This document is based on the Java ™ Web Services Tutorial, chapter “Creating Web Service Clients with JAX-RPC”
Creating Web Service Clients with JAX-RPC 

This section shows how to create and run these types of clients: 

· Static stub

· Dynamic proxy

· Web-based client

When you run these client examples, they will access the MyHelloService that you deployed in the preceding section. 

Static Stub Client Example 

This example resides in the %JWSDPT_HOME%/examples/jaxrpc/staticstub/ directory. 

HelloClient is a stand-alone program that calls the sayHello method of the MyHelloService. It makes this call through a stub, a local object which acts as a proxy for the remote service. Because the stub is created before runtime (by wscompile), it is usually called a static stub. 

Coding the Static Stub Client 

Before it can invoke the remote methods on the stub the client performs these steps: 

1. Creates a Stub object:
(Stub)(new MyHelloService_Impl().getHelloIFPort()) 

The code in this method is implementation-specific because it relies on a MyHelloService_Impl object, which is not defined in the specifications. The MyHelloService_Impl class will be generated by wscompile in the following section. 

2. Sets the endpoint address that the stub uses to access the service:

stub._setProperty
(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]); 

At runtime, the endpoint address is passed to HelloClient in args[0] as a command-line parameter, which ant gets from the endpoint.address property in the build.properties file. 

3. Casts stub to the service endpoint interface, HelloIF:

HelloIF hello = (HelloIF)stub; 

Here is the full source code listing for the HelloClient.java file, which is located in the directory <INSTALL>/jwstutorial13/examples/jaxrpc/staticstub/src/: 

package staticstub;

import javax.xml.rpc.Stub;

public class HelloClient {

    private String endpointAddress;

    public static void main(String[] args) {

        System.out.println("Endpoint address = " + args[0]);

        try {

            Stub stub = createProxy();

            stub._setProperty

              (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

               args[0]); 

            HelloIF hello = (HelloIF)stub;

            System.out.println(hello.sayHello("Duke!"));

        } catch (Exception ex) {

            ex.printStackTrace();

        }

    }    

    private static Stub createProxy() {

        // Note: MyHelloService_Impl is implementation-specific.

        return 

        (Stub) (new MyHelloService_Impl().getHelloIFPort());

    }

} 

Building the Static Stub Client 

Before performing the steps in this section, you must first create and deploy MyHelloService as described in Creating a Web Service with JAX-RPC. 

To build and package the client, go to the %JWSDPT_HOME%/examples/jaxrpc/staticstub/ directory and type the following: 

ant build 

The preceding command invokes these ant tasks: 

· generate-stubs
· compile-client 

· package-client
The generate-stubs task runs the wscompile tool as follows: 

wscompile -gen:client -d build -classpath build config-wsdl.xml 

This wscompile command reads the WSDL file that was installed on Tomcat when the service was deployed. The wscompile command generates files based on the information in the WSDL file and on the command-line flags. The -gen:client flag instructs wscompile to generate the stubs, other runtime files such as serializers, and value types. The -d flag tells the tool to write the output to the build subdirectory. The tool reads the following config-wsdl.xml file, which specifies the location of the WSDL file: 

<?xml version="1.0" encoding="UTF-8"?>

<configuration 

   xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

  <wsdl location="http://localhost:8080/hello-jaxrpc/

hello?WSDL"

       packageName="staticstub"/>

</configuration> 

The compile-client task compiles src/HelloClient.java and writes the class file to the build subdirectory. 

The package-client task packages the files created by the generate-stubs and compile-client tasks into the dist/client.jar file. Except for the HelloClient.class, all of the files in client.jar were created by wscompile. Note that wscompile generated the HelloIF.class based on the information it read from the WSDL file. 

Running the Static Stub Client 

To run the HelloClient program, type the following: 

ant run 

The program should display this line: 

Hello Duke! 

The ant run target executes this command: 

java -classpath <cpath> hello.HelloClient <endpoint-address> 

The classpath includes the client.jar file that you created in the preceding section, as well as several JAR files that belong to the Java WSDP. In order to run the client remotely, all of these JAR files must reside on the remote client's computer. 

Dynamic Proxy Client Example 

This example resides in the <INSTALL>/jwstutorial13/examples/jaxrpc/dynamicproxy/ directory. 

The client in the preceding section used a static stub for the proxy. In contrast, the client example in this section calls a remote procedure through a dynamic proxy, a class that is created during runtime. Although the source code for the static stub client relied on an implementation-specific class, the code for the dynamic proxy client does not have this limitation. 

Coding the Dynamic Proxy Client 

The DynamicProxyHello program constructs the dynamic proxy as follows: 

1. Creates a Service object named helloService:
Service helloService =
serviceFactory.createService(helloWsdlUrl,
new QName(nameSpaceUri, serviceName)); 

A Service object is a factory for proxies. To create the Service object (helloService), the program calls the createService method on another type of factory, a ServiceFactory object. 

The createService method has two parameters, the URL of the WSDL file and a QName object. At runtime, the client gets information about the service by looking up its WSDL. In this example, the URL of the WSDL file points to the WSDL that was deployed with MyHelloService: 

http://localhost:8080/hello-jaxrpc/hello?WSDL 

A QName object is a tuple that represents an XML qualified name. The tuple is composed of a namespace URI and the local part of the qualified name. In the QName parameter of the createService invocation, the local part is the service name, MyHelloService. 

2. The program creates a proxy (myProxy) with a type of the service endpoint interface (HelloIF):

dynamicproxy.HelloIF myProxy = 
(dynamicproxy.HelloIF)helloService.getPort(
new QName(nameSpaceUri, portName), 
dynamicproxy.HelloIF.class); 

The helloService object is a factory for dynamic proxies. To create myProxy, the program calls the getPort method of helloService. This method has two parameters: a QName object that specifies the port name and a java.lang.Class object for the service endpoint interface (HelloIF). The HelloIF class is generated by wscompile. The port name (HelloIFPort) is specified by the WSDL file. 

Here is the listing for the HelloClient.java file, located in the <INSTALL>/jwstutorial13/examples/jaxrpc/dynamicproxy/src/ directory: 

package dynamicproxy;

import java.net.URL;

import javax.xml.rpc.Service;

import javax.xml.rpc.JAXRPCException;

import javax.xml.namespace.QName;

import javax.xml.rpc.ServiceFactory;

import dynamicproxy.HelloIF;

public class HelloClient {

    public static void main(String[] args) {

        try {

            String UrlString = args[0] + "?WSDL";

            String nameSpaceUri = "urn:Foo";

            String serviceName = "MyHelloService";

            String portName = "HelloIFPort";

            System.out.println("UrlString = " + UrlString);

            URL helloWsdlUrl = new URL(UrlString);

            ServiceFactory serviceFactory =

                ServiceFactory.newInstance();

            Service helloService =

                serviceFactory.createService(helloWsdlUrl, 

                new QName(nameSpaceUri, serviceName));

            dynamicproxy.HelloIF myProxy = 

                (dynamicproxy.HelloIF) 

                helloService.getPort(

                new QName(nameSpaceUri, portName), 

                dynamicproxy.HelloIF.class); 

            System.out.println(myProxy.sayHello("Buzz"));

        } catch (Exception ex) {

            ex.printStackTrace();

        } 

    } 

}  

Building and Running the Dynamic Proxy Client 

Before performing the steps in this section, you must first create and deploy MyHelloService as described in Creating a Web Service with JAX-RPC. 

To build and package the client, go to the <INSTALL>/jwstutorial13/examples/jaxrpc/dynamicproxy/ directory and type the following: 

ant build 

The preceding command runs these tasks: 

· generate-interface
· compile-client
· package-dynamic
The generate-interface task runs wscompile with the -import option. The wscompile command reads the MyHelloService.wsdl file and generates the service endpoint interface class (HelloIF.class). Although this wscompile invocation also creates stubs, the dynamic proxy client does not use these stubs, which are required only by static stub clients. 

The compile-client task compiles the src/HelloClient.java file. 

The package-dynamic task creates the dist/client.jar file, which contains HelloIF.class and HelloClient.class. 

To run the client, type the following: 

ant run 

The client should display the following line: 

Hello Buzz 

· Web-based client 

 This section describes about JSP scripting elements using a version of the hello2 example (dynamic proxy) --that accesses a Web service. To build, package, deploy, and run the webclient example: 
1. Build and deploy the JAX-RPC Web service MyHelloService described in Creating a Web Service with JAX-RPC.

2. In a terminal window, go to  %JWSDPT_HOME%/examples/jaxrpc/webclient/.

3. Run ant build. This target will spawn any necessary compilations and copy files to the %JWSDPT_HOME%/examples/jaxrpc/webclient/build/ directory. 

4. Start Tomcat.

5. Run ant install. The install target notifies Tomcat that the new context is available.

6. Open your browser to http://localhost:8080/webclient/greeting
