
XBrevity: XML Data Compression using Brevity Encoding

 Praphan Lakhasophon and Kanda Runapongsa

Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
Khon Kaen 40002, Thailand.

{superjing@gmail.com , krunapon@kku.ac.th}

ABSTRACT
 XML becomes the standard language for data
representation and exchange on the Internet because it is
simple, flexible, and platform neutral. However, XML
data is often large and verbose since it consists of many
repeated tags which are used to self-describe data. The
large size of data results in an excessive amount of space
required for storing data on the disk space and that of
time required for transmitting data over the network.
Thus, it is necessary to find an effective compression
technique for XML data. In this work, we propose
XBREVITY, an XML compressor which supports
compressing and uncompressing XML data. XBREVITY
adopts a novel encoding method that has the compressed
XML data in the XML format. Thus, the compressed
XML data still preserves the advantage features of XML
but the XML document has the smaller size.

Keywords: XML, Compression, Brevity

1. INTRODUCTION
 Currently, XML [10] becomes the standard language
for data exchange because it is self-described and
flexible. XML uses tag names to describe data so that a
created document is easy to understand. When XML tags
are used to describe data, an XML document usually has
many repeated tags. Therefore, the large size of data
results in an excessive amount of space required for
storing data on the disk space and that of time required
for transmitting data over the network.
 The remainder of the paper is organized as follows: In
section 2 we present related work. Section 3 presents
features of XBrevity. Section 4 presents compression
techniques in XBrevity. The experiments of these
techniques are studied in section 5. Finally, conclusions
are given in section 6.

2. RELATED WORK
 File compression often uses gzip [2] because it is
freeware and does not need the information of document
structure. The disadvantage of using gzip in XML is that
it cannot check continued repeated elements since it is not
designed for XML compression.
 Important or recent related work of XML compression
includes XMill, XGrind, XPRESS and XPACK [3].
These methods reduce the size of an XML document
using different techniques as described in the following
subsections.

2.1 XMILL
 XMill [4] achieves better compression rate compared
to gzip (by a factor of 2, for data-like XML documents)
without sacrificing speed. This owes to the fact that it
separates structure from content. This makes it a clear
winner for applications like data archiving since these
applications require lesser disk space. At the same time, it
reduces network bandwidth. XMill is moderately faster
than gzip in XML publishing. However, relative
advantage of XMill depends on the application it is used.
However, compressed output of XMill is not queryable
except the document has to be decompressed.
 If the size of the input document is less than 20KB,
XMill will not exhibit any significant advantage over
gzip. Here the compression is targeted for applications,
such as data exchanging, data archiving, but not for
deriving a meaningful view of the input document as is
the case of compressing images or video sequences. To
apply specialized compressors to containers, human
intervention is required to specify the required container.
Path processor is configured by user commands to map
values. XMill precludes incremental processing of
compressed documents; it actually hinders compressors
other than gzip, and requires user assistance to achieve
the best compression [7].

2.2 XGRIND
 XGrind [9] has a considerable improvement in query
response time and disk bandwidth. Its effective
compression is processed through increased information
density so that memory hit buffer ratio increases. In
addition, XGrind compresses at the granularity of
element/attribute value using context-free compression
scheme. Furthermore, for range and partial match
queries, on the fly decompression is required for only
those elements that feature in the query predicates.
 However, XGrind does not support several operations
such as non-equality selections. In addition, it cannot
perform any join, aggregation, and nested queries or
construct operations. XGrind depend on one-time
statistics of an XML document before the compression,
but the statistics can change due to updates made to the
compressed XML document. Lastly, XGrind uses a fixed
root-to-leaf navigation strategy, which is insufficient to
provide alternative evaluation strategies.

ISBN 974-94418-9-3 ©2006 ECTI II-73
The 21st International Technical Conference on

Circuits/Systems, Computers and Communications

2.3 XPRESS
 Like XGrind, XPRESS [6] also allows queries on
compressed data. XPRESS works only on XML trees. It
cannot handle ID/IDREF tags. It creates bisimilar
partitions of elements in the XML document. Then, it
encodes partitions by assigning disjoint intervals and
allows query evaluation by operations on these intervals.
It uses an encoding method known as the reverse
arithmetic encoding. It is a combination of differential
and binary encoding methods. This is an efficient path
encoding method, which yields fewer overheads of partial
decompression and quicker path evaluation. XPRESS
provides high compression ratio.

2.4 XPACK
 XPACK [5] is an XML compressor that uses grammar
for compressing and decompressing XML documents.
XPACK is composed of the following three parts: the
Grammar Generator, the Compressor, and the
Decompressor. The Grammar Generator creates
grammar. The Compressor compresses XML document
and the Decompressor decompresses compressed XML
document by using the old structure of the document.
 The disadvantage of XPACK is that it cannot
compress XML documents that have mixed-content
elements (elements that have both elements and character
data). Moreover, users cannot query data from
compressed XML documents.

3. FEATURES OF XBREVITY
The important features of XBrevity are as follows:
o Being able to compress and decompress an XML

document
o Being able to compress an XML document with

mixed-content elements
o Being able to query compressed XML documents
o Being able to compress a folder of XML

documents

Following paragraphs describe one of features of

XBrevity which is that it can compress an XML
document that has mixed-content elements. The example
of the XML document with mixed-content elements is
shown in Fig.1. This document consists of “movie”
element which is the root element, then the “mtitle”
element which has “mname” element. Here, it can be
seen that “mtitle” element is a mixed-content element
since it contains both sub-elements (“mtitle”) and the
character data (“the prisoner of”). “actor” element is also
a mixed-content element since it contains both character
data (“Tim Robbins”) and other elements (“actor”) which
are nested. The “mtitle” element has one attribute which
its name is “year” and its value is “1994”, and two
sections of character data that has value “the prisoner of”
and “redemption”.

<?xml version="1.0"?>
<movie>
 <mtitle year="1994">the prisonner of
 <mname>shawshank</mname>redemption</mtitle>
 <actor>Tim Robbins
 <actor>Morgan Freeman <actor>Bob Gunton
 </actor>William Sadler<actor>Clancy Brown
 </actor>Gil Bellows</actor>
 </actor>
</movie>

Fig.1: An Original Sample XML File

<?xml version=="1.0"?>
<c>
<d>
 <e1 a2="1994" v="the prisonner of"
 e3v="shawshank"/>
 <xe1 v="redemption"/>
 <e4 v="Tim Robbins" e4v="Morgan Freeman"
 e4v2=" Bob Gunton" />
 <xe4e4 v="William Sadler" e4v="Clancy Brown"/>
 <xe4e4 v="Gil Bellows" />
</d>
<m f="movie mtitle year mname actor"
 b="0 1 a2 3 4 "/>
</c>

Fig.2: The Compressed Sample XML File

 When an XML document has mixed-content
elements, XBrevity uses the following rules in
compressing the document. If a close tag occurs in a
mixed-content element, XBrevity separates the results
into multiple parts. For example, in the “mtitle” element,
there is a close tag which is </mname>. The first part of
the result is <e1 a2=“1994” v=“the prisoner of”
e3v=“shawshank”/>. Then, “redemption” is included in
the second part of the result which is a new element that
has “x” as a prefix to indicate that this element is the part
of the previous element which is the “mtitle” element.
 The actor tags are nested in three levels and are
mapped into “e4” with three attributes which are “v”
(which is corresponding to the content of the first actor),
“e4v” (which is corresponding to the content of the
second actor) , and “e4v2” (which is corresponding to the
content of the third actor). When the same element is
nested more than three levels, XBrevity adds level
number starting from the number “2”. Fig. 2 shows the
compressed XML version of the sample XML document
with mixed-content elements, which the document is
shown in Fig. 1.

4. COMPRESSION TECHNIQUES IN XBREVITY
 The architecture of XBrevity consists of Compressor
which is used to encode the original XML document to
the compressed XML document and Decompressor which
is used to decode the compressed XML document back to

ISBN 974-94418-9-3 ©2006 ECTI II-74
The 21st International Technical Conference on

Circuits/Systems, Computers and Communications

the original XML document. XBrevity has the XML File
Filter to distinguish the program input that is a single
XML document and the program input that is a folder
containing several XML documents. SAX Parser is used
to parse and analyze documents for encoding and
decoding the documents. The architecture of XBrevity is
shown in Fig.3.

Fig.3: The Architecture of XBrevity

4.1 COMPRESSOR

 The function of Compressor is to compress an XML
document which uses SAX Parser for reading and
analyzing the input XML document. While SAX Parser
analyses the document, it encodes the data by using the
mapping method that produces the result which is then
saved in a new well-formed XML file.
 The new XML document consists of the “c” element
which is the root element. “c” stands for “compressed”
data. The “c” element has two child elements: the “d”
element and the “m” element. “d” stands for data and “m”
stands for “metadata” Thus, the information between
<d> and </d> is the compressed XML data and the
information inside <m…/> is the metadata of the
compressed XML data. The new compressed XML
document can be stored, exchanged over the network, and
is easy to understand since it is in an XML format and has
metadata.

 The next subsection will describe how the
Decompressor component of XBrevity decodes the
compressed XML document back to the original
document.

4.2 DECOMPRESSOR
 The Decompressor of XBrevity also uses SAX Parser
to read and analyze the compressed XML document by
mapping information inside <m…/> tag then using the
mapped information to construct the data inside that is in
between <d> and </d> in a new XML file. As a result, it
will generate an XML document that is the same as the
original XML document.

5. EXPERIMENTAL EVALUATION
In this section, we present the results from an

experimental evaluation of XBrevity, and compare it with
current compression techniques.

5.1 EXPERIMENTAL SETUP
XBrevity that we implemented is a stand-alone Java

application. It uses the Apache Xerces Java version 2.8
[1] as SAX Parser APIs. The source code can be
downloaded at

http://gear.kku.ac.th/~krunapon/research/xbrevity/

 All our experiments operate on Intel Pentium 4 1.8
GHz, RAM 256 MB, Windows XP Professional with
Service Pack 2 OS.

We use XMark [8] to randomly generate XML
documents with different sizes. The properties of XML
files are shown in Table 1. After generating XML
documents, we compare the performance of XBrevity and
other current techniques which include gzip and XMill.
We cannot test XGrind, XPRESS, and XPACK because
the available XGrind program is available only on the
platform that is different from the platform that we use.
XPRESS and XPACK do not have the programs available
for downloading.

Table 1: XML Data Set
XML
Files

Size
(bytes) Depth Elem Attr XMark

factor
a.xml 27,233 8 58 3 0.0001
b.xml 118,274 9 72 4 0.001
c.xml 1,182,547 10 72 5 0.01
d.xml 11,875,066 10 72 5 0.1
e.xml 118,552,713 10 72 5 1

5.2 EXPERIMENTAL RESULTS
In this section, we first present the compression

ratio of each compressor. The compression ratio is
defined as follows:

 (1)

 Table 2 shows that compressed XML documents have
smaller sizes than that of original documents.

Table 2: Compression Size after Performing gzip
Compressed Size (bytes) XML

Files Original XBrevity XBrevity
+gzip

a.xml 27,233 26,587 10,813
b.xml 118,274 116,051 41,535
c.xml 1,182,547 1,158,109 383,921
d.xml 11,875,066 11,631,650 3,850,626
e.xml 118,552,713 115,701,249 38,860,417

Compression ratio = Size of Compressed XML
 Size of Original XML

ISBN 974-94418-9-3 ©2006 ECTI II-75
The 21st International Technical Conference on

Circuits/Systems, Computers and Communications

http://gear.kku.ac.th/%7Ekrunapon/research/xbrevity/

 XMILL and gzip are binary compression but
XBrevity compresses only tag. When we combine using
XBrevity with gzip, the result from applying different
techniques are shown in Table 3.

Table 3: Compression Ratio after Performing gzip
Compression Ratio (%) XML Files gzip XMill XBrevity+gzip

a.xml 61.47 61.83 60.30
b.xml 65.55 67.18 64.88
c.xml 67.83 70.72 67.53
d.xml 67.82 71.37 67.57
e.xml 67.73 71.50 67.22

Average 66.08 68.52 65.50

We also plot the graph to compare the performance of
gzip, XMill, and XBrevity+gzip as shown in Fig. 4

Fig.4: Compression Ratios of Different Techniques

6. CONCLUSIONS
 XML compression is important because XML
language has many advantages but its disadvantage is its
large size since an XML document usually has repeated
tags. Large size of data results in an excessive amount of
time in transmitting XML data since it requires a large
network bandwidth and also results in a large disk space.
Several researchers have developed many compression
techniques that can reduce XML data size but some
methods need XML schema [11,12,13] in order to be able
to compress data and some methods have to decode
document to original document before applying queries
[14].
 In this paper, we propose the technique for
compressing and decompressing XML data, which is
called XBrevity. It can reduce the document size of a
single XML file as well as a folder of several XML files.
XBrevity has several advantages, such as it does not
require the schema information of XML document and
the user can query compressed document which saves
decoded time.
 In the future, we plan to enhance XBrevity to be able
to compress the character data section in an XML
document which will result in greater reduced size of the
document.

7. REFERENCES
[1] Apache Software Foundation. “Xerces2 Java Parser

2.8.0 Release”. Available at
http://xerces.apache.org/xerces2-j/

[2] J.L. Gailly and M. Adler, “gzip : The compressor
data”, Available at http://www.gzip.org/

[3] P. Lakhasophon and K. Runapongsa. “A Survey of
XML Data Compression”. Proceeding of the 1st
Northeastern Computer Science and Engineering
Conference (NECSEC2005), 2005 March 31–April 1,
Khon Kaen, Thailand.

[4] H. Liefke and D. Suciu. “XMill: an Efficient
Compressor for XML Data.”, Proceeding of the 2000
ACM SIGMOD International Conference on
Management of Data, pages 153-164, May 2000.

[5] K. Mairiang, and C. Pluempitiwiriyawej. “XPACK:
A Grammar-based XML Document Compression”,
In Proceeding of NCSEC2003 the7th National
Computer Science and Engineering Conference, Oct
28-30, 2003.

[6] J.-K. Min, M.-J. Park, and C.-W. Chung. “XPRESS:
A Queriable Compression for XML Data.”
Proceeding of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 122-133,
June 9-12, 2003.

[7] K. Runapongsa, J.M. Patel. “Storing and Querying
XML Data in Object-Relational DBMSs”.
Proceeding of the EDBT Workshops 2002.
Conference on Extending Database Technology.
2002 March 24-28, Prague, Czech Republic, 2002. p.
266-285.

[8] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. “XMark: A Benchmark
for XML Data Management”, Proceedings of the
International Conference on Very Large Data Bases
(VLDB’02), pp. 974-985, Hong Kong, China, August
2002, Available at http://monetdb.cwi.nl/xml
/index.html

[9] P. M. Tolani and J. R. Haritsa. “XGRIND: A Query-
friendly XML Compressor.” Proceedings of the 18th
International Conference on Databases Engineering
(ICDE’02), Feb 2002.

[10] W3C. “Extensible Markup Language (XML) 1.0
(Third Edition)”, Feb 4, 2004, Available at
http://www.w3.org/TR/2004/REC-xml-20040204/.

[11] W3C. “XML Schema Part 0 : Primer ” , May 2,
2001, Available at http://www.w3.org/TR
/xmlschema-0/.

[12] W3C. “XML Schema Part 1 : Structures”, May 2.,
2001, Available at http://www.w3.org/TR
/xmlschema-1/.

[13] W3C. “XML Schema Part 2 : Datatypes ”, May 2,
2001, Available at
http://www.w3.org/TR/xmlschema-2/

[14] W3C. “XQuery : An XML Query Language”,
Available at http://www.w3.org/XML/Query

ISBN 974-94418-9-3 ©2006 ECTI II-76
The 21st International Technical Conference on

Circuits/Systems, Computers and Communications

http://xerces.apache.org/xerces2-j/
http://www.gzip.org/
http://monetdb.cwi.nl/xml%20/index.html
http://monetdb.cwi.nl/xml%20/index.html
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR%20/xmlschema-0/
http://www.w3.org/TR%20/xmlschema-0/
http://www.w3.org/TR%20/xmlschema-1/
http://www.w3.org/TR%20/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/XML/Query

	Department of Computer Engineering, Faculty of Engineering, Khon Kaen University
	Khon Kaen 40002, Thailand.

