This document is based on the Java ™ Web Services Tutorial, chapter “Building Web Services with JAX-RPC” (jwstutorial13\doc\JAXRPC.html)
Building Web Services with JAX-RPC
JAX-RPC stands for Java API for XML-based RPC. It’s an API for building Web services and clients that used remote procedure calls (RPC) and XML. Often used in a distributed client/server model, an RPC mechanism enables clients to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based protocol such as SOAP. The SOAP specification defines envelope structure, encoding rules, and a convention for representing remote procedure calls and responses. These calls and responses These calls and responses are transmitted as SOAP messages over HTTP.
Although JAX-RPC relies on complex protocols, the API hides this complexity from the application developer. On the server side, the developer specifies the remote procedures by defining methods in an interface written in the Java programming language. The developer also codes one or more classes that implement those methods. Client programs are also easy to code. A client creates a proxy, a local object representing the service, and then simply invokes methods on the proxy.
Creating a Web Service with JAX-RPC
This section shows how to build and deploy a simple Web service called MyHelloService. In the next document, “Creating Web Service Clients with JAX-RPC”, we will provide examples of JAX-RPC clients that access this service. The source code required by MyHelloService is in directory
%JWSDPT_HOME%/examples/jaxrpc/helloservice where %JWSDPT_HOME% is the directory that you install JWSDP tutorial.
These are the basic steps for creating the service:

1. Code the service endpoint interface and implementation class
2. Build, generate, and package the files required by the service

3. Deploy the WAR file that contains the service.

Setting Up
First, you must set the PATH environment variable so that it includes these directories:
%JWSDP_HOME%/bin

%JWSDP_HOME%/jwsdp-shared/bin

%JWSDP_HOME%/jaxrpc/bin

%JWSDP_HOME%/apache-ant/bin

Next, if you haven’t already done so, follow these instructions in the document “Getting Started with Tomcat”

· Creating the Build Properties File

· Staring Tomcat

Coding the Service Definition Interface and Implementation Class
A service endpoint interface declares the methods that a remote client may invoke on the service. In this example, the interface declares a single method named sayHello.
A service endpoint interface must conform to a few rules:

· It extends the java.rmi.Remote interface

· It must not have constant declarations, such as public final static

· The methods must throw the java.rmi.RemoteException or one of its subclasses. (The remote may also throw service-specific exceptions.)

· Method parameters and return types must be supported by JAX-RPC types.

In this example, the service definition interface is HelloIF.java

package helloservice;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extends Remote {

public String sayHello(String s) throws RemoteException;

}

In addition to the interface, you’ll need to code the class that implements the interface. In this example, the implementation class is called HelloImpl:
package helloservice;

public class HelloImpl implements HelloIF {

public String message = “Hello”;

public String sayHello(String s) {

return message + s;

}

}

Building the Service
To build MyHelloService, in a terminal window go to the %JWSDPT_HOME%/examples/jaxrpc/helloservice/ directory and type the following:
ant build

The preceding command executes these ant tasks:

· compile-service
· generate-sei-service

· package-service

· process-war

compile-service
This ant task compiles HelloIF.java and HelloImpl.java, writing the class files (HelloIF.class and HelloImpl.class) to the helloservice/build/helloservice directory.

generate-sei-service
The generate-sei-service task runs the wscompile tool, which defines the service by creating the model.gz file in the build directory. The model.gz file contains the internal data structures that describe the service. The generate-sei-service task runs wscompile as follows:

wscompile –define –d build –nd build –classpath build config-interface.xml –model build/model.gz

The –define flag instructs the tool to read the service endpoint interface and to create a WSDL file. The –d and –nd flags tell the tool to write output to the build subdirectory. The tool reads the following config-interface.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<configuration

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

 <service

 name=”HelloService"

 targetNamespace="urn:Foo"

 typeNamespace="urn:Foo"

 packageName="helloservice">

 <interface name="helloservice.HelloIF"/>

 </service>

</configuration>
The config.xml-interface file tells wscompile to create a model file with the following information:

· The service name is MyHelloService

· The WSDL namespace is urn:Foo

· The classes for the MyHelloService are in the helloservice package

· The service endpoint interface is helloservice.HelloIF

 package-service

The package-service target runs the jar command and bundles the files into a WAR file named dist/hello-jaxrpc-portable.war. The hello-jaxrpc-portable.war contains the following files:

WEB-INF/classes/helloservice/HelloIF.class

WEB-INF/classes/helloservice/HelloImpl.class

WEB-INF/jaxrpc-ri.xml

WEB-INF/model.gz

WEB-INF/web.xml

The class files were created by the compile-service target discussed in a previous section. The web.xml file is the deployment descriptor for the Web application that implements the service. Unlike the web.xml file, the jaxrpc-ri.xml file is not part of the specification and is implementation-specific. The jaxrpc-ri.xml file for this example follows:

<?xml version="1.0" encoding="UTF-8"?>

<webServices

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"

 version="1.0"

 targetNamespaceBase="urn:Foo"

 typeNamespaceBase="urn:Foo"

 urlPatternBase="/ws">

 <endpoint

 name="Hello"

 displayName="KKU Greeting Service"

 description="A hello web service"

 interface="helloservice.HelloIF"

 model="/WEB-INF/model.gz"

 implementation="helloservice.HelloImpl"/>

 <endpointMapping

 endpointName=”Hello"

 urlPattern="/hello"/>

</webServices>
process-war

This ant task runs the wsdeploy tool as follows:

wsdeploy –o dist/hello-jaxrpc.war dist/hello-jaxrpc-portable.war

The wsdeploy tool performs these tasks:

· Reads the dist/hello-jaxrpc-portable.war as input

· Gets information from the jaxrpc-ri.xml file that’s inside the hello-jaxrpc-portable.war file

· Generates the tie classes for the service

· Generates a WSDL file named MyHelloService.wsdl

· Packages the tie classes, the MyHelloService.wsdl file, and the contents of hello-jaxrpc-portable.war into a deployable WAR file named dist/hello-jaxrpc.war

Note that the wsdeploy tool does not deploy the service; instead, it creates a WAR file that is ready for the deployment. In the next section, you will deploy the service in the hello-jaxrpc.war file that was created by wsdeploy.
Deploying the Service
To deploy the service, type the following:

Go to the %JWSDPT_HOME%\examples\jaxrpc\helloservice directory and type the following:

ant deploy

Verifying the Deployment
To verify that the service has been successfully deployed, open a browser window and specify the service endpoints’ URL:

http://localhost:8080/hello-jaxrpc/hello

The browser should display a page titled Web Services, which lists the port name MyHello with a status of ACTIVE. This page also has a URL to the service’s WSDL file.

The hello-jaxrpc portion of the URL is the context path of the servlet that implements the HelloWorld service. This portion corresponds to the prefix of the hello-jaxrpc.war file. The /hello string of the URL matches the value of the urlPattern attribute of the

jaxrpc-ri.xml file. Note that the forward slash in the /hello value of urlPattern is required.
Undeploying the Service

At this point in the tutorial, do not undeploy the service. When you are finished with this example, you can undeploy the service by typing this command:
ant undeploy
