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Logics?

The rules of logic specify the meaning of mathematical
statement.

Practical applications in many areas such as

design of computing machine
specification systems
AI
computer programming
ect.

Will be a fundamental tool to prove a theorem – which is
crucial in computer science.
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Without Logic
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Propositional Logic

Definition

Proposition (or statement) is a sentence that is true or false but
not both.

Which one are propositions?
√

2 > 1

1 + 1 = 1

Pig can fly.

What time is it?

53 + 72√
2

+ 3

x + 1 = 2

x + y > 0
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Notations

Use small English letters to represent a proposition, e.g. p, q,
r , s, . . .

Let p be “1 + 1 = 1”
Let q be “Pig can fly”

The truth value of a proposition can be represented as “T”
and “F” when

The truth value of p is T
The truth value of q is F

it is true and false respectively.
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Compound Propositions

Proposition can be atomic or compound.

Atomic Propositions

Peter hates Lewis
√

2 > 1

p : where p represents a sentence “It is raining outside”

Compound Propositions are formed from existing propositions
using logical operators, i.e. ∼ (not), ∧ (and), ∨ (or), → (imply),
↔ (equivalent).

Example

p ∧ q

∼ r

∼ p → (q ∨ r)
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Logical Operators

∧ : and

∨ : or

∼ : not (¬)

→ : imply (if then)

↔ : if and only if (equivalent)

⊕ : exclusive or

Truth Table is obtained by considering all possible combinations
of truth values for propositions.

p q ∼ p p ∧ q p ∨ q p → q p ↔ q p ⊕ q

T T F T T T T F
T F F F T F F T
F T T F T T F T
F F T F F T T F
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Translating from English Sentences to Propositions

Example 1:

1 “If it rains tomorrow then I will not go to school”

Let p be “It rains tomorrow”
Let q be “I go to school”
Hence p →∼ q

2 “It is neither hot nor sunny”

Let h be “It is hot”
Let s be “It is sunny”
Hence ∼ h∧ ∼ s

3 0 < x ≤ 3

Let p be “0 < x”
Let q be “x < 3”
Let r be “x = 3”
Hence p ∧ (q ∨ r)
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Evaluate The Truth Value

Given a compound proposition, how do we compute the
truth value?

Example 2: Evaluate the truth value of (p ∨ q)→∼ (p ∧ q).

We will use truth table.

p q p ∨ q p ∧ q ∼ (p ∧ q) p ∨ q →∼ (p ∧ q)

T T T T F F
T F T F T T
F T T F T T
F F F F T T
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Logical Equivalences

Definition

The propositions p and q are called logically equivalent if they
have identical truth values, denoted by p ≡ q.

Using truth table.

Example 3: Show that ∼ (p ∧ q) ≡∼ p∨ ∼ q.

p q p ∧ q ∼ (p ∧ q) ∼ p ∼ q ∼ p∨ ∼ q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T
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Some Useful Logical Equivalences

Equivalences Name
p∧ T ≡ p Identity laws
p∨ F ≡ p

p∧ F ≡ F Domination laws
p∨ T ≡ T
p ∧ p ≡ p Idempotent laws
p ∨ p ≡ p

∼ (∼ p) ≡ p Double negation law

p ∧ q ≡ q ∧ p Commutative law

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associative laws
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) Distributive laws
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

∼ (p ∧ q) ≡∼ p∨ ∼ q De Morgan’s laws
∼ (p ∨ q) ≡∼ p∧ ∼ q
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Evaluate Logical Equivalences

Example 4: Show that ∼ (p ∨ (∼ p ∧ q)) and ∼ p∧ ∼ q are
logically equivalent.

We will use logical equivalences

∼ (p ∨ (∼ p ∧ q)) ≡∼ p∧ ∼ (∼ p ∧ q) the second De Morgan’s

law

≡∼ p ∧ (∼ (∼ p)∨ ∼ q) the first De Morgan’s

law

≡∼ p ∧ (p∨ ∼ q) the double negation law

≡ (∼ p ∧ p) ∨ (∼ p∧ ∼ q) the distributive law

≡ F ∨ (∼ p∧ ∼ q) since p∧ ∼ p ≡ F

≡∼ p∧ ∼ q the identity law for F

�
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Tautology

Definition

A tautology (denoted by t or T) is a statement form that is always
true regardless of the truth values of the individual statements.
A contradiction (denoted by c or F) is a statement form whose
negation is a tautology (always false).

Some useful tautologies

p∨ ∼ p Law of excluded middle

p → p

p ↔ (p ∧ p)

p → q ↔ ((p∧ ∼ q)→ c) reductio ad absurdum

p → (p ∨ q)

(p ∧ q)→ p

(p ∧ (p → q))→ q modus ponens

((p → q)∧ ∼ q)→ p modus tollens
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Conditional Statement

Conditional statement (or implication), p → q, is only
false when q is false and p is true.

Related Implications

Contrapositive : ∼ q →∼ p
Converse : q → p
Inverse : ∼ p →∼ q

Caution ! : Only the contrapositive form is logically
equivalent to conditional statement. The converse and the
inverse are equivalent.

Note: p → q is logically equivalent to ∼ p ∨ q.
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Bi-conditional

The biconditional of p and q (denoted p ↔ q) is true if both p
and q have the same truth values.

Variety of terminology

p is necessary and sufficient for q

if p then q, and conversely

p if only if q

p iff q

p ↔ q is equivalent to p → q ∧ q → p.

Pattarawit Polpinit Lecture 5



Conjunctive Normal Form

Definition

A proposition is in conjunctive normal form (CNF) if it is a
conjunction of clauses, where a clause is a disjunction of literals.

CNF will looks something like this

C1 ∧ C2 ∧ . . . ∧ Cn

where Ci is a clause which is in the form

T1 ∨ T2 ∨ . . . ∨ Tm

Example:

p ∨ q

p ∧ q

∼ p ∧ q

p ∧ (q ∨ r)

(p ∨ q) ∧ (p∨ ∼ q)

(p ∨ q) ∧ (∼ r ∨ s ∨ t) ∧ u
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Disjunctive Normal Form

Definition

A formula (proposition) is in disjunctive normal form (DNF) if it
is a disjunction of clauses, where a clause is a conjunctive of
literals.

DNF will looks something like this

C1 ∨ C2 ∨ . . . ∨ Cn

where Ci is a clause which is in the form

T1 ∧ T2 ∧ . . . ∧ Tm

Example:

p

p ∧ q

p ∨ q

∼ p ∨ q∨ ∼ r

(p ∧ q) ∨ r

(p ∧ q∧ ∼ p) ∨ (r∧ ∼ r)
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Conversion

Theorem

Every propositions can be converted into an equivalent proposition
that is in CNF

Theorem

Every propositions can be converted into an equivalent proposition
that is in DNF
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Argument

An argument is a sequence of propositions.

Each proposition before the final one is called premise (or
assumption or hypothesis).

The final proposition is called the conclusion. the symbol ∴
normally is placed before the conclusion.

To say that an argument is valid means if all the promises are
true then the conclusion must also be true.
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Example 5:

If Ironman is a man, then Ironman is mortal

Ironman is a man

∴ Ironman is mortal

The above example has an abstract form as

p → q

p

∴ q

Identify premises and conclusion.

Solution:

p → q and p are premises, q is conclusion
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Validating Argument

Using truth table!

1 Identify the premises and conclusion

2 Construct a truth table showing truth values of all the
premises and the conclusion

3 A row in which all premises are true is called a critical row. If
the conclusion of every critical row is true then the argument
is valid, otherwise it is invalid.
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Example 6: Validate the argument where premises are p ∨ (q ∨ r)
and ∼ r , and the conclusion is p ∨ q.

p q r q ∨ r p ∨ (q ∨ r) ∼ r p ∨ q

T T T T T F T
T T F T T T T
T F T T T F T
T F F F T T T
F T T T T F T
F T F T T T T
F F T T T F F
F F F F F T F

The argument is valid
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Example 7: Validate the argument where premises are p ∨ (q ∨ r)
and ∼ r , and the conclusion is (p → q)∧ ∼ r .

p q r q ∨ r p → q p ∨ (q ∨ r) ∼ r (p → q)∧ ∼ r

T T T T T T F F
T T F T T T T T
T F T T F T F F
T F F F F T T F
F T T T T T F F
F T F T T T T T
F F T T T T F F
F F F F T F T T

The argument is invalid
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Rule of Inferences

Although the truth table method always works, however, it is
not convenient. Since the appropriate truth table must have 2n

lines where n is the number of atomic propositions.

Another way to show an argument is valid is to construct a
formal proof. To do the formal proof we use rules of inference.

In rules of inference, premise(s) are written in a column and the
conclusion is on the last line precede with the symbol ∴ which
denotes “therefore”.

Example (Modus Ponens).

p premises

p → q premises

∴ q since p is true and p → q

is true q must be true
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List of Rule of Inferences

Addition
p
∴ p ∨ q

Simplification
p ∧ q
∴ p

Modus ponens
p
p → q
∴ q

Modus tollens
∼ q
p → q
∴∼ p

Hypothetical syllogism
p → q
q → r
∴ p → r

Disjunctive syllogism
p ∨ q
∼ q
∴ p

Dilemma proof by division into cases
p ∨ q
p → r
q → r
∴ r

All these rules have been proved to be true!!
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Validate Arguments with Rule or Inference

1 Identify the premise and conclusion

2 Write down arguments on a separate line. Usually starting
with the premise(s). For each line, state clearly the reason.

3 Remember that argument written down is assumed or shown
to be true!
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Example 8: Given the following premises p, p → q, ∼ q ∨ r
validate the conclusion r .

p premise (1)

p → q premise (2)

q Modus Ponens (3)

∼ q ∨ r premise (4)

∼ (∼ q) from (3) (5)

∴ r Disjunctive sylogism from (4) and (5)

�
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