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ABSTRACT

On Line Analytical Processing (OLAP) aims at gaining useful
information quickly from large amounts of data residing in a
data warehouse. To improve the quickness of response to
queries, pre-aggregation is a useful strategy. However, it is
usually impossible to pre-aggregate along all combinations of
the dimensions. The multi-dimensional aspects of the data lead
to combinatorial explosion in the number and potential storage
size of the aggregates. We must selectively pre-aggregate.
Cost/benefit analysis involves estimating the storage
requirements of the aggregates in question. We introduce a
useful diagram illustrating rows in the fact table versus rows in
an aggregate. We demonstrate predictable trends in these
diagrams. We present an original curve-fitting approach to the
problem of estimating the number of rows in an aggregate. We
test the curve-fitting algorithm empirically against three
published algorithms, and conclude the curve-fitting approach is
the most accurate at small sample sizes.

Keywords: OLAP, View Size Estimation, Materialized Views,
Data Warehouse, Binomial Multifractal.

1. MOTIVATION

Accumulation of data in industry and organizations has led to
large archives of data in recent years. Quick access to the
information in these archives has become critical for decision
making. The need to excel has given rise to new data models
and decision support systems. Typically the queries posed
involve operations of aggregation such as sum or count. The
queries also typically include “group by” expressions. For
example, the CEO of a book manufacturing company may want
to examine trends in profitability of different types of books
over time. The answer could be found by doing a sum of the cost
and sell values of jobs, grouped by bind style and quarter. Data
warehouses have been engineered to answer queries of
aggregation with “group by” expressions efficiently.

Data warehouses are commonly organized with one large central
fact table, and many smaller dimension tables. The fact table is
keyed by the attributes to be used in “group by” expressions.
The fact table also contains measure attributes, the values to be
aggregated. Each attribute of the fact table key is typically a
foreign key matching the primary key of a dimension table.

In an actual data warehouse, the fact table may contain many
millions of rows, and processing a single aggregate can require
significant resources. To improve the quickness of response to
queries, pre-aggregation is a useful strategy. Pre-aggregation
requires the result to be saved to disk. The number of possible
aggregates is exponential in the number of dimensions. Faced
with combinatorial explosion and limited disk space, we must
decide which aggregates to calculate in anticipation to queries.

The cost/benefit analysis involves estimating the storage
requirements of the aggregates in question.

Fig. 1. A simple star schema for a data warehouse. The CustID,
DateID and BindID together make up the primary key of the
Fact Table. Thus there are three dimensions. Notice that a
dimension can also have a hierarchy. For example, time can be
grouped by DateID, Month, Quarter or Year

This paper focuses on estimating the space required for an
aggregate. We introduce a useful paradigm for understanding
the data trends: A curve diagram shows rows in the fact table
versus rows in an aggregate. The trends are examined in both
synthetic and real world data. Original curve-fitting approaches
to the problem of estimating the number of rows in an individual
aggregate are presented and tested against real and synthetic data
sets.

2. RELATED WORK

This section first outlines the sources of ideas used in this paper
for estimating the number of rows in an aggregate. Then some
relevant papers are described which address the larger problem
of materialized view selection.

View Size Estimation
There is a simple formula for estimating the number of rows in
an aggregate. The approach is known as Cardenas’ formula [1].

Let  n  be the number of rows.
Let  v  be the number of possible values.

Expected distinct values  =  v - v(1 - 1/v)
n
 . (1)

Cardenas’ formula assumes uniform distribution. However, the
data distribution affects the number of rows in an aggregate. In
order to capture the effect of data distribution, other methods
have been developed.

Probabilistic counting was introduced as a new approach in [2].
A hashing function is applied to the values, and meta-data is
gathered on the output. Probabilistic analysis is applied to the
meta-data, determining an estimate of the number of distinct
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values. The approach uses very little memory, but requires a full
scan of the data.

A sampling approach based on the binomial multifractal
distribution model is presented in [3]. Properties of the
distribution are estimated from a sample. The number of rows in
the aggregate for the full data set can then be estimated using the
parameter values determined from the sample. Further details of
this approach can be found in Section 4.1.

Three approaches are tested and compared in [6]. They examine
Cardenas’ formula, a sampling approach we call linear
projection, and the probabilistic counting method. The
probabilistic counting method is the most accurate of the three
algorithms tested, for the given data sets.

Two algorithms, which are hybrids of Cardenas’ formula and
sampling approaches, are presented and tested in [5]. The
proportional skew effect algorithm, and the sample frequency
algorithm test favorably compared to Cardenas’ formula and
linear projection.

Materialized View Selection
The question of which views to materialize is addressed in [4].
A lattice structure captures the hierarchy of which queries can be
answered from other views. The cost of materialization is based
on the number of rows to be examined. The paper demonstrates
that strategic selection of materialized views can yield dramatic
benefits.

Strategic selection of materialized views using a data cube
lattice is pursued further in [7]. The cost calculations used
account for query frequency and the cost of update operations on
materialized views.

3. EFFECT OF DATA SKEW

We gain insight if we diagram the number of rows in the fact
table versus rows in an aggregate. Figure 2 shows the
relationship for a data set with uniform distribution. The
aggregate size was calculated with Cardenas’ formula. There are
1000 possible rows in this aggregate.

Fig. 2. This uniform distribution curve was calculated using
Cardenas’ formula. There are 1000 possible rows in the
aggregate for this example

There are several properties of the curve to note here. The
gradient is steeper when there are fewer rows in the fact table.
When there are more rows in the fact table, the gradient levels
out. Imagine you begin with an empty fact table. The first row
added to the fact table will produce exactly one row in the
aggregate. When the fact table is sparse, there is little overlap in

the key values of the aggregate. The gradient will tend to be
close to one near the origin. As you add more rows to the fact
table, the probability increases that a corresponding row already
exists in the aggregate. If a row already exists with matching key
values, no row will be added to the aggregate. The increasing
overlap of the key values leads to the curve leveling out. Note
the number of possible values in the aggregate acts as an
asymptote.

Data skew has a marked effect on the number of rows in an
aggregate. Figure 3 illustrates the aggregate size for three
binomial multi-fractal distributions. The binomial-multifractal
formula for computing the expected number of distinct rows has
three parameters. The first is the sample size, which we are
showing as the horizontal axis. The second is a bias parameter P,
which can range from 0.5 to 1.0. The P value for a uniform
distribution is 0.5. The binomial multi-fractal formula will give
the same answer as Cardenas’ formula when P = 0.5. The value
of P represents a measurement of the skewness (degree of
clustering) of the data. The higher the value of P, the more
skewed the data is. Figure 3 shows three levels of skewness: P =
0.5, 0.7 and 0.9. The third parameter is k, which is related to the
number of possible rows in the aggregate. The number of
possible rows in the aggregate for this diagram is 1024. The k
value used in the calculations was 10. For this example, k = 10
because log2 (1024) = 10.

Fig. 3.  Three curves calculated using the binomial multi-fractal
distribution model

In general, skewness lowers the number of rows in an aggregate.
Greater skewness (clustering) tends to compress the curve
downward. This is true of real world data as well. Figure 4
shows curves for nine aggregates from our real world data. The
aggregates were selected to represent the full range of skewness
present in the real data. We will discuss the live data set in full
detail in Section 5.

Note there is a wide range of skewness present in the aggregates
of the real data. The aggregate represented by the top curve has a
very large space of possible keys (1.4 x 1011 possible rows) and
follows Cardenas’ formula with no measurable error. The result
of this combination is a nearly straight line. Skew can have a
large effect on the number of rows in an aggregate. The curve at
the bottom is the most skewed of all the aggregates. Using
Cardenas’ formula, the number of expected rows is 5,478 for
this aggregate. The actual number of rows is 131. The error
resulting from assuming a uniform distribution is over 4000%.
Skew must be taken into account when estimating the storage
requirements of pre-aggregation. Despite the variety of
skewness in the real data, there is regularity present in the
trends. It should be possible to project trends based on sampling
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and achieve a reasonable approximation for the full fact table.
We have developed and tested curve-fitting algorithms for this
purpose.

Fig. 4. Example curves illustrating the wide variation of skew
present in a real world database. Each curve represents trends in
a single a view as base data grows.

4 ALGORITHMS TESTED

We test four different algorithms. Cardenas’ formula [1] is a fast
calculation based on the assumption of uniform data
distribution. The sample frequency algorithm [5] analyzes
distribution information detected in a sampling of the data, and
adjusts the estimate of Cardenas’ formula to account for data
clustering. The third approach, published in [3] is based on the
binomial multi-fractal distribution model, and data sampling.
We will refer to this approach as the FMS binomial multi-fractal
approach. The fourth algorithm we test is an original algorithm
we will refer to as binomial multi-fractal curve-fitting.

We will now examine the binomial multi-fractal distribution
model in closer detail. Then we will compare and contrast the
FMS approach with our curve-fitting approach.

Binomial Multi-Fractal Distribution Model  (FMS)
Large-scale structure resembles small-scale structure in multi-
fractal models. We will illustrate with a binomial multi-fractal
distribution example momentarily. The concept that large-scale
structure resembles small-scale structure is observed by [3] to be
similar to the 80-20 rule in databases. The theory behind the
approach presented in [3] is that by calculating the parameters of
a multi-fractal distribution based on a small sample, the number
of distinct members can be predicted for a larger set of data.
Formulas (2) and (3) are presented in [3] for this purpose.

Pa = P 
k-a

 (1 - P)
a
 . (3)

Figure 5 illustrates with an example. Order k is the decision tree

depth. C
k
a  is the number of bins in the set reachable by taking

some combination of a left hand edges and  k - a  right hand

edges in the decision tree. Pa is the probability of reaching a
given bin whose path contains a  left hand edges. Bias P is the
probability of selecting the right hand edge at a choice point in
the tree.

Fig. 5. Example of a binomial multi-fractal distribution tree.
This small example is intended to illustrate the binomial multi-
fractal model. The decision tree depth is k = 3. The probability
of a right edge is the bias parameter P = 0.9. Small scale
structure resembles large scale structure in multi-fractal models.
The probability of a right branch remains the same regardless of
the depth in the tree. Note the bins group as sets. There is a
relationship between the number of bins in each set, and the
elements in Pascal’s triangle. The super-script of C is the depth
into Pascal’s triangle, starting with row 0 at the top of Pascal’s
triangle. The sub-script of C is the position into the row of
Pascal’s triangle, beginning with the left-most item as element 0

We illustrate the calculations of formula (2) with a small
example. An actual database would yield much larger numbers,
but the concepts and the formulas are the same. These
calculations can be done with logarithms, resulting in very good
scalability. Based on figure (5), given 5 rows calculate the
expected distinct values:

Expected distinct values =   1 ⋅ (1 – (1 – 0.729)
5

                                          + 3 ⋅ (1 – (1 – 0.081)
5

                                          + 3 ⋅ (1 – (1 – 0.009)
5

                                          + 1 ⋅ (1 – (1 – 0.001)
5
 ≈ 1.965

The algorithm in [3] for estimating the values of P and k is
based on one sample. The algorithm has three inputs: The
number of rows in the sample, the frequency of the most
commonly occurring value, and the number of distinct aggregate
rows in the sample. The value of P is calculated based on the
frequency of the most commonly occurring value. They begin
with

k = Log_(Distinct rows in sample) . (4)

and then adjust k upwards, recalculating P until a good fit to the
number of distinct rows in the sample is found.

Binomial Multi-Fractal Curve Fitting
This approach is also based on Eq. (2). Our approach differs
from [3] in the method of finding a good fit for the parameters P
and k: our approach uses two samples instead of one. This is
sufficient to determine the two missing parameters for each
aggregate. There are five inputs to our algorithm for computing
a good fit for P and k. The inputs are the number of possible
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aggregate rows, the number of rows in each sample size, and the
number of distinct aggregate rows in each sample. The general
idea is to use one sample point to calculate the bias parameter
for a specific order parameter k1. The same process is carried
out for k2 = k1 – 1. The second sample point is used in
calculating an error measurement for evaluating the accuracy of
the parameter settings. The error measurements for the two
parameter settings are compared. The algorithm decrements k1
and repeats until accuracy would be hindered. Then the best fit
parameters are used to calculate the expected number of rows in
the aggregate for the full fact table. A summary of the algorithm
follows. Note the check p1 = 0.5 in line 12, it does not make
sense to continue decrementing k1 if p1 is already at 0.5 because
it is not possible to have a distribution less skewed than uniform.

Symbol Definition
r The number of possible rows in the space of the

aggregate.
kInitial The initial value for the order parameter k.
kLimit kLimit is used to reduce algorithm complexity. It is

based on the number of rows in the fact table. 2kLimit

should exceed the number of rows in the fact table
by several orders of magnitude to assure accuracy.

k1 The larger of two settings under consideration for
the order parameter.

k2 The smaller of two settings under consideration for
the order parameter.

p1 The bias parameter associated with k1.
p2 The bias parameter associated with k2.
error1 The number of rows error associated with the set of

parameters p1 and k1.
error2 The number of rows error associated with the set of

parameters p2 and k2.
bestError Tracks the best error measurement found so far.
tolerance This variable allows the algorithm to continue past

insignificant fluctuations in the error measurements
caused by round off errors. We used a setting of 0.3
rows (our estimated row calculations were done in
floating point) which was large enough to move
past round off errors, yet small compared to our unit
of error measurement, a row. We expect tolerance =
0.3 should be a good setting on other platforms as
well.

Algorithm
1 Let kInitial = log2(r) as a first estimate
2 kLimit = log2(f) + 16, where f = |rows in fact table|
3 If (kInitial > kLimit) kInitial = kLimit
4 For (k1 = kInitial, k1 > 1, k1--) {
5 k2 = k1 – 1
6 Calculate bias p1 for larger sample, based on k1
7 Calculate error1 for smaller sample, based on p1 and k1
8 If (bestError is uninitialized) bestError = error1
9 Calculate bias p2 for larger sample, based on k2
10 Calculate error2 for smaller sample, based on p2 and k2.
11 If (error2>error1 and error2 - bestError >tolerance) break
12 If (p1 = 0.5) break
13 If (error2 < bestError) bestError = error2
14 }
15 Calculate expected rows for full data set, based on p1 and k1

5. THE DATA SETS

We tested the algorithms empirically, using both synthetic data
and real world data. The synthetic data has been previously used
in [5]. Using different samples from the same synthetic data has
allowed us to validate the results in [5], and also compare the
newer algorithm in the same setting. The real world data was
gathered in cooperation with McNaughton & Gunn, Inc., a book
manufacturing company.

Synthetic Data
The schema for the synthetic data has two dimensions. Each
dimension has a three level hierarchy. There are six data sets,
each with a different level of skew. The data was generated with
Zipf distributions. The Zipf exponent in our test results refers to
the exponent in the Zipf power-law function. A distribution with
Zipf exponent 0.0 has a uniform distribution. A distribution with
Zipf exponent 1.0 is skewed. The Zipf exponent can be higher
than 1.0, and the higher the Zipf exponent, the more skewed the
data. The fact tables in each of the synthetic data sets contain
10,000 rows. Details of how the synthetic data sets were
generated can be found in [5].

Real World Data
The motivations for testing aggregate storage size estimation
algorithms on real world data are many. The usefulness of any
algorithm ultimately depends on the effectiveness of its
application to real world problems. Real world data presents a
challenge in that the skewness of the data is usually unknown.
Often the type of distribution present is not clear. Should the
data be modeled using Zipf distributions, binomial multifractal
distributions, or some other distribution model? The curve
fitting approach analyzed here attempts to measure the effect of
skewness in a sample, and extrapolate the result to the entire fact
table.

McNaughton & Gunn periodically analyzes the job mix in their
plant. Analyzing a fact table containing job specifications is a
realistic application. Specifications for 14,438 jobs were
gathered. A fact table was built using ten job attributes as the
key. An eleventh field was used for tracking the number of jobs
with the given job specifications. Some jobs have the same key
values. The job count field is not part of the key, it is a
measurement field. Job count is the information to be
aggregated. Some jobs have duplicate specifications, so the
resulting fact table has fewer rows than the original set of jobs.
The fact table has 8,238 rows. The dimensions are as follow:

Possible
Attributes Values Explaination/Examples
Bind Style 14 Paper back, hard cover, comb bound etc.
Trim Width 13 The width of the book (e.g. 6”)
Trim Length 14 Book length from top to bottom (e.g. 9”)
Pages 31 The number of pages in the book
Quantity 28 The number of books ordered
Stock Color 18 Paper color used in the book (e.g. white)
Stock Weight 5 An industry standard paper weight

measurement for a fixed amount of paper
(e.g. 50#, 60# etc.)

Stock Width 12 Width of paper run on the press (e.g. 29”)
Stock Length 12 Length of paper run on press (e.g. 42”)
Press 5 Type of press (e.g. Miehle, Planeta etc.)

A quick calculation shows that the total number of possible
tuples in the base data is 143,315,827,200. The density of the



base data is 5.7 x 10
-8

. Even with such sparsity, 43% of the jobs
have the same specifications as other jobs. This already gives a
clue that the data is very skewed. There are 10 dimensions, and
therefore 2

10
 different aggregates. The aggregates will dominate

the fact table in the number of rows after cubing.

6. EXPERIMENTAL RESULTS

The algorithms were implemented using Visual Basic with a
Microsoft Access database. The computer was a Pentium-II 266,
with 32 MB RAM. We tested empirically with two types of
data: Synthetic and real.

Measurements on Synthetic Data
Our measurements on the synthetic data examine how two
parameters affect the algorithms. We vary the amount of skew,
and sample size. The sample size indicates the percent of the
fact table included in the sample. For the binomial multi-fractal
curve fitting algorithm, this percentage is the size of the larger
sample. Samples were selected at random from the fact table.
The error measurements are calculated based on cube size.

Error = (Estimated Cube Size – Actual Cube Size) / Actual. (5)

The size of a data cube equals the sum of the number of rows in
all possible aggregates and the core. Negative error
measurements indicate the algorithm under estimated the actual
number of rows. We present results in Figures 6, 7 and 8.

Fig. 6. Error Measurements on Synthetic Data, 10% Sample
Size. A Zipf Exponent of 0 is a uniform distribution. Increasing
Zipf Exponents indicate increasing skew

Fig. 7. Error Measurements on Synthetic Data, 3% Sample Size

Fig. 8. Error Measurements on Synthetic Data, 1% Sample Size

Measurements on Real World Data
We varied one parameter when testing on the real world data:
Sample size. For each algorithm / sample size combination, we
measured three runs. The samples for each run were selected
independently, at random from the same fact table (i.e. our base
data remained the same, the sample set was varied).  We were
interested in measuring performance in estimating individual
aggregate sizes in a real world environment. Towards this end,
we measured the error rates on individual aggregates. The real
world data set has 1023 aggregates. For each aggregate we
calculated the ratio estimate/actual. Then we calculated the mean
and the standard deviation of the ratio measurement, over all
aggregates. These measurements are presented in table 1. The
ideal algorithm would have a “mean of estimate/actual” ratio of
1.0, with a small standard deviation.

Algorithm Run 1% 3% 10% 1% 3% 10%

Cardenas' 1 5.33 5.33 5.33 5.05 5.05 5.05
2 5.33 5.33 5.33 5.05 5.05 5.05
3 5.33 5.33 5.33 5.05 5.05 5.05

Sample Frequency 1 2.80 1.77 0.98 1.73 1.08 0.57
2 2.92 1.76 1.01 1.84 1.11 0.57
3 2.97 1.84 0.97 1.90 1.10 0.57

FMS Binomial 1 1.27 1.10 1.00 0.59 0.38 0.20
Multi-Fractal 2 1.39 1.07 1.03 0.69 0.39 0.20

3 1.37 1.14 1.01 0.68 0.33 0.19

Binomial Multi-Fractal 1 0.96 1.04 0.86 0.70 0.39 0.20
Curve Fitting 2 0.88 0.83 1.04 0.69 0.41 0.23

3 0.82 0.89 0.78 0.66 0.45 0.19

Mean of Est/Act. Stand. Dev.
Sample Size Sample Size

Table 1. Algorithm performance on real world data

7. ANALYSIS AND CONCLUSIONS

When data is uniformly distributed, Cardenas’ formula estimates
the number of rows in an aggregate very well. Cardenas’
formula fails miserably when the data is skewed. Real world
data can be very skewed as evidenced by our test bed.

The sample frequency algorithm does better than Cardenas’
formula because the effect of skew is modeled. The performance
still leaves much to be desired. The flaw is in the underlying
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hypothesis that the error percent in Cardenas’ formula due to
data skew will remain relatively constant as the rows in the fact
table increase. To see the flaw, consider the origin. We
demonstrated earlier that the gradient of the actual curve at the
origin is one. This is true regardless of the distribution. The
sample frequency algorithm compresses the entire curve of
Cardenas’ formula by a constant factor to fit the sample point
and then makes further adjustments based on clustering detected
in the sample. The step where the curve of Cardenas’ formula is
compressed by a constant leads to a gradient less than one at the
origin. The error percent in Cardenas’ formula due to data skew
is not constant. The hypothesis is flawed leading to significant
error.

The FMS binomial multi-fractal is the algorithm outlined in [3].
We note one check that needs to be added to their algorithm. As
k increments, it is possible for step three of their algorithm to
over-estimate the actual F0 (see [3] for details). If ε is small
enough, the algorithm may overshoot the mark, and fail to
terminate. This can be easily corrected by terminating when the
estimate begins moving away from F0, and use the best
approximation found.

Our binomial multi-fractal curve fitting approach fares better
than the FMS approach when the sample size is small. The FMS
approach is sensitive to the count of the most common key value
in the sample. As the sample size decreases the count of the
most common key value tends to decrease linearly. The curve
fitting algorithm is sensitive to the number of rows added to the
aggregate between the two sample points. As the sample size
decreases, the change in the number of rows between the
aggregates at the two sample points tends to decrease less than
linear because of the increasing gradient. This results in greater
stability for the curve fitting approach over the FMS approach at
small sample sizes.

At small sample sizes (i.e. 1%), the binomial multi-fractal curve
fitting approach performed the best of the algorithms tested.

8. FUTURE WORK

The two binomial multi-fractal approaches produce more
accurate aggregate size estimations under different conditions.
Perhaps the two algorithms can be combined into a new
algorithm, which exceeds the accuracy of both. There are at least
two approaches to combining the two algorithms. We could
modify our algorithm to also examine the frequency of the most
common member, then average the two calculations for the bias
parameter P. Another approach would be to map out the
circumstances where each algorithm performs better. Depending
on conditions, the best algorithm could then be used.

Multiple independent runs would likely decrease the variance in
the estimates. The algorithm could build up a cloud of estimate
points, and find a best fit for those points as the final estimate.
There is a trade-off between processing and accuracy here. A
good approach would be to do as much processing as is possible
within an acceptable amount of time.

The binomial multi-fractal distribution model was chosen for
approximating the actual curve for two reasons. The available
parameters in the formula allow the curve to be adjusted to fit
closely to the actual curves, and the formulas are easily

programmed. There may be other distribution models that would
yield good results if applied to a curve fitting approach.

The scalability in the number of rows in the fact table is
currently being tested empirically using databases with up to 5
million rows. Scalability in the number of dimensions is a
problem for further research.

We are working on implementing the probabilistic counting
approach [2]. We did not include this algorithm with the original
testing since probabilistic counting requires a full scan of the
fact table, and we were focusing on sampling approaches.
However, probabilistic counting deserves testing along with
these other approaches. Probabilistic counting is extremely
memory efficient It may perform well in terms of resources if
implemented to process all aggregates in one pass through the
fact table.

The amount of skew found in the different aggregates varies
greatly. The skew itself may be an indicator of the interest value
to humans. When humans look for trends in data, generally we
look for correlations. Skew may be a good heuristic for data
mining. The algorithm could bring highly skewed aggregates to
the attention of the user.

We need to move toward a practical system. Statistical methods
need to be applied to determine the proper sample size
automatically. The aggregate size estimation needs to be
incorporated into the larger problem of materialized view
selection. For example, the number of rows used in the cost
calculations of [7] could be obtained by estimating from
sampling.
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