This document is modified from Apache Axis 1.0 Tutorial, Part I which can be downloaded from http://ammai.com/webservices/index.html

1. Writing Your First Web Service
The moment has arrived! You are about to create your first Web service. We will make it somewhat simple as well as being functional so you can understand it. This web service has three operations that deal with taxes.
· The first operation will figure out the tax percent if given the subtotal and the total money spent on a shopping purchase.
calcTaxRate(double subtotal, double total)

· The second operation will figure out the amount of tax paid when given the total and the tax percentage.
calcSubTotal(double total, double taxpercent)

· The third operation will figure out the total amount when given the subtotal and the tax percent.
calcTotal(double subtotal, double taxpercent)
To create your first Web service, follow these following steps:

i).
Create the file “TaxService.jws” which has this following content:
public class TaxService

{

public double calcTaxRate(double subtotal, double total)

{

double rate = (total - subtotal)/ subtotal;

return rate;

}

public double calcSubTotal(double total, double taxpercent)

{

double subtotal = total / (1 + taxpercent);

return subtotal;

}

public double calcTotal(double subtotal, double taxpercent)

{

double total = subtotal * (1 + taxpercent);

return total;

}

}
ii.) Save “TaxService.jws file in directory “jakarta-tomcat-5.0.16\webapps\axis”
iii.) Start the Tomcat server by calling file “jakarta-tomcat-5.0.16\bin\startup.bat”

iv.) Lauch your web browser, and type in the following URL, http://localhost:8080/axis/TaxService.jws?WSDL
You should see a listing of XML elements in your browser. If you see the WSDL file, then congratulations! You have successfully created and deployed your first web service using Axis!
2. Writing the Client
You are now ready to create a client for accessing your tax web service. The first step is to create a stub from the WSDL file that you just saw. This stub is just Java code that will connect to the web service and will enable us to call the methods as if they were local methods.

We will use a tool called WSDL2Java which is provided with Axis. Follow these following commands

>cd c:\jakarta-tomcat-5.0.16\webapps\axis\WEB-INF\lib

>java –cp axis.jar;commons-logging.jar;commons-discovery.jar;saaj.jar;wsdl4j.jar;jaxrpc.jar org.apache.axis.wsdl.WSDL2Java http://localhost:8080/axis/TaxService.jws?WSDL
Once you do that, you will see that a folder called localhost is created in the lib directory of Axis. Cut this folder and paste it in a place where you keep you java files, such as c:\axis-1_1\samples\taxservice. So now, in c:\axis-1_1\samples\taxservice, you will have a folder called localhost. Inside localhost\axis\TaxService_jws directory, you will have four files necessary for binding to the TaxService.
Now you are all prepared to write your first web service client. Launch your favorite Java editor/IDE and type in the following source code:

import localhost.axis.TaxService_jws.TaxServiceServiceLocator;

import localhost.axis.TaxService_jws.TaxService;

import org.apache.axis.AxisFault;

public class TaxClient

{

public static void main(String[] args)

{

try

{

// Make a service

TaxServiceServiceLocator service = new TaxServiceServiceLocator();

TaxService port = service.getTaxService();

// Make the actual calls to the three methods

double taxpercent = port.calcTaxRate(21.00, 23.10);

double total = port.calcTotal(21.00, 0.10);

double subtotal = port.calcSubTotal(23.10, 0.10);

// Output the results

System.out.println("Subtotal: 21.00, Total: 23.10, Tax: " + taxpercent);

System.out.println("Subtotal: 21.00, Tax: 0.10, Total: " + total);

System.out.println("Total: 23.10, Tax: 0.10, Subtotal: " + subtotal);

}

catch (AxisFault af)

{

System.err.println("An Axis Fault occurred: " + af);

}

catch (Exception e)

{

System.err.println("Exception caught: " + e);

}

}

}
Save this file as TaxClient.java one level up from the localhost package. For example if localhost is in c:\axis-1_1\samples\taxservice, then save TaxClient.java in c:\axis-1-1\samples\taxservice.
Now, let’s analyze the code. These two statements below make the connection to our web service:

TaxServiceServiceLocator service = new TaxServiceServiceLocator();

TaxService port = service.getTaxService();

The first line gets a TaxService locator which will have the WSDL file endpoint and the second line actually returns the TaxService from the Locator and puts it in the port variable. Now the variable port is just like a normal Java object. You can call methods, pass arguments, etc. We have done just that to calculate our tax and output the results. An AxisFault exception gets thrown if a fault has occurred, so we must catch it. Now we are ready to compile and execute this program. Open up a command prompt and navigate to the directory which contains your TaxClient.java and compile it:
But before you compile TaxClient.java, you must be able to compile those four files in localhost\axis\TaxService_jws directory. You can compile TaxService.java from that directory. However, you need to copy other three files to the directory that contains localhost directory, and then compile those three files from that directory. Then, move these three *.class files to the directory localhost\axis\TaxSerice_jws

c:\axis-1_1\samples\taxservice>javac TaxClient.java

c:\axis-1_1\samples\taxservice>java TaxClient

Subtotal: 21.00, Total: 23.10, Tax: 0.10000000000000006

Subtotal: 21.00, Tax: 0.10, Total: 23.1

Total: 23.10, Tax: 0.10, Subtotal: 21.0
If all go well, you should see the above output. If you see the above output, then congratulations! You have written your first web service and client!

Conclusions

Now that you have seen how easy it is to create and deploy web services using Axis and the JWS method, I will tell you some of the drawbacks of this method.

· If you have a package name in your web service file, then JWS won’t work. It simply doesn’t recognize package names

· You need the source code in order to deploy it, often times you may have the class file and not the source file, so this option cannot be used

· Configuration is limited, you cannot configure users or custom type mappings with this method.

In order to deploy without drawbacks, we must use the standard deployment option of Axis, using WSDD (Web Service Deployment Descriptors) which allow for maximum configuration and flexibility

In this part, we have seen how easy it is to create and deploy web services in Axis using the JWS method. The next part of this tutorial will be a step-by-step of deploying it using WSDD.
