
Topic : Number Theory 25/07/2010

575 – Skew Binary

Skew Binary

When a number is expressed in decimal, the k-th digit represents a multiple of 10k. (Digits are numbered from right to
left, where the least significant digit is number 0.) For example,

When a number is expressed in binary, the k-th digit represents a multiple of 2k. For example,

In skew binary, the k-th digit represents a multiple of 2k+1 - 1. The only possible digits are 0 and 1, except that the
least-significant nonzero digit can be a 2. For example,

The first 10 numbers in skew binary are 0, 1, 2, 10, 11, 12, 20, 100, 101, and 102. (Skew binary is useful in some
applications because it is possible to add 1 with at most one carry. However, this has nothing to do with the current
problem.)

Input

The input file contains one or more lines, each of which contains an integer n. If n = 0 it signals the end of the input, and
otherwise n is a nonnegative integer in skew binary.

Output

For each number, output the decimal equivalent. The decimal value of n will be at most 231 - 1 = 2147483647.

Sample Input

10120
200000000000000000000000000000
10
1000000000000000000000000000000
11
100
11111000001110000101101102000
0

Sample Output

44
2147483646
3
2147483647
4
7
1041110737

350 – Pseudo – Random Numbers

Pseudo-Random Numbers

Computers normally cannot generate really random numbers, but frequently are used to generate sequences of pseudo-
random numbers. These are generated by some algorithm, but appear for all practical purposes to be really random.
Random numbers are used in many applications, including simulation.

A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-
random number generated was L, then the next number is generated by evaluating (, where Z is

a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M
is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random
numbers are follows:

As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It
should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.

In this problem you will be given sets of values for Z, I, M, and the seed, L. Each of these will have no more than four
digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be
generated. But be careful: the cycle might not begin with the seed!

Input

Each input line will contain four integer values, in order, for Z, I, M, and L. The last line will contain four zeroes, and
marks the end of the input data. L will be less than M.

Output

For each input line, display the case number (they are sequentially numbered, starting with 1) and the length of the
sequence of pseudo-random numbers before the sequence is repeated.

Sample Input

7 5 12 4
5173 3849 3279 1511
9111 5309 6000 1234
1079 2136 9999 1237
0 0 0 0

Sample Output

Case 1: 6
Case 2: 546
Case 3: 500
Case 4: 220

10879 – Code Refactoring
Problem B

Code Refactoring
Time Limit: 2 seconds

"Harry, my dream is a code waiting to be
broken. Break the code, solve the crime."

Agent Cooper

Several algorithms in modern cryptography are based on the fact that factoring large numbers is difficult. Alicia and
Bobby know this, so they have decided to design their own encryption scheme based on factoring. Their algorithm
depends on a secret code, K, that Alicia sends to Bobby before sending him an encrypted message. After listening
carefully to Alicia's description, Yvette says, "But if I can intercept K and factor it into two positive integers, A and B, I
would break your encryption scheme! And the K values you use are at most 10,000,000. Hey, this is so easy; I can even
factor it twice, into two different pairs of integers!"

Input
The first line of input gives the number of cases, N (at most 25000). N test cases follow. Each one contains the code, K,
on a line by itself.

Output
For each test case, output one line containing "Case #x: K = A * B = C * D", where A, B, C and D are different positive
integers larger than 1. A solution will always exist.

Sample Input Sample Output

3
120
210
10000000

Case #1: 120 = 12 * 10 = 6 * 20
Case #2: 210 = 7 * 30 = 70 * 3
Case #3: 10000000 = 10 * 1000000 = 100 * 100000

568 - Just the Facts

Just the Facts
The expression N!, read as ``N factorial," denotes the product of the first N positive integers, where N is nonnegative.
So, for example,

N N!

0 1

1 1

2 2

3 6

4 24

5 120

10 3628800

For this problem, you are to write a program that can compute the last non-zero digit of any factorial for (
). For example, if your program is asked to compute the last nonzero digit of 5!, your program

should produce ``2" because 5! = 120, and 2 is the last nonzero digit of 120.

Input

Input to the program is a series of nonnegative integers not exceeding 10000, each on its own line with no other letters,
digits or spaces. For each integer N, you should read the value and compute the last nonzero digit of N!.

Output

For each integer input, the program should print exactly one line of output. Each line of output should contain the value
N, right-justified in columns 1 through 5 with leading blanks, not leading zeroes. Columns 6 - 9 must contain `` -> "
(space hyphen greater space). Column 10 must contain the single last non-zero digit of N!.

Sample Input

1
2
26
125
3125
9999

Sample Output

 1 -> 1
 2 -> 2
 26 -> 4
 125 -> 8
 3125 -> 2
 9999 -> 8

	Input
	Output
	Sample Input
	Sample Output
	Input
	Output
	Sample Input
	Sample Output
	568 - Just the Facts

	Input
	Output
	Sample Input
	Sample Output

