A Progressive View Materialization Algorithm

Hidetoshi Uchiyama

Department of Electrical Engineering
and Computer Science
University of Michigan, Ann Arbor

uchiyama@eecs.umich.edu

Abstract

A data warehouse stores materialized views of aggregate
data derived from a fact table in order to minimize the query
response time. One of the most important decisions in de-
signing the data warehouse is the selection of materialized
views. This paper presents an algorithm which provides ap-
propriate views to be materialized while the goal is to min-
imize the query response time and maintenance cost. We
use a data cube lattice, frequency of queries and updates on
views, and view size to select views to be materialized using
greedy algorithms. In spite of the simplicity, our algorithm
selects views which give us better performance than views
that selected by existing algorithms.

1 Introduction

In many companies, decision support systems (DSS) play an
important role for businesses. The main reason for DSS’s
popularity is that the companies use it to make a good de-
cision quickly in today’s increasingly competitive market-
place. The volume of information available to corporations
is rapidly increasing and overwhelming. Those companies
which want to effectively manage extremely large volumes
of data for business decisions thus realize the significance of
using effective DSS.

Data warehouses are historical repositories to store these
large volumes of data efficiently, while operational databases
maintain state information. Since queries to data ware-
houses tend to be queries which identify trends in large mul-
tidimensional data, these queries typically make large use of
aggregations. This leads to a necessity of multidimensional
data analysis: On-Line Analytical Processing. On-Line An-
alytical Processing (OLAP) is a technique which guarantees
extremely fast response time for multi-dimensional queries
in data warehouses. Before OLAP begins accepting queries,
it calculates possible aggregations during an off peak period,
such as at night. Storing these preaggregations requires ex-
tra space. However, for most environments, data warehouses
cannot store all possible aggregations because the size of ag-
gregations becomes gigabytes in many companies. In large
enterprises, they explode to terabytes.

To solve this problem, this paper proposes a new algo-

Kanda Runapongsa
Department of Electrical Engineering
and Computer Science
University of Michigan, Ann Arbor

krunapon@engin.umich.edu

Toby J. Teorey
Department of Electrical Engineering
and Computer Science
University of Michigan, Ann Arbor

teorey@eecs.umich.edu

rithm that determines which views should be aggregated so
that query response time and maintenance cost are mini-
mized.

There has recently been a lot of interest on the problem
of selecting views to materialize in a data warehouse. Hari-
narayan et al. [HRU96] provide algorithms to select views
to materialize in order to minimize the query response time,
where there is a space constraint. The solution proposed in
the paper [HRU96] is a polynomial-time greedy algorithm
that performs within a constant factor of an optimal solu-
tion. Gupta et al. [GHRU97] extend the work [HRU96]
to selection of views and indexes in data cubes. Unlike all
the above-mentioned works, Gupta and Mumick [GM99] ad-
dress the problem of selecting views to materialize under
the constraint of a given amount of total view maintenance
time. There are other works that solve this problem without
any resource constraints and performance guarantees on the
quality of the solution [RSS96, YKL97, BPT97, TS97]. Our
algorithm simplifies the above models in a practical devel-
opment time based on the algorithm in [HRU96]. However,
our algorithm considers the frequency of selection queries
and the cost of update operations on materialized views in
order to select views which give us better performance than
the algorithm in [HRU96].

The rest of the paper is organized as follows: Section
2 provides the Progressive View Materialization Algorithm
(PVMA). Section 3 describes three experiments to show the
effectiveness of the PVMA algorithm. Section 4 discusses
the conclusion and future work.

2 Progressive View Materialization Algorithm (PVMA)

In data warehousing, it is necessary to distinguish between
query and update accesses. The change due to an update
affects to all views while a query may need to access to only
one view. The benefit and cost metrics that we use in select-
ing views to materialize are base on the frequency of updates
and accesses on each view and the view size. The Progressive
View Materialization Algorithm assumes that the selection
of each materialized view is done independently. It also as-
sumes that there is no space constraint in the warehouse
and that the OLAP uses relational database systems (RO-
LAP). At each iteration in PVMA, the selected views v,
from the previous iterations is used as a basis. The benefit
bene fity(v) of selecting a view v is considered for all views v
that are not in the set of selected views in iteration k. The
profit profitiy(v) of a view v is the subtraction of benefit
and cost of view v. The view that yields the maximum pos-
itive profit is selected to be materialized. This hill climbing

heuristic reduces the complexity of the algorithm. PVMA
converges toward a relative maximum as the overall benefit
monotonically increases in each iteration. The search termi-
nates when it is not possible to increase the profit further.
If we want to have an optimal solution, we need to process
through all the paths that have possible benefit to achieve
the global maximum profit. This approach is not feasible
since the required computation increases exponentially with
the branching of possible paths. PVMA is described in the
later sections.

2.1 Data Cube Lattice

As discussed in the paper [HRU96], a data cube can be pre-
sented by using a lattice. For example, consider that there
are 2 dimensions: Product and Region as a sample. The
description of each dimension is described in Table 1. The
representation of these 2 dimensions as a lattice is shown
in Figure 1. A number at lower left of the box in Figure
1 represents a view. A number at lower right of the box is
the frequency of queries on the view. The top view P1.R1
corresponds to the fact table.

As can be seen in Table 1 and Figure 1, the size of view
P1.R1 (1,000,000) is much smaller than the multiplication
of P1 and R1 (7,000x100,000). A data warehouse is usually
very sparse, which means that values at many combinations
of dimensions are null. In this case, the sparsity of this

: 1,000,000 _ -3
data cube is 7,000x 100,000 — 1.4 x107°.

Table 1: Dimension Product and Region

Dimension | Hierarchy | Alias | Number of rows

Product top P3 5
category | P2 1,000
name P1 100,000
Region continent | R4 5
country R3 150
state R2 1,000
store R1 7,000
| P1.R1 P2.R1 P3.R1
1,000,000 1 600,000 2 100,000 5
| P1.R2 P2.R2 P3.R2
700,000 2 400,000 3 80,000 10
| P1.R3 P2.R3 P3.R3
100,00‘0 4 70,000 1 2,000 20
| P1.R4 P2.R4 P3.R4
30,000 7 5,000 30 100 1

Figure 1: Lattice of data cube

As shown in Figure 1, this lattice is a directed acyclic
graph. An edge from view v to view u in this graph means
that view u can be computed from view v. For example,
the view P2.R2 can be computed from view P2.R1, view
P1.R2, or view P1.R1. The relationship of these views is in
partial order [HRU96].

Over the past few years, a considerable number of studies
have been made on estimating the view size and the cube
size [SDNR96, HNSS95]. These studies enable us to form
the data cube lattice.

The frequency of queries and updates on each view can
be kept track. When the data warehouse accepts queries,
it analyses these queries and decides which view is used.

If it stores this information, the frequency can be finally
calculated. In the following sections, let R(v) be the number
of rows in view v, and f, be the frequency of operations on
view v.

2.2 Update Operations

Among database update operations, we consider insert, delete
and update in the following sections. Because data ware-
houses have few update operations in daytime, the data
warehouse administrator has a plan to aggregate or change
the data warehouse during off peak period. Therefore we
can get the information about update operations, their fre-
quencies and the number of updated rows. Here, we define
these operations in Table 2.

Table 2: Symbols for update operation 4

[Operation || Frequency | Number of updated rows |

Insert I; fr1; Ny,
Delete D,’ fDi NDi
Update U; fu, Ny,

2.3 Nearest Materialized Parent View (NMPV)

Before we discuss the benefit and cost that we use in the Pro-
gressive View Materialization Algorithm, let us introduce a
notion Nearest Materialized Parent View (NMPV). We say
that a view u is a parent of view v if view v can be computed
from view u. The view NMPV;(v) is a materialized view
u where the difference between the size of view v and the
size of view v is minimum among all materialized views in
iteration k. That is,

NMPV;,(v) = min(R(vs), R(v)) Vous € S, where v = v

where v; - v means that view v, is one of the parents of
view v, and S represents a collection of views which the
PVMA algorithm decides to materialize.

Consider the following example. In Figure 1, assume that
S = {P1.R1, P2.R1, P1.R3}. In this case, NM PV (P2.R3) =
P1.R3 because P1.R3 has been already materialized, is a
parent view of P2.R3, and has the minimum difference of
the number of rows. Note that S contains P1.R1 for any k
because P1.R1 represents the fact table.

2.4 Benefit Calculation

If a view v is materialized, view v and the children of view
v receive benefits. This is because if view v is materialized,
we also reduce response time for aggregating view v, as we
respond to the user. In addition, queries which access the
child views of view v can aggregate the necessary view from
view v which is smaller than the fact table. Let S be a set
of materialized views. The benefit bene fity(v) of view v in
iteration k is:

(R(NM PV (v)) — R(v)) 3

benefity(v) = of

fp Trba
pEchild(v)Uv

where Ty, is the time for one random block access, and
bf is the blocking factor of the view [Teorey99]. The view
child(v) represents child views, whose NMPYV is v. That is,
the function child(v) is an inverse function of NM PV. The

reason that we use random access in benefit calculation is
that the OLAP server is shared by many users. Therefore
even if the data itself is contiguous in the disk, it is accessed
randomly.

2.5 Cost Calculation

Each change to the fact table in OLAP involves update to
each view - all dimensions and all levels of each dimension
are affected. This can cause large overhead. We recommend
that when aggregated views are created, their primary key
indexes are created as well. We assume that their primary
key indexes are implemented as Bt trees, where all the non-
leaf nodes are in main memory and only the leaf nodes and
data are on disk. We derive the time estimation for each up-
date operation as follows, where f represents the frequency
of each operation on a view.

Insert If one row is inserted to the fact table, materialized
views are affected. In this case, the following disk accesses
are necessary: (i) read a block of a view, (ii) rewrite a block
of the view, (iii) read a leaf node (block), and (iv) rewrite
the leaf node. Thus total cost for the insertion of one row is
4f (rba).

Delete The following disk accesses are necessary in delete
operation: (i) read a leaf node, (ii) read a block of a view,
(iii) rewrite a block of the view, and (iv) rewrite the leaf
node. Thus total cost for the deletion of one row is 4f (rba).

Update The following disk accesses are necessary in update
operation: (i) read a leaf node, (ii) read a block of a view,
and (iii) rewrite the block of a view. Thus total update cost
for one update is 3f (rba).

Cost Calculation We can derive a formula of the cost of
update operations on view v as:

cost(v) = Z AN fi + Z ANy fq + Z 3Nufu | Troe

i€l deD uelU

where I, D and U respectively represent a set of insert, delete
and update operations, shown in section 2.2.2. Tp, is the
time for one random block access.

The cost of update operations on each view does not
change in any iterations because even if some views have al-
ready been materialized, they do not affect the other views.
In addition, the costs of update operations on all views are
the same because the formula does not include any informa-
tion about view v.

2.6 Profit Calculation

PVMA calculates benefit and cost for each view in each
iteration. The function profity(v) which is the profit of
view v, and is defined as:

profity(v) = benefity(v) — cost(v)

In each iteration k, the algorithm chooses the view which
has the maximum profit. This means that the view should
be materialized because if the view is materialized, OLAP
receives the maximum benefit minus cost. Conversely, views
which have negative profit are not considered any more.
Since the value of bene fity (v) decreases as k increases, profit

also decreases. Therefore if the profit becomes negative
once, it cannot be positive again. The algorithm is described
below.

S ={vi} (S: views which should be materialized)
NR=¢ (NR: views which should not be materialized)

cost = (3, ANifi+ D yep 4Nafa + 3 ey 3Nufu) Trba
FOR k=1 to |V| (|V|: total number of views)
BEGIN
FOR all views v
BEGIN
IF(vg S &v¢gNR) THEN
benefitg(v) =
R(NMPV (v))~R(v
(’(b](c))—R(v)) Z

pEchild(v)Uv fp) Trba
profity(v) = benefity(v) — cost(v)
IF (profity(v) < 0) THEN Add v into NR

'ND

END
Buiew = ¢ (Bview: a view with maximum profit)
Buvalue =0 (Bvalue: profit of Buview)
FOR all views v
BEGIN
IF (vgS 8v¢gNR) THEN
IF (Bview = ¢) THEN
Buiew = v, Bvalue = profity(v)
IF (Buwalue < profity(v)) THEN
Buiew = v, Bvalue = profity(v)
END
END
Add Bview to S
END

2.7 Complexity of the Algorithm

Let, V be the number of views;

I be the number of insert queries;

D Dbe the number of delete queries;

U be the number of update queries.
Then the worst case complexity of PVMA is O(V2+T+D+
U).

3 Experiment

In this section, we would like to show a series of experiments
to clarify the differences between PVMA and the algorithm
in [HRU96].

3.1 Progressive View Materialization Algorithm (PVMA)

We carried out the experiments to evaluate the PVMA algo-
rithm. All experiments in this section are carried out using
Pro*C with Oracle8 server on Sun Microsystems Solaris op-
erating systems. This experiment was conducted under the
following conditions.

Lattice Figure 1

Update operations Table 3

Block size 64 kbytes

Record size (fact table) | 3276 bytes

Trva 16(msec)

Disk system SEAGATE ST34520A
Medalist Pro 4520

Tables 4 show the benefit, cost and profit for each iter-
ation. “S” in the tables means that the view has already
been in S (should be materialized), and “NR” means that
the view has already been in NR (should not be material-
ized) in the PVMA algorithm. That is; once the view is in

Table 3: Description of update operations

[Operation [Frequency | Updated rows]

Insert I 1 3,000
Delete D 1 3,000
Update Uy 3 1,000
Update Us 10 100

NR, its benefit and cost should not be calculated. The view
P1.R1 is in S because it is the fact table. The fact table
must be in S because it is the base view used to compute
other views. The underlined number in these tables means
that the view has the maximum profit among all views in
the iteration.

In the fourth step, only one view is caculated and have
negative profit. The other views have been in S or NR.
Thus the algorithm terminates, and the number of mate-
rialized views is 3. As a result, PVMA materializes views
P1.R3, P2.R4 and P3.R1.

3.2 Comparison with the Algorithm in [HRU96]

To evaluate the algorithm, we conducted some experiments
with a greedy approach, which was proposed in [HRU96].
Because conditions do not match completely, we used con-
ditions shown as follows:

Dimensions Table 5
Frequency Assigned 1~100 randomly
Update operation Table 6
D: number of dimensions
Lattice Figure 2
Upper left number: index of
the view
Density in fact table | 1% (fact table)
Dimension tables Keys and other attributes
are randomly generated.

Table 5: Description of dimension tables

[Name [Base level size | Levels | Record size (byte) |
Product 100 4 10,000
Customer 50 3 10,000
Region 10 2 10,000

Time 5 2 10,000
Table 6: Definition of update operations
[Operation [Frequency | Updated rows]
Insert I 1 50*D?
Delete D 1 50*D?
Update Uy 3 50*D?
Update Us 10 1*D?

The materialized views obtained from both the algorithm
in [HRU96] and PVMA tended to be very similar. Tables
7, 8 and 9 show which view is materialized in each iteration
using both algorithm. The number in a cell represents the
index which is uniquely assigned to views. For example, the
index in 2-dimensional lattice is 0~11.

As shown in Table 7, the first 7 materialized views, which
are calculated by the algorithm in [HRU96] and PVMA, are

Pl R1 P2 R1 l_,LPs R1|
500 1 318

|
Igf’llRZ . P2 R2 l_. mPC’iRlzo

P1. R3 P2 R3 l_.l P3.R3
100

I_Pl R4 l_.l P2 R4 PS‘R4 |

Figure 2: 2-dimensional lattice

Table 7: First 7 materialized views in 2-dimensional lattice

[Tteration [1]2]3[4][5[6]7]
HRU 4161|3279
PVMA 6141912351

Table 8: First 8 materialized views in 3 dimensional lattice
|Iterati0n||1|2|3|4|5|6|7|8|
HRU 82|61 |7|3]12 |4
PVMA 716]19[4(3[2]|10]8

Table 9: First 8 materialized views in 4 dimensional lattice
[Tteration || [2] 3]4]5]6] 78]
HRU 24 1412|216 |16 | 14
PVMA 24 14116 |6 |5 |3 |14]| 2

very similar although their orders in being selected are differ-
ent. However, as the number of dimensions becomes higher,
this similarity decreases, shown in Tables 8 and 9. This is
because lattice with more number of dimensions has more
number of views. In addition, the bias of frequencies dis-
criminates the result since PVMA materializes views which
have higher frequencies.

Tables 7, 8 and 9 show that the algorithm in [HRU96]
and PVMA materialize similar views. Here, we would like to
discuss the difference of the overall performance. Figure 3,
4 and 5 show the overall performance of data cube lattice.
We measure the performance in terms of the total query
response time for all views. Therefore if a view v is not ma-
terialized, the nearest materialized parent view NM PV (v)
is used for queries of the view v.

As can be seen in Figures 3, 4 and 5, the total query
response time when we use PVMA is less than one when
we use the algorithm in [HRU96]. However, the total query
response time when we use PVMA is obviously better only
in the first 8 materialized views. After PVMA and the algo-
rithm in [HRU96] select 8 or more views to materialize, the
total query response time of both algorithms is close. The
results on this data shows that PVMA selects views that
give us smaller response time than views that are selected
by the algorithm in [HRU96]. We need to investigate these
differences over a wider variety of data sets.

[HRU96] algorithm takes O(NvV') time in the worst case,
where Nv represents the maximum number of materialized
views and V is the number of views in the lattice. Because
N is proportional to V, the algorithm in [HRU96] approx-
imately takes O(V?). Meanwhile, PVMA takes O(V? +
I+ D+ U) in the worst case, as discussed in section 2.7.
In PVMA, the number of insert, delete and update queries
(I,D,U) is usually much less than the number of views in
lattice (V). Thus the timing estimation approximately be-
comes O(V?). From this discussion, PVMA works in almost

Table 4: Proceeding of PVMA

First step Second step Third step Fourth step
COST BENEFIT PROFIT BENEFIT PROFIT BENEFIT PROFIT BENEFIT PROFIT
PL.RIL | 1,616,000 . S . S . S . S
P1.R2 | 1,616,000 || 18,720,000 | 17,104,000 || 3,600,000 | 1,984,000 1,200,000 | -416,000 . NR
P1.R3 | 1,616,000 || 45,360,000 | 43,744,000 - S - S - S
P1.R4 | 1,616,000 20,488,000 | 27,872,000 2,128,000 512,000 2,128,000 512,000 392,000 -1,224,000
P2.R1 | 1,616,000 || 23,040,000 | 21,424,000 || 6,400,000 | 4,784,000 1,600,000 -16,000 - NR
P2.R2 | 1,616,000 || 31,200,000 | 29,584,000 || 6,240,000 | 4,624,000 1,440,000 | -176,000 . NR
P2.R3 | 1,616,000 || 38,688,000 | 37,072,000 || 1,248,000 | -368,000 ; NR . NR
P2.R4 | 1,616,000 24,676,500 | 23,060,500 2,356,000 740,000 2,356,000 740,000 - S
P3.R1 | 1,616,000 || 25,920,000 | 24,304,000 || 25,920,000 | 24,304,000 - S - S
P3.R2 | 1,616,000 || 22,816,000 | 21,200,000 || 22,816,000 | 21,200,000 496,000 | -1,120,000 . NR
P3.R3 | 1,616,000 || 16,766,400 | 15,150,400 || 1,647,000 30,400 1,176,000 | -440,000 . NR
P3.R4 | 1,616,000 799,920 -816,080 . NR . NR . NR
__ 15 _ 180 :
O PVMA st) PVMA st
@ e, [HRU96] =ssan ﬁ [HRU96] = @
2 14\ 2 160
£ 13 5 £ 140
§ 12 \ E 120
é 11 \ g 100
“5 10 \ _____ . o g 80
ER I VR SOt RO B L:’
8 40
gy
7 20
0 1 2 3 4 5 6 0 2 4 6 8 10 12
Number of materialized views Number of materialized views
Figure 3: Performance in 2-dimensional lattice Figure 5: Performance in 4-dimensional lattice
- : Table 10: Definition of update operations
2 \ [HRUZ6] = tes
@ 40 -
3 \ Operation || Frequency | Number of updated rows
£33 Insert It 1 50
2. \ Delete D, 1 50
¢ \ Update Uy 3 50
g% \ Update U» 10 1
§ 2
e If PVMA does not stop, it chooses views in the following
=
v, order: P1.R1 (fact table) — P2.R2 — P1.R4 — P2.R1 —
10 — P2.R3 - P1.R3 — P3.R1 — P1.R2 — P3.R2 — P2.R4 —
5 P3.R3 — P3.R4. If it stops, it terminates calculation at

0 1 2 3 4 5 6 7 8 9
Number of materialized views

Figure 4: Performance in 3-dimensional lattice
same time as the algorithm in [HRU96].

3.3 \Validity of Benefit and Cost Metrics

The PVMA algorithm stops if all non-materialized views
have negative profit or all views have already been in S
which means they should be aggregated. However, in order
to show the effectiveness of PVMA, we did not stop calcu-
lation even if the above conditions hold. This experiment is
conducted under the following conditions.

Lattice Figure 1
Update operations | Table 10
Block size 64 Kbytes
Record size 3276 bytes
Trba 16 (msec)

step 3 (P1.Rl1 — P2.R2 — P1.R4 — P2.R1). For each
step, we executed selection queries and update operations
for the entire database. Figure 6 shows the query response
time and total update operation time in each step.

As can be seen in Figure 6, the query response time ex-
ceeds the total update operation time from step 0 to step 5.
However, after step 6, the update operation time is larger
than the query response time. This is because the total up-
date operation time increases as the number of aggregated
views increases. In this experiment, if one view is material-
ized, 0.7509 seconds are necessary to refresh the view when
the fact table is changed. Thus the total update operation
time is proportional to the number of aggregated views.

Figure 7 depicts the actual profit in PVMA. Here, profit
is the time difference between the query response time of it-
eration k and that of iteration k + 1. That is, profit shows
the saved time when one view is materialized in iteration
k + 1. As Figure 7 indicates, the profit in iteration 3 is the
highest point. After iteration 4, the profit decreases as the
number of materialized views increases. This means that the

cost of the view exceeds the benefit of the view. Therefore
we should stop the algorithm in iteration 3. As discussed
above, the PVMA algorithm terminates calculation in itera-
tion 3. This shows that the PVMA stops at the appropriate
iteration.

=
o
S

Query Response Time' mm—m
Total Update Operation Time ==xs=

80

70 \
60
50

40 \
30 \

20 \

//

Query response time or Total update operation time(sec)

\¥
10
R e PRPPRRRP s
0 YTt PR PPN PAPPE oot PY -
' ’ ¢ 6 8 10

Number of materialized views

Figure 6: Query response time and total update operation
time

©
S

" profit ——

~
I=}

Total profit (sec)

@
=]
—

AN

\\

a
=]
—

40

0 2 4 6 8 10 12
Number of materialized views

Figure 7: Profit of actual data cube

4 Conclusion

In conclusion, the algorithm in [HRU96] is simpler and would
sometimes be the preferred method in simple cases because
the Progressive View Materialization Algorithm and the al-
gorithm in [HRU96] often give similar results, discussed in
section 3.2. However, in large lattice, especially more than
3 dimensions, the Progressive View Materialization Algo-
rithm provides significantly better results, especially when
we have a constraint of small maximum number of mate-
rialized views. Our algorithm is also far better in situa-
tions which involve different frequencies. The algorithm in
[HRU96] does not consider the update cost, whereas PVMA
does.

Further research needs to be carried out to derive more
accurate formulas of update operations. Our algorithm as-
sumes that all non-leaf nodes of BYindex are stored in main
memory. This may not be true in an environment where
the OLAP server has small main memory, because the data
warehouse tends to have large volumes of data. The cost
formula needs to consider this situation.

When a database administrator inserts periodic data,
more than one row are inserted at a time. However, our

algorithm assumes that the aggregated views are updated
when one row is inserted to the fact table. Therefore the
insertion formula should be corrected to consider this situ-
ation.

There may also be sensitivities to selecting queries which
do not require scanning of views by instead using indexes,
or queries which have join. Our model does not deal with
these factors. In our algorithm, there is an assumption that
all queries scan all rows in a view. This is not true if the
view has indexes in the primary key and the selectivity of the
query is very low. Also, our algorithm works under no space
constraint since disk space is adequate and not expensive in
many situations.

References

[BPT97] E. Baralis, S. Paraboschi, and E. Teniente. Ma-
terialized View Selection in a Multidimensional
Database. In Proceedings of the 23rd VLDB
Conference, 1997.

[GBLP95] J. Gray, A. Bosworth, A. Layman, and H.

Pirahesh. Data Cube: A Relational Aggrega-
tion Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals. Microsoft Technical Re-
port No. MSR-TR-95-22.

[GHRU97] H. Gupta, A. Harinarayan, A. Rajaraman, and
J. D. Ullman. Index Selection for OLAP. In
Proceedings of 13th ICDE, 1997, pp. 208-219.

H. Gupta and I. S. Mumick. Selection of Views
to Materialize under a Maintenance-Time Con-
straint. In Proceedings of 8th ICDT, 1999.

P. Hass, J. F. Naughton, S. Seshadri, and
L. Stokes. Sampling-Based Estimation of the
Number of Distinct Values of an Attribute.
In Proceedings of the 21st VLDB Conference,
1995, pp. 311-320.

[GM99]

[HNSS95]

[HRU96] V. Harinarayan , A. Rajaraman , J. D. Ullman.
Implementing Data Cubes Efficiently. In Pro-
ceedings of the ACM SIGMOD 1996, pp. 205-

216.

K. Ross, D. Srivastava and S. Sudarshan. Mate-
rialized View Maintenance and Integrity Con-
straint Checking: Trading Space for Time. In
Proceedings of the ACM SIGMOD, 1996, pp.
447-458.

A. Shukla, P. Deshpande, J. Naughton and
K. Ramasamy. Storage Estimation for Multidi-
mensional Aggregates in the Presence of Hier-
archies. In Proceedings of the 22nd VLDB Con-
ference, 1996.

T. Teorey. Database Modeling and Design.
Third edition, Morgan Kaufmann Publishers,
Inc., 1999.

D. Theodoratos and T. Sellis. Data Ware-
house Configuration. In Proceedings of the 23rd
VLDB Conference, 1997, pp. 126-135.

J. Yang, K. Karlapalem and Q. Li. Algorithms
for Materialized View Design in Data Ware-
housing Environment. In Proceedings of the
VLDB, 1997.

[RSS96]

[SDNR96]

[Teorey99]

[TS97]

[YKL97]

