$
- p : where p represents a sentence "It is raining outside"

Compound Propositions are formed from existing propositions using **logical operators**, i.e. \sim (not), \wedge (and), \vee (or), \rightarrow (imply), \leftrightarrow (equivalent).

Example

- $p \wedge q$
- $\circ \sim r$
- $\bullet \sim p \rightarrow (q \vee r)$

Logical Operators

- ∧ : and
- \bullet \lor : or
- \sim : not (\neg)

- ullet o : imply (if then)
- $\bullet \leftrightarrow :$ if and only if (equivalent)
- ullet : exclusive or

Truth Table is obtained by considering all possible combinations of truth values for propositions.

p	q	\sim p	$p \wedge q$	$p \lor q$	p o q	$p \leftrightarrow q$	$p \oplus q$
Т	Т	F	Т	Т	Т	Т	F
T	F	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	F	Т
F	F	Т	F	F	Т	Т	F

Translating from English Sentences to Propositions

Example 1:

- If it rains tomorrow then I will not go to school
 - Let p be "It rains tomorrow"
 - Let q be "I go to school"
 - Hence $p \rightarrow \sim q$
- "It is neither hot nor sunny"
 - Let h be "It is hot"
 - Let s be "It is sunny"
 - Hence $\sim h \wedge \sim s$
- **3** $0 < x \le 3$
 - Let *p* be "0 < x"
 - Let q be "x < 3"
 - Let r be "x = 3"
 - Hence $p \wedge (q \vee r)$

Evaluate The Truth Value

Given a compound proposition, how do we compute the truth value?

Example 2: Evaluate the truth value of $(p \lor q) \to \sim (p \land q)$.

We will use truth table.

p	q	p∨q	p∧q	$\sim (p \wedge q)$	$pee q o\sim (p\wedge q)$
Т	Т	Т	Т	F	F
Т	F	T	F	Т	T
F	Т	Т	F	Т	T
F	F	F	F	T	T

Logical Equivalences

Definition

The propositions p and q are called logically equivalent if they have identical truth values, denoted by $p \equiv q$.

• Using truth table.

Example 3: Show that $\sim (p \land q) \equiv \sim p \lor \sim q$.

р	q	<i>p</i> ∧ <i>q</i>	$\sim (p \wedge q)$	\sim p	\sim q	\sim p $\lor\sim$ q
Т	Т	Т	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

Some Useful Logical Equivalences

Equivalences	Name
$p \wedge T \equiv p$	Identity laws
$ hoee$ F $\equiv ho$	
$p \wedge F \equiv F$	Domination laws
$ hoee T \equiv T$	
$p \wedge p \equiv p$	Idempotent laws
$pee p\equiv p$	
$\sim (\sim p) \equiv p$	Double negation law
$p \wedge q \equiv q \wedge p$	Commutative law
$(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
$\sim (p \land q) \equiv \sim p \lor \sim q$	De Morgan's laws
$\sim (p \lor q) \equiv \sim p \land \sim q$	

Evaluate Logical Equivalences

Example 4: Show that $\sim (p \lor (\sim p \land q))$ and $\sim p \land \sim q$ are logically equivalent.

We will use logical equivalences

$$\sim (p \lor (\sim p \land q)) \equiv \sim p \land \sim (\sim p \land q) \qquad \text{the second De Morgan's } \\ \text{law} \\ \equiv \sim p \land (\sim (\sim p) \lor \sim q) \qquad \text{the first De Morgan's } \\ \text{law} \\ \equiv \sim p \land (p \lor \sim q) \qquad \text{the double negation law } \\ \equiv (\sim p \land p) \lor (\sim p \land \sim q) \qquad \text{the distributive law } \\ \equiv \mathbf{F} \lor (\sim p \land \sim q) \qquad \text{since } p \land \sim p \equiv \mathbf{F} \\ \equiv \sim p \land \sim q \qquad \text{the identity law for } \mathbf{F}$$

Tautology

Definition

A tautology (denoted by t or T) is a statement form that is always true regardless of the truth values of the individual statements. A contradiction (denoted by c or F) is a statement form whose negation is a tautology (always false).

Some useful tautologies

- $p \lor \sim p$ Law of excluded middle
- $p \rightarrow p$
- $p \leftrightarrow (p \land p)$
- $p o q \leftrightarrow ((p \land \sim q) \to \mathbf{c})$ reductio ad absurdum
- $p \rightarrow (p \lor q)$
- $(p \land q) \rightarrow p$
- $(p \land (p \rightarrow q)) \rightarrow q$ modus ponens
- $((p \to q) \land \sim q) \to p$ modus tollens

Conditional Statement

- Conditional statement (or implication), $p \rightarrow q$, is only false when q is false and p is true.
- Related Implications

```
• Contrapositive : \sim q \rightarrow \sim p
```

```
• Converse : q \rightarrow p
• Inverse : \sim p \rightarrow \sim q
```

- Caution!: Only the contrapositive form is logically equivalent to conditional statement. The converse and the inverse are equivalent.
- **Note:** $p \rightarrow q$ is logically equivalent to $\sim p \lor q$.

Bi-conditional

The **biconditional** of p and q (denoted $p \leftrightarrow q$) is true if both p and q have the same truth values.

Variety of terminology

- p is necessary and sufficient for q
- if *p* then *q*, and conversely
- p if only if q
- p iff q

```
p \leftrightarrow q is equivalent to p \rightarrow q \land q \rightarrow p.
```

Conjunctive Normal Form

Definition

A proposition is in **conjunctive normal form (CNF)** if it is a conjunction of clauses, where a clause is a disjunction of literals.

CNF will looks something like this

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n$$

where C_i is a clause which is in the form

$$T_1 \vee T_2 \vee \ldots \vee T_m$$

Example:

- \bullet $p \lor q$
- $p \wedge q$
- $\sim p \wedge q$

- $p \wedge (q \vee r)$
- $(p \lor q) \land (p \lor \sim q)$
- $(p \lor q) \land (\sim r \lor s \lor t) \land u$

Disjunctive Normal Form

Definition

A formula (proposition) is in **disjunctive normal form (DNF)** if it is a disjunction of clauses, where a clause is a conjunctive of literals.

DNF will looks something like this

$$C_1 \vee C_2 \vee \ldots \vee C_n$$

where C_i is a clause which is in the form

$$T_1 \wedge T_2 \wedge \ldots \wedge T_m$$

Example:

- p
- p ∧ q
- \bullet $p \lor q$

- $\sim p \lor q \lor \sim r$
- $(p \land q) \lor r$
- $(p \land q \land \sim p) \lor (r \land \sim r)$

Conversion

Theorem

Every propositions can be converted into an equivalent proposition that is in CNF

Theorem

Every propositions can be converted into an equivalent proposition that is in **DNF**

Argument

- An **argument** is a sequence of propositions.
- Each proposition before the final one is called premise (or assumption or hypothesis).
- The final proposition is called the conclusion. the symbol ...
 normally is placed before the conclusion.
- To say that an argument is valid means if all the promises are true then the conclusion must also be true.

Example 5:

If Ironman is a man, then Ironman is mortal Ironman is a man

:. Ironman is mortal

The above example has an abstract form as

$$p o q$$
 p
 $\therefore q$

Identify premises and conclusion.

Solution:

 $p \rightarrow q$ and p are premises, q is conclusion

Validating Argument

Using truth table!

- 1 Identify the premises and conclusion
- 2 Construct a truth table showing truth values of all the premises and the conclusion
- A row in which all premises are true is called a critical row. If the conclusion of every critical row is true then the argument is valid, otherwise it is invalid.

Example 6: Validate the argument where premises are $p \lor (q \lor r)$ and $\sim r$, and the conclusion is $p \lor q$.

р	q	r	$q \lor r$	$p \lor (q \lor r)$	$\sim r$	$p \lor q$
T	Т	Т	T	Т	F	Т
T	Т	F	T	Т	Т	T
T	F	Т	T	Т	F	T
T	F	F	F	Т	Т	T
F	Τ	Т	T	Т	F	T
F	Τ	F	T	Т	Т	Т
F	F	Т	T	Т	F	F
F	F	F	F	F	Т	F

The argument is valid

Example 7: Validate the argument where premises are $p \lor (q \lor r)$ and $\sim r$, and the conclusion is $(p \to q) \land \sim r$.

p	q	r	q∨r	p o q	$p \lor (q \lor r)$	$\sim r$	$(p o q) \wedge \sim r$
Т	Т	Т	Т	Т	Т	F	F
Т	Т	F	T	Т	Т	Т	T
Т	F	Т	T	F	Т	F	F
Т	F	F	F	F	Т	Т	F
F	Т	Т	T	Т	Т	F	F
F	Т	F	T	Т	Т	Т	Т
F	F	Т	T	Т	Т	F	F
F	F	F	F	Т	F	Т	Т

The argument is invalid

Rule of Inferences

Although the truth table method always works, however, it is not convenient. Since the appropriate truth table must have 2^n lines where n is the number of atomic propositions.

Another way to show an argument is valid is to construct a formal proof. To do the formal proof we use rules of inference.

In rules of inference, premise(s) are written in a column and the conclusion is on the last line precede with the symbol : which denotes "therefore".

Example (Modus Ponens).

List of Rule of Inferences

Addition

р

 $\therefore p \vee q$

Simplification

 $p \wedge q$

∴. p

Modus ponens

р

 $p \rightarrow q$

∴. q

Modus tollens

 $\sim q$

 $p \rightarrow q$

∴ $\sim p$

Hypothetical syllogism

 $p \rightarrow q$

 $q \rightarrow r$

 $\therefore p \rightarrow r$

Disjunctive syllogism

 $p \lor q$

 \sim q

.. p

Dilemma proof by division into cases

 $p \vee q$

 $p \rightarrow r$

 $q \rightarrow r$

∴. r

Validate Arguments with Rule or Inference

- Identify the premise and conclusion
- Write down arguments on a separate line. Usually starting with the premise(s). For each line, state clearly the reason.
- Remember that argument written down is assumed or shown to be true!

Example 8: Given the following premises p, $p \rightarrow q$, $\sim q \lor r$ validate the conclusion r.

$$p$$
premise(1) $p \rightarrow q$ premise(2) q Modus Ponens(3) $\sim q \lor r$ premise(4) $\sim (\sim q)$ from (3)(5) $\therefore r$ Disjunctive sylogism from (4) and (5)