
Storing and Querying XML Documents Without Using Schema
Information

Kanda Runapongsa
Department of Computer Engineering

Khon Kaen University, Thailand
krunapon@kku.ac.th

Jignesh M. Patel
Department of EECS

University of Michigan, USA
jignesh@eecs.umich.edu

Abstract

As the popularity of eXtensible Markup Language (XML) continues to increase at an astonishing pace, data
management systems for storing and querying large repositories of XML data are urgently needed. In this paper,
we investigate using a Relational Database Management System (RDBMS) for storing and querying XML data. We
present a mapping scheme, called PAID, for mapping XML documents torelations in an RDBMS. Compared to
previously proposed mapping schemes, we demonstrate that the PAID mapping scheme results in less response times
by up to several orders of magnitude. The primary reason for this performance improvement is that PAID includes
information that the database can use to evaluate both direct and indirect containment queries efficiently.

Keywords: XML, RDBMS, XML Query Processing

1 Introduction

As the popularity of XML (eXtensible Markup Language) [4] for representing easily sharable data continues to grow,
large repositories of XML data are likely to emerge. Data management systems for storing and querying these large
repositories are urgently needed. Currently, there are twodominating approaches for managing XML repositories [8].
The first approach is to use a native XML database engine for storing and querying XML data sets [1, 14]. This
approach has the advantage that it can provide a more naturaldata model and query language for XML data, which
is typically viewed using a hierarchical or graph representation. The second approach is to map the XML data and
queries to constructs provided by a Relational DBMS (RDBMS)[5, 9, 18, 19]. XML data is mapped to relations, and
queries on the XML data are converted into SQL queries. The results of the SQL queries are then converted to XML
documents before returning the answer to the user. Using an RDBMS, one can leverage many decades of research and
commercialization efforts by exploiting existing features in such database. An additional advantage of an RDBMS is
that it can be used for querying both XML data and data that exists in the relational systems. In this paper, we focus
on using an RDBMS as an experimental platform to store and query XML documents.

It is necessary to find an efficient method for processing XML documents without using schema information be-
cause many XML documents exist without associated schemas.A number of different approaches have been proposed
to map XML data to relations, independent of XML schemas [9,19–21]. However, no approach has been shown to be
consistently superior to other methods. In this paper, we propose a mapping scheme which outperforms other mapping
schemes.

To efficiently evaluate XML queries, it is important to quickly determine the structural relationships among any
pair of nodes. Structural relationships can be determined by associating each node with a numbering scheme. One of
the most popular method is Dietz’s numbering scheme [6], which has been adopted by several XML query evaluation
techniques [2,10,13,21]. In this numbering scheme, a document is modeled as a tree. Each tree node is assigned three
numbers: the node’spreorder andpostorder ranks, and the node’s level. In a preorder (postorder) traversal, a node is
visited and assigned its preorder (postorder) rank before (after) its children are recursively assigned from left to right.
If the document is read sequentially, elements are accessedin the same order as their preorder ranks. Using Dietz’s
numbering scheme, the following properties hold:

• Nodev is an ancestor of nodeu iff (i) preorder(v) < preorder(u) and (ii)postorder(u) < postorder(v). In
other words, nodeu is indirectly contained in nodev.

• Nodev is a parent of nodeu iff (i) preorder(v) < preorder(u), (ii) postorder(u) < postorder(v), and (iii)
level(v) = level(u) − 1. In other words, nodeu is directly contained in nodev.

To evaluate path expressions in a relational system, there are two dominating approaches. The first is to use
primary-foreign keys of relations to establish a parent-child relationship between elements [9,18]. The other approach
is to associate each element with a numbering scheme (preorder, postorder, level) [19–21]. The advantage of the
primary-foreign keys approach is that the queries containing only parent-child relationships are evaluated very quickly
since there are indices built on the primary-foreign keys. However, the disadvantage of this approach is the poor
performance of ancestor-descendant queries. When using theprimary-foreign keys approach to evaluate ancestor-
descendant queries, the number of join operations can be as many as the number of steps of the longest path in the
document tree [20]. On the other hand, using node positions,only direct joins between ancestors and descendants are
needed. Another problem of the primary-foreign keys approach is that ancestor-descendant queries are very expensive
to evaluate [11].

In this paper, we focus on evaluating XML queries using the node positions approach because of its many disad-
vantage and it does not require schema information. There have been several works that use node positions in their
mapping schemes. We compare well-known mapping schemes with our proposed mapping scheme. We improve
existing mapping schemes by encoding extra information about the node’s parent and including the node’s path in-
formation. Our experimental results show that this additional information can dramatically reduce query response
times in a relational system. Although we did not perform theexperiments on a native XML database, the techniques
presented in this paper can be applied in such database.

The remainder of this paper is organized as follows. We first discuss different mapping approaches in Section 2.
We then evaluate and compare the effectiveness of these mapping approaches in Section 3. Related work is discussed
in Section 4. Finally, we present our conclusions and discuss future work in Section 5.

2 Different Mapping Approaches

In this section, we present three different mapping approaches: two other mapping approaches and one our proposed
mapping approach. All of these approaches model a document as a tree and use the word positions of elements to
establish the structural relationships between elements,but they include information about node positions and node
paths differently. We use the sample XML document in Figure 1as an input document to these approaches and then
present the mapped relations for each of them. The input document describes a play consisting a list of speakers with
their speeches.

We first present the relational schemas and the sample mappedrelations of the approach which we refer to as
Begin-End-Level (BEL) [21] and those of the approach which we refer to as Begin-End-Level-Path (BELP) [19]. We
then present our proposed mapping approach which we refer toas Parent-ID (PAID).

2.1 The Begin-End-Level (BEL) Approach

In the Begin-End-Level (BEL) approach [21], containment queries are processed using inverted lists. Each inverted
list records the occurrences of a word or an element which is referred to as “term”. Each occurrence is indexed by
its document number (docno), its word position (begin:end), and its nesting depth within the document (level).
The positions of elements and words (begin, end, wordno) are generated by counting word numbers in an input
XML document. The occurrence of an element is denoted as (docno, begin:end, level), and the occurrence of a
text word is denoted as (docno, wordno, level). Thebegin position of the node represents the preorder of node,
and theend position of the node represents the postorder of the node. The wordno represents both the preorder
and the postorder of the text word. Using thesebegin, end, wordno, one can determine the structural relationship
between nodes in XML documents. Elements and text are storedin theelement andtext relations, respectively.
The storage of attributes is not discussed in [21].

To handle documents that have attributes, one can extend this approach by treating an attribute like an element
and append attribute information inelement. However, from our experimental results, separately storing attribute

<?xml version=”1.0”?>
1
<PLAY>

2
<ACT>

3
<TITLE>Act One</TITLE>

7
<SCENE>

8
<TITLE>Scene One</TITLE>

12
<SPEECH>

13
<SPEAKER>Romeo</SPEAKER>
16
<LINE>Hello, Juliet</LINE>

20
</SPEECH>
21
<SPEECH>

22
<SPEAKER>Juliet</SPEAKER>
25
<LINE>Good morning, Romeo</LINE>

30
</SPEECH>

31
</SCENE>

32
</ACT>

33
</PLAY>

Figure 1: A Sample XML Document (with Word Positions in Bold)

information in theattribute relation results in superior performance. To answer the queries with order predicates,
we add theorder attribute in theelement relation. The schemas of the three relations are as follows:

• element(term string, docID integer, order integer, begin integer,
end integer, level integer).

• text(term string, docID integer, wordno integer, level integer).

• attribute(term string, value string, docID integer, begin integer,
end integer, level integer).

Using this approach, the content of the relations storing sample XML data in Figure 1 is shown in Figures 2-3.
Note that there is noattribute relation illustrated here because the input sample XML document does not have
any attribute. Suppose that one wants to retrieve all speakers, the path expression for this request isSPEAKER. The
corresponding SQL query for the path expressionSPEAKER is shown in Figure 4.

2.2 The Begin-End-Level-Path (BELP) Approach

In [19,20], the Begin-End-Level-Path (BELP) approach decomposes an XML document into nodes on the basis of its
tree structures. A relation is created for each node type, and a path relation stores path information from the root node
to each of other nodes. Nodes of different XML documents are stored in the same relation as long as they are of the
same type.

In the original BELP approach [19], the position of the node has the REGION type (User Abstract Data Type) [19].
We do not store the position within the REGION type because our experimental results indicate that it is more effective

term docID order begin end level

PLAY 1 1 1 33 1
ACT 1 1 2 32 2
TITLE 1 1 3 6 3
SCENE 1 1 7 31 3
TITLE 1 1 8 11 4
SPEECH 1 1 12 20 4
SPEAKER 1 1 13 15 5
LINE 1 1 16 19 5
SPEAKER 1 1 22 24 5
SPEECH 1 2 21 30 4
LINE 1 1 25 29 5

Figure 2: Theelement Relation of BEL

term docID wordno level

Act 1 4 4
One 1 5 4
Scene 1 9 5
One 1 10 5
Romeo 1 14 6
Hello 1 17 6
Juliet 1 18 6
Juliet 1 23 6
Good 1 26 6
morning 1 27 6
Romeo 1 28 6

Figure 3: Thetext Relation of BEL

select tspeaker.term
from element espeaker, text tspeaker
where espeaker.term = ‘SPEAKER’
and espeaker.begin < tspeaker.begin
and tspeaker.end < espeaker.end
and espeaker.level = tspeaker.level - 1
and espeaker.docID = tspeaker.docID

Figure 4: A SQL Query When Using BEL

to store the begin and end positions as attributes on which the B+ tree indices can be built. Traditional RDBMSs
do not allow the users to build indices on a user-defined type,such as REGION. Although the level information
is not originally included [19], we include it to distinguish between the parent-child and the ancestor-descendant
relationships.

In the BELP approach, each word occurrence is assigned an integer corresponding to its position within the docu-
ment, and each tag is assigned a real number. The integer partof the real number indicates the position number of the
preceding word. The decimal part indicates the position of the tag in the current depth-first traversal. When visiting the
root node or the node visited immediately following the textword, the decimal part is initialized to one. When visiting
the other nodes, the decimal part is incremented. The position of the element is assigned a real number to minimize
the effects of the appearances of the element tags on a word-based proximity search on element content [19]. Figure 5
shows the data graph with the assignment of the region of eachnode in the XML data of Figure 1.

Act One
(1,2)

 TITLE

 ACT

/PLAY

 TITLE SPEECH

LINE

Hello, Juliet

SPEAKER LINE

 SCENE

Scene One

SPEAKER

 Romeo

(3,4)

SPEECH

 (5,5) (6,7)

Juliet

(8,8)

(0.03,2.01)

(2.03, 4.01)

(4.02,7.02)

(4.03, 5.01) (5.02,7.01)

(7.04, 8.01)

Good morning, Romeo
(9,11)

(8.02,11.01)

(7.03,11.02)

(2.02,11.03)

(0.02,11.04)

(0.01,11.05)

Figure 5: The Tree Structure in the Sample Document When UsingBELP

The details of the schemas of theelement, attribute, text, andpath relations are as follows:

• element(docID integer, pathID integer, order integer, begin double,
end double, level integer).

• attribute(docID integer, pathID integer, attvalue string, begin double,
end double, level integer).

• text(docID integer, pathID integer, value string, begin double, end double,
level integer).

• path(pathExp string, pathID integer).

Using this approach, the content of the relations storing sample XML data in Figure 1 is shown in Figures 6-8.
The corresponding SQL query for the path expressionSPEAKER is shown in Figure 9.

docID pathID order begin end level

1 0 1 0.01 11.05 1
1 1 1 0.02 11.04 2
1 2 1 0.03 2.01 3
1 3 1 2.02 11.03 3
1 2 1 2.03 4.01 4
1 5 1 4.02 7.02 4
1 6 1 4.03 5.01 5
1 7 1 5.02 7.01 5
1 5 2 7.03 11.02 4
1 6 1 7.04 8.01 5
1 7 1 8.02 11.01 5

Figure 6: Theelement Relation of BELP

docID pathID value begin end level

1 2 Act One 1 2 4
1 4 Scene One 3 4 5
1 6 Romeo 5 5 6
1 7 Hello, Juliet 6 7 6
1 6 Juliet 8 8 6
1 7 Good morning, Romeo 9 11 6

Figure 7: Thetext Relation of BELP

pathExp pathID

/PLAY 0
/PLAY/ACT 1
/PLAY/ACT/TITLE 2
/PLAY/ACT/SCENE 3
/PLAY/ACT/SCENE/TITLE 4
/PLAY/ACT/SCENE/SPEECH 5
/PLAY/ACT/SCENE/SPEECH/SPEAKER 6
/PLAY/ACT/SCENE/SPEECH/LINE 7

Figure 8: Thepath Relation of BELP

select tspeaker.value
from element tspeaker, path pspeaker,

text tspeaker, path tspeaker
where espeaker.pathExp like ‘%SPEAKER’
and tspeaker.pathExp like ‘%SPEAKER’
and tspeaker.pathID = espeaker.pathID
and espeaker.begin < tspeaker.begin
and tspeaker.end < espeaker.end
and espeaker.level = tspeaker.level - 1
and espeaker.docID = tspeaker.docID

Figure 9: A SQL Query When Using BELP

2.3 The Parent-ID (PAID) Approach

As other approaches, the Parent-ID (PAID) approach uses (being, end, level) for determining containment relationship
queries. However, unlike other mapping schemes, the PAID approach includes both the IDs of the parent nodes to
quickly determine elements that have parent-child relationships as well as the path information to quickly retrieve
elements that match a given path. The schemas of the relations in this approach are as follows:

• element(docID integer, term integer, pathID integer, order integer,
begin integer, end integer, level integer, parentID integer).

• path(pathExp string, pathID integer).

• attribute(attrName string, docID integer, begin integer, attrValue string,
level integer, parentID integer).

• text(term string, docID integer, wordno integer, level integer,
parentID integer).

Using this approach, the content of the relations storing the sample XML data shown in Figure 1 is depicted in
Figures 10-12. With the attributeparentID, one can evaluate path expressionSPEAKER using a SQL statement as
shown in Figure 13.

docID term pathID order begin end level parentID

1 TITLE 2 1 3 6 3 2
1 TITLE 4 1 8 11 4 7
1 SPEAKER 6 1 13 15 5 12
1 LINE 7 1 16 19 5 12
1 SPEECH 5 1 12 20 4 7
1 SPEAKER 6 1 22 24 5 21
1 LINE 7 1 25 29 5 21
1 SPEECH 5 2 21 30 4 7
1 SCENE 3 1 7 31 3 2
1 ACT 1 1 2 32 2 1
1 PLAY 0 1 1 33 1 -1

Figure 10: Theelement Relation of PAID

pathExp pathID

/PLAY 0
/PLAY/ACT 1
/PLAY/ACT/TITLE 2
/PLAY/ACT/SCENE 3
/PLAY/ACT/SCENE/TITLE 4
/PLAY/ACT/SCENE/SPEECH 5
/PLAY/ACT/SCENE/SPEECH/SPEAKER 6
/PLAY/ACT/SCENE/SPEECH/LINE 7

Figure 11: Thepath Relation of PAID

3 Performance Evaluation

In this section, we present the performance of different mapping approaches. We evaluated the effectiveness of the
three mapping approaches using the well-known Shakespeareplays data set [3].

term docID wordno level parentID

Act 1 4 4 3
One 1 5 4 3
Scene 1 9 5 8
One 1 10 5 8
Romeo 1 14 6 13
Hello 1 17 6 16
Juliet 1 18 6 16
Juliet 1 23 6 22
Good 1 26 6 25
morning 1 27 6 25
Romeo 1 28 6 25

Figure 12: Thetext Relation of PAID

select tspeaker.term
from element espeaker, text tspeaker
where espeaker.term = ‘SPEAKER’
and espeaker.begin = tspeaker.parentID
and espeaker.docID = tspeaker.docID

Figure 13: A SQL Query When Using PAID

3.1 Experimental Setup

We used the Apache Xerces C++ version 2.0 [17] to parse the documents and generate the content of relations in
different mapping approaches.

We performed all experiments using a leading commercial RDBMS on a single-processor 1.2 GHz Pentium Celeron
machine running Windows XP with 256 MB of main memory. The buffer pool size of the database was set to 32 MB.

Before executing queries in any approach, we collected statistics and created indices as suggested by the index
selection tool of the database. The execution times reported in this section are cold numbers. Each query was run five
times, and the average of the middle three execution times was reported.

In the experiment, we loaded the Shakespeare play documentsinto the database using the three mapping ap-
proaches. To have the large size of the experimental data, weused eight copies of the original Shakespeare data set
which has approximately 8 MB. Thus, the total input data sizeis 64 MB.

Table 1 shows the comparisons of the database and index sizesof different mapping approaches. The PAID
approach has the largest database size since each relation has additional attributes, such as theparentID attribute.
The large index size of the BEL approach is due to the large size of indices created on thevalue attribute of the
text relation. The BELP approach has a smaller total index size because there is no index created on thevalue
attribute. The length of thevalue attribute is the same as the maximum length of the element content which can be
very long. The database does not create the index on such longstring attribute because it is inefficient to create and
search for objects using a large key.

BEL BELP PAID

Database size (MB) 198 151 231
Index size (MB) 505 189 360

Table 1: Database and Index Sizes for the Shakespeare Data Set

The XPath expressions of the query workload are described inFigure 14.
The result of executing queries for the Shakespeare data setare shown in Table 2.
Figure 15 is a graphical representation to further emphasize the performance difference of these approaches. This

QS1. ACT/SCENE/SPEECH/LINE[contains(STAGEDIR, ‘Rising’)]
QS2. ACT/SCENE/SPEECH/LINE[STAGEDIR]
QS3. ACT/SCENE/SPEECH/SPEAKER, ACT/SCENE/SPEECH/LINE
QS4. /PLAY[contains(TITLE,‘Juliet’)]/ACT/SCENE/

SPEECH[contains(SPEAKER,‘ROMEO’)]
QS5. /PLAY[contains(TITLE,‘Juliet’)]//ACT/SCENE/

SPEECH[contains(LINE,‘love’)][contains(SPEAKER,‘ROMEO’)]
QS6. PROLOGUE/SPEECH/LINE[position()=2]

Figure 14: The Query Workload on the Shakespeare Data Set

Query Execution Times (seconds)
BEL BELP PAID

QS1 24.92 30.70 0.03
QS2 81.39 18.46 10.29
QS3 367.39 836.00 30.99
QS4 10.67 23.35 1.42
QS5 580.40 952.09 56.61
QS6 3.54 0.11 0.01

Table 2: Execution Times of the Three Mapping Approaches forthe Shakespeare Data Set

figure illustrates the ratios of the execution times of otherapproaches over the PAID approach on alog scale.
As shown in Figure 15, we observe that the PAID approach outperforms other approaches by several orders of

magnitude, especially queries QS1. The response times of queries using the PAID approach are much less than those
using other approaches because of three primary factors: 1)PAID uses the parentID attribute to quickly find the parent
nodes, 2) PAID uses the path information to reduce the numberof join operations in long path queries, and 3) PAID
uses the index on thevalue attribute to quickly retrieve the nodes that satisfy with the value predicates.

Examining the query execution times shown in Table 2, compared to BELP, BEL performs better on queries with
value predicates (QS1, QS4, and QS5) because there is the index on thevalue attribute of thetext relation of the
BEL approach. In BELP, there is no index on such attribute because of the long length of the text value. BEL also
outperforms BELP for queries with multiple path expressions (QS3, QS4, and QS5) because, unlike BELP, BEL does
not require sorting. In BELP, elements are first searched by the specified path expression. Then, the elements that
match the given paths are combined with a sort merge join operation in which the nodes are sorted by their positions.
On the other hand, in BEL, the inputs of the join operations are attributes that are retrieved from clustered indices.
Thus, there is no need for sorting when performing the join between these attributes.

4 Related Work

McHugh et al. [15] described techniques for building and exploiting indices in Lore [14]. Their path index always
begins at the root node and is not applicable to regular path expressions. Milo and Suciu [16] proposed a template
index (T-index) as a general index structure for semistructured databases. The T-index allows users to sacrifice space
for generality and to query a wide range of regular path expressions. However, the index generation tends to be
complex. Although the authors reported the sizes of the T-index for different data sets, they did not report any query
response time numbers.

A few recently proposed indexing structures [12, 13] have addressed numbering schemes that accommodate up-
dates of the source data. Kha et al. [12] proposed an indexingstructure scheme based on the Relative Region Coordi-
nate (RRC) in which the coordinate of an XML element is based on the region of its parent element. Li and Moon [13]
have developed a new XML Indexing and Storage System (XISS) in which the node is assigned a pair of numbers
<order, size>. For a tree nodey and its parentx, order(x) < order(y) andorder(y)+size(y) ≤ order(x)+size(x).
A disadvantage of this numbering scheme is that it is difficult to estimate a size that can accommodate an arbitrarily

QS1 QS2 QS3 QS4 QS5 QS6

0.1

0.01

1

10

100

1000

O
th

er
 A

pp
ro

ac
he

s/
P

A
ID

 P
er

fo
rm

at
io

n
R

at
io

s
(l

og
 s

ca
le

)

BEL
BELP

831

7.9 11.9 7.5 10.3

354

1023.3

1.8

27.0
16.4 16.8

11

Figure 15: Other Approaches/PAID Performance Ra-
tios on a Log Scale for the Shakespeare Data Set

large number of insertions.
Some proposed indexing structures are implemented and experimented on existing DBMSs [7,19–21]. Fegaras and

Elmasri [7] presented an inverse indexing technique that the indices on content words and elements in XML documents
are stored in an Object-Oriented Database Management System (OODBMS). Shimura et al [19] decomposed the tree
structure of XML documents into nodes and stored them in relational tables according to their types. The advantage of
their approach is that it is independent of XML schemas. Later, Zhung et al. [21] transformed the inverted index into
relational tables and converted containment queries into SQL queries. Their performance study shows that efficient
join algorithms and hardware cache utilization can significantly improve the performance of an RDBMS in supporting
containment queries. Unlike these approaches, we add the node’s parent information and the node’s path information to
the numbering scheme (preorder, postorder, level) so that both the parent-child and ancestor-descendant relationships
between elements (both the direct and indirect containmentqueries) can be determined quickly.

5 Conclusions

We have performed a study evaluating different mapping approaches for storing and querying XML data in an RDBMS
without using schemas of XML documents. We demonstrate thatthe path information and the parent node information
can significantly improve the performance of query evaluation. The performance of evaluating a query is very sensitive
to the SQL rewrite. Some of the insights from our experimental results suggest the following techniques:

• Using the path information to identify elements that match the path for a query consisting of a single path
expression.

• Using the element tag name when a query consisting of multiple path expressions.

• Storing multiple words of each element content together when a query has many multi-word predicates.

• Separately storing each word of the element content when a query is dominated by single-word predicates.

• Using the parent ID information when joining elements that are selective.

For the future work, we are interested in taking the query workload and data statistics into account when determin-
ing a mapping scheme. Another extension is to have a mapping such that elements that appear several times are stored
only once in relations so that the storage space and the maintenance time are reduced.

References

[1] Software AG. Tamino - The Information Server for Electronic Business, 2000.http://www.softwareag.
com/tamino/technical/wp_download.htm.

[2] S. Al-Khalifa, H.V.Jagadish, N.Koudas, J.M.Patel, D. Srivastava, and Y. Wu. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. InProceedings of the IEEE International Conference on Data
Engineering, San Jose, CA, February 2002.

[3] J. Bosak. The Plays of Shakespeare in XML, July 1999.http://metalab.unc.edu/xml/examples/
shakespeare/.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler (eds). Extensible Markup Language (XML), October
2000.http://www.w3.org/TR/REC-xml.

[5] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured Data with STORED. InProceedings of the
ACM SIGMOD International Conference on Management of Data, pages 431–442. ACM Press, 1999.

[6] P. F. Dietz. Maintaining Order in a Linked List. InProceedings of the Fourtheenth Annual ACM Symposium of
Theory of Computing, pages 122–127, San Francisco, California, May 1982.

[7] L. Fegaras and R. Elmasri. Query Engines for Web-Accessible XML Data. InProceedings of the International
Conference on Very Large Data Bases, Rome, Italy, September 2001.

[8] D. Florescu, G. Graefe, G. Moerkotte, H. Pirahesh, and H.Schning. Panel: XML Data Management: Go
Native or Spruce up Relational Systems? InProceedings of the ACM SIGMOD International Conference on
Management of Data, Santa Barbara, California, May 2001.

[9] D. Flosescu and D. Kossmann. A Performance Evaluation ofAlternative Mapping Schemes for Storing XML
Data in a Relational Database. InRapport de Recherche No.3684, INRIA,Rocquencourt,France, March 1999.

[10] T. Grust. Accelerating XPath Location Steps. InProceedings of the ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, 2002.

[11] K. Runapongsa and J. M. Patel and H.V. Jagadish and S. Al-Khalifa. The Michigan Benchmark:A Microbench-
mark for XML Query Processing Systems. InEEXTT, pages 160–161, Hong Kong, China, August 2002.

[12] D. D. Kha, M. Yoshikawa, and S. Uemura. An XML Indexing Structure with Relative Region Coordinate. In
ICDE, pages 313–320, Heidelberg, Germany, April 2001.

[13] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions. InProceedings of the
International Conference on Very Large Data Bases, pages 361–370, September 2001.

[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database Management System for
Semistructured Data.SIGMOD Record, 26(3):54–66, September 1997.

[15] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajamaran. Indexing Semistructured Data. Technical re-
port, Computer Science Department, Stanford University, 1998.http://www-db.stanford.edu/lore/
pubs/semiindexing98.pdf.

[16] T. Milo and D. Suciu. Index Structures for Path Expressions. InProceedings of the International Conference on
Database Teorey, pages 277–295, Jerusalem, Israel, January 1999.

[17] The Apache XML Project. Xerces C++ Parser.http://xml.apache.org/xerces-c/index.html.

[18] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.DeWitt, and J.Naughton. Relational Databases for Querying
XML Documents: Limitations and Opportunities. InProceedings of the International Conference on Very Large
Data Bases, pages 302–314, Edinburgh, Scotland, September 1999.

[19] T. Shimura, M. Yoshikawa, and S. Uemura. Storage and Retrieval of XML Documents Using Object-Relational
Databases. InInternational Conference on Database and Expert Systems Applications, pages 206–217, Florence,
Italy, September 1999.

[20] M. Yoshikawa, T. Amagasa, T. Shimura, and S. S. Uemura. XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases.ACM Transactions on Internet Technology, 1(1):110–
141, August 2001.

[21] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting Containment Queries in Relational
Database Managment Systems. InProceedings of the ACM SIGMOD International Conference on Management
of Data, Santa Barbara, California, May 2001.

