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Abstract. XML indices are essential for efficiently processing XML queries
which typically have predicates on both structures and values. Since the num-
ber of all possible structural and value indices is large even for a small XML
document with a simple structure, XML DBMSs must carefully choose which
indices to build. In this paper, we propose a tool, called XIST, that can be used by
an XML DBMS as an index selection tool. XIST exploits XML structural infor-
mation, data statistics, and query workload to select the most beneficial indices.
XIST employs a technique that organizes paths that evaluate to the same result
into structure equivalence groups and uses this concept to reduce the number
of paths considered as candidates for indexing. XIST selects a set of candidate
paths and evaluates the benefit of an index for each candidate path on the basis of
performance gains for non-update queries and penalty for update queries. XIST
also recognizes that an index on a path can influence the benefit of an index on
another path and accounts for such index interactions. We present an experimental
evaluation of XIST and current XML index selection techniques, and show that the
indices selected by XIST result in greater overall improvements in query response
times.

1 Introduction

An XML document is usually modeled as a directed graph in which each edge repre-
sents a parent-child relationship and each node corresponds to an element or an attribute.
XML processing often involves navigating this graph hierarchy using regular path ex-
pressions and selecting those nodes that satisfy certain conditions. A naı̈ve exhaustive
traversal of the entire XML data to evaluate path expressions is expensive, particularly in
large documents. Structural join algorithms [1,8,27] can improve the evaluation of path
expressions, but as in the relational world, join evaluation consumes a large portion of
the query evaluation time. Indices on XML data can provide a significant performance
improvement for path expressions and predicates that match the index. However, an
index degrades the performane of update operations and requires additional disk space.
As a result, determining which set of indices to build is a critical administrative task.
These considerations for building indices are not new, and have been investigated ex-
tensively for relational databases[24,3]. However, index selection for XML databases

Z. Bellahsène et al. (Eds.): XSym 2004, LNCS 3186, pp. 219–234, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



220 K. Runapongsa et al.

is more complex due to the flexibility of XML data and the complexity of its structure.
The XML model mixes structural tags and values inside data. This extends the domain
of indexing to the combination of tag names and element content values. In contrast,
relational database systems mostly consider only attribute value domains for indexing.
Moreover, the natural emergence of path expression query languages, such as XPath,
further suggests the need for path indices. Path indices have been proposed in the past for
object-oriented databases and even as join indices [23] in relational databases. Unlike
relational and object-oriented databases, XML data does not require a schema. Even
when XML documents have associated schemas, the schemas can be complex. An XML
schema can specify optional, repetitive, recursive elements, and complex element hier-
archies with variable depths. In addition, a path expression can also be constrained by
the content values of different elements on the path. Hence, selecting indices to speed
up the evaluation of XML path expressions is challenging.

This paper describes XIST, a prototype XML index selection tool that uses an inte-
grated cost/benefit-driven approach. The cost models used in this paper are developed
for a prototype native XML DBMS that we are building. As in other native XML sys-
tems, this system stores XML data as individual nodes [27,17,12,7,14], and also uses
stack-based join algorithms [1,8,2] for evaluating path expressions. However, the gen-
eral framework of XIST can be adapted to systems with other cost models by modifying
the cost equations that are presented in this paper.

1.1 Contributions

Our work makes the following contributions:

– We propose a cost-benefit model for computing the effectiveness of a set of XML
indices. In this cost-benefit analysis, we account for the index update costs and also
consider the interaction effect of an index on the benefit of other indices. By carefully
reasoning about index interactions, we can eliminate redundancy computations in
the index selection tool.

– When the XML schema is available, XIST uses a concept of structure equivalence
groups, which results in a dramatic reduction in the number of candidate indices.

– We develop a flexible tool that can recommend candidate indices even when only
some input sources are available. In particular, the availability of only either the
schema or the user workload is sufficient for the tool.

– Our experimental results indicate that XIST can produce index recommendations
that are more efficient than those suggested by current index selection techniques.
Moreover, the quality of the indices selected by XIST increases as more information
and/or more disk space is available.

The remainder of this paper is organized as follows. Section 2 presents data models,
assumptions, and terminologies used in this work. In Section 3, we describe the overview
of the XIST algorithm. Sections 4, 5, and 6 describe the individual components of XIST in
detail. Experimental results are presented in Section 7, and the related work is described
in Section 8. Finally, Section 9 contains our concluding remarks and directions for future
work.
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Fig. 1. Sample XML Schema

2 Background

In this section, we describe the XML data models, terminologies, and assumptions that
we use in this paper.

2.1 Models of XML Data, Schema, and Queries

We model XML data as a tree. We encode the nodes of the tree using Dietz’s numbering
scheme [11,10]. Each node is labeled with a pair of numbers representing its positions
on preorder and postorder traversals. Using Dietz’s proposition, node x is an ancestor
of node y if and only if the preorder number of node x is less than that of node y and the
postorder number of node x is greater than that of node y. This basic numbering scheme
can be extended to include an additional number that encodes the level of the node in
the XML data tree. This numbering scheme is used in our cost models when performing
the structural joins [27,8,1] between parents and children or between ancestors and
descendants. We need the additional level information of a node to differentiate between
parent-child and ancestor-descendant relationships.

We model an XML schema as a directed label graph. An XML schema is written
in the W3C XML Schema Definition Language which describes and constrains the
content of XML documents. It allows the definition of groups of elements and attributes.
We can group elements sequentially, or choose some elements to appear and others to
disappear, or define an unordered set of elements. An edge between each node in the
XML Schema graph here is the edge between a parent element and a child element while
child elements are grouped sequentially. The required edge from node A to node B refers
that the minimum number of occurrences of B that appear inside node A is at least one;
on the other hand, the optional edge refers that the minimum number of occurrences of
B that appear inside node A is zero. Figure 1 shows the schema of a sample bibliography
database that we use as a running example throughout this paper.

2.2 Terminologies and Assumptions

We now define terminologies for paths and path indices that are used in this paper.
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A label path p (referred to as a path as well) is a sequence of labels l1/l2/.../lk where
the length of the path is k. We assume that the returned result of path p is the ending
node of path p. Path pd is dependent on path p if p is a subpath of pd. For example, path
l1/l2/.../lk is dependent on path l1/l2.

A path index (PI) on path p is an index that has p as a key and returns the node IDs
(NIDs) of the nodes that matched p. (As discussed in Section 2.1, an NID is simply a
triplet encoding the begin, end, and level information.)

An element index (EI) is a special type of a path index. Since an element “path”
consists of only one node, the element index stores only the NIDs of the nodes matched
by the element name.

A candidate path (CP) is a path on which XIST considers as a candidate for building
an index. The corresponding index on the candidate path is called a candidate path index
(CPI).

In our work, we consider the following types of indices as candidates: (i) structural
indices on individual elements, (ii) structural indices on simple paths as defined above,
and (iii) value indices on the content of elements and attribute values. It is possible to
extend our models to include other types of indices, such as an index on a twig query,
in the future.

3 The XIST Algorithm

In making its recommendations for a set of indices, XIST is designed to work flexibly
with the availability of a schema, a workload, and data characteristics of an XML data
set. Figure 2 shows an overview of XIST, which consists of four modules that adapt
to a given set of input configuration. The first module is the candidate path selection
module, which eliminates a large number of potentially irrelevant path indices. It uses the
following two techniques: (i) If the query workload is available, this module eliminates
paths that are not in the query workload, and (ii) If the schema is available, the tool
identifies and prunes equivalent paths that can be evaluated using a common index.

To compute the benefits of indices on candidate paths, we use either the cost-based
benefit computation module or the heuristic-based benefit computation module, depend-
ing on the availability of data statistics. When data statistics are available, the cost-based
benefit computation module is employed. When data statistics are not available, the
heuristic-based benefit computation module is operated instead. (The computation car-
ried out by the benefit computation modules may be present in many optimizers, and
these modules could be shared by the query optimizer.)

The last module is configuration enumeration, which in each iteration chooses an
index from the candidate index set that yields the maximum benefit. The configuration
enumeration module continues selecting indices until a space constraint, such as a limit
on the available disk space, is met.

Figure 3 presents the overview of the XIST algorithm. In the following sections, we
describe in detail the steps shown in this figure. The first phase, the selection of candidate
paths (CPs), is presented in Section 4. Section 5 discusses the benefit computations for
the indices on the selected CPs (CPIs). Finally, Section 6 describes the re-computation
for the benefits of CPIs that have not been chosen (line 9).
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Fig. 2. The XIST Architecture

4 Candidate Path Selection

In this section, we address the important issue of selecting candidate paths (CPs). Since
the total number of candidate paths for an XML schema instance can be very large, for
efficiency purposes, it is desirable to identify a subset of the candidate paths that can
be safely dropped from consideration without reducing the effectiveness of the index
selection tool. The candidate path selection module in XIST employs a novel technique
to achieve this goal.

Our strategy for reducing the number of CPs is to share an index among multiple
paths. Our approach for grouping similar paths involves identifying paths that share the
same ending nodes. Since the ending nodes of these paths are the same, the index on a
single path of the paths in this group returns the same set of nodes that other paths will
(assume that the returned nodes of the path are only the ending nodes of the path).

Definition 1. A path pu, n1/n2/.../nk, is a unique path if there is one and only one
incoming required edge to ni and there is one and only one incoming required edge to
node ni which must be exclusively from node ni−1 for i = 2 to k.

Definition 2. Path p1 and path p2 are in the same structure equivalence group if 1) p1
and p2 share the same suffix subpath, 2) the starting node of the shared suffix subpath
must have only one incoming edge, and 3) the non-suffix subpath is a unique path.

We refer to a group of paths that share the same ending nodes as a Structure
Equivalence Group (SEG). As an example of an SEG consider the schema shown in
Figure 1. A sample SEG in this schema is the set containing the following paths:
bib/book/publisher, book/publisher, and publisher. For brevity, we refer to
the paths using the concatenation of the first letter of each element on the path (for
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Fig. 3. The XIST Algorithm

example, we refer to bib/book/publisher as bbp). As shown in the schema graph in
Figure 1, bbp is a unique path as p has only one parent, and each of its ancestors also has
only one parent. Nodes that match bbp are the same as nodes that match the suffix paths
of bbp which are bp and p. Thus, these paths are in the same SEG. However, suppose
that if publisher has two parents: book and article. Then, bib/book/publisher,
book/publisher and publisher do not form a SEG since we cannot assume that
publisher is the publisher of the book (book/publisher). The publisher can also
be the publisher of the article (book/article). On the other hand, book/publisher
and /bib/book/publisher form a SEG. In this SEG, the shared suffix subpath is
book/publisher

Instead of building indices on each path in an SEG, XIST only builds an index on the
shortest path in each SEG. We choose the shortest path because the space and access time
of indices in SEGs can often be reduced. This is because the shortest path can simply
be a single element. In such an index, we only need to store three integers (begin, end,
level) per index entry, whereas in indices on longer paths require storing six integers per
index entry.

Since structure equivalence groups are determined based only on the XML schema,
these groups are valid for all XML documents conforming to the XML schema. The
SEGs cannot be determined by using data statistics because statistics do not indicate
whether a node is contained in only one element type. Since some elements in XML
data can be optional, they may not appear in XML document instances and thus may not
appear in data statistics as well.

5 Index Benefit Computation

In this section, we describe the internal benefit models used by the XIST algorithm
to compute the benefits of candidate path indices (CPIs). The total benefit of an index
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Inputs: A set of existing indices S, a target workload W, and a CPI on path p, Ip

Output: The benefit of Ip, B(Ip)
ComputeIndexBenefit()
// FE and FD are functions for benefit computation
1. BE = 0
2. for path pe ∈ EQ(p) and pe ∈ W
3. Be = FE(p, pe, S)
4. BE = BE + Be

5. endfor
6. BD = 0
7. for path pd with p as a subpath and pd ∈ W
8. Bd = FD(p, pd, S)
9. BD = BD + Bd

10. endfor
11. if data statistics are available
12. B(Ip) = BE + BD − U(Ip)
13. else
14. B(Ip) = BE + BD

Fig. 4. The Index Benefit Computation Algorithm for CPI Ip

Ip, B(Ip), is computed as the sum of: (i) BE , which is the benefit of using Ip for
answering queries on the equivalent paths of p (recall that all paths in an EQ share the
same path index), and (ii) BD, which is the benefit of using Ip for answering queries on
the dependent paths of p. Figure 4 presents an algorithm for computing the total benefit
of Ip, B(Ip).

5.1 Cost-Based Benefit Computation

When data statistics are available, XIST can estimate the cost of evaluating paths more
accurately. The collected data statistics consist of a sequence of tuples, each representing
a path expression and the cardinality of the node set that matches the path (also called
the cardinality of a path expression). XIST uses the path cardinality to predict path
evaluation costs. In reality, however, these costs depend largely on the native storage
implementation and the optimizer features of an XML engine. To address this issue, we
approximate the path evaluation costs via abstract cost models based on our experimental
native XML DBMS.

Computing Evaluation Costs. The cost of evaluating a path with the index on the
path is estimated to be proportional to the cardinality of the path since the path index
is implemented using a hash index and the hash index access cost is proportional to the
number of items retrieved from the hash index. Let C(p1/p2, S ∪ Ip1/p2) be the cost of
evaluating p1/p2. Then,

C(p1/p2, S ∪ Ip1/p2) ≈ KI × (|p1/p2|) (1)

where KI is a constant and |p1/p2| is the cardinality of the nodes matched by p1/p2.
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If an index on a path does not exist, XIST splits the path into two subpaths and then
recursively evaluates them. When splitting the path, XIST needs to determine the join
order of subpaths to minimize the join cost. The chosen pair has the minimal sum of
the cardinalities of subpaths. Subpaths are recursively split until they can be answered
using existing indices. After subpaths are evaluated, their results are recursively joined
to answer the entire path. Finding an optimal join order is not the focus of this paper,
but it has been recently proposed [26].

When XIST joins a path of two indexed subpaths, it uses a structural join algo-
rithm [1], which guarantees that the worst case join cost is linear in the sum of sizes of
the sorted input lists and the final result list. Let S be the set of indices which exclude
the index on p1/p2, and C(p1/p2, S) be the cost of joining between path p1 and path
p2. Then,

C(p1/p2, S) ≈ KJ × (|p1| + |p2| + |p1/p2|) (2)

where KJ is the constant and |pi| is the estimated cardinality of the nodes that match
pi. The estimated cardinality of the nodes that match the paths are given as an input of
the XIST tool (by the XML estimation module in the system).

Since the maintenance cost for an index can be very expensive, XIST also considers
the maintenance cost in the index benefit computation. The actual cost for updating a
path index is very much dependent on the system implementation details, and different
systems are likely to have different costs for index updates. In this paper, for simplicity,
we use an update cost model in which the update cost for a given path index is proportional
to the the number of entries being updated in the path index. (This cost model can be
adapted in a fairly straightforward manner if the cost needs to include a log-based factor,
which is a characteristic for tree-based indices.)

Let U(Ip1/p2) be the cost of updating the index on path p1/p2, then

U(Ip1/p2) ≈ KU × (|p1/p2|) (3)

where KU is the constant and |p1/p2| is the cardinality of the nodes that match p1/p2.

Using Cost Models for Computing Benefits. Now we describe how the cost models
are used to compute the total benefit of an index when data statistics are available.
The benefit function FE(p, pe, S) is the function to compute the benefit of using Ip to
completely evaluate a path in the structure equivalence group of p (pe), assuming the
set of indices S exists. The benefit function FD(p, pd, S) is the function to compute the
benefit of using Ip to partially answer a dependent path of p (pd), assuming the set of
indices S exists.

FE(p, pe, S) = C(pe, S) − C(p, S ∪ Ip)
FD(p, pd, S) = C(pd, S) − C(pd, S ∪ Ip)

Fig. 5. FE and FD for Ip (with Statistics)



XIST: An XML Index Selection Tool 227

5.2 Heuristic-Based Benefit Computation

When data statistics are not available, XIST estimates the benefit of the index by using
the lengths of queries and the length of the candidate path (CP). The benefit of a candidate
path index (CPI) is estimated based on: a) the number of joins required to answer queries
with and without the CPI, and b) the use of a CPI to completely or partially evaluate a
query.

In the following paragraphs, we use the following notations: p is a CP, Ip is a CPI, pe

is an equivalent path of p (a path that Ip can completely answer), and pd is a dependent
path of p (a path that Ip can partially answer).

We first consider the benefit of Ip when it can completely answer a query. This
benefit is computed by the FE function, which estimates the number of joins needed as
the length of the shortest unindexed subpath of p. Let L(p) be the length of path p, S be
the set of existing indices, and L

′
(p, S) be the length of the shortest unindexed subpath

in p. L
′
(p, S) is the difference between the length of p and that of the longest indexed

subpath of p.
Next, we consider the benefit of Ip when it can partially answer a query. This benefit

is computed by the FD function. Like FE , FD estimates the number of joins needed to
answer the query. However, in this case, the number of joins needed is more than just
the length of an unindexed subpath of the query. The closer the length of p to the length
of unindexed subpath of the query, the higher benefit of Ip is. We use the difference
between the length of p and that of the query as the number of the joins that the index
cannot answer. The benefit functions FE and FD are shown in Figure 6.

FE(p, pe, S) = L
′
(pe, S)

FD(p, pd, S) = L
′
(pd, S) − (L(pd) − L(p))

= L
′
(pd, S) − L(pd) + L(p)

Fig. 6. FE and FD for Ip (Without Statistics)

6 Configuration Enumeration

After the benefit of each CPI is computed using FE and FD in the index benefit algorithm
(Figure 4), the first two phases of the XIST algorithm (Figure 3) are completed. In the
third phase, XIST first selects the CPI with the highest benefit to the set of chosen indices
S. Since XIST takes the index interaction into account, it needs to recompute the benefits
of CPIs that have not been chosen. The key idea in efficiently recomputing the benefits
of CPIs is to recompute only the benefits of the indices on paths that are affected by the
chosen indices. A naı̈ve algorithm would recompute the benefit of each CPI that has not
been selected. In contrast, XIST employs a more efficient strategy no matter whether
it uses the heuristic-based benefit computation or cost-based benefit computation. The
strategy is briefly described below.

XIST considers three types of paths that are affected by a selected index on path p:
(a) subqueries that have not been evaluated and that contain p as a subpath, (b) paths
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that are subpaths of p, and (c) paths that are not subpaths of p but are subpaths of paths
in (a).

Using these relationships between selected paths and other unselected paths, we can
reduce the number of benefit re-computations for the unselected indices. We need to re-
compute the benefits of unselected indices because the benefits of these indices depend
on the existence of selected indices. The situation in which the benefits of one index
depends on the existence of other indices is called index interaction.

If we did not find such relationships between the selected indices and the unselected
indices, we could spend an excessive amount of time in computing the benefits of many
remaining unselected indices.

7 Experimental Evaluation

In this section, we present the results from an extensive experimental evaluation of XIST,
and compare it with current index selection techniques.

7.1 Experimental Setup

The XIST tool that we implemented is a stand-alone C++ application. It uses the Apache
Xerces C++ version 2.0 [20] to parse an XML schema. It also implements the selection
and benefit evaluation of candidate indices, and the configuration enumeration. We then
used the indices recommended by the XIST toolkit as an input to an native XML DBMS
that we are currently developing. This system implements stack-based structural join
algorithms [1]. It uses B+tree to implement the value index, and uses a hash indexing
mechanism to implement the path indices. It evaluates XML queries as follows: if a path
query matches an indexed pathname, the nodes matching the path are retrieved from
the path index. If there is no match, the DBMS uses the structural join algorithm [1] to
join indexed subpaths. Queries on long paths are evaluated using a pipeline of structural
join operators. The operators are ordered by the estimated cardinality of each join result,
with the pair resulting in the smallest intermediate result being scheduled first. A query
with a value-based predicate is executed by evaluating the value predicate first.

In all our experiments, the DBMS was configured to use a 32 MB buffer pool. All
experiments were performed on an 1.70 GHz Intel Xeon processor, running Debian
Linux version 2.4.13.

7.2 Data Sets and Queries

We used the following four commonly used XML data sets: DBLP [18], Mondial [25],
Shakespeare Plays [13], and XMark benchmark [22]. For each data set, we generated
a workload of ten queries. These queries were generated using a query generator which
takes the set of all distinct paths in the input XML documents as input. The detail of the
generation method can be found in the full-length version of the paper [21].

As an example, using the generation method, some of the queries on the Plays data
set are as follow: FM/P and /PLAY/ACT/EPILOGUE/SPEECH[SPEAKER="KING"].
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Fig. 7. Number of Paths and Structure Equivalence Groups

7.3 Experimental Results

We now present experimental results that evaluate various aspects of the XIST toolkit.
First, we demonstrate the effectiveness of the path structure equivalence group (SEG)
in reducing the number of candidate paths. Then, we compare the performance of
XIST with the performance of a number of alternative index selection schemes. We also
performed the experiments to access the impact of the different types of inputs (namely
query workload, XML schema and statistics) on the behavior of the XIST toolkit. In
addition, we also analyzed the performance of all the index selection schemes when
the workload changes over time. However, due to the space limitation, only partial
experimental results of the impact of different types of inputs are presented here; more
experimental results are presented in the full-length version of this paper [21].

The execution time numbers presented or analyzed in this paper are cold numbers,
i.e., the queries do not benefit from having any pages cached in the buffer pool from a
previous run of the system.

Effectiveness of Structure Equivalence Groups. Paths in an structure equivalence
group are represented by a single unique path which is the smallest path pointing to the
same destination node. Therefore, the number of structure equivalence groups denotes
the number of such unique paths.

Figure 7 plots the number of paths and the number of structure equivalence groups for
all the data sets used in this experimental evaluation. In this figure, DBLP1 and XMark1
represent those paths from DBLP and XMark with lengths up to five, and DBLP2 and
XMark2 represent those paths with lengths up to ten. As shown in Figure 7, the number
of structure equivalence groups is fewer than the number of total paths by 35%-60%.
This result validates our hypothesis that the number of candidate paths can be reduced
significantly using the XML schema to exploit structural similarities.

Comparison of Different Indexing Schemes. We compare the performance of the
following sets of indices: indices on elements (Elem), indices on paths with length up
to two (SP), indices suggested by XIST (XIST), and indices on the full path query
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Fig. 8. Performance Improvement of XIST

definitions (FP). The Elem index selection strategy is interesting because it is a minimal
set of indices to answer any path query. SP is a set of indices on short paths. XIST is a set
of indices chosen by the XIST tool with given all input information (schema, statistics,
and query workload). FP is a set of indices that requires no join when evaluating paths
without value-based predicates.

All indexing schemes (Elem, SP, XIST, and FP) only build indices on paths without
value-based predicates. To evaluate paths with value-based predicates, a join operation
is used between the nodes returned from indices and the nodes that match the value
predicates. We choose to separate the value indices from a path indices to avoid having
an excessive number of indices – one for each possible different value-predicate. In our
experimental setup, all indexing schemes share the same value indices to evaluate paths
with value-based predicates.

Figure 8 shows the performance improvement of XIST over other indices for the four
experimental data sets. The results shown in Figure 8 illustrate that XIST consistently
outperforms all other index selection methods for all the data sets. XIST is better than
Elem and SP because XIST requires fewer joins for evaluating the queries. XIST performs
better than FP largely because the use of structure equivalence groups (SEGs) while
evaluating path queries. In many cases, long path queries without value predicates are
equivalent to queries on a single element. In such cases, if the size of the element index
is smaller than the size of the path index, XIST recommends using the element index to
retrieve answer. On the other hand, FP needs to access the larger path index. Another
reason for the improved performance with XIST is that for some data sets the total size
of XIST indices (including element indices and path indices) is smaller than that of
FP indices (including element indices and path indices). The total size of XIST indices
is smaller because it shares a single index among the equivalent paths. Note that the
equivalent paths cannot be determined when using FP since FP does not take a schema
as an input information. FP takes only query workload as an input information. Table 1
presents the sizes of data sets and indices for all data sets.
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Table 1. Sizes of Data Sets and Indices

Data Set Size Index Size (MB)
(MB) Elem SP FP XIST

DBLP 117 91 117 110 101
Mondial 2 2 3 3 3
Plays 8 80 86 85 81
XMark 11 27 27 27 27

7.4 Impact of Input Information on XIST

In this section, we compared the execution times when using indices suggested by XIST
with indices selected by other index selection strategies.

Due to space limitations, in this paper we only present the results for DBLP and
XMark when the workload information is available. DBLP represents a shallow data
set (short paths), and XMark represents a deep data set (long paths). The experimental
results for these two data sets are representative of the results for the other two data sets.

Fig. 9. Performance on DBLP Fig. 10. Performance on Xmark

When the workload information is available, FP and XIST exploit the information to
build indices that can cover most of the queries. FP indices cover all paths without value-
based predicates in the workload. Thus, its index selection is close to optimal (without
any join). When using FP, the only joins that the database needs are the joins between
the returned nodes from the path index and the nodes that satisfy the value predicates.
In Figures 9-10, the number of FP indices is used to assign the initial number of indices
that the XIST tool generates.

As opposed to the heuristic-based benefit function, the cost-based benefit function
guarantees that the more useful indices are chosen before the less useful indices. The
execution times of XIST with QW-Stats (QW-Schema-Stats) gradually decrease as
opposed to the execution times of XIST with QW (QW-Schema). This is particularly no-
ticeable in Figure 10.
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8 Related Work

In the 1-index [19], data nodes that are bisimilar from the root node stored in the same
node in the index graph. The size of the 1-index can be very large compared to the data
size, thus A(k)-index [16] has been proposed to make a trade off between the index
performance and the index size. While k-bisimilarity [16] is determined by using XML
data, the SEGs in this paper are determined by using an XML schema. Recently, D(k)-
index [6], which is also based on the concept of bisimilarity, has been proposed as an
adaptive structural summary. Like XIST, D(k) also takes the query workload as an input.
However, XIST also takes the XML schema into account while D(k) does not. Although
both k-bisimilarity and SEGs group paths that lead to the nodes with the same label,
SEGs group paths in an XML schema but k-bisimilarity group paths in XML data.

Chung et al. have proposed APEX [9], an adaptive path index for XML documents.
Like APEX, XIST exploits the query workload to find indices that are most likely to
be useful. On the other hand, APEX does not distinguish the benefit of indices on two
paths with same frequencies, but XIST does. In addition, APEX does not exploit data
statistics and XML schema in index selection as opposed to XIST.

Recently, Kaushik et al. have proposed F&B-indexes that use the structural features
of the input XML documents [15]. F&B indexes are forward-and-backward indices
for answering branching path queries. Some heuristics in choosing indices, such as
prioritizing short path indices over long path indices are proposed [15]. On the other
hand, XIST takes many additional parameters, such as the information from a schema
or a query workload.

Many commercial relational database systems employ index selection features in
their query optimizers. IBM’s DB2 Advisor [24] recommends candidate indices based
on the analysis of workload of SQL queries and models the index selection problem
as a variation of the knapsack problem. The Microsoft SQL Server [3,4] uses simpler
single-column indices in an iterative manner to recommend multi-column indices. XIST
groups a set of paths (a set of multiple-columns) that can share the index.

Our work is closest to the index selection schemes proposed by Chawathe et al. [5] for
object oriented databases. Both the index selection schemes [5] and XIST find the index
interaction through the relationships between subpath indices and queries. However,
XIST exploits the structural information to reduce the number of candidate indices
and optimize the query processing of XML queries while [5] only looks at the query
workload to choose candidate indices for evaluating object-oriented queries.

9 Conclusions

In this paper, we have described XIST, an XML index selection tool, which recommends
a set of path indices given a combination of a query workload, a schema, and data
statistics. By exploiting structural summaries from schema descriptions, the number of
candidate indices can be substantially reduced for most XML data sets and workloads.
XIST incorporates a robust benefit analysis technique using cost models or a simplified
heuristic. It also models the ability of an index to effectively evaluate sub-paths of a
path expression. Our experimental evaluation demonstrates that the indices selected by
XIST perform better compared to existing methods. In our experimental evaluation,
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we had to tailor the cost model used in XIST to accurately model the techniques that are
implemented in our native XML system. However, we believe that the general framework
of XIST, with its use of structure equivalence groups and efficient benefit recomputation
methods, can be adapted for use with other DBMSs with different implementation and
query evaluation algorithms. To adapt this general framework to other systems, accurate
cost models equations are required that account for the system-specific details. Within the
scope of this paper, we have chosen to focus on the general framework and algorithms of
an XML index selection tool, and have demonstrated that its effectiveness for our native
XML DBMS.

In the future, we plan on extending XIST to include additional types of path indices,
such as indices on regular path expressions and on twig queries.
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