Overview

Topics for today.

▶ A transformation
▶ Matrix transformation
▶ Check weather a transform is linear
▶ The matrix of a linear transformation
▶ Function properties of linear transformation

Reference: Section 1.8-1.9
A Transformation

\[A \overrightarrow{x} = \overrightarrow{b} \quad \text{VS} \quad x_1 \overrightarrow{a_1} + \ldots + x_n \overrightarrow{a_n} = \overrightarrow{b} \]

- They are basically the same.
- \(A \overrightarrow{x} = \overrightarrow{b} \) is more useful, e.g. for computer graphic and signal processing.
- You can think of \(A \) as a tool to transform \(\overrightarrow{x} \) to \(\overrightarrow{b} \).

Example:

\[
\begin{bmatrix}
2 & -4 \\
3 & -6 \\
1 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
3
\end{bmatrix}
=
\begin{bmatrix}
-8 \\
-12 \\
-4
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & -4 \\
3 & -6 \\
1 & -2
\end{bmatrix}
\begin{bmatrix}
2 \\
1
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

These show that the multiplication by \(A \) transform \(\overrightarrow{x} \) into \(\overrightarrow{b} \) and \(\overrightarrow{u} \) into \(\overrightarrow{0} \) respectively.
With this new perspective, solving $A\vec{x} = \vec{b}$ is to find all \vec{x} in \mathbb{R}^2 that can be transformed to \vec{b} in \mathbb{R}^3 through multiplication by A.

Definition: A transformation (or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a function that is an assignment to each \vec{x} in \mathbb{R}^n $T(\vec{x})$ in \mathbb{R}^m. \mathbb{R}^n is the **domain** of T and \mathbb{R}^m is the **codomain** of T. For each \vec{x}, $T(\vec{x})$ is an **image** of \vec{x} and the set of all images is the **range** of T.
Matrix Transformations

- Focus on mapping with matrix multiplication A.
- Sometimes denote a matrix transformation by $\vec{x} \mapsto A\vec{x}$.

Example 1: Let $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$. Define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\vec{x}) = A\vec{x}$.

Then if $\vec{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$,

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$
Example 1, cont.

\[T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} \]

Domain : \(\mathbb{R}^2 \)

Codomain : \(\mathbb{R}^3 \)
Example 2: Let \(A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}, \overrightarrow{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \)

\(\overrightarrow{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix} \) and \(\overrightarrow{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}. \) Define a transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) by \(T(\overrightarrow{x}) = A(\overrightarrow{x}). \)

1. Find an \(\overrightarrow{x} \) in \(\mathbb{R}^3 \) whose image under \(T \) is \(\overrightarrow{b} \).
2. Is there more than one \(\overrightarrow{x} \) under \(T \) whose image is \(\overrightarrow{b} \) (uniqueness problem)
3. Determine \(\overrightarrow{c} \) is in the range of the transformation \(T \). (existence problem)

Solution:
Example 2, cont.

Solution: (cont.)
Is a Transformation Linear?

Definition: A transformation \(T \) is **linear** if:

1. \(T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) \) for all \(\vec{u}, \vec{v} \) in the domain of \(T \).
2. \(T(c \vec{u}) = cT(\vec{u}) \) for all \(\vec{u} \) and all scalars \(c \).

Fact: Every matrix transformation is a linear transformation.

Corollary:

3. If \(T(\vec{0}) = \vec{0} \)
4. \(T(c \vec{u} + d \vec{v}) + cT(\vec{u}) + dT(\vec{v}) \)
 for all \(\vec{u}, \vec{v} \) in the domain of \(T \) and all scalars \(c \) and \(d \).

(4) can be generalized to (known as **superposition principle**)

\[
T(c_1 \vec{v}_1 + \ldots + c_p \vec{v}_p) = c_1 T(\vec{v}_1) + \ldots + c_p T(\vec{v}_p)
\]
Example 3: Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\vec{x}) = r \vec{x}$ where r is a scalar. Show that T is a linear transformation.

Note: T is called a contraction when $0 \leq r \leq 1$ and a dilation when $r > 1$.

Solution:
Example 4: Let $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\vec{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\vec{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a linear transformation which maps \vec{e}_1 into \vec{y}_1 and \vec{e}_2 into \vec{y}_2. Find the image of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution:
Example 4, cont.

Solution to Example 4 (cont.)
Example 5

Example 5: Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that

$$T \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} |x_1 + x_3| \\ 2 + 5x_2 \end{bmatrix}.$$ Show that T is not a linear transformation.

Solution:
The Matrix of a Linear Transformation

► When talk about T, usually want to find a “formula” for $T(\overrightarrow{x})$.

► This can be done by observing what T does to the columns of the $n \times n$ identity matrix.

Definition: An **identity matrix** (denoted as I_n) is an $n \times n$ matrix with 1's on the left-to-right diagonal and 0's elsewhere. The i-th column of I_n is labeled $\overrightarrow{e_i}$.

Example 6: Suppose that T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that

$$T(\overrightarrow{e_1}) = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} \quad \text{and} \quad T(\overrightarrow{e_2}) = \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}.$$

Compute $T(\overrightarrow{x})$ for any $\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
Example 6, Solution

Solution:
Standard Matrix

Theorem 10: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\vec{x}) = A\vec{x} \text{ for all } \vec{x} \text{ in } \mathbb{R}^n$$

In fact, A is the $m \times n$ matrix whose j-th column is the vector $T(\vec{e}_j)$ is the j-th column of the identity matrix in \mathbb{R}^n:

$$A = \begin{bmatrix} T(\vec{e}_1) & \cdots & T(\vec{e}_n) \end{bmatrix}$$

Note: A is called standard matrix for the linear transformation T.
Example 7

Example 7: Let A be a 3×2 matrix. Find A from the following equation:

$$A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{bmatrix}$$

Solution:
Rotation Transformation

Example 8: Find the standard matrix \(A \) of the linear transformation \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) which rotates a point about the origin through an angle of \(\varphi \) with counterclockwise rotation for a positive angle.

Solution:

![Diagram of rotation transformation](image)
Example 8, cont.

Solution to Example 8: (cont.)
Example 9 Find the standard matrix of the following transformation, if the input is the unit square.

Reflection in the x_2-axis

<table>
<thead>
<tr>
<th>Image of the Unit Square</th>
<th>Standard Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0] \begin{bmatrix} 0 \ 1 \end{bmatrix}$</td>
<td>$\begin{bmatrix} -1 \ 0 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

Note: For more standard matrices check Table 1-4 in section 1.9.
Function Properties of Linear Transformation

Definition: \(T : \mathbb{R}^n \to \mathbb{R}^m \) is said to be onto \(\mathbb{R}^m \) if each \(\vec{b} \) in \(\mathbb{R}^m \) is the image of at least one \(\vec{x} \) in \(\mathbb{R}^n \).

- Equivalently, \(T \) is onto if the range of \(T = \) the codomain \(\mathbb{R}^m \).
- This is an existence question, since \(T \) is not onto if \(\exists \vec{b} \) for which \(T(X) = \vec{b} \) has no solution.

Definition: \(T : \mathbb{R}^n \to \mathbb{R}^m \) is said to be one-to-one if each \(\vec{b} \) in \(\mathbb{R}^m \) is the image of at most one \(\vec{x} \) in \(\mathbb{R}^n \).

- Equivalently, \(T \) is one-to-one if \(\forall \vec{b} \) either has a unique solution or none at all.
- This is a uniqueness question, since \(T \) is not one-to-one if \(\exists \vec{b} \) that is the image of more than one \(\vec{x} \) in \(T \).
Determine if Transformation is Onto/One-to-one

Theorem 11: Let \(T : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation. Then \(T \) is one-to-one iff \(T(\vec{x}) = \vec{0} \) has only the trivial solution.

Theorem 12: Let \(T : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation and \(A \) be the standard matrix for \(T \). Then

a. \(T \) maps \(\mathbb{R}^n \) onto \(\mathbb{R}^m \) iff the columns of \(A \) span \(\mathbb{R}^m \).

b. \(T \) is one-to-one iff the columns of \(A \) are linearly independent.
Example 10: Let A be the linear transformation whose standard matrix is

$$
A = \begin{bmatrix}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3
\end{bmatrix}
$$

Does T maps \mathbb{R}^4 onto \mathbb{R}^3? Is T a one-to-one mapping?

Solution:

- A is in echelon form that has pivot in every rows.
 - This implies that for each \vec{b} in \mathbb{R}^3, $A\vec{x} = \vec{b}$ has a solution.
 - By Theorem 4 in Section 1.4, this implies that T maps \mathbb{R}^4 onto \mathbb{R}^3.

- Since A has a free variable, each \vec{b} is the image of more than one \vec{x}.
 - T is not one-to-one.
Example 11: Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$.
Show that T is a one-to-one linear transformation. Does T maps \mathbb{R}^2 onto \mathbb{R}^3.

Solution: Given that

$$T(\overrightarrow{x}) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- The columns of standard matrix A are linearly independent since they are not multiple of each other.
 - By Theorem 12b, T is one-to-one.
- T maps onto \mathbb{R}^3 if the columns of A span \mathbb{R}^3.
 - Which is true iff A has a pivot in every rows. This is impossible, hence T is not onto \mathbb{R}^3.
Recap

- A transformation
- Matrix transformation
- Check weather a transform is linear
- The matrix of a linear transformation
- Function properties of linear transformation

Next time, we will start Chapter 2, matrix algebra.