Storing and Querying XML Documents Without Using Schema

Information
Kanda Runapongsa Jignesh M. Patel
Department of Computer Engineering Department of EECS
Khon Kaen University, Thailand University of Michigan, USA
krunapon@kku.ac.th jignesh@eecs.umich.edu
Abstract

As the popularity of eXtensible Markup Language (XML) continues to iaseeat an astonishing pace, data
management systems for storing and querying large repositories &f dth are urgently needed. In this paper,
we investigate using a Relational Database Management System (RDBMSJifing and querying XML data. We
present a mapping scheme, called PAID, for mapping XML documentslations in an RDBMS. Compared to
previously proposed mapping schemes, we demonstrate that the Rfdpimg scheme results in less response times
by up to several orders of magnitude. The primary reason for thisnpesance improvement is that PAID includes
information that the database can use to evaluate both direct and indintgirament queries efficiently.

Keywords: XML, RDBMS, XML Query Processing

1 Introduction

As the popularity of XML (eXtensible Markup Language) [4} f@presenting easily sharable data continues to grow,
large repositories of XML data are likely to emerge. Data aggament systems for storing and querying these large
repositories are urgently needed. Currently, there aredttwoinating approaches for managing XML repositories [8].
The first approach is to use a native XML database engine éoingt and querying XML data sets [1, 14]. This
approach has the advantage that it can provide a more ndatemodel and query language for XML data, which
is typically viewed using a hierarchical or graph repreagoh. The second approach is to map the XML data and
gueries to constructs provided by a Relational DBMS (RDBI&SY, 18, 19]. XML data is mapped to relations, and
gueries on the XML data are converted into SQL queries. Thalteof the SQL queries are then converted to XML
documents before returning the answer to the user. Usind®Ms, one can leverage many decades of research and
commercialization efforts by exploiting existing featsiia such database. An additional advantage of an RDBMS is
that it can be used for querying both XML data and data thatexn the relational systems. In this paper, we focus
on using an RDBMS as an experimental platform to store andygelL documents.

It is necessary to find an efficient method for processing XMtuments without using schema information be-
cause many XML documents exist without associated schefmagmber of different approaches have been proposed
to map XML data to relations, independent of XML schemas$3.211]. However, no approach has been shown to be
consistently superior to other methods. In this paper, wp@se a mapping scheme which outperforms other mapping
schemes.

To efficiently evaluate XML queries, it is important to quigidetermine the structural relationships among any
pair of nodes. Structural relationships can be determiyagbbociating each node with a numbering scheme. One of
the most popular method is Dietz's numbering scheme [6]¢ctwvhias been adopted by several XML query evaluation
techniques [2,10,13,21]. In this numbering scheme, a deatilm modeled as a tree. Each tree node is assigned three
numbers: the nodejsreorder andpostorder ranks, and the node’s level. In a preorder (postorder) tsaliea node is
visited and assigned its preorder (postorder) rank befdter] its children are recursively assigned from left ghti
If the document is read sequentially, elements are accéisthd same order as their preorder ranks. Using Dietz's
numbering scheme, the following properties hold:

¢ Nodev is an ancestor of nodeiff (i) preorder(v) < preorder(u) and (i) postorder(u) < postorder(v). In
other words, node is indirectly contained in node.

e Nodevw is a parent of node iff (i) preorder(v) < preorder(u), (ii) postorder(u) < postorder(v), and (iii)
level(v) = level(u) — 1. In other words, node is directly contained in node.

To evaluate path expressions in a relational system, theréwa dominating approaches. The first is to use
primary-foreign keys of relations to establish a parerildaielationship between elements [9, 18]. The other apgroa
is to associate each element with a numbering scheme (greguastorder, level) [19-21]. The advantage of the
primary-foreign keys approach is that the queries comgionly parent-child relationships are evaluated verykiyic
since there are indices built on the primary-foreign keysweler, the disadvantage of this approach is the poor
performance of ancestor-descendant queries. When usingrithary-foreign keys approach to evaluate ancestor-
descendant queries, the number of join operations can beaag as the number of steps of the longest path in the
document tree [20]. On the other hand, using node positamg,direct joins between ancestors and descendants are
needed. Another problem of the primary-foreign keys apghasthat ancestor-descendant queries are very expensive
to evaluate [11].

In this paper, we focus on evaluating XML queries using theenpositions approach because of its many disad-
vantage and it does not require schema information. There been several works that use node positions in their
mapping schemes. We compare well-known mapping schemasowit proposed mapping scheme. We improve
existing mapping schemes by encoding extra informatiorueitiee node’s parent and including the node’s path in-
formation. Our experimental results show that this add#@ldnformation can dramatically reduce query response
times in a relational system. Although we did not performeRperiments on a native XML database, the techniques
presented in this paper can be applied in such database.

The remainder of this paper is organized as follows. We fisstu$s different mapping approaches in Section 2.
We then evaluate and compare the effectiveness of thesemgagmproaches in Section 3. Related work is discussed
in Section 4. Finally, we present our conclusions and diséutsire work in Section 5.

2 Different Mapping Approaches

In this section, we present three different mapping apgresictwo other mapping approaches and one our proposed
mapping approach. All of these approaches model a docursemtiie and use the word positions of elements to
establish the structural relationships between eleméntsthey include information about node positions and node
paths differently. We use the sample XML document in Figuees n input document to these approaches and then
present the mapped relations for each of them. The inputrdentidescribes a play consisting a list of speakers with
their speeches.

We first present the relational schemas and the sample maplagithins of the approach which we refer to as
Begin-End-Level (BEL) [21] and those of the approach whighrefer to as Begin-End-Level-Path (BELP) [19]. We
then present our proposed mapping approach which we reéex Barent-ID (PAID).

2.1 TheBegin-End-Level (BEL) Approach

In the Begin-End-Level (BEL) approach [21], containmenéges are processed using inverted lists. Each inverted
list records the occurrences of a word or an element whickfesned to ast‘er ni. Each occurrence is indexed by
its document numbed@cno), its word position kegi n:end), and its nesting depth within the documengeyel).
The positions of elements and wordse@i n, end, wor dno) are generated by counting word numbers in an input
XML document. The occurrence of an element is denotedasrfo, begi n:end, | evel), and the occurrence of a
text word is denoted asl¢cno, wor dno, | evel). Thebegi n position of the node represents the preorder of node,
and theend position of the node represents the postorder of the node.wdhdno represents both the preorder
and the postorder of the text word. Using thesgi n, end, wor dno, one can determine the structural relationship
between nodes in XML documents. Elements and text are stoitheé el ement andt ext relations, respectively.
The storage of attributes is not discussed in [21].

To handle documents that have attributes, one can extem@piproach by treating an attribute like an element
and append attribute information & enent . However, from our experimental results, separately isgoaittribute

<?xml version="1.0"2
1
<PLAY >
2
<ACT>
3
<TITLE>Act One</TITLE>
7
<SCENBE>
8
<TITLE>Scene One/TITLE >
12
<SPEECH>
13
<SPEAKER>Romes</SPEAKER>
16
<LINE>Hello, Juliek/LINE >
20
<ISPEECH>
21
<SPEECH>
22
<SPEAKER>Juliet</SPEAKER>
25
<LINE>Good morning, Romea/LINE >
30
</SPEECH>
31
</SCENE>
32
<IACT>
33
</PLAY >

Figure 1: A Sample XML Document (with Word Positions in Bold)

information in theat t r i but e relation results in superior performance. To answer theigsi@vith order predicates,
we add theor der attribute in theel enent relation. The schemas of the three relations are as follows:

e elenent (termstring, doclD integer, order integer, begin integer,
end integer, level integer).

e text(termstring, doclD integer, wordno integer, |level integer).

e attribute(termstring, value string, doclD integer, begin integer,
end integer, |evel integer).

Using this approach, the content of the relations storimypd@ XML data in Figure 1 is shown in Figures 2-3.
Note that there is nat t ri but e relation illustrated here because the input sample XML doent does not have
any attribute. Suppose that one wants to retrieve all spgatte path expression for this requesSREAKER. The
corresponding SQL query for the path expresS®EAKER is shown in Figure 4.

2.2 TheBegin-End-Level-Path (BEL P) Approach

In [19, 20], the Begin-End-Level-Path (BELP) approach aeposes an XML document into nodes on the basis of its
tree structures. A relation is created for each node typkagrath relation stores path information from the root node
to each of other nodes. Nodes of different XML documents tmed in the same relation as long as they are of the
same type.

In the original BELP approach [19], the position of the node the REGION type (User Abstract Data Type) [19].
We do not store the position within the REGION type becauserperimental results indicate that it is more effective

term | docID | order | begin | end | level |
PLAY 1 1 1| 33 1
ACT 1 1 2| 32 2
TITLE 1 1 3 6 3
SCENE 1 1 7| 31 3
TITLE 1 1 8| 11 4
SPEECH 1 1 12| 20 4
SPEAKER 1 1 13| 15 5
LINE 1 1 16 19 5
SPEAKER 1 1 22| 24 5
SPEECH 1 2 21| 30 4
LINE 1 1 25| 29 5
Figure 2: Theel enment Relation of BEL
| term | docID [wordno | level |

Act 1 4 4

One 1 5 4

Scene 1 9 5

One 1 10 5

Romeo 1 14 6

Hello 1 17 6

Juliet 1 18 6

Juliet 1 23 6

Good 1 26 6

morning 1 27 6

Romeo 1 28 6

Figure 3: The ext Relation of BEL

select tspeaker.term

from element espeaker, texttspeaker

where espeaker.term = ‘'SPEAKER’

and espeaker.begin < tspeaker.begin
and tspeaker.end < espeaker.end
and espeaker.level = tspeaker.level -
and espeaker.doclID = tspeaker.doclP

Figure 4: A SQL Query When Using BEL

to store the begin and end positions as attributes on whelBthtree indices can be built. Traditional RDBMSs
do not allow the users to build indices on a user-defined tgpeh as REGION. Although the level information

is not originally included [19], we include it to distinglidbetween the parent-child and the ancestor-descendant
relationships.

In the BELP approach, each word occurrence is assignedegeintorresponding to its position within the docu-
ment, and each tag is assigned a real number. The integeafplaet real number indicates the position number of the
preceding word. The decimal part indicates the positiohetag in the current depth-first traversal. When visiting the
root node or the node visited immediately following the tewrd, the decimal part is initialized to one. When visiting
the other nodes, the decimal part is incremented. The pogifi the element is assigned a real number to minimize
the effects of the appearances of the element tags on a vesetitproximity search on element content [19]. Figure 5
shows the data graph with the assignment of the region of madé in the XML data of Figure 1.

IPLAY
(0.01,11.05)
ACT
TITLE
(0.03,2.01)
SCENE
(2.02,11.03)
Act One
(12
TITLE SPEECH
(2.03, 4.01) (7.03,11.02)

SPEECH

(4.02,7.02) / \

Scene One SPEAKER LINE
(3,4 (7 04, 8.01) (8.02,11.01)

SPEAKER LINE
(4.03, 5.01) (5.02,7.01) Jullet Good morning, Romeo
9 (9,11
Romeo Hello, Juliet
(55) (6,7)

Figure 5: The Tree Structure in the Sample Document When WB#idgP

The details of the schemas of takenent ,at t ri but e, t ext , andpat h relations are as follows:

e el enent (docl D i nteger, pathlD integer, order integer, begin double,
end doubl e, |evel integer).

e attribute(doclD integer, pathlD integer, attvalue string, begin double,
end doubl e, level integer).

e text(doclID integer, pathlD integer, value string, begin double, end double,
| evel integer).

e pat h(pat hExp string, pathlD integer).

Using this approach, the content of the relations storimgma XML data in Figure 1 is shown in Figures 6-8.
The corresponding SQL query for the path expresSBEAKER is shown in Figure 9.

| docID | pathID | order | begin| end| level |

1 0 1| 0.01|11.05 1
1 1 1| 0.02]| 11.04 2
1 2 1| 0.03| 201 3
1 3 1| 2.02] 11.03 3
1 2 1| 2.03| 4.01 4
1 5 1| 402 7.02 4
1 6 1| 403| 5.01 5
1 7 1| 5.02| 7.01 5
1 5 2| 7.03| 11.02 4
1 6 1| 7.04| 8.01 5
1 7 1| 8.02|11.01 5
Figure 6: Theel ement Relation of BELP
| docID | pathID | value | begin | end | level |
1 2 Act One 1 2 4
1 4 Scene One 3 4 5
1 6 Romeo 5 5 6
1 7 Hello, Juliet 6 7 6
1 6 Juliet 8 8 6
1 7 | Good morning, Romeq 9| 11 6
Figure 7: Thet ext Relation of BELP
| pathExp | pathID |
[PLAY 0
[PLAY/ACT 1
[PLAY/ACT/TITLE 2
/PLAY/ACT/SCENE 3
/PLAY/ACT/SCENE/TITLE 4
/PLAY/ACT/SCENE/SPEECH 5
/PLAY/ACT/SCENE/SPEECH/SPEAKER 6
/PLAY/ACT/SCENE/SPEECH/LINE 7
Figure 8: Thepat h Relation of BELP
select tspeaker.value
from element tspeaker, path pspeaker,
text tspeaker, path tspeaker
where espeaker.pathExp like ‘%SPEAKER’
and tspeaker.pathExp like ‘%SPEAKER
and tspeaker.pathiD = espeaker.pathID
and espeaker.begin < tspeaker.begin
and tspeaker.end < espeaker.end
and espeaker.level = tspeaker.level - 1
and espeaker.doclD = tspeaker.doclD

Figure 9: A SQL Query When Using BELP

2.3 TheParent-ID (PAID) Approach

As other approaches, the Parent-ID (PAID) approach usé@syend, level) for determining containment relationship
queries. However, unlike other mapping schemes, the PADa@eh includes both the IDs of the parent nodes to
quickly determine elements that have parent-child refatiips as well as the path information to quickly retrieve
elements that match a given path. The schemas of the redatighis approach are as follows:

e el enent (docI D integer, terminteger, pathlD integer, order integer,
begin integer, end integer, level integer, parentlD integer).

e pat h(pat hExp string, pathlD integer).

e attribute(attrNanme string, doclD integer, begin integer, attrValue string,
| evel integer, parentlD integer).

e text(termstring, doclD integer, wordno integer, |evel integer,
parent| D i nteger).

Using this approach, the content of the relations storimgsimple XML data shown in Figure 1 is depicted in
Figures 10-12. With the attribuear ent | D, one can evaluate path express®PEAKER using a SQL statement as
shown in Figure 13.

| doclD | term | pathID | order | begin | end | level [parentiD |
1 TITLE 2 1 3 6 3 2
1 TITLE 4 1 8 11 4 7
1 SPEAKER 6 1 13| 15 5 12
1 LINE 7 1 16| 19 5 12
1 SPEECH 5 1 12| 20 4 7
1 SPEAKER 6 1 22| 24 5 21
1 LINE 7 1 25| 29 5 21
1 SPEECH 5 2 21| 30 4 7
1 SCENE 3 1 7| 31 3 2
1 ACT 1 1 2| 32 2 1
1 PLAY 0 1 1] 33 1 -1

Figure 10: Theel ement Relation of PAID

pathExp | pathID |

IPLAY

/PLAY/ACT
/PLAY/ACTITITLE
IPLAY/ACT/SCENE
IPLAY/ACT/SCENE/TITLE
IPLAY/ACT/SCENE/SPEECH
/PLAY/ACT/SCENE/SPEECH/SPEAKER
/PLAY/ACT/SCENE/SPEECH/LINE

~NoO oA~ WNEO

Figure 11: Thepat h Relation of PAID

3 Performance Evaluation

In this section, we present the performance of differentpirapapproaches. We evaluated the effectiveness of the
three mapping approaches using the well-known Shakespkesredata set [3].

term | docID | wordno | level | parentiD |

Act 1 4 4 3
One 1 5 4 3
Scene 1 9 5 8
One 1 10 5 8
Romeo 1 14 6 13
Hello 1 17 6 16
Juliet 1 18 6 16
Juliet 1 23 6 22
Good 1 26 6 25
morning 1 27 6 25
Romeo 1 28 6 25
Figure 12: The ext Relation of PAID

select tspeaker.term

from element espeaker, texttspeaker

where espeaker.term = ‘'SPEAKER’

and espeaker.begin = tspeaker.parentlD

and espeaker.docID = tspeaker.docll]

Figure 13: A SQL Query When Using PAID

3.1 Experimental Setup

We used the Apache Xerces C++ version 2.0 [17] to parse thendeats and generate the content of relations in
different mapping approaches.

We performed all experiments using a leading commercial RSBn a single-processor 1.2 GHz Pentium Celeron
machine running Windows XP with 256 MB of main memory. Thefeupool size of the database was set to 32 MB.

Before executing queries in any approach, we collecteisstat and created indices as suggested by the index
selection tool of the database. The execution times reghartthis section are cold numbers. Each query was run five
times, and the average of the middle three execution timegeyorted.

In the experiment, we loaded the Shakespeare play docurimgatthe database using the three mapping ap-
proaches. To have the large size of the experimental datasea eight copies of the original Shakespeare data set
which has approximately 8 MB. Thus, the total input data s2&4 MB.

Table 1 shows the comparisons of the database and index diziiferent mapping approaches. The PAID
approach has the largest database size since each relasi@uditional attributes, such as @ ent | D attribute.

The large index size of the BEL approach is due to the large giandices created on theal ue attribute of the

t ext relation. The BELP approach has a smaller total index sizaume there is no index created on W& ue
attribute. The length of theal ue attribute is the same as the maximum length of the elemertécbwhich can be
very long. The database does not create the index on suclsiong attribute because it is inefficient to create and
search for objects using a large key.

| [BEL [BELP | PAID |

Database size (MB) 198 151 231
Index size (MB) 505 189 | 360

Table 1: Database and Index Sizes for the Shakespeare Data Se

The XPath expressions of the query workload are describEdyure 14.
The result of executing queries for the Shakespeare dataiesshown in Table 2.
Figure 15 is a graphical representation to further empbahiz performance difference of these approaches. This

QS1. ACT/SCENE/SPEECHY/LINE[contains(STAGEDIR, ‘Rising’)]
QS2. ACT/SCENE/SPEECH/LINE[STAGEDIR]

QS3. ACT/SCENE/SPEECH/SPEAKER, ACT/SCENE/SPEECH/LINE
QS4. /PLAY[contains(TITLE, Juliet’)]/ACT/SCENE/
SPEECH]contains(SPEAKER,'ROMEQ")]
QS5. /PLAY[contains(TITLE, Juliet’)[//ACT/SCENE/

SPEECH][contains(LINE,‘love’)][contains(SPEAKER,'ROMEO)])
QS6. PROLOGUE/SPEECH/LINE[position()=2]

—_

Figure 14: The Query Workload on the Shakespeare Data Set

Query | Execution Times (seconds)
BEL | BELP | PAID

Qs1 24.92| 30.70 0.03
QS2 81.39| 18.46| 10.29
QS3 | 367.39| 836.00| 30.99
QsS4 10.67| 23.35 1.42
QS5 | 580.40| 952.09| 56.61
QS6 3.54 0.11 0.01

Table 2: Execution Times of the Three Mapping ApproacheshferShakespeare Data Set

figure illustrates the ratios of the execution times of otiqgrroaches over the PAID approach do@scale.

As shown in Figure 15, we observe that the PAID approach ofaipas other approaches by several orders of
magnitude, especially queries QS1. The response timeseviegwising the PAID approach are much less than those
using other approaches because of three primary factoPAID) uses the parentID attribute to quickly find the parent
nodes, 2) PAID uses the path information to reduce the numigein operations in long path queries, and 3) PAID
uses the index on theal ue attribute to quickly retrieve the nodes that satisfy witl Halue predicates.

Examining the query execution times shown in Table 2, corghés BELP, BEL performs better on queries with
value predicates (QS1, QS4, and QS5) because there is #redndheval ue attribute of thet ext relation of the
BEL approach. In BELP, there is no index on such attributeabse of the long length of the text value. BEL also
outperforms BELP for queries with multiple path expressi¢@S3, QS4, and QS5) because, unlike BELP, BEL does
not require sorting. In BELP, elements are first searchechbyspecified path expression. Then, the elements that
match the given paths are combined with a sort merge joinatiperin which the nodes are sorted by their positions.
On the other hand, in BEL, the inputs of the join operatioresattributes that are retrieved from clustered indices.
Thus, there is no need for sorting when performing the joimben these attributes.

4 Related Work

McHugh et al. [15] described techniques for building andleitipg indices in Lore [14]. Their path index always
begins at the root node and is not applicable to regular pgiressions. Milo and Suciu [16] proposed a template
index (T-index) as a general index structure for semistmect databases. The T-index allows users to sacrifice space
for generality and to query a wide range of regular path esgjoms. However, the index generation tends to be
complex. Although the authors reported the sizes of thed®irfor different data sets, they did not report any query
response time numbers.

A few recently proposed indexing structures [12, 13] haveéresised numbering schemes that accommodate up-
dates of the source data. Kha et al. [12] proposed an indetingture scheme based on the Relative Region Coordi-
nate (RRC) in which the coordinate of an XML element is basethe region of its parent element. Li and Moon [13]
have developed a new XML Indexing and Storage System (XI8$)hich the node is assigned a pair of numbers
<order, size-. For atree nodg and its parent, order(z) < order(y) andorder(y)+size(y) < order(x)+size(x).

A disadvantage of this numbering scheme is that it is diffituestimate a size that can accommodate an arbitrarily

I BEL

BELP

Other Approaches/PAID Performation Ratios (log scale)

Figure 15: Other Approaches/PAID Performance Ra-
tios on a Log Scale for the Shakespeare Data Set

large number of insertions.

Some proposed indexing structures are implemented andiegeed on existing DBMSs [7,19-21]. Fegaras and
Elmasri[7] presented an inverse indexing technique tleitttiices on content words and elements in XML documents
are stored in an Object-Oriented Database ManagementnSy&@®@DBMS). Shimura et al [19] decomposed the tree
structure of XML documents into nodes and stored them inioelal tables according to their types. The advantage of
their approach is that it is independent of XML schemas. . &leung et al. [21] transformed the inverted index into
relational tables and converted containment queries ith ueries. Their performance study shows that efficient
join algorithms and hardware cache utilization can sigaiftty improve the performance of an RDBMS in supporting
containment queries. Unlike these approaches, we add tleesymarent information and the node’s path information to
the numbering scheme (preorder, postorder, level) so titatthe parent-child and ancestor-descendant relatipsshi
between elements (both the direct and indirect containiegrties) can be determined quickly.

5 Conclusions

We have performed a study evaluating different mappingaagres for storing and querying XML data in an RDBMS
without using schemas of XML documents. We demonstrateliegiath information and the parent node information
can significantly improve the performance of query evaaratirhe performance of evaluating a query is very sensitive
to the SQL rewrite. Some of the insights from our experimiergsults suggest the following techniques:

¢ Using the path information to identify elements that mated path for a query consisting of a single path
expression.

Using the element tag name when a query consisting of melltipth expressions.

Storing multiple words of each element content togethemagnguery has many multi-word predicates.

Separately storing each word of the element content whergy ggidominated by single-word predicates.

Using the parent ID information when joining elements thratselective.

For the future work, we are interested in taking the querykiead and data statistics into account when determin-
ing a mapping scheme. Another extension is to have a mappaigteat elements that appear several times are stored
only once in relations so that the storage space and the enainte time are reduced.

References

[1] Software AG. Tamino - The Information Server for ElectioBusiness, 200tht t p: / / www. sof t war eag.
com t ami no/ t echni cal / wp_downl oad. ht m

[2] S. Al-Khalifa, H.V.Jagadish, N.Koudas, J.M.Patel, Div8stava, and Y. Wu. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. IfProceedings of the IEEE International Conference on Data
Engineering, San Jose, CA, February 2002.

[3] J. Bosak. The Plays of Shakespeare in XML, July 1986t p: / / met al ab. unc. edu/ xm / exanpl es/
shakespeare/.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maleisje Extensible Markup Language (XML), October
2000.ht t p: / / ww. w3. or g/ TR/ REC- xm .

[5] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistired Data with STORED. IRroceedings of the
ACM SIGMOD International Conference on Management of Data, pages 431-442. ACM Press, 1999.

[6] P. F. Dietz. Maintaining Order in a Linked List. Proceedings of the Fourtheenth Annual ACM Symposium of
Theory of Computing, pages 122-127, San Francisco, California, May 1982.

[7] L. Fegaras and R. Elmasri. Query Engines for Web-Actdss{ML Data. InProceedings of the International
Conference on Very Large Data Bases, Rome, Italy, September 2001.

[8] D. Florescu, G. Graefe, G. Moerkotte, H. Pirahesh, andSehning. Panel: XML Data Management: Go
Native or Spruce up Relational Systems? Pioceedings of the ACM SGMOD International Conference on
Management of Data, Santa Barbara, California, May 2001.

[9] D. Flosescu and D. Kossmann. A Performance Evaluatioflteirnative Mapping Schemes for Storing XML
Data in a Relational Database. Rapport de Recherche N0.3684, INRIA,Rocquencourt,France, March 1999.

[10] T. Grust. Accelerating XPath Location Steps Piroceedings of the ACM SSGMOD International Conference on
Management of Data, Madison, Wisconsin, 2002.

[11] K. Runapongsa and J. M. Patel and H.V. Jagadish and &hAlifa. The Michigan Benchmark:A Microbench-
mark for XML Query Processing Systems. EEXTT, pages 160-161, Hong Kong, China, August 2002.

[12] D. D. Kha, M. Yoshikawa, and S. Uemura. An XML Indexing&tture with Relative Region Coordinate. In
ICDE, pages 313-320, Heidelberg, Germany, April 2001.

[13] Q. Li and B. Moon. Indexing and Querying XML Data for RéguPath Expressions. IRroceedings of the
International Conference on Very Large Data Bases, pages 361-370, September 2001.

[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J.dnid Lore: A Database Management System for
Semistructured Datel GMOD Record, 26(3):54-66, September 1997.

[15] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaarar Indexing Semistructured Data. Technical re-
port, Computer Science Department, Stanford Univers&9g8lht t p: / / ww»+ db. st anf or d. edu/ | or e/
pubs/ semi i ndexi ng98. pdf .

[16] T. Milo and D. Suciu. Index Structures for Path Expressi InProceedings of the International Conference on
Database Teorey, pages 277-295, Jerusalem, Israel, January 1999.

[17] The Apache XML Project. Xerces C++ Parsbt.t p: // xm . apache. or g/ xer ces- c/i ndex. ht n .

[18] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.De#itl J.Naughton. Relational Databases for Querying
XML Documents: Limitations and Opportunities. Bnoceedings of the International Conference on Very Large
Data Bases, pages 302—314, Edinburgh, Scotland, September 1999.

[19] T. Shimura, M. Yoshikawa, and S. Uemura. Storage andé¥l of XML Documents Using Object-Relational
Databases. Imternational Conference on Database and Expert Systems Applications, pages 206—-217, Florence,
Italy, September 1999.

[20] M. Yoshikawa, T. Amagasa, T. Shimura, and S. S. Uemurd&elX A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databag®SM Transactions on I nter net Technology, 1(1):110—
141, August 2001.

[21] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohmam. Sdpporting Containment Queries in Relational
Database Managment SystemsPhoceedings of the ACM SIGMOD International Conference on Management
of Data, Santa Barbara, California, May 2001.

