
Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 1

Advanced Web Services

Implementation Techniques

Asst. Prof. Dr. Kanda Runapongsa Saikaew

(krunapon@kku.ac.th)

Mr.Pongsakorn Poosankam

(pongsakorn@gmail.com)

1

Agenda

Asynchronous Web Services

One-way Web Services

Sending Binary Data Using

MTOM/XOP

2

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 2

Synchronous Web Services

 Synchronous services are characterized

by the client invoking a service and then

waiting for a response to the request

Because the client suspends its own

processing after making its service request

 Synchronous services are best when the

service can process the request in a small

amount of time

 Synchronous services are also best when

applications require a more immediate

response to a request
3

Examples of Synchronous WS

A credit card service

 Typically, a client invokes the credit card

service with the credit card details

 A client then waits for the approval or denial of

the credit card transaction

 The client cannot continue its processing until

the transaction completes

A stock quote Web service is another

example of a synchronous service

 A client invokes the quote service with a

particular stock symbol and waits for the stock

price response. 4

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 3

Synchronous Web Service Model

5

Asynchronous Web Services

With asynchronous services, the client

invokes the service but does not -- or cannot

-- wait for the response

The client often does not want to wait for the

response because it may take a significant

amount of time

The client can continue with some other

processing rather than wait for the response

 Later, when it does receive the response, it

resumes whatever processing initiated the

service request 6

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 4

Asynchronous WS Approach

Generally, a document-oriented approach

is used for asynchronous class of services.

Services which process documents tend to

use an asynchronous architecture

A document-oriented Web service

receives a document as a service request

The document content determines the

processing workflow for the Web service

There can be a number of processing

steps required to fulfill the request.
7

Examples of Asynchronous WS

A travel agency service

The client sends a document (such as an

XML document) to the travel service

requesting arrangements for a particular trip

Based on the document's content, the service

performs such steps as

Verifying the user's account

Checking accommodations and

transportation availability

Building an itinerary

Purchasing tickets, and so forth
8

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 5

Asynchronous Patterns

Fire and Forget

Callbacks

Polling

9

Fire and Forget Pattern

 Invokes the service and return

immediately without ever bothering about

a response.

No waiting. Client can immediately resume
the thread.

Easy for the developers

 Loosely coupled

No way to verify whether the request has
been sent or not.

Not Recommend

10

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 6

Fire and Forget Code Snippet

11

Client

ProxyClient
Service

1 Invoke

3 Return

2 Send
Client Machine Server

 Code Snippet

Callbacks Pattern

Client provides a callback method

Proxy will dispatch the result using

the callback method

Client has to provide the callback

method

Client has to handle the additional

complexity

Response can be retrieved

asynchronously
12

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 7

Callbacks Snippet Code

13

Client

Proxy
Client

Service

2 Invoke 3 Send
Client Machine Server

Callback
1 Creates a

Callback

Object 4 Response is dispatched

to the callback by the client proxy

Polling Pattern

Client repeatedly polls

Client has to wait while keep polling

Client has to handle the complexity of
this polling operation

Response can be retrieved
asynchronously

14

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 8

Polling Snippet Code

15

Client

Proxy
Client

Service

1 Invoke

3 Return

a Poll Object

2 Send
Client Machine Server

Poll Object
Polling and

getting back

the result Set the Response

Creating Asynchronous with NetBeans (1/3)

Right Click in Web Services

Select “Edit Web Services Attributes”

16

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 9

Creating Asynchronous with NetBeans (2/3)

Enable Asynchronous Client

17

Creating Asynchronous with NetBeans (3/3)

Appearing Async Polling and Async

Callback

18

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 10

Agenda

Asynchronous Web Service

One-way Web Services

Sending Binary Data Using MTOM/XOP

19

One-way Web Services

Request/Response (Two-way)

Client Request: Server Reply Response

HTTP Status is 200 [OK]

One-way

Client Request: Server Non Reply

HTTP Status is 202 (Accepted)

Some Use Caess

Notification: Living Status

Acknowledgement

20

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 11

Creating One-Way Web Services with NetBeans

Add @Oneway annotation on top of public

void method

21

Agenda

Asynchronous Web Services

One-way Web Services

Sending Binary Data Using

MTOM/XOP

22

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 12

Motivation for MTOM/XOP

Two approaches of sending binary data

via XML

 Embedding - Base64 encoding

 Referencing - SOAP with Attachment

Problem of Base64 encoding

 Increased size

 Added overhead

Problem of SOAP with Attachment

 Data is external to the document, and it isn't

part of the message Infoset, thus requires two

different ways of processing data 23

SOAP with Attachment

24

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 13

XOP (XML-Binary Optimized Packaging)

 An alternate serialization of XML that just

happens to look like a MIME multipart/related

package, with an XML document as the root

part

 That root part is very similar to the XML

serialization of the document, except that

base64-encoded data is replaced by a

reference to one of the MIME parts, which

isn’t base64 encoded.

 Let you avoid the bulk and overhead in

processing associated with base64 encoding

 Can be used for any XML-based format 25

MTOM/XOP
 SOAP Message Transmission Optimization

Mechanism/XML-binary Optimized Packaging

(MTOM/XOP) defines a method for optimizing

the transmission of XML data in SOAP

messages

 When the transport protocol is HTTP, MIME

attachments are used to carry that data while at

the same time allowing both the sender and the

receiver direct access to the XML data in the

SOAP message

 Without having to be aware that any MIME artifacts

were used to marshal the base64Binary or

hexBinary data
26

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 14

MTOM Case Study (1/2)

27

The Consumer application begins by sending a

SOAP Message that contains complex data in

Base64Binary encoded format.

The Base64Binary data type represents

arbitrary data (e.g. Images, PDF files, Word Docs)

in 65 textual characters that can be displayed as
part of a SOAP Message element

MTOM Case Study

A sample SOAP Body with Base64Binary

encoded element <tns:data> is as follows

An MTOM-aware web services engine

detects and converts Base64Binary data

to MIME data with an XML-binary

Optimization Package (xop) content type

28

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 15

Data Conversion Results

The data conversion results in replacing

the Base64Binary data with an

<xop:Include> element that references the

original raw bytes of the document being

transmitted

29

Base64Binary & Raw MIME Byte

The raw binary data, along with the SOAP

Message and the MIME Boundary, is

transmitted over the wire to the Producer

The Producer then changes the raw binary

data back to Base64Binary encoding for

further processing

With this conversion between

Base64Binary and raw binary MIME types,

MTOM provides two significant

advantages

30

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 16

Efficient Transmission

Efficient Transmission

 Base64Binary encoded data is ~33% larger

than raw byte transmission using MIME

Processing Simplicity

 Base64Binary encoded data is represented

within an element of a SOAP message

 Security standards such as WS-Signatures

and WS-Encryption can directly be applied to

the SOAP Message

 Once such operations are performed, the

Base64Binary data can be converted to raw

bytes for efficient transmission 31

The Binary Data Optimization Process

1. Encode the binary data

2. Remove the binary data from the SOAP

envelope

3. Compress the binary data

4. Attach the binary data to the MIME

package

5. Add references to the MIME package in

the SOAP envelope.

32

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 17

MTOM/XOP Support in JAX-WS
MTOM/XOP support is standard in JAX-

WS via the use of JWS annotations

The following Java types are mapped to

the base64Binary XML data type, by

default:

 javax.activation.DataHandler

 java.awt.Image

 javax.xml.transform.Source

The elements of

type base64Binary or hexBinary are

mapped to byte[], by default. 33

Steps to Use MTOM/XOP to Send Binary Data

1. Annotate the data types that you are

going to use as an MTOM attachment.

(Optional)

 By default, XML binary types are mapped to

Java byte[]

2. Enable MTOM on the Web Service

3. Enable MTOM on the client of the Web

Service

4. Set the attachment threshold

34

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 18

Annotating the Data Types

Depending on your programming model

 You can annotate your Java class or WSDL to

define the MIME content types that are used for

sending binary data

35

Annotating: Starting from Java

To define the content types that are used

for sending binary data

 Annotate the field that holds the binary data

using the @XmlMimeType annotation

The field that contains the binary data

must be of type DataHandler.

Example

@WebMethod @Oneway public void

dataUpload(

@XmlMimeType("application/octet-

stream") DataHandler data) { } 36

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 19

Annotating: Starting from WSDL

To define the content types that are used

for sending binary data, annotate the

WSDL element of

type xs:base64Binary or xs:hexBinary

using one of the following attributes:

 xmime:contentType - Defines the content type

of the element.

 xmime:expectedContentType - Defines the

range of media types that are acceptable for

the binary data.

37

Example Annotating from WSDL

The following example maps

the image element of

type base64binary to image/gif MIME type

(which maps to the java.awt.Image Java

type)

 <element name="image"

type="base64Binary"

xmime:expectedContentTypes="image/gif"

xmlns:xmime="http://www.w3.org/2005/05/

xmlmime"/>

38

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 20

Enabling MTOM on the Web Service

You can enable MTOM on the Web

Service using an annotation or WS-

Policy file

Enabling MTOM on the Web Service

Using Annotation

Specify the

@java.xml.ws.soap.MTOM annotation on

the service endpoint implementation class

Enabling MTOM on the Web Services

Using WS-Policy File
39

Enabling MTOM Using Annotation

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.xml.ws.soap.MTOM;

@MTOM @WebService(name="MtomPortType",

serviceName="MtomService",

targetNamespace="http://example.org") public

class MTOMImpl {

@WebMethod public String

echoBinaryAsString(byte[] bytes) {

return new String(bytes);

}

} 40

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 21

Enabling MTOM on the Client

To enable MTOM on the client of the

Web Service

Pass the

javax.xml.ws.soap.MTOMFeature as a

parameter when creating the Web

Service proxy or dispatch

Example
MtomService service = new MtomService()

MtomPortType port =

service.getMtomPortTypePort(new

MTOMFeature());
41

Full Code Example
import javax.xml.ws.soap.MTOMFeature;

public class Main {

public static void main(String[] args) {

String FOO = "FOO";

MtomService service = new MtomService()

MtomPortType port =

service.getMtomPortTypePort(new

MTOMFeature());

String result = null; result =

port.echoBinaryAsString(FOO.getBytes());

System.out.println("Got result: " + result); }

} 42

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 22

Setting the Attachment Threshold

You can set the attachment threshold to

specify when the xs:binary64 data is sent

inline or as an attachment

By default, the attachment threshold is 0

bytes

To set the attachment threshold:

 On the web service, pass the threshold

attribute to MTOMannotation

 On the client of the Web service, pass the

threshold value to

jvaax.xml.ws.soap.MTOMFeature
43

Example of Setting Threshold

On the Web Service

 @MTOM(threshold=3072)

On the client of the Web Service

 MtomPortType port =

service.getMtomPortTypePort(new

MTOMFeature(3072));

 In this example

 Iff a message is greater than or equal to 3 KB,

it will be sent as an attachment

 Otherwise, the content will be sent inline, as

part of the SOAP message body.
44

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 23

Streaming SOAP Attachments

Using MTOM and

the javax.activation.DataHandler and

com.sun.xml.ws.developer.StreamingData

Handler APIs

 You can specify that a Web Service use a

streaming API when reading inbound SOAP

messages that include attachments

Rather than the default behavior in which the

service reads the entire message into memory

This feature increases the performance of

Web Services whose SOAP messages are

particularly large 45

Streaming SOAP: Client Side (1/2)
import java.util.Map;

import java.io.InputStream;

import javax.xml.ws.soap.MTOMFeature;

import javax.activation.DataHandler;

import javax.xml.ws.BindingProvider;

import com.sun.xml.ws.developer.JAXWSProperties;

import com.sun.xml.ws.developer.StreamingDataHandler;

public class Main { public static void main(String[] args) {

MtomStreamingService service =

new MtomStreamingService();

MTOMFeature feature = new MTOMFeature();

MtomStreamingPortType port =

service.getMtomStreamingPortTypePort(feature);
46

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 24

Streaming SOAP: Client Side (2/2)
Map<String, Object>

ctxt=((BindingProvider)port).getRequestContext();

ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_C

HUNK_SIZE, 8192);

DataHandler dh = new DataHandler(new

FileDataSource("/tmp/example.jar"));

port.fileUpload("/tmp/tmp.jar",dh);

DataHandler dhn = port.fileDownload("/tmp/tmp.jar");

StreamingDataHandler sdh =

(StreamingDataHandler)dh;

try{ File file = new File("/tmp/tmp.jar");

sdh.moveTo(file); sdh.close();

} catch(Exception e){ e.printStackTrace(); } } }
47

The Example Demonstration
 To enable MTOM on the client of the Web Service, pass

thejavax.xml.ws.soap.MTOMFeature as a parameter when

creating the Web Service proxy or dispatch.

 Configure HTTP streaming support by enabling HTTP

chunking on the MTOM streaming client.

Map<String, Object> ctxt =

((BindingProvider)port).getRequestContext();

ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_C

HUNK_SIZE, 8192);

 Call the port.fileUpload method.

 Cast the DataHandler to StreamingDataHandler and use

theStreamingDataHandler.readOnce() method to read the

attachment.

48

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 25

Streaming SOAP: Server Side (1/3)
import java.io.File;

import java.jws.Oneway;

import javax.jws.WebMethod;

import java.io.InputStream;

import javax.jws.WebService;

import javax.xml.bind.annotation.XmlMimeType;

import javax.xml.ws.WebServiceException;

import javax.xml.ws.soap.MTOM;

import javax.activation.DataHandler;

import javax.activation.FileDataSource;

import com.sun.xml.ws.developer.StreamingAttachment;

import com.sun.xml.ws.developer.StreamingDataHandler;

49

Streaming SOAP: Server Side (2/3)
@StreamingAttachment(parseEagerly=true,

memoryThreshold=40000L)

@MTOM @WebService(name="MtomStreaming",

serviceName="MtomStreamingService",

targetNamespace="http://example.org",

wsdlLocation="StreamingImplService.wsdl")

@Oneway

@WebMethod

public class StreamingImpl {

// Use @XmlMimeType to map to DataHandler

// on the client side

public void fileUpload(String fileName,

@XmlMimeType("application/octet-stream") DataHandler

data) { 50

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 26

Streaming SOAP: Server Side (3/3)
try {

StreamingDataHandler dh = (StreamingDataHandler)

data;

File file = new File(fileName);

dh.moveTo(file); dh.close();

} catch (Exception e) {

throw new WebServiceException(e);

}

@XmlMimeType("application/octet-stream")

@WebMethod

public DataHandler fileDownload(String filename) {

return new DataHandler(new

FileDataSource(filename));

} }
51

The Example Demonstration

The @StreamingAttachement annotation

is used to configure the streaming SOAP

attachment

The @XmlMimeType annotation is used to

map the DataHandler

Cast the DataHandler to

StreamingDataHandler and use

theStreamingDataHandler.moveTo(File)

method to store the contents of the

attachment to a file
52

Advanced Web Services Implementation Techniques 10/14/2010

Dr. Kanda Runapongsa Saikaew & Pongsakorn Poosankam 27

References (1/2)
 Metro

 https://metro.dev.java.net/guide/Large_Attach

ments.html

 https://metro.dev.java.net/guide/HTTP_client_

streaming_support.html

 http://imsglobal.org/gws/gwsv1p0/imsgws_base

Profv1p0.html

 Oracle® Fusion Middleware Programming

Advanced Features of JAX-WS Web Services

for Oracle WebLogic Server

11g Release 1 (10.3.1)

http://download.oracle.com/docs/cd/E12839_01/

web.1111/e13734/mtom.htm
53

References (2/2)

 http://www.codeproject.com/KB/showcase/

IntroductionToMTOM.aspx

 http://wso2.org/files/swa_message.png

54

https://metro.dev.java.net/guide/Large_Attachments.html
https://metro.dev.java.net/guide/Large_Attachments.html
https://metro.dev.java.net/guide/HTTP_client_streaming_support.html
https://metro.dev.java.net/guide/HTTP_client_streaming_support.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://imsglobal.org/gws/gwsv1p0/imsgws_baseProfv1p0.html
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://download.oracle.com/docs/cd/E12839_01/web.1111/e13734/mtom.htm
http://www.codeproject.com/KB/showcase/IntroductionToMTOM.aspx
http://www.codeproject.com/KB/showcase/IntroductionToMTOM.aspx
http://www.codeproject.com/KB/showcase/IntroductionToMTOM.aspx
http://wso2.org/files/swa_message.png
http://wso2.org/files/swa_message.png
http://wso2.org/files/swa_message.png

