Storage Estimation for Multidimensional
Aggregates in OLAP

Kanda Runapongsa, Thomas P. Nadeau, and Toby J. Teorey
Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109, USA
E-mail: {krunapon, nadeau, teorey }@eecs.umich.edu

Abstract

On-line analytical processing (OLAP) is an im-
portant technique for analyzing data in deci-
sion support systems. Most analytical queries
require aggregation of the interesting data.
Pre-aggregation is one of the most important
techniques used to speed up the query response
time. However, precomputing every aggregate
takes a large amount of time and space. The
decision of which aggregates should be precom-
puted and how much space is required is thus
important. By estimating the storage space
required for each aggregate view, we can al-
locate the space for aggregates efficiently and
decide which aggregates to precompute. We in-
vestigate four existing strategies for this prob-
lem: two based on mathematical approxima-
tions, one based on sampling, and one hybrid
approach based on mathematical approxima-
tion and sampling. We propose a new hybrid
strategy that is based on mathematical approx-
imation and sampling and is easy to compute.
We evaluate the accuracy of these algorithms
in estimating the storage explosion due to ag-
gregation for different data distributions and
data densities. The results indicate that our
proposed strategy approximates the explosion
more accurately than other strategies.

1 Introduction

Most data analysis supported by On-Line An-
alytical Processing (OLAP) systems is mul-
tidimensional and hierarchical [19, 21]. The
analytical queries used for making a decision
usually require summarization and comparison.

Therefore, these queries require the computa-
tion of several aggregate functions, such as sum
and count, over large amount of multidimen-
sional data. To meet the user’s need for fast
response time, all OLAP products precompute
some aggregates. The more aggregates are pre-
computed, the faster queries can respond to
the user. However, the pre-compute aggrega-
tion technique has a storage constraint. The
database administrator needs to estimate how
much storage a given set of pre-computed ag-
gregates requires. The aggregation of the inter-
esting data is usually kept in a view. A view is
a virtual relation defined by a query expression
[18]. A virtual relation is a relation that is not
part of the conceptual model but is made visi-
ble to a user [18]. A view may be materialized-
that is, stored physically [18]. The size of a
given view is the number of distinct values of
the attributes it groups by [11]. Many materi-
alized view selection algorithms need to know
the size of the candidate materialized view. In
this paper we investigate some techniques that
have been proposed for determining the space
storage needed for a set of views. We compare
these techniques with our new hybrid approach.

1.1 An Example

To clarify the problem we are considering, we
begin with an example. Consider a table (a
relation) of sales with the schema

Sale(ProductId, DayId, Quantity)

with the meaning that each tuple represents
some quantity of some product sold on some

date. We assume that we have some informa-
tion about products and times captured in the
following tables.

Product (ProductId, Category) and
Time (DayId, Week)

From the above example, Quantity is re-
ferred to as a measure value because it is what
we are measuring. Product table and Time ta-
ble are referred to as dimension tables since
each one of them represents the measure value
along one perspective or one dimension. Sale
table is referred to as a fact table. A fact table
correlates all dimensions and contains informa-
tion on the measure values. The attributes in
dimension tables are usually hierarchical. For
example, a particular category has a certain set
of products.

The user of this data may want to know the
total sales of each product that have been sold.
We then need to aggregate the quantity of the
sale of each product. The query can be written
in the Structured Query Language (SQL) as
follows:

select ProductId, SUM(Quantity)
from Sale
group by ProductId;

If the Sale table is large, the query response
time will be long. However, if the aggregate
of each product is precomputed, this query
and queries derived from this aggregate can be
answered very quickly. An example of other
queries that can be derived from this aggregate
is the query that asks for the total sales of all
products. If we precompute every aggregate,
the user query response time can be answered
almost instantly. On the other side, storing all
these precomputed aggregates may be infeasi-
ble. This is because we may not have enough
space. More importantly, it may be very ex-
pensive to update all of these aggregates when
the fact table is updated. Therefore, the task
of the database administrator faces is to choose
a set of aggregates to precompute and store. In
this paper, we first consider the problem of esti-
mating how much storage will be required if all
possible combinations of dimensions and their
hierarchies are precomputed. Once we have de-
cided how to estimate this full precomputation,

the extension to precomputation of a subset is
straightforward.

The full precomputation of the data is usu-
ally done by using the cube operator which is
proposed by [8]. The cube operator is the n-
dimensional generalization of the SQL group by
operator. The cube on n attributes computes
the group by aggregates for each possible subset
of these dimensions. In our example, this is: (),
(Productld), (DaylId), and (Productld, DayId).
When we consider the possibility of aggregat-
ing over hierarchies, we get a generalization of
the cube which we will refer to as the cube from
here on. The cube as defined by [8] is referred
to as a cube without hierarchies. In our exam-
ple, the cube with hierarchies computes addi-
tional aggregates for: (Category), (Productld,
Week), (Category, Dayld), (Category, Week),
and (Week).

Estimation of the size of the view, consist-
ing of the aggregation of data, without actually
materializing the view is the problem that we
are solving. Computing the cube usually takes
a long time. For example, the Overlap method
which was proposed by [1] requires multiple
scans and sorts of the input table. Moreover,
computing the cube for a schema with a large
number of dimensions or a large number of hi-
erarchical levels requires computing many ag-
gregates. For example, a schema with 5 dimen-
sions where each dimension has 4 levels requires
us to compute (4 + 1)> = 3125 distinct SQL
group by queries.

1.2 Paper Organization

The remainder of this paper begins by the re-
lated work in Section 2. Then, we present fac-
tors that affect the cube size in Section 3. Sec-
tion 4 presents various algorithms for approxi-
mating the cube size. Section 5 illustrates the
experimental results and comparisons between
these different techniques. Section 6 summa-
rizes what we have learned about these al-
gorithms. Finally, Section 7 discusses future
work.

2 Related Work

The problem addressed in this paper is closest
to the work in [17], which surveyed the available

approaches and proposed an algorithm that ap-
plied the probabilistic counting algorithm [6] to
estimate the size of the cube. The solution of
the problem in this paper is used in the ma-
terialized view selection algorithms. [11], [2],
[10], [9], [20], and [16] addressed the materi-
alized view selection problem where the goals
are to answer all the interesting queries while
minimizing the total query evaluation and view
maintenance cost. This problem is also known
as the Data Warehousing (DW) configuration
problem.

A related estimation problem is to estimate
the number of distinct values of an attribute in
arelation. [12] is the first paper that presented
the sampling-based estimator which explicitly
takes into account the degree of skew in the
data. Although the probabilistic counting algo-
rithm proposed by [17] gives us an accurate ap-
proximation of the size of the cube, it requires
that each tuple in the relation is scanned and
processed. Moreover, if we have the addition
of new data, this may change the size of the
cube. According to the probabilistic counting
algorithm, we need to load bitmaps that store
the statistics of the previous data and rescan
the whole table. If the table is very large and
there are many updates, this yields a long exe-
cution time. [12] also argued that as databases
grew in size, this exhaustive processing became
increasingly undesirable. The sampling and an-
alytical techniques that were proposed by [12]
is quite complicated. It requires us to compute
about 6 complex equations besides performing
an approximate x? test for uniformity.

Most recently, [13] proposed a novel ap-
proach for the multidimensional selectivity es-
timation. This method maintains compressed
information from a large number of small-sized
histogram buckets by using the discrete cosine
transform. The experimental results of this al-
gorithm show that this algorithm has low error
rates and low storage overheads even in high di-
mensions. We are currently investigating this
algorithm in detail.

We are interested in developing a simple al-
gorithm that gives us reasonable accuracy. We
propose an algorithm that is based on mathe-
matical approximation and random sampling.

3 Cube Size Parameters

The cube size here is the sum of the number of
tuples in the views consisting of possible group-
ing attributes. To estimate the cube size ac-
curately, we develop a set of parameters that
affect the cube size. Along with these param-
eters, we also give the examples of how these
parameters affect the cube size. The parame-
ters are: the number of dimensions, the num-
ber of hierarchical levels, the attribute size, the
degree of data density, and the degree of data
skew. A description of each parameter follows:

3.1 Number of Dimensions and
Number of Hierarchical Lev-
els

The number of dimensions is the number of
tables that have primary keys as foreign keys
in the fact table. The number of hierarchi-
cal levels is the number of attributes that are
functionally dependent on primary attributes
in each dimension. As the number of hierar-
chical levels or the number of dimensions in-
creases, the number of views consisting of pos-
sible group bys also increases. This is shown in
the following equation.

Let I; be the number of hierarchical levels in
dimension 4, nv be the number of aggregate
views, and N be the number of dimensions.
Then,

mw = [J+1) (1)

In our sales example, the sale data can also be
viewed conceptually as a two-dimensional ar-
ray with hierarchies on the dimensions. Tables
1, 2 and 3 are three samples of the sales data
sets. The x’s are sales quantity; entries that are
blank correspond to (Productld,Dayld) combi-
nations for which there are no sales. Table 4
shows the variation in size of the cube of the
three different data sets that are shown in Ta-
bles 1, 2, and 3.

Table 1: Database DB1 Table 4: The variation in size of the cube

Book Coat .
of three different databases
e e L e R s B | GroupBy | DB1 [DB2 | DB3 |
B 0 T 11
D4 x (ProductId) 6 6 6
gg x (Category) 2 2 2
D7 x (Productld,DayIld) | 15 15 22
Week2 gg - X (Productld,Week) | 10 6 12
D10 X (Category,Dayld) 14 5 20
gi; _ x | X (Category, Week) 4 2 4
D13 x (Dayld) 13 5 13
D14 X (Week) 2 2 2
| Sizeof Cube [67 | 44 | 82 |
The size of the cube without hierarchies on
DB1 would be the sum of the sizes of the follow-
ing group bys: (), (Productld), (Dayld), and
(Productld, Dayld). This sum is 35 tuples. On
the other hand, the cube with hierarchies as
Table 2: Database DB2 - shown in Table 4 has 67 tuples. Although DB1
Book oat .
PT T P> T P3 (I PI T PS5 56 and DB2 has the same number of the tuples in a
Weeki | DI | x | x | x base table (ProductId,Dayld), the sizes of the
gg e cubes in these two databases are significantly
D4 different.
D5
D6
D7 . 3
Weekz | DB x [x | x 3.2 Attribute Size
B}? Each aggregate view is defined by a query that
gg is grouped by a set of attributes.
Did Let V be a view that consists of attributes

ai,as,...,a where k be the number of at-
tributes in the view V', n(a) be the cardinality
of the attribute a, and ms(V’) be the maximum
size of view V. Then,

k
ms(V) = H n{a;) (2)
Table 3: Database DB3 =t
Book Coat
Pl | P2 | P3 || P4] P5 | P6 Returning to our previous database example,
‘Weekl D1 X X .
D3 < < we may have the following query that responds
D3 | x | x to aggregate G that groups by Product.Type
Bg‘ = = and Time.Week.
D6
D7 X x . .
Weeks | D3 = select SUM(Quantity), Product.Type, Time.Week
113319 x from Sale, Product, Time
Dl(l) = X p” X where Sale.ProductId = Product.ProductId
gig X and Sale.Timeld = Time.Timeld
Did = X = X group by Product.Type, Time.Week;

The maximum size of view V that consists
of the aggregate G in DBI is

ms(V) = n(Product.Type) x n(Time.W eek)
= 2x2=4
From Eq. (2), as the dimension size in-

creases, the maximum size of the view also in-
creases.

3.3 Degree of Data Density

According to [3], “a data set is said to be sparse
if most points in the attribute space defined
have no data points corresponding. Conversely,
a data set is dense if most coordinate points in
the attribute space have at least one data point
defined.” As shown in Table 4, the dense data
(DB3) has a larger cube size than the sparse
data (DB1). The denser data is, the greater
size of the cube is. To formally find the degree
of data density, we let F be a fact table, k; be a
primary key of dimension 4, n(k;) be the cardi-
nality of the attribute(s) that form the primary
key k;, ms(F) be the maximum size of the fact
table F', and N be the number of dimension
tables. Then,

ms(F) = [] n(k:) 3)

Formally, data density can be defined as fol-
lows: let |F'| be the number of tuples in the
fact table and dd be data density. Then,

|F|
dd s (F) (4)
|F|
dd = ————
[T, n(k:)

3.4 Degree of Data Skew

According to [3], a data set is said to be skewed
in frequency if the number of data points per
attribute point has a high variance across the
entire data space, but has a substantially lower
variance in appropriately defined “local” re-
gions. On the other hand, a data set is skewed
in value if the attribute value for a small num-
ber of data points differs substantially from the

attribute value for the bulk of the population.
Note that skew in value implies skew in fre-
quency over the attribute value range, however,
the converse is not true. In this paper, “skew”
refers to “skew in frequency”. As shown in Ta-
ble 4, the skewed data (DB2) has a smaller cube
size than the sparse data (DB1) although both
DB1 and DB2 have the same base data size.

Data in real life is often non-uniformly dis-
tributed as shown in [23]. For example, James
Joyce’s novel Ulysses, with its 260,430 running
words, has only 29,399 different words. The
10th most frequent word (r = 10) occurs 2,653
times (f = 2,653); and the 100th most frequent
word (r = 100) occurs 265 times (f = 265). Ac-
cording to [23] model, the frequency of some
event (P), as a function of rank (r) is a power-
law function

PO ~)
with the exponent 6 close to unity.

We define the degree of skew as the value
of #. When 6 = 1, degree of skew is 1. This
means that data is non-uniformly distributed.
When 68 = 0, we have uniformly distributed
data. That is, all cells with different ranks have
the same probability of receiving a valid data
value.

Let |F| be size of the fact table F', ms(F)
be the maximum size of the fact table F, v
be the value of the combination of dimension
attributes in the fact table, and P(v) be the
probability that the value v will appear in the
fact table. Let all the values be ranked in the
order of their popularity where value v is the
v’th most popular value. Then,

ms(F)
> P() = |F|
v=1
ms(F)
c
Z o0 ~ |F|
v=1
o~ I ©)
e

where 6 is in the range of 0 and 1. Note that
the Zipf distribution is one of many different
proposed models for data skew. For example,
[5] proposed modeling skewed distribution us-
ing multifractrals and the ’80-20’ law.

4 Approximating the Cube
Size

First we describe the mathematical approxi-
mations. Their advantages are that they are
simple and fast. However, they do not work
for skewed data. The next algorithm that we
look at is the linear sampling algorithm. Unlike
the mathematical approximation which consid-
ers only the database schema, the linear sam-
pling method also looks at data distribution.
However, the linear sampling method assumes
that the more tuples we add to the fact ta-
ble, the more tuples the cube has. This is not
true especially when the data in the fact table
is already dense. In the next algorithms, the
assumption is changed to that the larger the
estimated size of the view is, the larger the ac-
tual size of the view is. The estimated view
size is obtained from using the mathematical
approximation. The combination of using the
sampling and the mathematical approximation
is a hybrid approach. A description of each
approach follows:

4.1 Mathematical
tion Algorithms

Approxima-

Let ms(F') be the maximum size of a fact table
F, |F| be the size of the fact table F, ms(V)
be the maximum size of a view V, and es(V)
be the estimated size of the view V.

[7] proposed to estimate the size of the view
V by using Yao’s formula [22] as follows:

es(V) = ms(V

) X
-’ —1
H e[

1 1
whered =1 (V)

When msE‘F/g is sufficiently large, this formula,

is well approximated by Cardenas’ formula [4]
as follows:

Note that

if |F| > ms(F)-—

then es(V) = ms(V)

The size of the cube on the data in the fact
table F', CUBE(F), is defined as follows:

CUBE(F) = es(V;)

where V; = V4, V5, ..., V,, and n is the number
of possible aggregate views that are defined by
possible grouping attributes in the fact table
F.

Cardenas’ formula and Yao’s formula are
based on the assumption that data is uniformly
distributed. To apply these two methods, we
need to know the number of distinct values for
each attribute in the relation. The system cat-
alog typically maintains these statistics. Using
Eq. (2) and Eq. (3), we can obtain ms(V)
and ms(F) respectively. |F| can be obtained
by counting the number of tuples in the fact
table.

Any skew in the data tends to reduce the size
of the aggregate view. Hence the uniform as-
sumption tends to overestimate the size of the
views and thereby also overestimates the size
of the cube. The mathematical approximation
methods do not take the degree of skew into
account, thus they give the crude estimation.
However, these methods have the advantage
that they are simple and fast.

4.2 A Linear Sampling Algorithm

Throughout this paper, we use sampling with-
out replacement to avoid having duplicate tu-
ples in the table. Selection without replace-
ment also minimizes estimation error [12].
Specifically, in generating the sample data, for
each tuple in the fact table, we want to accept
it to a sample of the fact table with the prob-
ability equal to the sample fraction. Starting
with the first tuple, we called rand function in
C to generate a random integer between 0 and
RAND_MAX. We then multiply the generated ran-
dom integer with 100 and divide by RAND_MAX.
If the result of this computation is less than
or equal to the sample fraction, we then check

whether this tuple is already included in the
sample of the fact table. If it is not, we then
include this tuple in the sample and mark this
tuple as one already included in the sample.
Otherwise, we go to the next tuple and gen-
erate a new random integer. We repeatedly
follow this procedure until we get the number
of tuples in the sample as the number of tuples
in the original fact table multiplied with the
sample fraction.

[17] proposed to use this approach to esti-
mate the size of the cube. This algorithm takes
a random subset of the database, and computes
the cube on that subset. Then it scales up this
estimate by the ratio of the data size to the
sample size.

Let |F| be the size of the fact table F,
CUBE(F) be the size of the cube on the entire
fact table F, |s| be the size of the sample s, and
CUBE(s) be the size of the cube computed
on the sample s. Then, we can approximate
CUBE(F) by

CUBE(F) = CUBE(s) x %
This approximation is also very crude. The ad-
vantage of this computation is simple. The
advantage over the uniform assumption is
gained by examining a statistical subset of the
database. However, this also comes with the
disadvantage over the uniform assumption es-
timates because it takes longer to compute.

4.3 Mathematical
tion with Sampling
rithms

Approxima-
Algo-

The key idea of the solutions in this section is
based on a motivation to perceive the skewness
of the data while keeping the algorithm sim-
ple. Sampling gives us some information about
the data distribution. The problem with linear
scaling is that it assumes that the number of
tuples in the cube always increases as the num-
ber of tuples in the fact table increases. This is
not true especially when data in the fact table
is dense. A better assumption is that the actual
size of the view is proportional to the estimated
size of the view. [15] proposed the proportional
skew effect approach. This approach first ob-
tains an initial estimate of the view size using

Cardenas’ formula. To refine this estimate, we
get the actual view size of a sample of the fact
table. We then compare the actual size and the
estimated size of the view based on the sample
data to get a correction factor. We then take
this factor to refine the estimated size of the
view based on the entire fact table. In this pa-
per, we propose to bound the estimated size of
each view to either the maximum size of that
view or to the size of the fact table.

4.3.1 Proportional Skew Effect Algo-
rithm (PSE)

Steps 1 and 2(a)-2(d) of this approach were pro-
posed in [15].

1. Select a random sampling s from a fact
table F'.

2. For each view V

(a) Use Cardenas’ formula to estimate
the size of the view V', esp(V), based
on data in the fact table F'. That is,

esp(V) = ms(V) x

(- (i)

where ms(V') can be computed from
using Eq.(2).

(b) Use Cardenas’ formula to estimate
the size of the view V', ess(V'), based
on the sample s. That is,

ess(V) = ms(V) x

(1= (- i)

(¢) Use SQL group by operator to ob-
tain the actual size of the view V
based on the sample s, s5(V).

(d) Adjust the estimated size of the
view V, esk(V).

esp(V)
ess(V)

esp(V) = ss(V) x

(e) Bound the estimated size of the
view V to either the actual size of the

fact table, |F|, or the maximum size
of the view V, ms(V'). The final es-
timated size of the view V based on
the fact table F, esh.(V), is:

esp(V) = min(esy(V),|F|,ms(V))

3. Total up the estimated size of each view to
find the estimated size of the cube on data
in the fact table F', CUBE(F'), as follows:

CUBE(F) =Y _esip(V;)

where V; = V4, V5, ..., V,, and n is the num-
ber of possible grouping attributes in the
fact table F.

4.3.2 Sample
(SF)

Frequency Algorithm

We notice that different combinations of at-
tribute values have different frequencies ap-
pearing in the fact table. The appearance fre-
quencies of different values become larger when
the data is skewed. We use the appearance fre-
quency in scaling up the distinct values in the
sample to the distinct values in the entire fact
table. We also use the error in estimating the
size of the view based on the sample data to
adjust the estimated size of the view based on
the entire fact table.

The description of the algorithm is as follows:

Steps 1, and 2(a)-(c) are the same as ones in
the proportional skew effect algorithm. Steps
2(d)-(e) of this algorithm are developed as fol-
lows:

Step 2(d): Adjust the Estimated
Size of the View

First, we find the relative error in estimat-
ing the size of view V based on the sample s,
errors(V).

errors(V) = W

where ess(V) is the estimated size of the view
V based on the sample s and s5(V) is the actual
size of the view V based on the sample s.
Then, we find the relative error, error(V),
to adjust the new estimated size of the view V
based on the fact table . We assume that the

relative error is proportional to the data size.
If we overestimate (underestimate) the size
of the view based on the sample, we subtract
(add) the estimated size of the view based on
the fact table with the adjusted error to get
the new estimated size of the view based on
the fact table. We set the maximum estimated
size of the view V based on the fact table F'
to the minimum between the size of the fact
table F, |F|, and the maximum size of the
view V, ms(V'). The minimum size of the view
V based on the fact table F' is the actual size
of the view V based on the sample s, s5(V).
The following describes our adjustment to the
new estimated view size:

esp(V) =esp(V) —errors(V) x esp(V)
if errors(V)>0

esy(V) = max(esrp(V),s5(V))
else

esw(V) = min(esp(V),ms(V), |F|)

Step 2(e): Estimate the Num-
ber of Distinct Values Uncovered
in the Sample

The sample does not cover all distinct group-
ing attribute values in the entire fact table. The
estimated number of distinct values that do not
appear in the sample s is the difference between
the new estimated size of the view V based the
fact table F' and the actual size of the view V
based on the sample. That is, the estimated
number of distinct values of attributes in view
V that are uncovered by the sample s but are
in fact table F is es’ (V) — s5(V).

For 1 < i < |s|, let f; be the number of
grouping attribute values that appear exactly
1 times in the sample s. Thus, ZLi1 fi =

ss(V) and Z‘zs:ll ifi = |s|- The number of
values that appear ¢ times in the total ss(V)
distinct values is f;. The estimated number
of values that are excluded from the sample
s but appear i times in the fact table F' is
ss’ziv) x (es%(V)—s5(V)). We assume that large
values appear with low frequency and small val-
ues appear with high frequency. We thus adjust
the estimated number of values that appear 4
times in the fact table F', but not in sample s,
as fl = A5 x (esip (V) = 55(V)) x 1.

To find the estimated number of the distinct
values in the view V based on the fact table
F, we need to add the number of the distinct
values in the sample with the estimated number
of the distinct values that we do not see in the
sample. Thus, the final estimated size of the
view V', esh(V), is defined as follows:

est (V) = ss(V)+z fi x

(esi (V) = s5(V)) x

.| =t

5 Experimental Results

In this section, we compare the performance
of different estimation algorithms described in
Section 3. First, we present the test database
schema. Then, we describe our data set gen-
eration methods. Finally, we compare the esti-
mated view sizes and cube sizes by various es-
timators. We also compare the relative errors
in different estimation algorithms.

5.1 Test Database Schema

The relational OLAP (ROLAP) schema for the
test database is below:

e fact(d0 int, dI int, volume float);
e dimO0(d0 int, h01 string, h02 string);
e dim1(d! int, h11 string, h12 string);

The hX1 and hX2 attributes of all the
dimension tables are uniformly distributed.
The hO1 values are drawn from 200 distinct
values and the h02 values are drawn from 50
distinct values. The hll values are drawn
from 500 distinct values and the h12 values
are drawn from 100 distinct values. Table
5 summarizes the database configuration.

Table 5: Small Database Configuration

The sample fractions in the experiments are
10% and 15% of the size of the fact table. The
degrees of skew are 0 (uniformly distributed),
0.2, 0.4, 0.6, 0.8, and 1 (highly skewed). Table
6 illustrates the relationship between data den-
sity and the number of tuples in the fact table.

Table 6: Data Density vs. Fact Table Size
Data Density (%) | Number of Tuples
in the Fact Table

Dimension Number | Dimension | Hierarchy
1] 2
0 1000 200 | 50
1 1000 500 | 100

0.1 1000

0.5 5000
1 10000
5 50000

5.2 Experimental Setup

To understand how we generated the data it
is easiest to think in terms of the array repre-
sentation. To generate a uniform data set %
dense, we iterated through all cells of the array,
as each cell was visited, we generated a random
number between 0 and 1; if the random number
r was in the range 0 < r < z/100, we added
the tuple that corresponds to this cell to a fact
table, otherwise we did not add this tuple to
the fact table.

For the Zipfian data we again iterated
through all the cells of the array. We assumed
that different cells have different ranks. The
first cell that we visited had the first rank. The
next right cell had the second rank, and so on.
This time, each cell has a different probabil-
ity of receiving a valid data value. The proba-
bilities varied following a Zipfian distribution.
Specifically, given that we know the degree of
skew, 6, and the number of tuples in the fact ta-
ble, |F|, we then use Eq. (6) to get C' and plug
C in Eq. (5) to get the probability of receiving
a valid data value for each cell. The mapping
from the distinct values in a dimension to its
hierarchies uses a uniform distribution.

We get the actual number of tuples in each
view by writing a Pro*C program using Or-
acle Precompiler on Sun Solaris 5.6. In this
program, we do not actually create view. We
use SELECT operator and GROUP BY oper-
ator to select all attributes in the view, and
apply sum function to a measure value. We
then look at the number of tuples selected in

the sqlca.sqlerrd[2].

5.3 Performance Results

Table 7 depicts the relationship between
the codes used in the graphs and the
approaches that we carried out in the ex-
periments. We do not show the experiments
on Yao’s formula because the estimates
based on Yao’s formula are very close to
the estimates based on Cardenas’ formula.

Table 7: Experimental Approaches

| Approach | Code |
1. Mathematical approximation
1.1 Cardenas’ formula [4] cardenas
2. Sampling-based
2.1 Linear Sampling [17] sample
3. Hybrid
3.1 Proportional Skew Effect [15] PSE
3.2 Sample Frequency SF
4 Actual computing the cube actual

5.3.1 Estimated View Size Comparison

Figures 1 and 2 show for the actual sizes of the
views and the estimated sizes of the views when
data density = 1%, sample fraction = 10%, and
degrees of skew = 0 and 1 respectively.

The Sizes of Views When Density =1%, Degree of Skew = 0, and Sample Fraction = 10%

T
PSE X
SF 4

p ER o 8]

8000
B

in the view

6000

4000

Number of tuples

2000

Figure 1: Estimates vs. the actual
sizes of the views when density =
1%, degree of skew = 0, and sample
fraction = 10%

10

The Sizes of Views When Density =1%, Degree of Skew = 1, and Sample Fraction = 10%

=X
b X
O % O ‘cardenas |
O
* 4
X i)
8000
3 + * 5 +
g
£
£ 6000
g
g kK X
5 *
£ 4000 * o
3 +
*
2000
*
5] =
, * B
2 4 6 10 12 14 16

Figure 2: Estimates vs. the actual
sizes of the views when density =
1%, degree of skew = 1, and sample
fraction = 10%

Table 8: The Relation between the View

Number and its Definition
| View | Group by || View | Group by |
1 d0, di 9 h02, dl
2 d0,hil [10 | hoZ, hil
3 do, h12 11 h02, h12
4 do 12 h02
5 hoL, di [13 | dl
6 h01, h11 14 hl1l
7 h01, h12 15 hi2
8 h01 16 -

As shown in Figure 1 where data is uniformly
distributed, all algorithms estimate the view
sizes accurately. This is because the mathemat-
ical approximation (cardenas) is based on the
assumption that data is uniformly distributed.
The actual view size and the view size esti-
mated using the mathematical approximation
are thus very close. The proportional skew ef-
fect algorithm (PSE) and the sample frequency
algorithm (SF) use the difference between the
view size estimated using the mathematical ap-
proximation based on the sample, and the ac-
tual view size based on the sample, to adjust
the estimated size of view based on the entire
fact table. Therefore, the estimates obtained
from these algorithms are also accurate.

In Figure 2 where data is very skewed, the
mathematical approximation overestimates the
sizes of most views. This is because data is not
uniformly distributed. There are many dupli-

cate values of the grouping attributes that the
mathematical approximation does not see since
it only looks at the database schema. When
data is very skewed, the amount of the error in
other algorithms also increases. Since the pro-
portional skew effect approach and the sam-
ple frequency approach use the mathematical
approximation to estimate the view size, these
two algorithms are affected by the error in the
mathematical approximation.

5.3.2 Estimated Cube Size Comparison

We also make the comparisons between the es-
timated cube size and the actual cube size. In
addition to the algorithms that estimate the
view size, we include the linear sampling (sam-
ple) as one of the algorithms that estimate the
cube size.

Figure 3 shows for varying degrees of skew,
the estimates and the actual sizes of the cubes
when sample fraction = 10% and data density

= 1%.

Cube Sizes Where Sample Fraction = 10% and Data Density = 1%
120000

| ‘actu
- ‘cardenas’ -

100000 ‘sample’ =

80000|

60000

40000

Number of tuples in the cube

20000

0

o 02 0.4 06
Degree of skew (0=>uniform, 1=> skewed)

Figure 3: Estimates vs. the actual
sizes of the cube where sample frac-
tion = 10% and data density = 1%

As shown in Figure 3, the mathematical
approximation closely estimates the cube size
when data is uniformly distributed. However,
as data becomes skewed, it overestimates the
cube size. The mathematical approximation is
independent of the underlying data distribu-
tion. Since the mathematical approximation
is based on the assumption that data is uni-
formly distributed, its estimate is close to the
actual size when the data is indeed uniformly
distributed. Since the proportional skew effect
approach and the sample frequency approach

11

use the mathematical approximation in esti-
mating the view size and the cube size is the
sum of the view sizes, these two approaches
also perform well as the mathematical approx-
imation perform well. The linear sampling ap-
proach does not estimate the cube size accu-
rately when data is uniformly distributed be-
cause it assumes that the cube size grows pro-
portionally to the fact table size.

5.3.3 Analysis Performance

While the mathematical approximation always
gives the same estimate no matter how data
distribution is, the linear sampling approach,
the proportional skew effect approach, and
the sample frequency approach adjust their
estimates as data distribution changes. Of
these three approaches, the sample frequency
approach has its estimate closest to the actual
cube size. The linear sampling approach
overestimates more than the mathematical
approximation because it assumes that the
cube size grows proportionally to the fact
table size. Moreover, it does not see enough
duplicates in skewed data. The proportional
skew effect approach estimates more accurately
than the linear sampling approach because it
scales on each view instead of on the whole
cube and it also puts the limit of the estimated
size of each view to be either the maximum
size of each view or the size of the fact table.
The sample frequency approach estimates
more accurately than the proportional skew
effect approach, particularly when data is
highly skewed. This is because the sample
frequency approach exploits the information
about the number of duplicates of different
values in the sample data. On the other hand,
the proportional skew effect approach does
not exploit this information. Figures 4 and 5
show the actual cube sizes and their estimates
for varying data densities where degrees
of skew are fixed to 0 and 1 respectively.

Cube Sizes Where Sample Fraction = 10% and Degree of Skew = 0
500000

450000

400000

350000

300000

250000

200000

Number of tuples in the cube

150000

100000

50000

‘actual
‘cardenas
sample’ ==
1

2 3 4 5
Data density (%)

Figure 4: Estimates vs. the actual
sizes of the cube where degree of
skew = 0

Cube Sizes Where Sample Fraction = 10% and Degree of Skew = 1
500000

450000

400000

350000

300000 et ~E]

250000

200000

Number of tuples in the cube

150000

100000

'S}
‘actual
‘cardenas
sample’ -]

50000 [

0 1 2 3 4 5
Data density (%)

Figure 5: Estimates vs. the actual
sizes of the cube where degree of
skew = 1

From Figures 4 and 5, we observe that the
actual cube size is almost proportional to data
density. Its estimate is also almost propor-
tional to data density. As shown in Figure 4,
all algorithms except the linear sampling ap-
proach estimate the cube size accurately when
data is uniformly distributed over all densi-
ties. On the other hand, as shown in Figure 5
where data is skewed, the gap between the ac-
tual cube size and its estimate becomes wider
as data becomes denser. This is because the
ratio of the duplicate values to all values in-
creases in skewed and sparse data as data den-
sity increases. The sample fraction is not large
enough to cover these duplicate values. Thus,
all algorithms that use sampling tend to overes-
timate the number of distinct values in skewed
data.

12

5.3.4 Relative Error Measurement

We measure the relative error in approximation
made by different algorithms as follows: let S
be the actual size of the cube, S(A) be the esti-
mated size of the cube by an algorithm A, and
e’¢! be the relative error in the algorithm A.
Then,

rar _ 18— 5(4)]

o 5 for S(A) >0

Figures 6 show the relative errors in different
algorithms when the sample fractions are 10%.

Relative Errors Where Sample Fraction = 10% and Data Density = 1%
T

'PSE’ ——p—

'SF' =eYenn

‘cardenas’ « e+

‘sample’] & o

100

80

£ e

Relative Error (%)
+

40

20

0.4 0.6 08 1
Degree of skew (0=>uniform, 1 => skewed)

Figure 6: The relative errors where
sample fraction = 10%

As shown in Figures 6, all algorithms except
the linear sampling approach perform well for
uniformly distributed data. However, as data
becomes skewed, the error increases in all al-
gorithms. This is because the mathematical
approximation assumes that data is uniformly
distributed and the sample fraction is not large
enough to cover many duplicate values.

Figure 7 shows the average relative errors
in different algorithms over different degrees of
skew when sample fractions are 10% and 15%.

Comparisons of Average Relative Errors in Different Approaches
‘sample_s10' ———

‘sample_s15'

100*|Estimate - Actuall/Actual Size

0 1 2 3 4 5
Density (%)

Figure 7: The errors in different tech-

niques using different sample frac-

tions

As shown in Figure 7, the sample frequency
approach has the smallest error compared to
other strategies. We observe that the error
in the linear sampling method decreases more
than the error in the hybrid approaches as the
sample fraction increases. This is because the
hybrid approaches use the mathematical ap-
proximation to estimate the view size. There-
fore, increasing only the sample fraction does
not improve the accuracy in the hybrid ap-
proaches as much as in the linear sampling ap-
proach. The accuracy of the hybrid approaches
and the linear sampling approach depend on
not only the quantity of the sampling fraction,
but also the quality of the sampling fraction.
We also observe that when data density in-
creases up to 5%, the relative errors in the algo-
rithms that use the mathematical approxima-
tion slightly decrease. This is because the er-
ror in estimating the distinct values in skewed
and dense data becomes less significant than
in skewed and sparse data. Dense data is likely
to include many distinct values in skewed data.
Therefore, when data is dense, the number of
distinct values in skewed data is not much dif-
ferent from one in uniformly distributed data.
The average error in estimating the number of
distinct values in dense data for different data
distributions thus decreases.

6 Conclusion

Precomputing aggregates on some subsets of
dimensions and their corresponding hierarchies

13

is the dominant technique to reduce the re-
sponse time to queries. However, to decide
which aggregates should be precomputed re-
quires the estimated aggregate view size. In the
experiments we carried out, our hybrid strat-
egy estimates the view size and the cube size
more accurately than other strategies, espe-
cially when data is skewed. Compared among
the hybrid approaches, the sample frequency
approach yields more accurate estimates than
the proportional skew effect approach.

Comparing the algorithms based on their ac-
curacy, we find that the linear sampling ap-
proach greatly overestimates the size of the
cube. This estimate is strongly dependent
on the number of duplicates present in the
database, and the quantity and the quality
of the sample. The mathematical approxima-
tion based on uniform distribution of the data,
works well if the data is uniformly distributed.
However, as sparse data becomes skewed, the
algorithm is considerably inaccurate. On the
other hand, the hybrid methods approximate
skewed data more accurately than the mathe-
matical approximation. The hybrid methods
combine the simplicity and quickness of the
mathematical approximation with the advan-
tage of the sampling method which gives us
some sense of data distribution.

However, all of hybrid approaches need to
spend more time in aggregating the sample
data. Also, the accuracy of the hybrid ap-
proaches depend on the accuracy of the esti-
mated view sizes that are based on the mathe-
matical approximation. Therefore, if these es-
timates have high error, the estimated values
by the hybrid approaches also have high error.

7 Future Work

We would like to explore other estimation algo-
rithms and compare the efficiency and accuracy
of different algorithms. The algorithms that we
are particularly interested in is the technique
that uses a multi-dimensional histogram to es-
timate the size of a query that involves multiple
attributes [14], the technique that uses wavelet,
and the technique that uses compressed his-
togram information [13]. We also would like
to the estimate approaches on real-world data

sets as well as TPC-D benchmarks.
Acknowledgements

The authors would like to thank Hidetoshi
Uchiyama, Tracy Mullen, and Seksan Kiatsu-
paibul for earlier stimulating discussions and
questions. The authors also would like to thank
Nandit Soparkar, Atul Prakash, and Brian No-
ble for their valuable questions and comments.
The authors thank as well to anonymous CAS-
CON referees for pointing out some related
work and for many suggestions that improved
the paper.

About the Authors

Kanda Runapongsa is a Ph.D. student in
the Department of Electrical Engineering and
Computer Science at the University of Michi-
gan at Ann Arbor. She received her B.S. de-
gree in Electrical and Computer Engineering
(1997) from Carnegie Mellon University and
her M.S. degree in Computer Science and Engi-
neering (1999) from the University of Michigan.
Her research interests include data warehous-
ing, OLAP, data mining, and query optimiza-
tion.

Thomas P. Nadeau is a Ph.D. student in
the Department of Electrical Engineering and
Computer Science at the University of Michi-
gan at Ann Arbor. He received his B.S. de-
gree in Computer Science (1981) and his M.S.
degree in Computer Science and Engineering
(1999) from the University of Michigan. His
research interests include data mining, data
warehousing, and machine learning.

Toby J. Teorey is currently Professor
of Electrical Engineering and Computer Sci-
ence at the University of Michigan, Ann
Arbor. He received the B.S. (1964) and
M.S. (1965) degrees in Electrical Engineer-
ing from the University of Arizona, Tucson,
and a Ph.D. in Computer Science (1972)
from the University of Wisconsin, Madi-
son. He is the author of Database Model-
ing and Design (3rd edition, Morgan Kauf-
mann, 1999). Professor Teorey’s current re-
search interests include database design and
data warehousing, OLAP, data mining, and ad-

14

vanced database systems. His internet address
is teorey@eecs.umich.edu, and web home page
is http://www.eecs.umich.edu/ " teorey

References

[1] S. Agrawal, R. Agrawal, P. Deshpande,
J. Naughton, S. Sarawagi, and R. Ramakr-
ishnan. On the Computation of Multi-
dimensional Aggregates. In Proc. of the
22nd VLDB Conference, 1996.

[2] E. Baralis, S. Paraboschi, and E. Teniente.
Materialized View Selection in a Multidi-
mensional Database. In Proc. of the 23rd

VLDB Conference, 1997.

[3] D. Barbar, W. DuMouchel, C. Faloutsos,
P. J. Haas, J. M. Hellerstein, Y. E. Ioanni-
dis, H. V. Jagadish, T. Johnson, R. T. Ng,
V. Poosala, K. A. Ross, and K. C. Sevcik.
The New Jersey Data Reduction Report.

Data Engineering Bulletin 20(4), 1997.
[4]

A.F. Cardenas. Analysis and Performance
of Inverted Database Structures. Comm.

ACM, 1975.

[5] C. Faloutsos, Y. Matias, and A. Silber-
schatz. Modeling skewed distributions
using multifractals and the ’80-20 law’.
In Proc. 1996 ACM-SIGMOD Int. Conf.

Management of Data, 1996.

[6] P. Flajolet and G.N. Martin. Probabilistic
Counting Algorithms for Database Appli-
cations. Journal of Computer and System

Sciences, 1985.

M. Golfarelli and S. Rizzi. A Methodolog-
ical Framework for Data Warehouse De-
sign. In Proc. ACM 1st Int. Workshop on
Data Warehousing and OLAP, 1998.

[7]

[8] J. Gray, A. Bosworth, A. Layman, and
H. Pirahesh. Data Cube: A Relational Ag-
gregation Operator Generalizing Group-
by, Cross-Tab and Sub-Totals. In Proc.
12th ICDE, 1996.

[9] H. Gupta. Selection of Views to Materi-
alize in a Data Warehouse. In Proc. 6th

ICDT, 1997.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H. Gupta, A. Harinarayan, A. Rajara-
man, and J.D. Ullman. Index Selection
for OLAP. In Proc. 18th ICDE, 1997.

V. Harinarayan, A. Rajaraman, and J.D.
Ullman. Implementing Data Cubes Effi-
ciently. In Proc. 1996 ACM-SIGMOD Int.
Conf. Management of Data, 1996.

P. Hass, J.F. Naughton, S. Seshadri, and
L. Stokes. Sampling-Based Estimation of
the Number of Distinct Values of an At-
tribute. In Proc. of the 21st VLDB Con-
ference, 1995.

C.W. Chung J.H. Lee, D.H. Kim. Multi-
Dimensional Selectivity Estimation Using
Compressed Histogram Information. In
Proc. of the 1996 ACM-SIGMOD Confer-
ence, 1999.

V. Poosala and Y. E. Ioannidis. Selectivity
Estimation Without the Attribute Value
Independence Assumption. In Proc. of the
23rd VLDB Conference, 1997.

K. Runapongsa, H. Uchiyama, and
T. Nadeau. Analysis of the Per-
formance Parameter in ROLAP.

http://www.umich.edu/ krunapon/

research/paper584.pdf, Winter 1999.
Term paper in EECS 584, Computer
Science & Engineering, Univ. of Michigan.

A. Shukla, P.M. Deshpande, and J.F.
Naughton. Materialized View Selection for
Multidimensional Datasets. In Proc. of the
24th VLDB Conference, 1998.

A. Shukla, P.M. Deshpande, J.F.
Naughton, and K. Ramasamy. Stor-
age Estimation for Multidimensional

Aggregates in the Presence of Hierarchies.
In Proc. of the 22nd VLDB Conference,
1996.

A. Silberschatz, H.F. Korth, and S. Su-
darshan. Database System Concepts.
McGraw-Hill, 3rd edition, 1996.

T.J. Teorey. Database Modeling and De-
sign. Morgan Kaufmann Pub, 3rd edition,
1999.

15

[20]

[21]

[22]

[23]

D. Theodoratos and T. Sellis. Data Ware-
house Configuration. In Proc. of the 23rd
VLDB Conference, 1997.

E. Thomsen. OLAP Solutions: Build-
ing Multidimensional Information Sys-
tems. Wiley, 1997.

S.B. Yao. Approximating Block Accesses
in Database Organizations. Comm. ACM,
1977.

G.K. Zipf. Human Behavior and Princi-
ple of Least Effort: an Introduction to Hu-
man Fcology. Addison Wesley, Cambridge,
1949.

