
The Java™ Web
Services Tutorial

Eric Armstrong
Stephanie Bodoff

Debbie Carson
Maydene Fisher

Scott Fordin
Dale Green
Kim Haase

Eric Jendrock

February 20, 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A.
All rights reserved.U.S. Government Rights - Commercial software. Government users are subject to the
Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supple-
ments.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, J2EE, JavaServer Pages, Java Naming and Directory Inter-
face, JSP, J2EE, J2SE and the Java Coffee Cup logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

Unless otherwise licensed, software code in all technical materials herein (including articles, Fads, sam-
ples) is provided under this License.

Products covered by and information contained in this service manual are controlled by U.S. Export Con-
trol laws and may be subject to the export or import laws in other countries. Nuclear, missile, chemical
biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly pro-
hibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export
exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, États-
Unis. Tous droits réservés. Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel
commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de Sun Micro-
systems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des
suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Java Naming and Directory Interface, JSP,
J2EE, J2SE et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux États-Unis et dans d’autres pays.

A moins qu’autrement autorisé, le code de logiciel en tous les matériaux techniques dans le présent (arti-
cles y compris, FAQs, échantillons) est fourni sous ce permis.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la
législation américaine en matière de contrôle des exportations et peuvent être soumis au droit d’autres
pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour
des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directe-
ment ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines,
y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas partic-
iper, d’une façon directe ou indirecte, aux exportations des produits ou des services qui sont régi par la
législation américaine en matière de contrôle des exportations ("U .S. Commerce Department’s Table of
Denial Orders "et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Spe-
cially Designated Nationals and Blocked Persons "),, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DEC-
LARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES,
DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE
UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

License.html
License.html

iii

Contents

About This Tutorial. .xi

Who Should Use This Tutorial xi
How to Read This Tutorial xi
About the Examples xiii
How to Print This Tutorial xiv
Typographical Conventions xv

Chapter 1: Introduction to Web Services 1

The Role of XML and the Java™ Platform 2
What Is XML? 3
Overview of the Java APIs for XML 6
JAXP 7
JAXB 15
JAX-RPC 20
JAXM 27
JAXR 34
Sample Scenario 37

Chapter 2: Understanding XML . 41

Introduction to XML 41
XML and Related Specs: Digesting the Alphabet Soup 51
Designing an XML Data Structure 63

Chapter 3: Getting Started With Tomcat 69

Setting Up 69
Quick Overview 72
Creating the Getting Started Application 73
Building the Getting Started Application Using Ant 77

iv CONTENTS
Deploying the Application 80
Running the Getting Started Application 82
Using admintool 83
Modifying the Application 85
Common Problems and Their Solutions 87
Further Information 91

Chapter 4: Web Applications .93

Web Application Life Cycle 94
Web Application Archives 96
Configuring Web Applications 98
Installing Web Applications 102
Deploying Web Applications 103
Listing Installed and Deployed Web Applications 104
Running Web Applications 105
Updating Web Applications 105
Removing Web Applications 107
Undeploying Web Applications 107
Internationalizing and Localizing Web Applications 108
Accessing Databases from Web Applications 109
Further Information 113

Chapter 5: Java API for XML Processing115

The JAXP APIs 115
An Overview of the Packages 116
The Simple API for XML (SAX) APIs 117
The Document Object Model (DOM) APIs 120
The XML Stylesheet Language for Transformation (XSLT) APIs 122
Compiling and Running the Programs 123
Where Do You Go from Here? 123

Chapter 6: Simple API for XML .125

When to Use SAX 126
Writing a Simple XML File 127
Echoing an XML File with the SAX Parser 132
Adding Additional Event Handlers 151
Handling Errors with the Nonvalidating Parser 155
Substituting and Inserting Text 163
Creating a Document Type Definition (DTD) 168

CONTENTS v
DTD’s Effect on the Nonvalidating Parser 173
Defining Attributes and Entities in the DTD 177
Referencing Binary Entities 184
Choosing your Parser Implementation 186
Using the Validating Parser 187
Defining Parameter Entities and Conditional Sections 193
Parsing the Parameterized DTD 197
Handling Lexical Events 200
Using the DTDHandler and EntityResolver 207
Further Information 209

Chapter 7: Document Object Model 211

When to Use DOM 212
Reading XML Data into a DOM 218
Displaying a DOM Hierarchy 225
Examining the Structure of a DOM 241
Constructing a User-Friendly JTree from a DOM 252
Creating and Manipulating a DOM 268
Using Namespaces 277
Validating with XML Schema 280
Further Information 286

Chapter 8: XML Stylesheet Language for Transformations . . 289

Introducing XSLT and XPath 290
Choosing the Transformation Engine 291
How XPath Works 294
Writing Out a DOM as an XML File 305
Generating XML from an Arbitrary Data Structure 312
Transforming XML Data with XSLT 327
Transforming from the Command Line 351
Concatenating Transformations with a Filter Chain 354
Further Information 361

Chapter 9: Binding XML Schema to Java Classes with JAXB 363

JAXB Architecture 364
XML Schemas 376
Representing XML Content 380
Binding XML Schemas 381
Customizing JAXB Bindings 384

vi CONTENTS
What is Not Supported 386
JAXB APIs and Tools 386

Chapter 10: Using JAXB .387

General Usage Instructions 388
Basic Sample Applications 409
Customizing JAXB Bindings 422

Chapter 11: Building Web Services With JAX-RPC455

A Simple Example: HelloWorld 456
Types Supported By JAX-RPC 467
A Dynamic Proxy Client Example 470
A Dynamic Invocation Interface (DII) Client Example 471
The wscompile Tool 474
The wsdeploy Tool 477
Advanced Topics for wscompile and wsdeploy 480
Further Information 481

Chapter 12: Web Services Messaging with JAXM 483

The Structure of the JAXM API 484
Overview of JAXM 485
Running the Samples 495
Tutorial 499
Code Examples 521
Further Information 535

Chapter 13: Publishing and Discovering Web Services with JAXR
537

Overview of JAXR 538
Implementing a JAXR Client 541
Running the Client Examples 562
Further Information 570

Chapter 14: Java Servlet Technology .571

What is a Servlet? 571
The Example Servlets 572
Servlet Life Cycle 574

CONTENTS vii
Sharing Information 577
Initializing a Servlet 581
Writing Service Methods 582
Filtering Requests and Responses 587
Invoking Other Web Resources 594
Accessing the Web Context 598
Maintaining Client State 599
Finalizing a Servlet 602
Further Information 605

Chapter 15: JavaServer Pages Technology 607

What Is a JSP Page? 607
The Example JSP Pages 610
The Life Cycle of a JSP Page 612
Initializing and Finalizing a JSP Page 615
Creating Static Content 615
Creating Dynamic Content 616
Including Content in a JSP Page 622
Transferring Control to Another Web Component 624
Including an Applet 624
JavaBeans Components in JSP Pages 627
Extending the JSP Language 635
Further Information 636

Chapter 16: Custom Tags in JSP Pages 637

What Is a Custom Tag? 638
The Example JSP Pages 638
Using Tags 641
Defining Tags 645
Examples 661

Chapter 17: JavaServer Pages Standard Tag Library 673

The Example JSP Pages 674
Using JSTL 674
Expression Language Support 677
Core Tags 683
XML Tags 689
Internationalization Tags 693
SQL Tags 696

viii CONTENTS
Further Information 700

Chapter 18: Security .701

Overview 701
Users, Groups, and Roles 702
Web-Tier Security 712
Installing and Configuring SSL Support 721
Security for JAX-RPC 734
EIS-Tier Security 744

Chapter 19: The Coffee Break Application747

Coffee Break Overview 747
JAX-RPC Distributor Service 749
JAXM Distributor Service 758
Coffee Break Server 773
Building, Installing, and Running the Application 777

Appendix A: Tomcat Administration Tool785

Running admintool 785
Configuring Tomcat 788
Configuring Services 789
Configuring Resources 816
Administering Roles, Groups, and Users 823
Further Information 824

Appendix B: Tomcat Web Application Manager 825

Running the Web Application Manager 825
Running Manager Commands Using Ant Tasks 826

Appendix C: The Java WSDP Registry Server 829

Starting the Registry Server 830
Using JAXR to Access the Registry Server 830
Using the Command Line Client Script to Access the Registry Server
831
Further Information 838

CONTENTS ix
Appendix D: Registry Browser . 839

Starting the Browser 839
Querying a Registry 841
Managing Registry Data 842
Deleting an Organization 845
Stopping the Browser 845

Appendix E: Provider Administration Tool 847

Appendix F: HTTP Overview . 849

HTTP Requests 850
HTTP Responses 850

Appendix G: Java Encoding Schemes. 851

Further Information 852

Glossary. 853

About the Authors . 883

Index . 887

x CONTENTS

About This Tutorial

THIS tutorial is a beginner’s guide to developing Web services and Web appli-
cations using the Java™ Web Services Developer Pack (Java WSDP). The Java
WSDP is an all-in-one download containing key technologies to simplify build-
ing of Web services using the Java 2 Platform. This tutorial requires a full instal-
lation (Typical, not Custom) of the Java WSDP.

Who Should Use This Tutorial
This tutorial is intended for programmers interested in developing and deploying
Web services and Web applications on the Java WSDP.

How to Read This Tutorial
This tutorial is organized into five parts:

• Introduction

The first five chapters introduce basic concepts and technologies and we
suggest that you read these first in their entirety. In particular, many of the
Java WSDP examples run on the Tomcat Java servlet and JSP container
and the Getting Started with Tomcat chapter tells you how to start, stop,
and manage Tomcat.

• Java XML Technology

These chapters cover all the Java XML APIs.

• The Java API for XML Processing (JAXP)

• The Java Architecture for XML Binding (JAXB)
xi

xii
• The Java API for XML Messaging (JAXM) and Soap with Attachments
API for Java (SAAJ)

• The Java API for XML-based RPC (JAX-RPC)

• The Java API for XML Registries (JAXR) and the Registry Server, a
UDDI-compliant registry accessible via JAXR

• Web Technology

These chapters cover the technologies used in developing presentation-
oriented Web applications.

• Java Servlets

• JavaServer™ Pages (JSP)

• Custom tags and the JSP Standard Tag Library (JSTL)

• Case Study

The Coffee Break Application chapter in this part describes an application
that ties together most of the APIs discussed in this tutorial.

• Appendixes

The appendixes cover the tools shipped with the Java WSDP.

• Tomcat Server Administration Tool

• Tomcat Web Application Manager

• JAXM Provider Admin

• Registry Browser

This part also includes appendixes on HTTP and Java encoding schemes.

xiii
About the Examples

Prerequisites for the Examples
To understand the examples you will need a good knowledge of the Java pro-
gramming language, SQL, and relational database concepts. The topics in the
The Java Tutorial that are particularly relevant are listed in Table P–1:

Running the Examples
This section tells you everything you need to know to obtain, build, install, and
run the examples.

Required Software
If you are viewing this online, you need to download The Java Web Services
Tutorial from:

http://java.sun.com/webservices/downloads/webservicestutorial.html

Once you have installed the tutorial bundle using a Typical installation (installed
all of the components), the example source code is in the
<JWSDP_HOME>/docs/tutorial/examples directory, with subdirectories for
each of the technologies included in the pack.

Table P–1 Relevant Topics in The Java™ Tutorial

Topic Web Page

JDBC™
technology

http://java.sun.com/docs/books/tutorial/jdbc

Threads http://java.sun.com/docs/books/tutorial/essential/threads

JavaBeans™
architecture

http://java.sun.com/docs/books/tutorial/javabeans

Security http://java.sun.com/docs/books/tutorial/security1.2

http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/essential/threads
http://java.sun.com/docs/books/tutorial/javabeans
http://java.sun.com/docs/books/tutorial/security1.2
http://java.sun.com/webservices/downloads/webservicestutorial.html

xiv
This tutorial documents the Java WSDP 1.1. To build, deploy, and run the
examples you need a copy of the Java WSDP and the Java 2 Software Develop-
ment Kit, Standard Edition (J2SE™ SDK) 1.3.1_07, 1.4.0_03, or 1.4.1_01. You
download the Java WSDP from:

http://java.sun.com/webservices/downloads/webservicespack.html

the J2SE 1.3.1 SDK from

http://java.sun.com/j2se/1.3/

or the J2SE 1.4 SDK from

http://java.sun.com/j2se/1.4/

Add the bin directories of the Java WSDP and J2SE SDK installations to the
front of your PATH environment variable so that the Java WSDP startup scripts
for Tomcat overrides other installations.

Building the Examples
Most of the examples are distributed with a build file for Ant 1.5.1, a portable
build tool contained in the Java WSDP. Directions for building the examples are
provided in each chapter.

The version of Ant shipped with the Java WSDP sets the jwsdp.home environ-
ment variable, which is required by the example build files. To ensure that you
use this version of Ant, you must add <JWSDP_HOME>/jakarta-ant-1.5.1/bin

to the front of your PATH.

Managing the Examples
Many of the Java WSDP examples run on the Tomcat Java servlet and JSP con-
tainer. You use the manager tool to install, list, reload, and remove Web applica-
tions. See Appendix B for information on this tool.

How to Print This Tutorial
To print this tutorial, follow these steps:

1. Ensure that Adobe Acrobat Reader is installed on your system.

http://java.sun.com/j2se/1.3/
http://java.sun.com/j2se/1.4/
http://java.sun.com/webservices/downloads/webservicespack.html

xv
2. Open the PDF version of this book.

3. Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions
Table P–2 lists the typographical conventions used in this tutorial.

Menu selections indicated with the right-arrow character →, for example,
First→Second, should be interpreted as: select the First menu, then choose Sec-
ond from the First submenu.

Table P–2 Typographical Conventions

Font Style Uses

italic Emphasis, titles, first occurrence of terms

monospace
URLs, code examples, file names, command
names, programming language keywords

italic monospace Variable file names

JavaWSTutorial.pdf

xvi

1

1

Introduction to Web
Services

Maydene Fisher and Eric Jendrock

WEB services, in the general meaning of the term, are services offered via the
Web. In a typical Web services scenario, a business application sends a request to
a service at a given URL using the SOAP protocol over HTTP. The service
receives the request, processes it, and returns a response. An often-cited example
of a Web service is that of a stock quote service, in which the request asks for the
current price of a specified stock, and the response gives the stock price. This is
one of the simplest forms of a Web service in that the request is filled almost
immediately, with the request and response being parts of the same method call.

Another example could be a service that maps out an efficient route for the deliv-
ery of goods. In this case, a business sends a request containing the delivery des-
tinations, which the service processes to determine the most cost-effective
delivery route. The time it takes to return the response depends on the complex-
ity of the routing, so the response will probably be sent as an operation that is
separate from the request.

Web services and consumers of Web services are typically businesses, making
Web services predominantly business-to-business (B-to-B) transactions. An
enterprise can be the provider of Web services and also the consumer of other
Web services. For example, a wholesale distributor of spices could be in the con-
sumer role when it uses a Web service to check on the availability of vanilla
beans and in the provider role when it supplies prospective customers with dif-
ferent vendors’ prices for vanilla beans.

2 INTRODUCTION TO WEB SERVICES
The Role of XML and the Java™
Platform

Web services depend on the ability of parties to communicate with each other
even if they are using different information systems. XML (Extensible Markup
Language), a markup language that makes data portable, is a key technology in
addressing this need. Enterprises have discovered the benefits of using XML for
the integration of data both internally for sharing legacy data among departments
and externally for sharing data with other enterprises. As a result, XML is
increasingly being used for enterprise integration applications, both in tightly
coupled and loosely coupled systems. Because of this data integration ability,
XML has become the underpinning for Web-related computing.

Web services also depend on the ability of enterprises using different computing
platforms to communicate with each other. This requirement makes the Java
platform, which makes code portable, the natural choice for developing Web ser-
vices. This choice is even more attractive as the new Java APIs for XML become
available, making it easier and easier to use XML from the Java programming
language. These APIs are summarized later in this introduction and explained in
detail in the tutorials for each API.

In addition to data portability and code portability, Web services need to be scal-
able, secure, and efficient, especially as they grow. The Java 2 Platform, Enter-
prise Edition (J2EE™), is specifically designed to fill just such needs. It
facilitates the really hard part of developing Web services, which is program-
ming the infrastructure, or “plumbing.” This infrastructure includes features such
as security, distributed transaction management, and connection pool manage-
ment, all of which are essential for industrial strength Web services. And
because components are reusable, development time is substantially reduced.

Because XML and the Java platform work so well together, they have come to
play a central role in Web services. In fact, the advantages offered by the Java
APIs for XML and the J2EE platform make them the ideal combination for
deploying Web services.

The APIs described in this tutorial complement and layer on top of the J2EE
APIs. These APIs enable the Java community, developers, and tool and container
vendors to start developing Web services applications and products using stan-
dard Java APIs that maintain the fundamental Write Once, Run Anywhere™
proposition of Java technology. The Java Web Services Developer Pack (Java
WSDP) makes all these APIs available in a single bundle. The Java WSDP
includes JAR files implementing these APIs as well as documentation and

WHAT IS XML? 3
examples. The examples in the Java WSDP will run in the Tomcat container
(included in the Java WSDP to help with ease of use), as well as in a Web con-
tainer in a J2EE server once the Java WSDP JAR files are installed in the J2EE
server, such as the Sun™ ONE Application Server (S1AS). Instructions on how
to install the JAR files on the S1AS7 server are available in the Java WSDP doc-
umentation at <JWSDP_HOME>/docs/jwsdpons1as7.html.

The remainder of this introduction first gives a quick look at XML and how it
makes data portable. Then it gives an overview of the Java APIs for XML,
explaining what they do and how they make writing Web applications easier. It
describes each of the APIs individually and then presents a scenario that illus-
trates how they can work together.

The tutorials that follow give more detailed explanations and walk you through
how to use the Java APIs for XML to build applications for Web services. They
also provide sample applications that you can run.

What Is XML?
The goal of this section is to give you a quick introduction to XML and how it
makes data portable so that you have some background for reading the summa-
ries of the Java APIs for XML that follow. Chapter 1 includes a more thorough
and detailed explanation of XML and how to process it.

XML is an industry-standard, system-independent way of representing data.
Like HTML (HyperText Markup Language), XML encloses data in tags, but
there are significant differences between the two markup languages. First, XML
tags relate to the meaning of the enclosed text, whereas HTML tags specify how
to display the enclosed text. The following XML example shows a price list with
the name and price of two coffees.

<priceList>
<coffee>

<name>Mocha Java</name>
<price>11.95</price>

</coffee>
<coffee>

<name>Sumatra</name>
<price>12.50</price>

</coffee>
</priceList>

4 INTRODUCTION TO WEB SERVICES
The <coffee> and </coffee> tags tell a parser that the information between them
is about a coffee. The two other tags inside the <coffee> tags specify that the
enclosed information is the coffee’s name and its price per pound. Because XML
tags indicate the content and structure of the data they enclose, they make it pos-
sible to do things like archiving and searching.

A second major difference between XML and HTML is that XML is extensible.
With XML, you can write your own tags to describe the content in a particular
type of document. With HTML, you are limited to using only those tags that
have been predefined in the HTML specification. Another aspect of XML’s
extensibility is that you can create a file, called a schema, to describe the struc-
ture of a particular type of XML document. For example, you can write a schema
for a price list that specifies which tags can be used and where they can occur.
Any XML document that follows the constraints established in a schema is said
to conform to that schema.

Probably the most-widely used schema language is still the Document Type Def-
inition (DTD) schema language because it is an integral part of the XML 1.0
specification. A schema written in this language is commonly referred to as a
DTD. The DTD that follows defines the tags used in the price list XML docu-
ment. It specifies four tags (elements) and further specifies which tags may occur
(or are required to occur) in other tags. The DTD also defines the hierarchical
structure of an XML document, including the order in which the tags must occur.

<!ELEMENT priceList (coffee)+>
<!ELEMENT coffee (name, price) >
<!ELEMENT name (#PCDATA) >
<!ELEMENT price (#PCDATA) >

The first line in the example gives the highest level element, priceList, which
means that all the other tags in the document will come between the
<priceList> and </priceList> tags. The first line also says that the priceList

element must contain one or more coffee elements (indicated by the plus sign).
The second line specifies that each coffee element must contain both a name ele-
ment and a price element, in that order. The third and fourth lines specify that
the data between the tags <name> and </name> and between <price> and
</price> is character data that should be parsed. The name and price of each
coffee are the actual text that makes up the price list.

Another popular schema language is XML Schema, which is being developed by
the World Wide Web (W3C) consortium. XML Schema is a significantly more
powerful language than DTD, and with its passage into a W3C Recommendation
in May of 2001, its use and implementations have increased. The community of

WHAT MAKES XML PORTABLE? 5
developers using the Java platform has recognized this, and the expert group for
the Java API for XML Processing (JAXP) has been working on adding support
for XML Schema to the JAXP 1.2 specification. This release of the Java Web
Services Developer Pack includes support for XML Schema.

What Makes XML Portable?
A schema gives XML data its portability. The priceList DTD, discussed previ-
ously, is a simple example of a schema. If an application is sent a priceList doc-
ument in XML format and has the priceList DTD, it can process the document
according to the rules specified in the DTD. For example, given the priceList

DTD, a parser will know the structure and type of content for any XML docu-
ment based on that DTD. If the parser is a validating parser, it will know that the
document is not valid if it contains an element not included in the DTD, such as
the element <tea>, or if the elements are not in the prescribed order, such as hav-
ing the price element precede the name element.

Other features also contribute to the popularity of XML as a method for data
interchange. For one thing, it is written in a text format, which is readable by
both human beings and text-editing software. Applications can parse and process
XML documents, and human beings can also read them in case there is an error
in processing. Another feature is that because an XML document does not
include formatting instructions, it can be displayed in various ways. Keeping
data separate from formatting instructions means that the same data can be pub-
lished to different media.

XML enables document portability, but it cannot do the job in a vacuum; that is,
parties who use XML must agree to certain conditions. For example, in addition
to agreeing to use XML for communicating, two applications must agree on the
set of elements they will use and what those elements mean. For them to use
Web services, they must also agree on which Web services methods they will
use, what those methods do, and the order in which they are invoked when more
than one method is needed.

Enterprises have several technologies available to help satisfy these require-
ments. They can use DTDs and XML schemas to describe the valid terms and
XML documents they will use in communicating with each other. Registries pro-
vide a means for describing Web services and their methods. For higher level
concepts, enterprises can use partner agreements and workflow charts and chore-
ographies. There will be more about schemas and registries later in this docu-
ment.

6 INTRODUCTION TO WEB SERVICES
Overview of the Java APIs for XML
The Java APIs for XML let you write your Web applications entirely in the Java
programming language. They fall into two broad categories: those that deal
directly with processing XML documents and those that deal with procedures.

• Document-oriented

• Java API for XML Processing (JAXP) — processes XML documents
using various parsers

• Java Architecture for XML Binding (JAXB) — processes XML docu-
ments using schema-derived JavaBeans™ component classes

• Procedure-oriented

• Java API for XML-based RPC (JAX-RPC) — sends SOAP method calls
to remote parties over the Internet and receives the results

• Java API for XML Messaging (JAXM) — sends SOAP messages over
the Internet in a standard way

• Java API for XML Registries (JAXR) — provides a standard way to
access business registries and share information

Perhaps the most important feature of the Java APIs for XML is that they all sup-
port industry standards, thus ensuring interoperability. Various network interop-
erability standards groups, such as the World Wide Web Consortium (W3C) and
the Organization for the Advancement of Structured Information Standards
(OASIS), have been defining standard ways of doing things so that businesses
who follow these standards can make their data and applications work together.

Another feature of the Java APIs for XML is that they allow a great deal of flex-
ibility. Users have flexibility in how they use the APIs. For example, JAXP code
can use various tools for processing an XML document, and JAXM code can use
various messaging protocols on top of SOAP. Implementers have flexibility as
well. The Java APIs for XML define strict compatibility requirements to ensure
that all implementations deliver the standard functionality, but they also give
developers a great deal of freedom to provide implementations tailored to spe-
cific uses.

The following sections discuss each of these APIs, giving an overview and a feel
for how to use them.

JAXP 7
JAXP
The Java API for XML Processing (page 115) (JAXP) makes it easy to process
XML data using applications written in the Java programming language. JAXP
leverages the parser standards SAX (Simple API for XML Parsing) and DOM
(Document Object Model) so that you can choose to parse your data as a stream
of events or to build a tree-structured representation of it. The latest versions of
JAXP also support the XSLT (XML Stylesheet Language Transformations) stan-
dard, giving you control over the presentation of the data and enabling you to
convert the data to other XML documents or to other formats, such as HTML.
JAXP also provides namespace support, allowing you to work with schemas that
might otherwise have naming conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which allows you to plug in an implementation of the SAX or DOM APIs. The
pluggability layer also allows you to plug in an XSL processor, which lets you
transform your XML data in a variety of ways, including the way it is displayed.

JAXP 1.2.2, which includes support for XML Schema, is in the Java WSDP.

The SAX API
The Simple API for XML (page 125) (SAX) defines an API for an event-based
parser. Being event-based means that the parser reads an XML document from
beginning to end, and each time it recognizes a syntax construction, it notifies
the application that is running it. The SAX parser notifies the application by call-
ing methods from the ContentHandler interface. For example, when the parser
comes to a less than symbol (“<”), it calls the startElement method; when it
comes to character data, it calls the characters method; when it comes to the
less than symbol followed by a slash (“</”), it calls the endElement method, and
so on. To illustrate, let’s look at part of the example XML document from the
first section and walk through what the parser does for each line. (For simplicity,
calls to the method ignorableWhiteSpace are not included.)

<priceList> [parser calls startElement]
<coffee> [parser calls startElement]

<name>Mocha Java</name> [parser calls startElement,
characters, and endElement]

<price>11.95</price> [parser calls startElement,
characters, and endElement]

</coffee> [parser calls endElement]

8 INTRODUCTION TO WEB SERVICES
The default implementations of the methods that the parser calls do nothing, so
you need to write a subclass implementing the appropriate methods to get the
functionality you want. For example, suppose you want to get the price per
pound for Mocha Java. You would write a class extending DefaultHandler (the
default implementation of ContentHandler) in which you write your own imple-
mentations of the methods startElement and characters.

You first need to create a SAXParser object from a SAXParserFactory object. You
would call the method parse on it, passing it the price list and an instance of
your new handler class (with its new implementations of the methods startEle-
ment and characters). In this example, the price list is a file, but the parse

method can also take a variety of other input sources, including an InputStream

object, a URL, and an InputSource object.

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();
saxParser.parse("priceList.xml", handler);

The result of calling the method parse depends, of course, on how the methods
in handler were implemented. The SAX parser will go through the file
priceList.xml line by line, calling the appropriate methods. In addition to the
methods already mentioned, the parser will call other methods such as start-

Document, endDocument, ignorableWhiteSpace, and processingInstructions,
but these methods still have their default implementations and thus do nothing.

The following method definitions show one way to implement the methods
characters and startElement so that they find the price for Mocha Java and
print it out. Because of the way the SAX parser works, these two methods work
together to look for the name element, the characters “Mocha Java”, and the
price element immediately following Mocha Java. These methods use three
flags to keep track of which conditions have been met. Note that the SAX parser
will have to invoke both methods more than once before the conditions for print-
ing the price are met.

public void startElement(..., String elementName, ...){
if(elementName.equals("name")){

inName = true;
} else if(elementName.equals("price") && inMochaJava){

THE SAX API 9
inPrice = true;
inName = false;

}
}

public void characters(char [] buf, int offset, int len) {
String s = new String(buf, offset, len);
if (inName && s.equals("Mocha Java")) {

inMochaJava = true;
inName = false;

} else if (inPrice) {
System.out.println("The price of Mocha Java is: " + s);
inMochaJava = false;
inPrice = false;
}

}
}

Once the parser has come to the Mocha Java coffee element, here is the relevant
state after the following method calls:

next invocation of startElement -- inName is true

next invocation of characters -- inMochaJava is true

next invocation of startElement -- inPrice is true

next invocation of characters -- prints price

The SAX parser can perform validation while it is parsing XML data, which
means that it checks that the data follows the rules specified in the XML docu-
ment’s schema. A SAX parser will be validating if it is created by a SAX-

ParserFactory object that has had validation turned on. This is done for the
SAXParserFactory object factory in the following line of code.

factory.setValidating(true);

So that the parser knows which schema to use for validation, the XML document
must refer to the schema in its DOCTYPE declaration. The schema for the price list
is priceList.DTD, so the DOCTYPE declaration should be similar to this:

<!DOCTYPE PriceList SYSTEM "priceList.DTD">

10 INTRODUCTION TO WEB SERVICES
The DOM API
The Document Object Model (page 211) (DOM), defined by the W3C DOM
Working Group, is a set of interfaces for building an object representation, in the
form of a tree, of a parsed XML document. Once you build the DOM, you can
manipulate it with DOM methods such as insert and remove, just as you would
manipulate any other tree data structure. Thus, unlike a SAX parser, a DOM
parser allows random access to particular pieces of data in an XML document.
Another difference is that with a SAX parser, you can only read an XML docu-
ment, but with a DOM parser, you can build an object representation of the doc-
ument and manipulate it in memory, adding a new element or deleting an
existing one.

In the previous example, we used a SAX parser to look for just one piece of data
in a document. Using a DOM parser would have required having the whole doc-
ument object model in memory, which is generally less efficient for searches
involving just a few items, especially if the document is large. In the next exam-
ple, we add a new coffee to the price list using a DOM parser. We cannot use a
SAX parser for modifying the price list because it only reads data.

Let’s suppose that you want to add Kona coffee to the price list. You would read
the XML price list file into a DOM and then insert the new coffee element, with
its name and price. The following code fragment creates a DocumentBuilderFac-

tory object, which is then used to create the DocumentBuilder object builder.
The code then calls the parse method on builder, passing it the file
priceList.xml.

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse("priceList.xml");

At this point, document is a DOM representation of the price list sitting in mem-
ory. The following code fragment adds a new coffee (with the name “Kona” and
a price of “13.50”) to the price list document. Because we want to add the new
coffee right before the coffee whose name is “Mocha Java”, the first step is to get
a list of the coffee elements and iterate through the list to find “Mocha Java”.
Using the Node interface included in the org.w3c.dom package, the code then cre-
ates a Node object for the new coffee element and also new nodes for the name
and price elements. The name and price elements contain character data, so the

THE DOM API 11
code creates a Text object for each of them and appends the text nodes to the
nodes representing the name and price elements.

Node rootNode = document.getDocumentElement();
NodeList list = document.getElementsByTagName("coffee");

// Loop through the list.
for (int i=0; i < list.getLength(); i++) {

thisCoffeeNode = list.item(i);
Node thisNameNode = thisCoffeeNode.getFirstChild();
if (thisNameNode == null) continue;
if (thisNameNode.getFirstChild() == null) continue;
if (! thisNameNode.getFirstChild() instanceof

org.w3c.dom.Text) continue;

String data = thisNameNode.getFirstChild().getNodeValue();
if (! data.equals("Mocha Java")) continue;

//We’re at the Mocha Java node. Create and insert the new
//element.

Node newCoffeeNode = document.createElement("coffee");

Node newNameNode = document.createElement("name");
Text tnNode = document.createTextNode("Kona");
newNameNode.appendChild(tnNode);

Node newPriceNode = document.createElement("price");
Text tpNode = document.createTextNode("13.50");
newPriceNode.appendChild(tpNode);

newCoffeeNode.appendChild(newNameNode);
newCoffeeNode.appendChild(newPriceNode);
rootNode.insertBefore(newCoffeeNode, thisCoffeeNode);
break;

}

Note that this code fragment is a simplification in that it assumes that none of the
nodes it accesses will be a comment, an attribute, or ignorable white space. For
information on using DOM to parse more robustly, see Increasing the
Complexity (page 215).

You get a DOM parser that is validating the same way you get a SAX parser that
is validating: You call setValidating(true) on a DOM parser factory before
using it to create your DOM parser, and you make sure that the XML document
being parsed refers to its schema in the DOCTYPE declaration.

12 INTRODUCTION TO WEB SERVICES
XML Namespaces
All the names in a schema, which includes those in a DTD, are unique, thus
avoiding ambiguity. However, if a particular XML document references multiple
schemas, there is a possibility that two or more of them contain the same name.
Therefore, the document needs to specify a namespace for each schema so that
the parser knows which definition to use when it is parsing an instance of a par-
ticular schema.

There is a standard notation for declaring an XML Namespace, which is usually
done in the root element of an XML document. In the following namespace dec-
laration, the notation xmlns identifies nsName as a namespace, and nsName is set
to the URL of the actual namespace:

<priceList xmlns:nsName="myDTD.dtd"
xmlns:otherNsName="myOtherDTD.dtd">

...
</priceList>

Within the document, you can specify which namespace an element belongs to
as follows:

<nsName:price> ...

To make your SAX or DOM parser able to recognize namespaces, you call the
method setNamespaceAware(true) on your ParserFactory instance. After this
method call, any parser that the parser factory creates will be namespace aware.

The XSLT API
XML Stylesheet Language for Transformations (page 289) (XSLT), defined by
the W3C XSL Working Group, describes a language for transforming XML doc-
uments into other XML documents or into other formats. To perform the trans-
formation, you usually need to supply a style sheet, which is written in the XML
Stylesheet Language (XSL). The XSL style sheet specifies how the XML data
will be displayed, and XSLT uses the formatting instructions in the style sheet to
perform the transformation.

JAXP supports XSLT with the javax.xml.transform package, which allows you
to plug in an XSLT transformer to perform transformations. The subpackages
have SAX-, DOM-, and stream-specific APIs that allow you to perform transfor-
mations directly from DOM trees and SAX events. The following two examples

THE XSLT API 13
illustrate how to create an XML document from a DOM tree and how to trans-
form the resulting XML document into HTML using an XSL style sheet.

Transforming a DOM Tree to an XML
Document
To transform the DOM tree created in the previous section to an XML document,
the following code fragment first creates a Transformer object that will perform
the transformation.

TransformerFactory transFactory =
TransformerFactory.newInstance();

Transformer transformer = transFactory.newTransformer();

Using the DOM tree root node, the following line of code constructs a DOM-

Source object as the source of the transformation.

DOMSource source = new DOMSource(document);

The following code fragment creates a StreamResult object to take the results
of the transformation and transforms the tree into an XML file.

File newXML = new File("newXML.xml");
FileOutputStream os = new FileOutputStream(newXML);
StreamResult result = new StreamResult(os);
transformer.transform(source, result);

Transforming an XML Document to an HTML
Document
You can also use XSLT to convert the new XML document, newXML.xml, to
HTML using a style sheet. When writing a style sheet, you use XML
Namespaces to reference the XSL constructs. For example, each style sheet has a
root element identifying the style sheet language, as shown in the following line
of code.

<xsl:stylesheet version="1.0" xmlns:xsl=
"http://www.w3.org/1999/XSL/Transform">

When referring to a particular construct in the style sheet language, you use the
namespace prefix followed by a colon and the particular construct to apply. For

14 INTRODUCTION TO WEB SERVICES
example, the following piece of style sheet indicates that the name data must be
inserted into a row of an HTML table.

<xsl:template match="name">
<tr><td>

<xsl:apply-templates/>
</td></tr>

</xsl:template>

The following style sheet specifies that the XML data is converted to HTML and
that the coffee entries are inserted into a row in a table.

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="priceList">
<html><head>Coffee Prices</head>

<body>
<table>

<xsl:apply-templates />
</table>

</body>
</html>

</xsl:template>
<xsl:template match="name">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>
<xsl:template match="price">

<tr><td>
<xsl:apply-templates />

</td></tr>
</xsl:template>

</xsl:stylesheet>

To perform the transformation, you need to obtain an XSLT transformer and use
it to apply the style sheet to the XML data. The following code fragment obtains
a transformer by instantiating a TransformerFactory object, reading in the
style sheet and XML files, creating a file for the HTML output, and then finally
obtaining the Transformer object transformer from the TransformerFactory

object tFactory.

TransformerFactory tFactory =
TransformerFactory.newInstance();

String stylesheet = "prices.xsl";
String sourceId = "newXML.xml";

JAXB 15
File pricesHTML = new File("pricesHTML.html");
FileOutputStream os = new FileOutputStream(pricesHTML);
Transformer transformer =

tFactory.newTransformer(new StreamSource(stylesheet));

The transformation is accomplished by invoking the transform method, passing
it the data and the output stream.

transformer.transform(
new StreamSource(sourceId), new StreamResult(os));

JAXB
The Java Architecture for XML Binding (JAXB) is a Java technology that
enables you to generate Java classes from XML schemas. As part of this process,
the JAXB technology also provides methods for unmarshalling an XML
instance document into a content tree of Java objects, and then marshalling the
content tree back into an XML document. JAXB provides a fast and convenient
way to bind an XML schemas to a representation in Java code, making it easy for
Java developers to incorporate XML data and processing functions in Java appli-
cations without having to know much about XML itself.

One benefit of the JAXB technology is that it hides the details and gets rid of the
extraneous relationships in SAX and DOM—generated JAXB classes describe
only the relationships actually defined in the source schemas. The result is highly
portable XML data joined with highly portable Java code that can be used to cre-
ate flexible, lightweight applications and Web services.

See Chapter 9 for a description of the JAXB architecture, functions, and core
concepts and then see Chapter 10, which provides sample code and step-by-step
procedures for using the JAXB technology.

16 INTRODUCTION TO WEB SERVICES
JAXB Binding Process
Figure 1–1 shows the JAXB data binding process.

Figure 1–1 Data Binding Process

The JAXB data binding process involves the following steps:

1. Generate classes from a source XML schema, and then compile the gener-
ated classes.

2. Unmarshal XML documents conforming to the schema. Unmarshalling
generates a content tree of data objects instantiated from the schema-
derived JAXB classes; this content tree represents the structure and content
of the source XML documents.

3. Unmarshalling optionally involves validation of the source XML docu-
ments before generating the content tree. If your application modifies the
content tree, you can also use the validate operation to validate the changes
before marshalling the content back to an XML document.

4. The client application can modify the XML data represented by a content
tree by means of interfaces generated by the binding compiler.

5. The processed content tree is marshalled out to one or more XML output
documents.

XML
Document

Schema

validate
follows

compile

unmarshal

marshal

Derived
Classes

Instances of

Objects

VALIDATION 17
Validation
There are two types of validation that a JAXB client can perform:

• Unmarshal-Time – Enables a client application to receive information
about validation errors and warnings detected while unmarshalling XML
data into a content tree, and is completely orthogonal to the other types of
validation.

• On-Demand – Enables a client application to receive information about
validation errors and warnings detected in the content tree. At any point,
client applications can call the Validator.validate method on the con-
tent tree (or any sub-tree of it).

Representing XML Content
Representing XML content as Java objects involves two kinds of mappings:
binding XML names to Java identifiers, and representing XML schemas as sets
of Java classes.

XML schema languages use XML names to label schema components, however
this set of strings is much larger than the set of valid Java class, method, and con-
stant identifiers. To resolve this discrepancy, the JAXB technology uses several
name-mapping algorithms. Specifically, the name-mapping algorithm maps
XML names to Java identifiers in a way that adheres to standard Java API design
guidelines, generates identifiers that retain obvious connections to the corre-
sponding schema, and is unlikely to result in many collisions.

Customizing JAXB Bindings
The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. JAXB uses default
binding rules that can be customized by means of binding declarations that can
either be inlined or external to an XML Schema. Custom JAXB binding declara-
tions also allow you to customize your generated JAXB classes beyond the
XML-specific constraints in an XML schema to include Java specific refine-
ments such as class and package name mappings.

18 INTRODUCTION TO WEB SERVICES
Example
The following table illustrates some default XML Schema-to-JAXB bindings.

Table 1–1 Schema to JAXB Bindings

XML Schema Java Class Files

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder"
 type="PurchaseOrderType"/>

PurchaseOrder.java

<xsd:element name="comment" type="xsd:string"/> Comment.java

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAd-
dress"/>
 <xsd:element name="billTo" type="USAd-
dress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate"
type="xsd:date"/>
</xsd:complexType>

PurchaseOrder-
Type.java

<xsd:complexType name="USAddress">
 <xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street"
type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state"
type="xsd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country"

type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAddress.java

</xsd:schema>

EXAMPLE 19
Schema-derived Class for USAddress.java
Only a portion of the schema-derived code is shown, for brevity. The following
code shows the schema-derived class for the schema’s complex type USAddress.

public interface USAddress {
String getName(); void setName(String);
String getStreet(); void setStreet(String);
String getCity(); void setCity(String);
String getState(); void setState(String);
int getZip(); void setZip(int);
static final String COUNTRY=”USA”;

};

Unmarshalling XML Content
To unmarshal XML content into a content tree of data objects, you first create a
JAXBContext instance for handling schema-derived classes, then create an
Unmarshaller instance, and then finally unmarshal the XML content. For exam-
ple, if the generated classes are in a package named primer.po and the XML
content is in a file named po.xml:

JAXBContext jc = JAXBContext.newInstance("primer.po");
Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"
));

To enable unmarshal-time validation, you create the Unmarshaller instance nor-
mally, as shown above, and then enable the ValidationEventHandler:

u.setValidating(true);

The default configuration causes the unmarshal operation to fail upon encounter-
ing the first validation error. The default validation event handler processes a val-
idation error, generates output to system.out, and then throws an exception:

} catch(UnmarshalException ue) {
System.out.println("Caught UnmarshalException");
 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();

20 INTRODUCTION TO WEB SERVICES
Modifying the Content Tree
Use the schema-derived JavaBeans component set and get methods to manipu-
late the data in the content tree.

USAddress address = po.getBillTo();
address.setName("John Bob");
address.setStreet("242 Main Street");
address.setCity("Beverly Hills");
address.setState("CA");
address.setZip(90210);

Validating the Content Tree
After the application modifies the content tree, it can verify that the content tree
is still valid by calling the Validator.validate method on the content tree (or
any subtree of it). This operation is called on-demand validation.

try{
Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
...

} catch(ValidationException ue) {
System.out.println("Caught ValidationException");
...

}

Marshalling XML Content
Finally, to marshal a content tree to XML format, create a Marshaller instance,
and then marshal the XML content:

Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,Boolean.TRUE);
m.marshal(po, System.out);

JAX-RPC
The Java API for XML-based RPC (JAX-RPC) is the Java API for developing
and using Web services. See Chapter 11 for more information about JAX-RPC
and learn how to build a simple Web service and client.

OVERVIEW OF JAX-RPC 21
Overview of JAX-RPC
An RPC-based Web service is a collection of procedures that can be called by a
remote client over the Internet. For example, a typical RPC-based Web service is
a stock quote service that takes a SOAP (Simple Object Access Protocol) request
for the price of a specified stock and returns the price via SOAP.

Note: The SOAP 1.1 specification, available from http://www.w3.org/, defines
a framework for the exchange of XML documents. It specifies, among other things,
what is required and optional in a SOAP message and how data can be encoded and
transmitted. JAX-RPC and JAXM are both based on SOAP.

A Web service, a server application that implements the procedures that are
available for clients to call, is deployed on a server-side container. The container
can be a servlet container such as Tomcat or a Web container in a Java 2 Plat-
form, Enterprise Edition (J2EE) server.

A Web service can make itself available to potential clients by describing itself
in a Web Services Description Language (WSDL) document. A WSDL descrip-
tion is an XML document that gives all the pertinent information about a Web
service, including its name, the operations that can be called on it, the parameters
for those operations, and the location of where to send requests. A consumer
(Web client) can use the WSDL document to discover what the service offers
and how to access it. How a developer can use a WSDL document in the creation
of a Web service is discussed later.

Interoperability
Perhaps the most important requirement for a Web service is that it be interoper-
able across clients and servers. With JAX-RPC, a client written in a language
other than the Java programming language can access a Web service developed
and deployed on the Java platform. Conversely, a client written in the Java pro-
gramming language can communicate with a service that was developed and
deployed using some other platform.

What makes this interoperability possible is JAX-RPC’s support for SOAP and
WSDL. SOAP defines standards for XML messaging and the mapping of data
types so that applications adhering to these standards can communicate with
each other. JAX-RPC adheres to SOAP standards, and is, in fact, based on SOAP
messaging. That is, a JAX-RPC remote procedure call is implemented as a
request-response SOAP message.

22 INTRODUCTION TO WEB SERVICES
The other key to interoperability is JAX-RPC’s support for WSDL. A WSDL
description, being an XML document that describes a Web service in a standard
way, makes the description portable. WSDL documents and their uses will be
discussed more later.

Ease of Use
Given the fact that JAX-RPC is based on a remote procedure call (RPC) mecha-
nism, it is remarkably developer friendly. RPC involves a lot of complicated
infrastructure, or “plumbing,” but JAX-RPC mercifully makes the underlying
implementation details invisible to both the client and service developer. For
example, a Web services client simply makes Java method calls, and all the inter-
nal marshalling, unmarshalling, and transmission details are taken care of auto-
matically. On the server side, the Web service simply implements the services it
offers and, like the client, does not need to bother with the underlying implemen-
tation mechanisms.

Largely because of its ease of use, JAX-RPC is the main Web services API for
both client and server applications. JAX-RPC focuses on point-to-point SOAP
messaging, the basic mechanism that most clients of Web services use. Although
it can provide asynchronous messaging and can be extended to provide higher
quality support, JAX-RPC concentrates on being easy to use for the most com-
mon tasks. Thus, JAX-RPC is a good choice for applications that wish to avoid
the more complex aspects of SOAP messaging and for those that find communi-
cation using the RPC model a good fit. The more heavy-duty alternative for
SOAP messaging, the Java API for XML Messaging (JAXM), is discussed later
in this introduction.

Advanced Features
Although JAX-RPC is based on the RPC model, it offers features that go beyond
basic RPC. For one thing, it is possible to send complete documents and also
document fragments. In addition, JAX-RPC supports SOAP message handlers,
which make it possible to send a wide variety of messages. And JAX-RPC can
be extended to do one-way messaging in addition to the request-response style of
messaging normally done with RPC. Another advanced feature is extensible type
mapping, which gives JAX-RPC still more flexibility in what can be sent.

USING JAX-RPC 23
Using JAX-RPC
In a typical scenario, a business might want to order parts or merchandise. It is
free to locate potential sources however it wants, but a convenient way is through
a business registry and repository service such as a Universal Description, Dis-
covery and Integration (UDDI) registry. Note that the Java API for XML Regis-
tries (JAXR), which is discussed later in this introduction, offers an easy way to
search for Web services in a business registry and repository. Web services gen-
erally register themselves with a business registry and store relevant documents,
including their WSDL descriptions, in its repository.

After searching a business registry for potential sources, the business might get
several WSDL documents, one for each of the Web services that meets its search
criteria. The business client can use these WSDL documents to see what the ser-
vices offer and how to contact them.

Another important use for a WSDL document is as a basis for creating stubs, the
low-level classes that are needed by a client to communicate with a remote ser-
vice. In the JAX-RPC implementation, the tool that uses a WSDL document to
generate stubs is called wscompile.

The JAX-RPC implementation has another tool, called wsdeploy, that creates
ties, the low-level classes that the server needs to communicate with a remote
client. Stubs and ties, then, perform analogous functions, stubs on the client side
and ties on the server side. And in addition to generating ties, wsdeploy can be
used to create WSDL documents.

A JAX-RPC runtime system, such as the one included in the JAX-RPC imple-
mentation, uses the stubs and ties created by wscompile and wsdeploy behind
the scenes. It first converts the client’s remote method call into a SOAP message
and sends it to the service as an HTTP request. On the server side, the JAX-RPC
runtime system receives the request, translates the SOAP message into a method
call, and invokes it. After the Web service has processed the request, the runtime
system goes through a similar set of steps to return the result to the client. The
point to remember is that as complex as the implementation details of communi-
cation between the client and server may be, they are invisible to both Web ser-
vices and their clients.

Creating a Web Service
Developing a Web service using JAX-RPC is surprisingly easy. The service itself
is basically two files, an interface that declares the service’s remote procedures

24 INTRODUCTION TO WEB SERVICES
and a class that implements those procedures. There is a little more to it, in that
the service needs to be configured and deployed, but first, let’s take a look at the
two main components of a Web service, the interface definition and its imple-
mentation class.

The following interface definition is a simple example showing the methods a
wholesale coffee distributor might want to make available to its prospective cus-
tomers. Note that a service definition interface extends java.rmi.Remote and its
methods throw a java.rmi.RemoteException object.

package coffees;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface CoffeeOrderIF extends Remote {
public Coffee [] getPriceList()

throws RemoteException;
public String orderCoffee(String coffeeName, int quantity)

throws RemoteException;
}

The method getPriceList returns an array of Coffee objects, each of which
contains a name field and a price field. There is one Coffee object for each of
the coffees the distributor currently has for sale. The method orderCoffee

returns a String that might confirm the order or state that it is on back order.

The following example shows what the implementation might look like (with
implementation details omitted). Presumably, the method getPriceList will
query the company’s database to get the current information and return the result
as an array of Coffee objects. The second method, orderCoffee, will also need
to query the database to see if the particular coffee specified is available in the
quantity ordered. If so, the implementation will set the internal order process in
motion and send a reply informing the customer that the order will be filled. If
the quantity ordered is not available, the implementation might place its own

CREATING A WEB SERVICE 25
order to replenish its supply and notify the customer that the coffee is backor-
dered.

package coffees;

public class CoffeeOrderImpl implements CoffeeOrderIF {
public Coffee [] getPriceList() throws RemoteException; {

. . .
}

public String orderCoffee(String coffeeName, int quantity)
throws RemoteException; {

. . .
}

}

After writing the service’s interface and implementation class, the developer’s
next step is to run the mapping tool. The tool can use the interface and its imple-
mentation as a basis for generating the stub and tie classes plus other classes as
necessary. And, as noted before, the developer can also use the tool to create the
WSDL description for the service.

The final steps in creating a Web service are packaging and deployment. Packag-
ing a Web service definition is done via a Web application archive (WAR). A WAR

file is a JAR file for Web applications, that is, a file that contains all the files
needed for the Web application in compressed form. For example, the CoffeeOr-
der service could be packaged in the file jaxrpc-coffees.war, which makes it
easy to distribute and install.

One file that must be in every WAR file is an XML file called a deployment
descriptor. This file, by convention named web.xml, contains information
needed for deploying a service definition. For example, if it is being deployed on
a servlet engine such as Tomcat, the deployment descriptor will include the serv-
let name and description, the servlet class, initialization parameters, and other
startup information. One of the files referenced in a web.xml file is a configura-
tion file that is automatically generated by the mapping tool. In our example, this
file would be called CoffeeOrder_Config.properties.

Deploying our CoffeeOrder Web service example in a Tomcat container can be
accomplished by simply copying the jaxrpc-coffees.war file to Tomcat’s
webapps directory. Deployment in a J2EE server is facilitated by using the
deployment tools supplied by application server vendors.

26 INTRODUCTION TO WEB SERVICES
Coding a Client
Writing the client application for a Web service entails simply writing code that
invokes the desired method. Of course, much more is required to build the
remote method call and transmit it to the Web service, but that is all done behind
the scenes and is invisible to the client.

The following class definition is an example of a Web services client. It creates
an instance of CoffeeOrderIF and uses it to call the method getPriceList.
Then it accesses the price and name fields of each Coffee object in the array
returned by the method getPriceList in order to print them out.

The class CoffeeOrderServiceImpl is one of the classes generated by the map-
ping tool. It is a stub factory whose only method is getCoffeeOrderIF; in other
words, its whole purpose is to create instances of CoffeeOrderIF. The instances
of CoffeeOrderIF that are created by CoffeeOrderServiceImpl are client side
stubs that can be used to invoke methods defined in the interface CoffeeOr-

derIF. Thus, the variable coffeeOrder represents a client stub that can be used
to call getPriceList, one of the methods defined in CoffeeOrderIF.

The method getPriceList will block until it has received a response and
returned it. Because a WSDL document is being used, the JAX-RPC runtime
will get the service endpoint from it. Thus, in this case, the client class does not
need to specify the destination for the remote procedure call. When the service
endpoint does need to be given, it can be supplied as an argument on the com-
mand line. Here is what a client class might look like:

package coffees;

public class CoffeeClient {
public static void main(String[] args) {

try {
CoffeeOrderIF coffeeOrder = new

 CoffeeOrderServiceImpl().getCoffeeOrderIF();
Coffee [] priceList =

coffeeOrder.getPriceList():
for (int i = 0; i < priceList.length; i++) {

System.out.print(priceList[i].getName() + " ");
System.out.println(priceList[i].getPrice());

}
} catch (Exception ex) {
ex.printStackTrace();
}

}
}

INVOKING A REMOTE METHOD 27
Invoking a Remote Method
Once a client has discovered a Web service, it can invoke one of the service’s
methods. The following example makes the remote method call getPriceList,
which takes no arguments. As noted previously, the JAX-RPC runtime can deter-
mine the endpoint for the CoffeeOrder service (which is its URI) from its WSDL
description. If a WSDL document had not been used, you would need to supply
the service’s URI as a command line argument. After you have compiled the file
CoffeeClient.java, here is all you need to type at the command line to invoke
its getPriceList method.

java coffees.CoffeeClient

The remote procedure call made by the previous line of code is a static method
call. In other words, the RPC was determined at compile time. It should be noted
that with JAX-RPC, it is also possible to call a remote method dynamically at
run time. This can be done using either the Dynamic Invocation Interface (DII)
or a dynamic proxy.

JAXM
The Java API for XML Messaging (JAXM) provides a standard way to send
XML documents over the Internet from the Java platform. It is based on the
SOAP 1.1 and SOAP with Attachments specifications, which define a basic
framework for exchanging XML messages. JAXM can be extended to work with
higher level messaging protocols, such as the one defined in the ebXML (elec-
tronic business XML) Message Service Specification, by adding the protocol’s
functionality on top of SOAP.

Note: The ebXML Message Service Specification is available from
http://www.oasis-open.org/committees/ebxml-msg/. Among other
things, it provides a more secure means of sending business messages over the
Internet than the SOAP specifications do.

See Chapter 12 to see how to use the JAXM API, then run the sample JAXM
applications that are included with the Java WSDP.

Typically, a business uses a messaging provider service, which does the behind-
the-scenes work required to transport and route messages. When a messaging
provider is used, all JAXM messages go through it, so when a business sends a

28 INTRODUCTION TO WEB SERVICES
message, the message first goes to the sender’s messaging provider, then to the
recipient’s messaging provider, and finally to the intended recipient. It is also
possible to route a message to go to intermediate recipients before it goes to the
ultimate destination.

Because messages go through it, a messaging provider can take care of house-
keeping details like assigning message identifiers, storing messages, and keeping
track of whether a message has been delivered before. A messaging provider can
also try resending a message that did not reach its destination on the first attempt
at delivery. The beauty of a messaging provider is that the client using JAXM
technology (“JAXM client”) is totally unaware of what the provider is doing in
the background. The JAXM client simply makes Java method calls, and the mes-
saging provider in conjunction with the messaging infrastructure makes every-
thing happen behind the scenes.

Though in the typical scenario a business uses a messaging provider, it is also
possible to do JAXM messaging without using a messaging provider. In this
case, the JAXM client (called a standalone client) is limited to sending point-to-
point messages directly to a Web service that is implemented for request-
response messaging. Request-response messaging is synchronous, meaning that
a request is sent and its response is received in the same operation. A request-
response message is sent over a SOAPConnection object via the method SOAP-

Connection.call, which sends the message and blocks until it receives a
response. A standalone client can operate only in a client role, that is, it can only
send requests and receive their responses. In contrast, a JAXM client that uses a
messaging provider may act in either the client or server (service) role. In the cli-
ent role, it can send requests; in the server role, it can receive requests, process
them, and send responses.

Though it is not required, JAXM messaging usually takes place within a con-
tainer, such as a servlet container. A Web service that uses a messaging provider
and is deployed in a container has the capability of doing one-way messaging,
meaning that it can receive a request as a one-way message and can return a
response some time later as another one-way message.

Because of the features that a messaging provider can supply, JAXM can some-
times be a better choice for SOAP messaging than JAX-RPC. The following list
includes features that JAXM can provide and that RPC, including JAX-RPC,
does not generally provide:

• One-way (asynchronous) messaging

• Routing of a message to more than one party

• Reliable messaging with features such as guaranteed delivery

GETTING A CONNECTION 29
A SOAPMessage object represents an XML document that is a SOAP message. A
SOAPMessage object always has a required SOAP part, and it may also have one
or more attachment parts. The SOAP part must always have a SOAPEnvelope

object, which must in turn always contain a SOAPBody object. The SOAPEnve-

lope object may also contain a SOAPHeader object, to which one or more head-
ers can be added.

The SOAPBody object can hold XML fragments as the content of the message
being sent. If you want to send content that is not in XML format or that is an
entire XML document, your message will need to contain an attachment part in
addition to the SOAP part. There is no limitation on the content in the attach-
ment part, so it can include images or any other kind of content, including XML
fragments and documents.

Getting a Connection
The first thing a JAXM client needs to do is get a connection, either a SOAPCon-

nection object or a ProviderConnection object.

Getting a Point-to-Point Connection
A standalone client is limited to using a SOAPConnection object, which is a
point-to-point connection that goes directly from the sender to the recipient. All
JAXM connections are created by a connection factory. In the case of a SOAPCon-

nection object, the factory is a SOAPConnectionFactory object. A client
obtains the default implementation for SOAPConnectionFactory by calling the
following line of code.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

The client can use factory to create a SOAPConnection object.

SOAPConnection con = factory.createConnection();

Getting a Connection to the Messaging
Provider
In order to use a messaging provider, an application must obtain a ProviderCon-

nection object, which is a connection to the messaging provider rather than to a

30 INTRODUCTION TO WEB SERVICES
specified recipient. There are two ways to get a ProviderConnection object, the
first being similar to the way a standalone client gets a SOAPConnection object.
This way involves obtaining an instance of the default implementation for Pro-
viderConnectionFactory, which is then used to create the connection.

ProviderConnectionFactory pcFactory =
ProviderConnectionFactory.newInstance();

ProviderConnection pcCon = pcFactory.createConnection();

The variable pcCon represents a connection to the default implementation of a
JAXM messaging provider.

The second way to create a ProviderConnection object is to retrieve a Pro-

viderConnectionFactory object that is implemented to create connections to a
specific messaging provider. The following code demonstrates getting such a
ProviderConnectionFactory object and using it to create a connection. The first
two lines use the Java Naming and Directory Interface™ (JNDI) API to retrieve
the appropriate ProviderConnectionFactory object from the naming service
where it has been registered with the name “CoffeeBreakProvider”. When this
logical name is passed as an argument, the method lookup returns the Provider-

ConnectionFactory object to which the logical name was bound. The value
returned is a Java Object, which must be narrowed to a ProviderConnection-

Factory object so that it can be used to create a connection. The third line uses a
JAXM method to actually get the connection.

Context ctx = getInitialContext();
ProviderConnectionFactory pcFactory =
(ProviderConnectionFactory)ctx.lookup("CoffeeBreakProvider");

ProviderConnection con = pcFactory.createConnection();

The ProviderConnection instance con represents a connection to The Coffee
Break’s messaging provider.

Creating a Message
As is true with connections, messages are created by a factory. And similar to the
case with connection factories, MessageFactory objects can be obtained in two
ways. The first way is to get an instance of the default implementation for the

POPULATING A MESSAGE 31
MessageFactory class. This instance can then be used to create a basic SOAPMes-

sage object.

MessageFactory messageFactory = MessageFactory.newInstance();
SOAPMessage m = messageFactory.createMessage();

All of the SOAPMessage objects that messageFactory creates, including m in the
previous line of code, will be basic SOAP messages. This means that they will
have no pre-defined headers.

Part of the flexibility of the JAXM API is that it allows a specific usage of a
SOAP header. For example, protocols such as ebXML can be built on top of
SOAP messaging to provide the implementation of additional headers, thus
enabling additional functionality. This usage of SOAP by a given standards
group or industry is called a profile. (See the JAXM tutorial section
Profiles, page 492 for more information on profiles.)

In the second way to create a MessageFactory object, you use the Provider-

Connection method createMessageFactory and give it a profile. The SOAP-

Message objects produced by the resulting MessageFactory object will support
the specified profile. For example, in the following code fragment, in which
schemaURI is the URI of the schema for the desired profile, m2 will support the
messaging profile that is supplied to createMessageFactory.

MessageFactory messageFactory2 =
con.createMessageFactory(<schemaURI>);

SOAPMessage m2 = messageFactory2.createMessage();

Each of the new SOAPMessage objects m and m2 automatically contains the
required elements SOAPPart, SOAPEnvelope, and SOAPBody, plus the optional
element SOAPHeader (which is included for convenience). The SOAPHeader and
SOAPBody objects are initially empty, and the following sections will illustrate
some of the typical ways to add content.

Populating a Message
Content can be added to the SOAPPart object, to one or more AttachmentPart

objects, or to both parts of a message.

32 INTRODUCTION TO WEB SERVICES
Populating the SOAP Part of a Message
As stated earlier, all messages have a SOAPPart object, which has a SOAPEnve-

lope object containing a SOAPHeader object and a SOAPBody object. One way to
add content to the SOAP part of a message is to create a SOAPHeaderElement

object or a SOAPBodyElement object and add an XML fragment that you build
with the method SOAPElement.addTextNode. The first three lines of the follow-
ing code fragment access the SOAPBody object body, which is used to create a
new SOAPBodyElement object and add it to body. The argument passed to the
createName method is a Name object identifying the SOAPBodyElement being
added. The last line adds the XML string passed to the method addTextNode.

SOAPPart sp = m.getSOAPPart();
SOAPEnvelope envelope = sp.getSOAPEnvelope();
SOAPBody body = envelope.getSOAPBody();
SOAPBodyElement bodyElement = body.addBodyElement(

envelope.createName("text", "hotitems",
"http://hotitems.com/products/gizmo");

bodyElement.addTextNode("some-xml-text");

Another way is to add content to the SOAPPart object by passing it a
javax.xml.transform.Source object, which may be a SAXSource, DOMSource,
or StreamSource object. The Source object contains content for the SOAP part
of the message and also the information needed for it to act as source input. A
StreamSource object will contain the content as an XML document; the SAX-

Source or DOMSource object will contain content and instructions for transform-
ing it into an XML document.

The following code fragments illustrates adding content as a DOMSource object.
The first step is to get the SOAPPart object from the SOAPMessage object. Next
the code uses methods from the JAXP API to build the XML document to be
added. It uses a DocumentBuilderFactory object to get a DocumentBuilder

object. Then it parses the given file to produce the document that will be used to

POPULATING A MESSAGE 33
initialize a new DOMSource object. Finally, the code passes the DOMSource object
domSource to the method SOAPPart.setContent.

SOAPPart soapPart = message.getSOAPPart();

DocumentBuilderFactory dbf=
DocumentBuilderFactory.newInstance();

DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse("file:///foo.bar/soap.xml");
DOMSource domSource = new DOMSource(doc);

soapPart.setContent(domSource);

Populating the Attachment Part of a Message
A Message object may have no attachment parts, but if it is to contain anything
that is not in XML format, that content must be contained in an attachment part.
There may be any number of attachment parts, and they may contain anything
from plain text to image files. In the following code fragment, the content is an
image in a JPEG file, whose URL is used to initialize the javax.activa-

tion.DataHandler object dh. The Message object m creates the Attachment-

Part object attachPart, which is initialized with the data handler containing
the URL for the image. Finally, the message adds attachPart to itself.

URL url = new URL("http://foo.bar/img.jpg");
DataHandler dh = new DataHandler(url);
AttachmentPart attachPart = m.createAttachmentPart(dh);
m.addAttachmentPart(attachPart);

A SOAPMessage object can also give content to an AttachmentPart object by
passing an Object and its content type to the method createAttachmentPart.

AttachmentPart attachPart =
m.createAttachmentPart("content-string", "text/plain");

m.addAttachmentPart(attachPart);

A third alternative is to create an empty AttachmentPart object and then to pass
the AttachmentPart.setContent method an Object and its content type. In

34 INTRODUCTION TO WEB SERVICES
this code fragment, the Object is a ByteArrayInputStream initialized with a
jpeg image.

AttachmentPart ap = m.createAttachmentPart();
byte[] jpegData = ...;
ap.setContent(new ByteArrayInputStream(jpegData),

"image/jpeg");
m.addAttachmentPart(ap);

Sending a Message
Once you have populated a SOAPMessage object, you are ready to send it. A stan-
dalone client uses the SOAPConnection method call to send a message. This
method sends the message and then blocks until it gets back a response. The
arguments to the method call are the message being sent and a URL object that
contains the URL specifying the endpoint of the receiver. .

SOAPMessage response =
soapConnection.call(message, endpoint);

An application that is using a messaging provider uses the ProviderConnection
method send to send a message. This method sends the message asynchronously,
meaning that it sends the message and returns immediately. The response, if any,
will be sent as a separate operation at a later time. Note that this method takes
only one parameter, the message being sent. The messaging provider will use
header information to determine the destination.

providerConnection.send(message);

JAXR
The Java API for XML Registries (JAXR) provides a convenient way to access
standard business registries over the Internet. Business registries are often
described as electronic yellow pages because they contain listings of businesses
and the products or services the businesses offer. JAXR gives developers writing
applications in the Java programming language a uniform way to use business
registries that are based on open standards (such as ebXML) or industry consor-
tium-led specifications (such as UDDI).

Businesses can register themselves with a registry or discover other businesses
with which they might want to do business. In addition, they can submit material

USING JAXR 35
to be shared and search for material that others have submitted. Standards groups
have developed schemas for particular kinds of XML documents, and two busi-
nesses might, for example, agree to use the schema for their industry’s standard
purchase order form. Because the schema is stored in a standard business regis-
try, both parties can use JAXR to access it.

Registries are becoming an increasingly important component of Web services
because they allow businesses to collaborate with each other dynamically in a
loosely coupled way. Accordingly, the need for JAXR, which enables enterprises
to access standard business registries from the Java programming language, is
also growing.

See Chapter 13 for additional information about the JAXR technology, including
instructions for implementing a JAXR client to publish an organization and its
web services to a registry and to query a registry to find organizations and ser-
vices. The chapter also explains how to run the examples that are provided with
this tutorial.

Using JAXR
The following sections give examples of two of the typical ways a business reg-
istry is used. They are meant to give you an idea of how to use JAXR rather than
to be complete or exhaustive.

Registering a Business
An organization that uses the Java platform for its electronic business would use
JAXR to register itself in a standard registry. It would supply its name, a descrip-
tion of itself, and some classification concepts to facilitate searching for it. This
is shown in the following code fragment, which first creates the RegistrySer-

vice object rs and then uses it to create the BusinessLifeCycleManager object
lcm and the BusinessQueryManager object bqm. The business, a chain of coffee
houses called The Coffee Break, is represented by the Organization object org,
to which The Coffee Break adds its name, a description of itself, and its classifi-
cation within the North American Industry Classification System (NAICS).
Then org, which now contains the properties and classifications for The Coffee

36 INTRODUCTION TO WEB SERVICES
Break, is added to the Collection object orgs. Finally, orgs is saved by lcm,
which will manage the life cycle of the Organization objects contained in orgs.

RegistryService rs = connection.getRegistryService();

BusinessLifeCycleManager lcm =
rs.getBusinessLifeCycleManager();

BusinessQueryManager bqm =
rs.getBusinessQueryManager();

Organization org = lcm.createOrganization("The Coffee Break");
org.setDescription(

"Purveyor of only the finest coffees. Established 1895");

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName("ntis-gov:naics");

Classification classification =
(Classification)lcm.createClassification(cScheme,
"Snack and Nonalcoholic Beverage Bars", "722213");

Collection classifications = new ArrayList();
classifications.add(classification);

org.addClassifications(classifications);
Collection orgs = new ArrayList();
orgs.add(org);
lcm.saveOrganizations(orgs);

Searching a Registry
A business can also use JAXR to search a registry for other businesses. The fol-
lowing code fragment uses the BusinessQueryManager object bqm to search for
The Coffee Break. Before bqm can invoke the method findOrganizations, the
code needs to define the search criteria to be used. In this case, three of the possi-
ble six search parameters are supplied to findOrganizations; because null is
supplied for the third, fifth, and sixth parameters, those criteria are not used to
limit the search. The first, second, and fourth arguments are all Collection

objects, with findQualifiers and namePatterns being defined here. The only
element in findQualifiers is a String specifying that no organization be
returned unless its name is a case-sensitive match to one of the names in the
namePatterns parameter. This parameter, which is also a Collection object
with only one element, says that businesses with “Coffee” in their names are a
match. The other Collection object is classifications, which was defined

SAMPLE SCENARIO 37
when The Coffee Break registered itself. The previous code fragment, in which
the industry for The Coffee Break was provided, is an example of defining clas-
sifications.

BusinessQueryManager bqm = rs.getBusinessQueryManager();

//Define find qualifiers
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArrayList();
namePatterns.add("%Coffee%"); // Find orgs with name containing
//’Coffee’

//Find using only the name and the classifications
BulkResponse response = bqm.findOrganizations(findQualifiers,

namePatterns, null, classifications, null, null);
Collection orgs = response.getCollection();

JAXR also supports using an SQL query to search a registry. This is done using a
DeclarativeQueryManager object, as the following code fragment demon-
strates.

DeclarativeQueryManager dqm = rs.getDeclarativeQueryManager();
Query query = dqm.createQuery(Query.QUERY_TYPE_SQL,
"SELECT id FROM RegistryEntry WHERE name LIKE %Coffee% " +

"AND majorVersion >= 1 AND " +
"(majorVersion >= 2 OR minorVersion >= 3)");

BulkResponse response2 = dqm.executeQuery(query);

The BulkResponse object response2 will contain a value for id (a uuid) for
each entry in RegistryEntry that has “Coffee” in its name and that also has a
version number of 1.3 or greater.

To ensure interoperable communication between a JAXR client and a registry
implementation, the messaging is done using JAXM. This is done completely
behind the scenes, so as a user of JAXR, you are not even aware of it.

Sample Scenario
The following scenario is an example of how the Java APIs for XML might be
used and how they work together. Part of the richness of the Java APIs for XML
is that in many cases they offer alternate ways of doing something and thus let
you tailor your code to meet individual needs. This section will point out some

38 INTRODUCTION TO WEB SERVICES
instances in which an alternate API could have been used and will also give the
reasons why one API or the other might be a better choice.

Scenario
Suppose that the owner of a chain of coffee houses, called The Coffee Break,
wants to expand by selling coffee online. He instructs his business manager to
find some new coffee suppliers, get their wholesale prices, and then arrange for
orders to be placed as the need arises. The Coffee Break can analyze the prices
and decide which new coffees it wants to carry and which companies it wants to
buy them from.

Discovering New Distributors
The business manager assigns the task of finding potential new sources of coffee
to the company’s software engineer. She decides that the best way to locate new
coffee suppliers is to search a Universal Description, Discovery, and Integration
(UDDI) registry, where The Coffee Break has already registered itself.

The engineer uses JAXR to send a query searching for wholesale coffee suppli-
ers. The JAXR implementation uses JAXM behind the scenes to send the query
to the registry, but this is totally transparent to the engineer.

The UDDI registry will receive the query and apply the search criteria transmit-
ted in the JAXR code to the information it has about the organizations registered
with it. When the search is completed, the registry will send back information on
how to contact the wholesale coffee distributors that met the specified criteria.
Although the registry uses JAXM behind the scenes to transmit the information,
the response the engineer gets back is JAXR code.

Requesting Price Lists
The engineer’s next step is to request price lists from each of the coffee distribu-
tors. She has obtained a WSDL description for each one, which tells her the pro-
cedure to call to get prices and also the URI where the request is to be sent. Her
code makes the appropriate remote procedure calls using JAX-RPC API and gets
back the responses from the distributors. The Coffee Break has been doing busi-
ness with one distributor for a long time and has made arrangements with it to
exchange JAXM messages using agreed-upon XML schemas. Therefore, for this

CONCLUSION 39
distributor, the engineer’s code uses JAXM API to request current prices, and the
distributor returns the price list in a JAXM message.

Comparing Prices and Ordering Coffees
Upon receiving the response to her request for prices, the engineer processes the
price lists using SAX. She uses SAX rather than DOM because for simply com-
paring prices, it is more efficient. (To modify the price list, she would have
needed to use DOM.) After her application gets the prices quoted by the differ-
ent vendors, it compares them and displays the results.

When the owner and business manager decide which suppliers to do business
with, based on the engineer’s price comparisons, they are ready to send orders to
the suppliers. The orders to new distributors are sent via JAX-RPC; orders to the
established distributor are sent via JAXM. Each supplier, whether using JAX-
RPC or JAXM, will respond by sending a confirmation with the order number
and shipping date.

Selling Coffees on the Internet
Meanwhile, The Coffee Break has been preparing for its expanded coffee line. It
will need to publish a price list/order form in HTML for its Web site. But before
that can be done, the company needs to determine what prices it will charge. The
engineer writes an application that will multiply each wholesale price by 135%
to arrive at the price that The Coffee Break will charge. With a few modifica-
tions, the list of retail prices will become the online order form.

The engineer uses JavaServer Pages™ (JSP™) technology to create an HTML
order form that customers can use to order coffee online. From the JSP page, she
gets the name and price of each coffee, and then she inserts them into an HTML
table on the JSP page. The customer enters the quantity of each coffee desired
and clicks the “Submit” button to send the order.

Conclusion
Although this scenario is simplified for the sake of brevity, it illustrates how
XML technologies can be used in the world of Web services. With the availabil-
ity of the Java APIs for XML and the J2EE platform, creating Web services and
writing applications that use them have both gotten easier.

Chapter 19 demonstrates a simple implementation of this scenario.

40 INTRODUCTION TO WEB SERVICES

2

41
Understanding XML
Eric Armstrong

THIS chapter describes the Extensible Markup Language (XML) and its
related specifications.

Introduction to XML
This section covers the basics of XML. The goal is to give you just enough infor-
mation to get started, so you understand what XML is all about. (You’ll learn
about XML in later sections of the tutorial.) We then outline the major features
that make XML great for information storage and interchange, and give you a
general idea of how XML can be used.

What Is XML?
XML is a text-based markup language that is fast becoming the standard for data
interchange on the Web. As with HTML, you identify data using tags (identifiers
enclosed in angle brackets, like this: <...>). Collectively, the tags are known as
“markup”.

But unlike HTML, XML tags identify the data, rather than specifying how to dis-
play it. Where an HTML tag says something like “display this data in bold font”
(...), an XML tag acts like a field name in your program. It puts a label
on a piece of data that identifies it (for example: <message>...</message>).

42 UNDERSTANDING XML
Note: Since identifying the data gives you some sense of what means (how to inter-
pret it, what you should do with it), XML is sometimes described as a mechanism
for specifying the semantics (meaning) of the data.

In the same way that you define the field names for a data structure, you are free
to use any XML tags that make sense for a given application. Naturally, though,
for multiple applications to use the same XML data, they have to agree on the tag
names they intend to use.

Here is an example of some XML data you might use for a messaging applica-
tion:

<message>
<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Cool</subject>
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

Note: Throughout this tutorial, we use boldface text to highlight things we want to
bring to your attention. XML does not require anything to be in bold!

The tags in this example identify the message as a whole, the destination and
sender addresses, the subject, and the text of the message. As in HTML, the <to>
tag has a matching end tag: </to>. The data between the tag and its matching
end tag defines an element of the XML data. Note, too, that the content of the
<to> tag is entirely contained within the scope of the <message>..</message>

tag. It is this ability for one tag to contain others that gives XML its ability to
represent hierarchical data structures.

Once again, as with HTML, whitespace is essentially irrelevant, so you can for-
mat the data for readability and yet still process it easily with a program. Unlike
HTML, however, in XML you could easily search a data set for messages con-
taining “cool” in the subject, because the XML tags identify the content of the
data, rather than specifying its representation.

WHAT IS XML? 43
Tags and Attributes
Tags can also contain attributes—additional information included as part of the
tag itself, within the tag’s angle brackets. The following example shows an email
message structure that uses attributes for the "to", "from", and "subject"

fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<text>
How many ways is XML cool? Let me count the ways...

</text>
</message>

As in HTML, the attribute name is followed by an equal sign and the attribute
value, and multiple attributes are separated by spaces. Unlike HTML, however,
in XML commas between attributes are not ignored—if present, they generate
an error.

Since you could design a data structure like <message> equally well using either
attributes or tags, it can take a considerable amount of thought to figure out
which design is best for your purposes. Designing an XML Data
Structure (page 63), includes ideas to help you decide when to use attributes and
when to use tags.

Empty Tags
One really big difference between XML and HTML is that an XML document is
always constrained to be well formed. There are several rules that determine
when a document is well-formed, but one of the most important is that every tag
has a closing tag. So, in XML, the </to> tag is not optional. The <to> element is
never terminated by any tag other than </to>.

Note: Another important aspect of a well-formed document is that all tags are com-
pletely nested. So you can have <message>..<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>. A complete list of requirements is con-
tained in the list of XML Frequently Asked Questions (FAQ) at
http://www.ucc.ie/xml/#FAQ-VALIDWF. (This FAQ is on the w3c “Recommended
Reading” list at http://www.w3.org/XML/.)

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

44 UNDERSTANDING XML
Sometimes, though, it makes sense to have a tag that stands by itself. For exam-
ple, you might want to add a "flag" tag that marks message as important. A tag
like that doesn’t enclose any content, so it’s known as an “empty tag”. You can
create an empty tag by ending it with /> instead of >. For example, the following
message contains such a tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<flag/>
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

Note: The empty tag saves you from having to code <flag></flag> in order to have
a well-formed document. You can control which tags are allowed to be empty by
creating a Document Type Definition, or DTD. We’ll talk about that in a few
moments. If there is no DTD, then the document can contain any kinds of tags you
want, as long as the document is well-formed.

Comments in XML Files
XML comments look just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
subject="XML Is Really Cool">

<!-- This is a comment -->
<text>

How many ways is XML cool? Let me count the ways...
</text>

</message>

The XML Prolog
To complete this journeyman’s introduction to XML, note that an XML file
always starts with a prolog. The minimal prolog contains a declaration that iden-
tifies the document as an XML document, like this:

<?xml version="1.0"?>

WHAT IS XML? 45
The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>,
except that it uses <?..?> and it may contain the following attributes:

version
Identifies the version of the XML markup language used in the data. This
attribute is not optional.

encoding
Identifies the character set used to encode the data. “ISO-8859-1” is “Latin-
1” the Western European and English language character set. (The default is
compressed Unicode: UTF-8.)

standalone
Tells whether or not this document references an external entity or an exter-
nal data type specification (see below). If there are no external references,
then “yes” is appropriate

The prolog can also contain definitions of entities (items that are inserted when
you reference them from within the document) and specifications that tell which
tags are valid in the document, both declared in a Document Type Definition
(DTD) that can be defined directly within the prolog, as well as with pointers to
external specification files. But those are the subject of later tutorials. For more
information on these and many other aspects of XML, see the Recommended
Reading list of the w3c XML page at http://www.w3.org/XML/.

Note: The declaration is actually optional. But it’s a good idea to include it when-
ever you create an XML file. The declaration should have the version number, at a
minimum, and ideally the encoding as well. That standard simplifies things if the
XML standard is extended in the future, and if the data ever needs to be localized
for different geographical regions.

Everything that comes after the XML prolog constitutes the document’s content.

http://www.w3.org/XML/

46 UNDERSTANDING XML
Processing Instructions
An XML file can also contain processing instructions that give commands or
information to an application that is processing the XML data. Processing
instructions have the following format:

 <?target instructions?>

where the target is the name of the application that is expected to do the process-
ing, and instructions is a string of characters that embodies the information or
commands for the application to process.

Since the instructions are application specific, an XML file could have multiple
processing instructions that tell different applications to do similar things,
though in different ways. The XML file for a slideshow, for example, could have
processing instructions that let the speaker specify a technical or executive-level
version of the presentation. If multiple presentation programs were used, the pro-
gram might need multiple versions of the processing instructions (although it
would be nicer if such applications recognized standard instructions).

Note: The target name “xml” (in any combination of upper or lowercase letters) is
reserved for XML standards. In one sense, the declaration is a processing instruc-
tion that fits that standard. (However, when you’re working with the parser later,
you’ll see that the method for handling processing instructions never sees the dec-
laration.)

Why Is XML Important?
There are a number of reasons for XML’s surging acceptance. This section lists a
few of the most prominent.

Plain Text
Since XML is not a binary format, you can create and edit files with anything
from a standard text editor to a visual development environment. That makes it
easy to debug your programs, and makes it useful for storing small amounts of
data. At the other end of the spectrum, an XML front end to a database makes it
possible to efficiently store large amounts of XML data as well. So XML pro-
vides scalability for anything from small configuration files to a company-wide
data repository.

WHY IS XML IMPORTANT? 47
Data Identification
XML tells you what kind of data you have, not how to display it. Because the
markup tags identify the information and break up the data into parts, an email
program can process it, a search program can look for messages sent to particu-
lar people, and an address book can extract the address information from the rest
of the message. In short, because the different parts of the information have been
identified, they can be used in different ways by different applications.

Stylability
When display is important, the stylesheet standard, XSL (page 55), lets you dic-
tate how to portray the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:

1. Start a new line.

2. Display “To:” in bold, followed by a space

3. Display the destination data.

Which produces:

To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn’t be
able to process the data with search programs and address-extraction programs
and the like. More importantly, since XML is inherently style-free, you can use a
completely different stylesheet to produce output in postscript, TEX, PDF, or
some new format that hasn’t even been invented yet. That flexibility amounts to
what one author described as “future-proofing” your information. The XML
documents you author today can be used in future document-delivery systems
that haven’t even been imagined yet.

Inline Reusability
One of the nicer aspects of XML documents is that they can be composed from
separate entities. You can do that with HTML, but only by linking to other docu-
ments. Unlike HTML, XML entities can be included “in line” in a document.
The included sections look like a normal part of the document—you can search

48 UNDERSTANDING XML
the whole document at one time or download it in one piece. That lets you mod-
ularize your documents without resorting to links. You can single-source a sec-
tion so that an edit to it is reflected everywhere the section is used, and yet a
document composed from such pieces looks for all the world like a one-piece
document.

Linkability
Thanks to HTML, the ability to define links between documents is now regarded
as a necessity. The next section of this tutorial, XML and Related Specs: Digest-
ing the Alphabet Soup (page 51), discusses the link-specification initiative. This
initiative lets you define two-way links, multiple-target links, “expanding” links
(where clicking a link causes the targeted information to appear inline), and links
between two existing documents that are defined in a third.

Easily Processed
As mentioned earlier, regular and consistent notation makes it easier to build a
program to process XML data. For example, in HTML a <dt> tag can be delim-
ited by </dt>, another <dt>, <dd>, or </dl>. That makes for some difficult pro-
gramming. But in XML, the <dt> tag must always have a </dt> terminator, or
else it will be defined as a <dt/> tag. That restriction is a critical part of the con-
straints that make an XML document well-formed. (Otherwise, the XML parser
won’t be able to read the data.) And since XML is a vendor-neutral standard, you
can choose among several XML parsers, any one of which takes the work out of
processing XML data.

Hierarchical
Finally, XML documents benefit from their hierarchical structure. Hierarchical
document structures are, in general, faster to access because you can drill down
to the part you need, like stepping through a table of contents. They are also eas-
ier to rearrange, because each piece is delimited. In a document, for example,
you could move a heading to a new location and drag everything under it along
with the heading, instead of having to page down to make a selection, cut, and
then paste the selection into a new location.

HOW CAN YOU USE XML? 49
How Can You Use XML?
 There are several basic ways to make use of XML:

• Traditional data processing, where XML encodes the data for a program to
process

• Document-driven programming, where XML documents are containers
that build interfaces and applications from existing components

• Archiving—the foundation for document-driven programming, where the
customized version of a component is saved (archived) so it can be used
later

• Binding, where the DTD or schema that defines an XML data structure is
used to automatically generate a significant portion of the application that
will eventually process that data

Traditional Data Processing
XML is fast becoming the data representation of choice for the Web. It’s terrific
when used in conjunction with network-centric programs written in the Java™
programming language that send and retrieve information. So a client/server
application, for example, could transmit XML-encoded data back and forth
between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example,
should an e-mail program expect to see tags named <FIRST> and <LAST>, or
<FIRSTNAME> and <LASTNAME>) The need for common standards will generate a
lot of industry-specific standardization efforts in the years ahead. In the mean-
time, mechanisms that let you “translate” the tags in an XML document will be
important. Such mechanisms include projects like the RDF (page 60) initiative,
which defines “meat tags”, and the XSL (page 55) specification, which lets you
translate XML tags into other XML tags.

Document-Driven Programming (DDP)
The newest approach to using XML is to construct a document that describes
how an application page should look. The document, rather than simply being
displayed, consists of references to user interface components and business-logic
components that are “hooked together” to create an application on the fly.

50 UNDERSTANDING XML
Of course, it makes sense to utilize the Java platform for such components. Both
JavaBeans™ components for interfaces and Enterprise JavaBeans™ components
for business logic can be used to construct such applications. Although none of
the efforts undertaken so far are ready for commercial use, much preliminary
work has already been done.

Note: The Java programming language is also excellent for writing XML-process-
ing tools that are as portable as XML. Several Visual XML editors have been writ-
ten for the Java platform. For a listing of editors, processing tools, and other XML
resources, see the “Software” section of Robin Cover’s SGML/XML Web Page at
http://www.oasis-open.org/cover/.

Binding
Once you have defined the structure of XML data using either a DTD or the one
of the schema standards, a large part of the processing you need to do has
already been defined. For example, if the schema says that the text data in a
<date> element must follow one of the recognized date formats, then one aspect
of the validation criteria for the data has been defined—it only remains to write
the code. Although a DTD specification cannot go the same level of detail, a
DTD (like a schema) provides a grammar that tells which data structures can
occur, in what sequences. That specification tells you how to write the high-level
code that processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you
need to process it can just as easily be generated automatically. That process is
known as binding—creating classes that recognize and process different data
elements by processing the specification that defines those elements. As time
goes on, you should find that you are using the data specification to generate sig-
nificant chunks of code, so you can focus on the programming that is unique to
your application.

Archiving
The Holy Grail of programming is the construction of reusable, modular compo-
nents. Ideally, you’d like to take them off the shelf, customize them, and plug
them together to construct an application, with a bare minimum of additional
coding and additional compilation.

http://www.oasis-open.org/cover/

XML AND RELATED SPECS: DIGESTING THE ALPHABET SOUP 51
The basic mechanism for saving information is called archiving. You archive a
component by writing it to an output stream in a form that you can reuse later.
You can then read it in and instantiate it using its saved parameters. (For exam-
ple, if you saved a table component, its parameters might be the number of rows
and columns to display.) Archived components can also be shuffled around the
Web and used in a variety of ways.

When components are archived in binary form, however, there are some limita-
tions on the kinds of changes you can make to the underlying classes if you want
to retain compatibility with previously saved versions. If you could modify the
archived version to reflect the change, that would solve the problem. But that’s
hard to do with a binary object. Such considerations have prompted a number of
investigations into using XML for archiving. But if an object’s state were
archived in text form using XML, then anything and everything in it could be
changed as easily as you can say, “search and replace”.

XML’s text-based format could also make it easier to transfer objects between
applications written in different languages. For all of these reasons, XML-based
archiving is likely to become an important force in the not-too-distant future.

Summary
XML is pretty simple, and very flexible. It has many uses yet to be discovered—
we are just beginning to scratch the surface of its potential. It is the foundation
for a great many standards yet to come, providing a common language that dif-
ferent computer systems can use to exchange data with one another. As each
industry-group comes up with standards for what they want to say, computers
will begin to link to each other in ways previously unimaginable.

For more information on the background and motivation of XML, see this great
article in Scientific American at

http://www.sciam.com/1999/0599issue/0599bosak.html.

XML and Related Specs: Digesting the
Alphabet Soup

Now that you have a basic understanding of XML, it makes sense to get a high-
level overview of the various XML-related acronyms and what they mean. There
is a lot of work going on around XML, so there is a lot to learn.

http://www.sciam.com/1999/0599issue/0599bosak.html

52 UNDERSTANDING XML
The current APIs for accessing XML documents either serially or in random
access mode are, respectively, SAX (page 53) and DOM (page 53). The specifi-
cations for ensuring the validity of XML documents are DTD (page 54) (the
original mechanism, defined as part of the XML specification) and various
Schema Standards (page 56) proposals (newer mechanisms that use XML syntax
to do the job of describing validation criteria).

Other future standards that are nearing completion include the XSL (page 55)
standard—a mechanism for setting up translations of XML documents (for
example to HTML or other XML) and for dictating how the document is ren-
dered. The transformation part of that standard, XSLT (+XPATH) (page 55), is
completed and covered in this tutorial. Another effort nearing completion is the
XML Link Language specification (XML Linking, page 58), which enables
links between XML documents.

Those are the major initiatives you will want to be familiar with. This section
also surveys a number of other interesting proposals, including the HTML-
lookalike standard, XHTML (page 59), and the meta-standard for describing the
information an XML document contains, RDF (page 60). There are also stan-
dards efforts that extend XML’s capabilities, such as XLink and XPointer.

Finally, there are a number of interesting standards and standards-proposals that
build on XML, including Synchronized Multimedia Integration Language
(SMIL, page 61), Mathematical Markup Language (MathML, page 61), Scal-
able Vector Graphics (SVG, page 62), and DrawML (page 62), as well as a num-
ber of eCommerce standards.

The remainder of this section gives you a more detailed description of these ini-
tiatives. To help keep things straight, it’s divided into:

• Basic Standards (page 53)

• Schema Standards (page 56)

• Linking and Presentation Standards (page 58)

• Knowledge Standards (page 60)

• Standards That Build on XML (page 61)

Skim the terms once, so you know what’s here, and keep a copy of this document
handy so you can refer to it whenever you see one of these terms in something
you’re reading. Pretty soon, you’ll have them all committed to memory, and
you’ll be at least “conversant” with XML!

BASIC STANDARDS 53
Basic Standards
These are the basic standards you need to be familiar with. They come up in
pretty much any discussion of XML.

SAX
Simple API for XML

This API was actually a product of collaboration on the XML-DEV mailing list,
rather than a product of the W3C. It’s included here because it has the same
“final” characteristics as a W3C recommendation.

You can also think of this standard as the “serial access” protocol for XML. This
is the fast-to-execute mechanism you would use to read and write XML data in a
server, for example. This is also called an event-driven protocol, because the
technique is to register your handler with a SAX parser, after which the parser
invokes your callback methods whenever it sees a new XML tag (or encounters
an error, or wants to tell you anything else).

For more information on the SAX protocol, see Simple API for
XML (page 125).

DOM
Document Object Model

The Document Object Model protocol converts an XML document into a collec-
tion of objects in your program. You can then manipulate the object model in any
way that makes sense. This mechanism is also known as the “random access”
protocol, because you can visit any part of the data at any time. You can then
modify the data, remove it, or insert new data. For more information on the
DOM specification, see Document Object Model (page 211).

JDOM and dom4j
While the Document Object Model (DOM) provides a lot of power for docu-
ment-oriented processing, it doesn’t provide much in the way of object-oriented
simplification. Java developers who are processing more data-oriented structures
— rather than books, articles, and other full-fledged documents — frequently
find that object-oriented APIs like JDOM and dom4j are easier to use and more
suited to their needs.

54 UNDERSTANDING XML
Here are the important differences to understand when choosing between the
two:

• JDOM is somewhat cleaner, smaller API. Where “coding style” is an
important consideration, JDOM is a good choice.

• JDOM is a Java Community ProcessSM (JCPSM) initiative. When com-
pleted, it will be an endorsed standard.

• dom4j is a smaller, faster implementation that has been in wide use for a
number of years.

• dom4j is a factory-based implementation. That makes it easier to modify
for complex, special-purpose applications. At the time of this writing,
JDOM does not yet use a factory to instantiate an instance of the parser
(although the standard appears to be headed in that direction). So, with
JDOM, you always get the original parser. (That’s fine for the majority of
applications, but may not be appropriate if your application has special
needs.)

For more information on JDOM, see http://www.jdom.org/.

For more information on dom4j, see http://dom4j.org/.

DTD
Document Type Definition

The DTD specification is actually part of the XML specification, rather than a
separate entity. On the other hand, it is optional—you can write an XML docu-
ment without it. And there are a number of Schema Standards (page 56) propos-
als that offer more flexible alternatives. So it is treated here as though it were a
separate specification.

A DTD specifies the kinds of tags that can be included in your XML document,
and the valid arrangements of those tags. You can use the DTD to make sure you
don’t create an invalid XML structure. You can also use it to make sure that the
XML structure you are reading (or that got sent over the net) is indeed valid.

Unfortunately, it is difficult to specify a DTD for a complex document in such a
way that it prevents all invalid combinations and allows all the valid ones. So
constructing a DTD is something of an art. The DTD can exist at the front of the
document, as part of the prolog. It can also exist as a separate entity, or it can be
split between the document prolog and one or more additional entities.

http://dom4j.org/
http://www.jdom.org/

BASIC STANDARDS 55
However, while the DTD mechanism was the first method defined for specifying
valid document structure, it was not the last. Several newer schema specifica-
tions have been devised. You’ll learn about those momentarily.

For more information, see Creating a Document Type Definition
(DTD) (page 168).

Namespaces
The namespace standard lets you write an XML document that uses two or more
sets of XML tags in modular fashion. Suppose for example that you created an
XML-based parts list that uses XML descriptions of parts supplied by other
manufacturers (online!). The “price” data supplied by the subcomponents would
be amounts you want to total up, while the “price” data for the structure as a
whole would be something you want to display. The namespace specification
defines mechanisms for qualifying the names so as to eliminate ambiguity. That
lets you write programs that use information from other sources and do the right
things with it.

The latest information on namespaces can be found at
http://www.w3.org/TR/REC-xml-names.

XSL
Extensible Stylesheet Language

The XML standard specifies how to identify data, not how to display it. HTML,
on the other hand, told how things should be displayed without identifying what
they were. The XSL standard has two parts, XSLT (the transformation standard,
described next) and XSL-FO (the part that covers formatting objects, also known
as flow objects). XSL-FO gives you the ability to define multiple areas on a page
and then link them together. When a text stream is directed at the collection, it
fills the first area and then “flows” into the second when the first area is filled.
Such objects are used by newsletters, catalogs, and periodical publications.

The latest W3C work on XSL is at http://www.w3.org/TR/WD-xsl.

XSLT (+XPATH)
Extensible Stylesheet Language for Transformations

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/WD-xsl

56 UNDERSTANDING XML
The XSLT transformation standard is essentially a translation mechanism that
lets you specify what to convert an XML tag into so that it can be displayed—for
example, in HTML. Different XSL formats can then be used to display the same
data in different ways, for different uses. (The XPATH standard is an addressing
mechanism that you use when constructing transformation instructions, in order
to specify the parts of the XML structure you want to transform.)

For more information, see XML Stylesheet Language for
Transformations (page 289).

Schema Standards
A DTD makes it possible to validate the structure of relatively simple XML doc-
uments, but that’s as far as it goes.

A DTD can’t restrict the content of elements, and it can’t specify complex rela-
tionships. For example, it is impossible to specify with a DTD that a <heading>
for a <book> must have both a <title> and an <author>, while a <heading> for a
<chapter> only needs a <title>. In a DTD, once you only get to specify the struc-
ture of the <heading> element one time. There is no context-sensitivity.

This issue stems from the fact that a DTD specification is not hierarchical. For a
mailing address that contained several “parsed character data” (PCDATA) ele-
ments, for example, the DTD might look something like this:

<!ELEMENT mailAddress (name, address, zipcode)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>

As you can see, the specifications are linear. That fact forces you to come up
with new names for similar elements in different settings. So if you wanted to
add another “name” element to the DTD that contained the <firstname>, <mid-
dleInitial>, and <lastName>, then you would have to come up with another iden-
tifier. You could not simply call it “name” without conflicting with the <name>
element defined for use in a <mailAddress>.

Another problem with the non hierarchical nature of DTD specifications is that it
is not clear what comments are meant to explain. A comment at the top like <!-

- Address used for mailing via the postal system --> would apply to
all of the elements that constitute a mailing address. But a comment like <!--

Addressee --> would apply to the name element only. On the other hand, a
comment like <!-- A 5-digit string --> would apply specifically to the

SCHEMA STANDARDS 57
#PCDATA part of the zipcode element, to describe the valid formats. Finally,
DTDs do not allow you to formally specify field-validation criteria, such as the
5-digit (or 5 and 4) limitation for the zipcode field.

Finally, a DTD uses syntax which substantially different from XML, so it can’t
be processed with a standard XML parser. That means you can’t read a DTD into
a DOM, for example, modify it, and then write it back out again.

To remedy these shortcomings, a number of proposals have been made for a
more database-like, hierarchical “schema” that specifies validation criteria. The
major proposals are shown below.

XML Schema
A large, complex standard that has two parts. One part specifies structure rela-
tionships. (This is the largest and most complex part.) The other part specifies
mechanisms for validating the content of XML elements by specifying a (poten-
tially very sophisticated) datatype for each element. The good news is that XML
Schema for Structures lets you specify any kind of relationship you can conceive
of. The bad news is that it takes a lot of work to implement, and it takes a bit of
learning to use. Most of the alternatives provide for simpler structure definitions,
while incorporating the XML Schema datatype standard.

For more information on the XML Schema, see the W3C specs XML Schema
(Structures) and XML Schema (Datatypes), as well as other information accessi-
ble at http://www.w3c.org/XML/Schema.

RELAX NG
Regular Language description for XML

Simpler than XML Structure Schema, is an emerging standard under the aus-
pices of OASIS (Organization for the Advancement of Structured Information
Systems). RELAX NG use regular expression patterns to express constraints on
structure relationships, and it is designed to work with the XML Schema
datatyping mechanism to express content constraints. This standard also uses
XML syntax, and it includes a DTD to RELAX converter. (“NG” stands for
“Next Generation”. It’s a newer version of the RELAX schema mechanism that
integrates TREX.)

For more information on RELAX NG, see http://www.oasis-open.org/commit-
tees/relax-ng/.

http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.w3c.org/XML/Schema

58 UNDERSTANDING XML
TREX
Tree Regular Expressions for XML

A means of expressing validation criteria by describing a pattern for the struc-
ture and content of an XML document. Now part of the RELAX NG specifica-
tion.

For more information on TREX, see http://www.thaiopensource.com/trex/.

SOX
Schema for Object-oriented XML

SOX is a schema proposal that includes extensible data types, namespaces, and
embedded documentation.

For more information on SOX, see http://www.w3.org/TR/NOTE-SOX.

Schematron
Schema for Object-oriented XML

An assertion-based schema mechanism that allows for sophisticated validation.

For more information on the Schematron validation mechanism, see
http://www.ascc.net/xml/resource/schematron/schematron.html.

Linking and Presentation Standards
Arguably the two greatest benefits provided by HTML were the ability to link
between documents, and the ability to create simple formatted documents (and,
eventually, very complex formatted documents). The following standards aim at
preserving the benefits of HTML in the XML arena, and to adding additional
functionality, as well.

XML Linking
These specifications provide a variety of powerful linking mechanisms, and are
sure to have a big impact on how XML documents are used.

http://www.w3.org/TR/NOTE-SOX
http://www.thaiopensource.com/trex/
http://www.ascc.net/xml/resource/schematron/schematron.html

LINKING AND PRESENTATION STANDARDS 59
 XLink
The XLink protocol is a specification for handling links between XML doc-
uments. This specification allows for some pretty sophisticated linking,
including two-way links, links to multiple documents, “expanding” links
that insert the linked information into your document rather than replacing
your document with a new page, links between two documents that are cre-
ated in a third, independent document, and indirect links (so you can point to
an “address book” rather than directly to the target document—updating the
address book then automatically changes any links that use it).

XML Base
This standard defines an attribute for XML documents that defines a “base”
address, that is used when evaluating a relative address specified in the docu-
ment. (So, for example, a simple file name would be found in the base-
address directory.)

XPointer
In general, the XLink specification targets a document or document-segment
using its ID. The XPointer specification defines mechanisms for “addressing
into the internal structures of XML documents”, without requiring the
author of the document to have defined an ID for that segment. To quote the
spec, it provides for “reference to elements, character strings, and other parts
of XML documents, whether or not they bear an explicit ID attribute”.

For more information on the XML Linking standards, see
http://www.w3.org/XML/Linking.

XHTML
The XHTML specification is a way of making XML documents that look and act
like HTML documents. Since an XML document can contain any tags you care
to define, why not define a set of tags that look like HTML? That’s the thinking
behind the XHTML specification, at any rate. The result of this specification is a
document that can be displayed in browsers and also treated as XML data. The
data may not be quite as identifiable as “pure” XML, but it will be a heck of a lot
easier to manipulate than standard HTML, because XML specifies a good deal
more regularity and consistency.

For example, every tag in a well-formed XML document must either have an
end-tag associated with it or it must end in />. So you might see <p>...</p>, or
you might see <p/>, but you will never see <p> standing by itself. The upshot of
that requirement is that you never have to program for the weird kinds of cases

http://www.w3.org/XML/Linking

60 UNDERSTANDING XML
you see in HTML where, for example, a <dt> tag might be terminated by </DT>,
by another <DT>, by <dd>, or by </dl>. That makes it a lot easier to write code!

The XHTML specification is a reformulation of HTML 4.0 into XML. The latest
information is at http://www.w3.org/TR/xhtml1.

Knowledge Standards
When you start looking down the road five or six years, and visualize how the
information on the Web will begin to turn into one huge knowledge base (the
“semantic Web”). For the latest on the semantic Web, visit
http://www.w3.org/2001/sw/.

In the meantime, here are the fundamental standards you’ll want to know about:

RDF
Resource Description Framework

RDF is a standard for defining meta data -- information that describes what a
particular data item is, and specifies how it can be used. Used in conjunction
with the XHTML specification, for example, or with HTML pages, RDF could
be used to describe the content of the pages. For example, if your browser stored
your ID information as FIRSTNAME, LASTNAME, and EMAIL, an RDF description
could make it possible to transfer data to an application that wanted NAME and
EMAILADDRESS. Just think: One day you may not need to type your name and
address at every Web site you visit!

For the latest information on RDF, see http://www.w3.org/TR/REC-rdf-syn-

tax.

RDF Schema
RDF Schema allows the specification of consistency rules and additional infor-
mation that describe how the statements in a Resource Description Framework
(RDF) should be interpreted.

For more information on the RDF Schema recommendation, see
http://www.w3.org/TR/rdf-schema.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/xhtml1
http://www.w3.org/2001/sw/

STANDARDS THAT BUILD ON XML 61
XTM
XML Topic Maps

In many ways a simpler, more readily usable knowledge-representation than
RDF, the topic maps standard is one worth watching. So far, RDF is the W3C
standard for knowledge representation, but topic maps could possibly become
the “developer’s choice” among knowledge representation standards.

For more information on XML Topic Maps, http://www.topic-

maps.org/xtm/index.html. For information on topic maps and the Web, see
http://www.topicmaps.org/.

Standards That Build on XML
The following standards and proposals build on XML. Since XML is basically a
language-definition tool, these specifications use it to define standardized lan-
guages for specialized purposes.

Extended Document Standards
These standards define mechanisms for producing extremely complex docu-
ments—books, journals, magazines, and the like—using XML.

SMIL
Synchronized Multimedia Integration Language

SMIL is a W3C recommendation that covers audio, video, and animations. It
also addresses the difficult issue of synchronizing the playback of such elements.

For more information on SMIL, see http://www.w3.org/TR/REC-smil.

MathML
Mathematical Markup Language

MathML is a W3C recommendation that deals with the representation of mathe-
matical formulas.

For more information on MathML, see http://www.w3.org/TR/REC-MathML.

http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/REC-MathML
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/

62 UNDERSTANDING XML
SVG
Scalable Vector Graphics

SVG is a W3C working draft that covers the representation of vector graphic
images. (Vector graphic images that are built from commands that say things like
“draw a line (square, circle) from point xi to point m,n” rather than encoding the
image as a series of bits. Such images are more easily scalable, although they
typically require more processing time to render.)

For more information on SVG, see http://www.w3.org/TR/WD-SVG.

DrawML
Drawing Meta Language

DrawML is a W3C note that covers 2D images for technical illustrations. It also
addresses the problem of updating and refining such images.

For more information on DrawML, see http://www.w3.org/TR/NOTE-drawml.

eCommerce Standards
These standards are aimed at using XML in the world of business-to-business
(B2B) and business-to-consumer (B2C) commerce.

ICE
Information and Content Exchange

ICE is a protocol for use by content syndicators and their subscribers. It focuses
on “automating content exchange and reuse, both in traditional publishing con-
texts and in business-to-business relationships”.

For more information on ICE, see http://www.w3.org/TR/NOTE-ice.

ebXML
Electronic Business with XML

This standard aims at creating a modular electronic business framework using
XML. It is the product of a joint initiative by the United Nations (UN/CEFACT)
and the Organization for the Advancement of Structured Information Systems
(OASIS).

For more information on ebXML, see http://www.ebxml.org/.

http://www.w3.org/TR/WD-SVG
http://www.w3.org/TR/NOTE-drawml
http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/

SUMMARY 63
cxml
Commerce XML

cxml is a RosettaNet (www.rosettanet.org) standard for setting up interactive
online catalogs for different buyers, where the pricing and product offerings are
company specific. Includes mechanisms to handle purchase orders, change
orders, status updates, and shipping notifications.

For more information on cxml, see http://www.cxml.org/.

CBL
Common Business Library

CBL is a library of element and attribute definitions maintained by Com-
merceNet (www.commerce.net).

For more information on CBL and a variety of other initiatives that work
together to enable eCommerce applications, see http://www.com-

merce.net/projects/current-

projects/eco/wg/eCo_Framework_Specifications.html.

UBL
Universal Business Library

An OASIS initiative aimed at compiling a standard library of XML business
documents (purchase orders, invoices, etc.) that are defined with XML Schema
definitions.

For more information on UBL, see http://www.oasis-open.org/committees/ubl.

Summary
XML is becoming a widely-adopted standard that is being used in a dizzying
variety of application areas.

Designing an XML Data Structure
This section covers some heuristics you can use when making XML design deci-
sions.

http://www.cxml.org/
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://www.oasis-open.org/committees/ubl

64 UNDERSTANDING XML
Saving Yourself Some Work
Whenever possible, use an existing schema definition. It’s usually a lot easier to
ignore the things you don’t need than to design your own from scratch. In addi-
tion, using a standard DTD makes data interchange possible, and may make it
possible to use data-aware tools developed by others.

So, if an industry standard exists, consider referencing that DTD with an external
parameter entity. One place to look for industry-standard DTDs is at the reposi-
tory created by the Organization for the Advancement of Structured Information
Standards (OASIS) at http://www.XML.org. Another place to check is Com-
merceOne’s XML Exchange at http://www.xmlx.com, which is described as “a
repository for creating and sharing document type definitions”.

Note: Many more good thoughts on the design of XML structures are at the OASIS
page, http://www.oasis-open.org/cover/elementsAndAttrs.html.

Attributes and Elements
One of the issues you will encounter frequently when designing an XML struc-
ture is whether to model a given data item as a subelement or as an attribute of an
existing element. For example, you could model the title of a slide either as:

<slide>
<title>This is the title</title>

</slide>

or as:

<slide title="This is the title">...</slide>

In some cases, the different characteristics of attributes and elements make it
easy to choose. Let’s consider those cases first, and then move on to the cases
where the choice is more ambiguous.

Forced Choices
Sometimes, the choice between an attribute and an element is forced on you by
the nature of attributes and elements. Let’s look at a few of those considerations:

http://www.XML.org
http://www.xmlx.com
http://www.oasis-open.org/cover/elementsAndAttrs.html

ATTRIBUTES AND ELEMENTS 65
The data contains substructures
In this case, the data item must be modeled as an element. It can’t be mod-
eled as an attribute, because attributes take only simple strings. So if the title
can contain emphasized text like this: The Best Choice, then the
title must be an element.

The data contains multiple lines
Here, it also makes sense to use an element. Attributes need to be simple,
short strings or else they become unreadable, if not unusable.

Multiple occurrences are possible
Whenever an item can occur multiple times, like paragraphs in an article, it
must be modeled as an element. The element that contains it can only have
one attribute of a particular kind, but it can have many subelements of the
same type.

The data changes frequently
When the data will be frequently modified with an editor, it may make sense
to model it as an element. Many XML-aware editors make it easy modify
element data, while attributes can be somewhat harder to get to.

The data is a small, simple string that rarely if ever changes
This is data that can be modeled as an attribute. However, just because you
can does not mean that you should. Check the “Stylistic Choices” section
next, to be sure.

Using DTDs when the data is confined to a small number of fixed choices
Here is one time when it really makes sense to use an attribute. A DTD can
prevent an attribute from taking on any value that is not in the preapproved
list, but it cannot similarly restrict an element. (With a schema on the other
hand, both attributes and elements can be restricted.)

Stylistic Choices
As often as not, the choices are not as cut and dried as those shown above. When
the choice is not forced, you need a sense of “style” to guide your thinking. The
question to answer, then, is what makes good XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as
defining “style” when it comes to art or music. There are a few ways to approach
it, however. The goal of this section is to give you some useful thoughts on the
subject of “XML style”.

66 UNDERSTANDING XML
Visibility
One heuristic for thinking about XML elements and attributes uses the con-
cept of visibility. If the data is intended to be shown—to be displayed to
some end user—then it should be modeled as an element. On the other hand,
if the information guides XML processing but is never seen by a user, then it
may be better to model it as an attribute. For example, in order-entry data for
shoes, shoe size would definitely be an element. On the other hand, a manu-
facturer’s code number would be reasonably modeled as an attribute.

Consumer / Provider
Another way of thinking about the visibility heuristic is to ask who is the
consumer and/or provider of the information. The shoe size is entered by a
human sales clerk, so it’s an element. The manufacturer’s code number for a
given shoe model, on the other hand, may be wired into the application or
stored in a database, so that would be an attribute. (If it were entered by the
clerk, though, it should perhaps be an element.)

Container vs. Contents
Perhaps the best way of thinking about elements and attributes is to think of
an element as a container. To reason by analogy, the contents of the con-
tainer (water or milk) correspond to XML data modeled as elements. Such
data is essentially variable. On the other hand, characteristics of the con-
tainer (blue or white pitcher) can be modeled as attributes. That kind of
information tends to be more immutable. Good XML style will, in some
consistent way, separate each container’s contents from its characteristics.

To show these heuristics at work: In a slideshow the type of the slide (executive
or technical) is best modeled as an attribute. It is a characteristic of the slide that
lets it be selected or rejected for a particular audience. The title of the slide, on
the other hand, is part of its contents. The visibility heuristic is also satisfied
here. When the slide is displayed, the title is shown but the type of the slide isn’t.
Finally, in this example, the consumer of the title information is the presentation
audience, while the consumer of the type information is the presentation pro-
gram.

Normalizing Data
The section Designing an XML Data Structure (page 63) shows how to create an
external entity that you can reference in an XML document. Such an entity has
all the advantages of a modularized routine—changing that one copy affects
every document that references it. The process of eliminating redundancies is

NORMALIZING DATA 67
known as normalizing, so defining entities is one good way to normalize your
data.

In an HTML file, the only way to achieve that kind of modularity is with HTML
links—but of course the document is then fragmented, rather than whole. XML
entities, on the other hand, suffer no such fragmentation. The entity reference
acts like a macro—the entity’s contents are expanded in place, producing a
whole document, rather than a fragmented one. And when the entity is defined in
an external file, multiple documents can reference it.

The considerations for defining an entity reference, then, are pretty much the
same as those you would apply to modularized program code:

• Whenever you find yourself writing the same thing more than once, think
entity. That lets you write it one place and reference it multiple places.

• If the information is likely to change, especially if it is used in more than
one place, definitely think in terms of defining an entity. An example is
defining productName as an entity so that you can easily change the docu-
ments when the product name changes.

• If the entity will never be referenced anywhere except in the current file,
define it in the local_subset of the document’s DTD, much as you would
define a method or inner class in a program.

• If the entity will be referenced from multiple documents, define it as an
external entity, the same way that would define any generally usable class
as an external class.

External entities produce modular XML that is smaller, easier to update and
maintain. They can also make the resulting document somewhat more difficult to
visualize, much as a good OO design can be easy to change, once you under-
stand it, but harder to wrap your head around at first.

You can also go overboard with entities. At an extreme, you could make an
entity reference for the word “the”—it wouldn’t buy you much, but you could do
it.

Note: The larger an entity is, the less likely it is that changing it will have unin-
tended effects. When you define an external entity that covers a whole section on
installation instructions, for example, making changes to the section is unlikely to
make any of the documents that depend on it come out wrong. Small inline substi-
tutions can be more problematic, though. For example, if productName is defined
as an entity, the name change can be to a different part of speech, and that can pro-
duce! Suppose the product name is something like “HtmlEdit”. That’s a verb. So
you write a sentence that becomes, “You can HtmlEdit your file...” after the entity-

68 UNDERSTANDING XML
substitution occurs. That sentence reads fine, because the verb fits well in that con-
text. But if the name is eventually changed to “HtmlEditor”, the sentence becomes
“You can HtmlEditor your file...”, which clearly doesn’t work. Still, even if such
simple substitutions can sometimes get you in trouble, they can potentially save a
lot of time. (One alternative would be to set up entities named productNoun, pro-
ductVerb, productAdj, and productAdverb!)

Normalizing DTDs
Just as you can normalize your XML document, you can also normalize your
DTD declarations by factoring out common pieces and referencing them with a
parameter entity. This process is described in the SAX tutorial in Defining
Parameter Entities and Conditional Sections (page 193). Factoring out the DTDs
(also known as modularizing or normalizing) gives the same advantages and dis-
advantages as normalized XML—easier to change, somewhat more difficult to
follow.

You can also set up conditionalized DTDs, as described in the SAX tutorial sec-
tion Conditional Sections (page 196). If the number and size of the conditional
sections is small relative to the size of the DTD as a whole, that can let you “sin-
gle source” a DTD that you can use for multiple purposes. If the number of con-
ditional sections gets large, though, the result can be a complex document that is
difficult to edit.

3

69
Getting Started With
Tomcat

Debbie Carson

THIS chapter shows you how to develop, deploy, and run a simple Web appli-
cation that consists of a currency conversion JavaBeans™ component and a Web
page client created with JavaServer Pages™ (JSP™) technology. This applica-
tion will be deployed to, and run on, Tomcat, the Java™ Servlet and JSP con-
tainer developed by The Apache Software Foundation (www.apache.org), and
included with the Java Web Services Developer Pack (Java WSDP). This chapter
is intended as an introduction to using Tomcat to deploy Web services and Web
applications. The material in this chapter provides a basis for other chapters in
this tutorial.

Setting Up

Note: Before you start developing the example applications, follow the instructions
in About This Tutorial (page xi), then continue with this section.

Getting the Example Code
The source code for the example is in
<JWSDP_HOME>/docs/tutorial/examples/gs/, a directory that is created

70 GETTING STARTED WITH TOMCAT
when you unzip the tutorial bundle. If you are viewing this tutorial online, you
can download the tutorial bundle from:

http://java.sun.com/webservices/downloads/webservicestutorial.html

Layout of the Example Code
In this example application, the source code directories are organized according
to the “best practices approach to Web services programming”, which is
described in more detail in the file <JWSDP_HOME>/docs/tom-

cat/appdev/deployment.html. Basically, the document explains that it is use-
ful to examine the runtime organization of a Web application when creating the
application. A Web application is defined as a hierarchy of directories and files
in a standard layout. Such a hierarchy can be accessed in its unpacked form,
where each directory and file exists in the file system separately, or in a packed
form known as a Web Application Archive, or WAR file. The former format is
more useful during development, while the latter is used when you distribute
your application to be installed.

To facilitate creation of a WAR file in the required format, it is convenient to
arrange the files that Tomcat uses when executing your application in the same
organization as required by the WAR format itself. In the example application,
<JWSDP_HOME>/docs/tutorial/examples/gs/ is the root directory for the
source code for this application. The application consists of the following files
that are either in the /gs directory or a subdirectory of /gs.

• /src/converterApp/ConverterBean.java - The JavaBeans component
that contains the get and set methods for the yenAmount and euroAmount

properties used to convert U.S. dollars to Yen and convert Yen to Euros.

• /web/index.jsp - The Web client, which is a JavaServer Pages page that
accepts the value to be converted, the buttons to submit the value, and the
result of the conversion.

• /web/WEB-INF/web.xml - the deployment descriptor for this application.
In this simple example, it contains a description of the example applica-
tion.

• build.xml - The build file that uses the Ant tool to build and deploy the
Web application.

More information about WAR files can be found in Web Application
Archives (page 96).

http://java.sun.com/webservices/downloads/webservicestutorial.html

SETTING THE PATH VARIABLE 71
A key recommendation of the Tomcat Application Developer’s Manual is to sep-
arate the directory hierarchy containing the source code from the directory hier-
archy containing the deployable application. Maintaining this separation has the
following advantages:

• The contents of the source directories can be more easily administered,
moved, and backed up if the executable version of the application is not
intermixed.

• Source code control is easier to manage on directories that contain only
source files.

• The files that make up an installable distribution of your application are
much easier to select when the deployment hierarchy is separate.

As discussed in Creating the Build and Deploy File for Ant (page 78), the Ant

development tool makes the creation and processing of this type of directory
hierarchies relatively simple.

The rest of this document shows how this example application is created, built,
deployed, and run. If you would like to skip the information on creating the
example application, you can go directly to Quick Overview (page 72).

Setting the PATH Variable
It is very important that you add the bin directories of the Java WSDP, Java 2
Software Development Kit, Standard Edition (J2SE™ SDK), and Ant installa-
tions to the front of your PATH environment variable so that the Java WSDP star-
tup scripts for Tomcat override other installations.

In addition, most of the examples are distributed with a configuration file for ver-
sion 1.5.1 of Ant, a portable build tool contained in the Java WSDP. The version
of Ant shipped with the Java WSDP sets the jwsdp.home environment variable,
which is required by the example build files. To ensure that you use this version
of Ant, you must add <JWSDP_HOME>/jakarta-ant-1.5.1/bin to the front of
your PATH.

Creating the Build Properties File
In order to invoke many of the Ant tasks, you need to put a file named
build.properties in your home directory. On the Solaris operating system,
your home directory is generally of the format /home/your_login_name. In the

72 GETTING STARTED WITH TOMCAT
Windows operating environment (for example on Windows 2000), your home
directory is generally C:\Documents and Settings\yourProfile.

The build.properties file contains a user name and password in plain text for-
mat that match the user name and password set up during installation. The user
name and password that you entered during installation of the Java WSDP are
stored in <JWSDP_HOME>/conf/tomcat-users.xml.

For security purposes, the Tomcat Manager application verifies that you (as
defined in the build.properties file) are a user who is authorized to install and
reload applications (as defined in tomcat-users.xml) before granting you
access to the server.

If you have not already created a build.properties file in your home directory,
do so now. The file will look like this:

username=your_username
password=your_password

Note: For security purposes, make the build.properties file unreadable to anyone
but yourself.

The tomcat-users.xml file, which is created by the installer, looks like this:

<?xml version=’1.0’?>
<tomcat-users>
<role rolename="admin"/>
<role rolename="manager"/>
<role rolename="provider"/>
<user username="your_username" password="your_password"

roles="admin,manager,provider"/>
</tomcat-users>

Quick Overview
Now that you’ve downloaded the application and gotten your environment set up
for running the example application, this section will show you a quick overview
of the steps needed to run the application. Each step is discussed in more detail
on the page referenced.

1. Follow the steps in Setting Up (page 69).

CREATING THE GETTING STARTED APPLICATION 73
2. Change to the directory for this application,
(<JWSDP_HOME>/docs/tutorial/examples/gs (see Creating the Getting
Started Application (page 73)).

3. Compile the source files by typing the following at the terminal prompt
(see Building the Getting Started Application Using Ant, page 77):

ant build

Compile errors are listed in Compilation Errors (page 88).

4. Start Tomcat by typing the following at the terminal prompt (see Starting
Tomcat, page 80):

<JWSDP_HOME>/bin/startup.sh (Unix platform)

<JWSDP_HOME>\bin\startup (Microsoft Windows)

5. Deploy the Web application using Ant by typing the following at the ter-
minal prompt (see Installing the Application using Ant, page 81).

ant install

Deployment errors are discussed in Deployment Errors (page 89).

6. Start a Web browser. Enter the following URL to run the example applica-
tion (see Running the Getting Started Application, page 82):

http://localhost:8080/GSApp

7. Shutdown Tomcat by typing the following at the terminal prompt (see
Shutting Down Tomcat, page 83):

<JWSDP_HOME>/bin/shutdown.sh (Unix platform)

<JWSDP_HOME>\bin\shutdown (Microsoft Windows)

Creating the Getting Started
Application

The example application contains a ConverterBean class, a Web component, a
file to build and run the application, and a deployment descriptor. For this exam-
ple, we will create a top-level project source directory named gs/. All of the files
in this example application are created from this root directory.

74 GETTING STARTED WITH TOMCAT
The ConverterBean Component
The ConverterBean component used in the example application is used in con-
junction with a JSP page. The resulting application is a form that enables you to
convert American dollars to Yen, and convert Yen to Euros. The source code for
the ConverterBean component is in the
<JWSDP_HOME>/docs/tutorial/examples/gs/src/converterApp/ directory.

Coding the ConverterBean Component
The ConverterBean component for this example contains two properties, yenA-
mount and euroAmount, and the set and get methods for these properties. The
source code for ConverterBean follows.

//ConverterBean.java
package converterApp;

import java.math.*;

public class ConverterBean{

private BigDecimal yenRate;
private BigDecimal euroRate;
private BigDecimal yenAmount;
private BigDecimal euroAmount;

/** Creates new ConverterBean */
public ConverterBean() {

yenRate = new BigDecimal ("138.78");
euroRate = new BigDecimal (".0084");
yenAmount = new BigDecimal("0.0");
euroAmount = new BigDecimal("0.0");

}
public BigDecimal getYenAmount () {

return yenAmount;
}
public void setYenAmount(BigDecimal amount) {

yenAmount = amount.multiply(yenRate);
yenAmount = yenAmount.setScale(2,BigDecimal.ROUND_UP);

}
public BigDecimal getEuroAmount () {

return euroAmount;
}
public void setEuroAmount (BigDecimal amount) {

euroAmount = amount.multiply(euroRate);

THE WEB CLIENT 75
euroAmount =
euroAmount.setScale(2,BigDecimal.ROUND_UP);

}
}

The Web Client
The Web client is contained in the JSP page
<JWSDP_HOME>/docs/tutorial/examples/gs/web/index.jsp. A JSP page is
a text-based document that contains both static and dynamic content. The static
content is the template data that can be expressed in any text-based format, such
as HTML, WML, or XML. JSP elements construct the dynamic content.

Coding the Web Client
The JSP page, index.jsp, is used to create the form that will appear in the Web
browser when the application client is running. This JSP page is a typical mix-
ture of static HTML markup and JSP elements. If you have developed Web
pages, you are probably familiar with the HTML document structure statements
(<head>, <body>, and so on) and the HTML statements that create a form
<form> and a menu <select>. The highlighted lines in the example contain the
following types of JSP constructs:

• Directives (<%@page ... %>) import classes in the ConverterBean class,
and set the content type returned by the page.

• The jsp:useBean element declares that the page will use a bean that is
stored within and accessible from the specified scope. The default scope is
page, so we do not explicitly set it in this example.

• The jsp:setProperty element is used to set JavaBeans component prop-
erties in a JSP page.

• The jsp:getProperty element is used to retrieve JavaBeans component
properties in a JSP page.

• Scriptlets (<% ... %>) retrieve the value of the amount request parameter,
convert it to a BigDecimal, and convert the value to Yen or Euro.

• Expressions (<%= ... %>) insert the value of the amount into the response.

76 GETTING STARTED WITH TOMCAT
The source code for index.jsp follows.

<%-- index.jsp --%>
<%@ page import="converterApp.ConverterBean,java.math.*" %>
<%@ page contentType="text/html; charset=ISO-8859-5" %>

<html>
<head>
<title>Currency Conversion Application</title>
</head>

<body bgcolor="white">
“<jsp:useBean id="converter"
class="converterApp.ConverterBean"/>

<h1>Currency Conversion Application
</h1>
<hr>
<p>Enter an amount to convert:</p>

<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<%
String amount = request.getParameter("amount");

if (amount != null && amount.length() > 0) {

%>
<p><%= amount %> dollars are

<jsp:setProperty name="converter" property="yenAmount"
value="<%= new BigDecimal(amount)%>" />
<jsp:getProperty name="converter" property="yenAmount" /> Yen.

<p><%= amount %> Yen are

<jsp:setProperty name="converter" property="euroAmount"
value="<%= new BigDecimal(amount)%>" />
<jsp:getProperty name="converter" property="euroAmount" />
Euro.

<%
}

BUILDING THE GETTING STARTED APPLICATION USING ANT 77
%>

</body>
</html>

Building the Getting Started
Application Using Ant

Now the example Web application is ready to build.

This release of the Java Web Services Developer Pack includes Ant, a make tool
that is portable across platforms, and which is developed by the Apache Soft-
ware Foundation (http://www.apache.org). Documentation for the Ant tool
can be found in the file index.html from the <JWSDP_HOME>/jakarta-ant-
1.5.1/docs/ directory of your Java WSDP installation.

The version of Ant shipped with the Java WSDP sets the jwsdp.home environ-
ment variable, which is required by the example build files. To ensure that you
use this version of Ant, rather than other installations, you must add
<JWSDP_HOME>/jakarta-ant-1.5.1/bin to the front of your PATH.

This example uses the Ant tool to manage the compilation of our Java source
code files and creation of the deployment hierarchy. Ant operates under the con-
trol of a build file, normally called build.xml, that defines the processing steps
required. This file is stored in the top-level directory of your source code hierar-
chy.

Like a Makefile, the build.xml file provides several targets that support
optional development activities (such as erasing the deployment home directory
so you can build your project from scratch). This build file includes targets for
compiling the application, installing the application on a running server, reload-
ing the modified application onto the running server, and removing old copies of
the application to regenerate their content.

When we use the build.xml file in this example application to compile the
source files, a temporary /build directory is created beneath the root. This
directory contains an exact image of the binary distribution for your Web appli-
cation. This directory is deleted and recreated as needed during development, so
don’t edit the files in this directory.

78 GETTING STARTED WITH TOMCAT
Creating the Build and Deploy File for
Ant
This example discusses how to use Ant to build and deploy this example. The
first step is to create the file build.xml in the gs/ directory. The code for this file
follows:>

<!-- Setting up the Getting Started example to prepare to
build and deploy -->

<project name="gs-example" default="build" basedir=".">
<target name="init">
<tstamp/>

</target>

<!-- Configure the context PATH for this application -->
<property name="example" value="GSApp" />
<property name="path" value="/${example}"/>
<property name="build"
value="${jwsdp.home}/docs/tutorial/examples/${example}/build"
/>

<!-- Configure properties to access the Manager application --
> <property name="url" value="http://localhost:8080/manager"/>
<property file="build.properties"/>
<property file="${user.home}/build.properties"/>

<!-- Configure custom Ant tasks for the Manager application -->

<path id="classpath">
<fileset dir="${jwsdp.home}/common/lib">
<include name="*.jar"/>

</fileset>
</path>
<taskdef name="install"

classname="org.apache.catalina.ant.InstallTask" />
<taskdef name="reload"

classname="org.apache.catalina.ant.ReloadTask" />
<taskdef name="remove"

classname="org.apache.catalina.ant.RemoveTask"/>

<target name="prepare" depends="init" description="Create
build directories.">

<mkdir dir="${build}" />
<mkdir dir="${build}/WEB-INF" />
<mkdir dir="${build}/WEB-INF/classes" />

</target>

CREATING THE BUILD AND DEPLOY FILE FOR ANT 79
<!-- Executable Targets -->

<target name="install" description="Install Web application"
depends="build">

<install url="${url}" username="${username}"
password="${password}" path="${path}"

war="file:${build}"/>
</target>

<target name="reload" description="Reload Web application"
depends="build">

<reload url="${url}" username="${username}"
password="${password}" path="${path}"/>

</target>

<target name="remove" description="Remove Web application">
<remove url="${url}" username="${username}"

password="${password}" path="${path}"/>
</target>

<target name="build" depends="prepare" description="Compile
app Java files and copy HTML and JSP pages" >

<javac srcdir="src" destdir="${build}/WEB-INF/classes">
<include name="**/*.java" />
<classpath refid="classpath"/>

</javac>
<copy todir="${build}/WEB-INF">

<fileset dir="web/WEB-INF" >
<include name="web.xml" />

</fileset>
</copy>
<copy todir="${build}">

<fileset dir="web">
<include name="*.html"/>
<include name="*.jsp" />
<include name="*.gif" />

</fileset>
</copy>

</target>

</project>

80 GETTING STARTED WITH TOMCAT
Compiling the Source Files
To compile the JavaBeans component (ConverterBean.java), we will use the
Ant tool and run the build target in the build.xml file. The steps for doing this
follow.

1. In a terminal window, go to the gs/ directory if you are creating the appli-
cation on your own, or go to the
<JWSDP_HOME>/docs/tutorial/examples/gs/ directory if you are com-
piling the example files downloaded with the tutorial.

2. Type the following command to build the Java files:

ant build

This command compiles the source files for the ConverterBean. It places
the resulting class files in the <JWSDP_HOME>/docs/tuto-

rial/examples/GSApp/build/WEB-INF/classes/converterApp direc-
tory as specified in the build target in build.xml. It also places the
index.jsp file in the GSApp/build directory and places the web.xml file
in the GSApp/build/WEB-INF directory. Tomcat allows you to deploy an
application in an unpacked directory like this. Deploying the application
is discussed in Deploying the Application (page 80).

Deploying the Application
In this release of the Java WSDP, applications are deployed using the Ant tool.
You must start Tomcat before you can install this application using the Ant tool.
For further information on deploying Web applications, please read Deploying
Web Applications (page 103).

Starting Tomcat
To start Tomcat, type the following command in a terminal window.

<JWSDP_HOME>/bin/startup.sh (Unix platform)

<JWSDP_HOME>\bin\startup (Microsoft Windows)

INSTALLING THE APPLICATION USING ANT 81
The startup script starts the task in the background and then returns the user to
the command line prompt immediately. The startup script does not completely
start Tomcat for several minutes.

Note: The startup script for Tomcat can take several minutes to complete. To verify
that Tomcat is running, point your browser to http://localhost:8080. When the
Tomcat splash screen displays, you may continue. If the splash screen does not load
immediately, wait up to several minutes and then retry. If, after several minutes, the
Tomcat splash screen does not display, refer to the troubleshooting tips in “Unable
to Locate the Server localhost:8080” Error (page 87).

Documentation for Tomcat can be found at
<JWSDP_HOME>/docs/tomcat/index.html.

Installing the Application using Ant
A Web application is defined as a hierarchy of directories and files in a standard
layout. In this example, the hierarchy is accessed in an unpacked form, where
each directory and file exists in the file system separately. This section discusses
deploying your application using the Ant tool defined in Creating the Build and
Deploy File for Ant (page 78).

A context is a name that gets mapped to the document root of a Web application.
The context of the Getting Started application is /GSApp. The request URL
http://localhost:8080/GSApp/index.html retrieves the file index.html

from the document root. To install an application to Tomcat, you notify Tomcat
that a new context is available.

You notify Tomcat of a new context with the Ant install task from the
build.xml file. The Ant install task does not require Tomcat to be restarted,
but an installed application is also not remembered after Tomcat is restarted. To
permanently deploy an application, see Deploying Web Applications (page 103).

The Ant install task tells a Tomcat manager application to install an application
at the context specified by the path attribute and the location containing the Web
application files. Read Installing Web Applications (page 102) for more infor-
mation on this procedure. The steps for deploying this Web application follow.

1. In a terminal window, go to the gs/ directory.

2. Type the following command to deploy the Web application files:

ant install

82 GETTING STARTED WITH TOMCAT
Running the Getting Started
Application

To run the application, you need to make sure that Tomcat is running, then run
the JSP page from a Web browser.

Running the Web Client
To run the Web client, point your browser at the URL:

http://localhost:8080/GSApp

In this release of the Java WSDP, Tomcat requires that the host be localhost,
which is the machine on which Tomcat is running. In this example, the context
for this application is “GSApp”, which was defined in the build.xml file.

To test the application,

1. Enter 100 in the “Enter an amount to convert” field.

2. Click Submit.

Figure 3–1 shows the running application.

Figure 3–1 ConverterBean Web Client

SHUTTING DOWN TOMCAT 83
Shutting Down Tomcat
When you are finished testing and developing your application, you should shut
down Tomcat.

<JWSDP_HOME>/bin/shutdown.sh (Unix platform)

<JWSDP_HOME>\bin\shutdown (Microsoft Windows)

Using admintool
The Java Web Services Developer Pack includes the Tomcat Web Server Admin-
istration Tool, referred to hereafter as admintool for ease of reference. The
admintool Web application can be used to manipulate Tomcat while it is run-
ning. For example, you can add and/or configure contexts, hosts, realms, and
connectors, or set up users and roles for container-managed security.

To start admintool, follow these steps.

1. Start Tomcat as described in Starting Tomcat (page 80).

2. Start a Web browser.

3. In the Web browser, point to the following URL:

http://localhost:8080/admin

This command invokes the admin Web application. Before you can use
this application you must add your user name/password combination and
associate the role name admin with it. The initial user name and password
necessary to access this tool are set up during Java WSDP installation. If
you’ve forgotten the user name and password, you can view
<JWSDP_HOME>/conf/tomcat-users.xml with any text editor. This file
contains an element <user> for each individual user, which might look
something like this:

<user name="adeveloper" password="secret"

roles="admin, manager" />

4. Log in to admintool using a user name and password combination that has
been assigned the role of admin. This user name and password must match
the user name and password in the build.properties file.

5. When you have finished, log out of admintool by selecting Logout from
the upper pane.

84 GETTING STARTED WITH TOMCAT
This section discussing setting up roles, groups, and users using admintool. See
Appendix A, Tomcat Administration Tool, for information on using admintool

to create, delete, and/or configure:

• The Tomcat Server.

• Services that run on the Tomcat Server, plus the elements that are nested
within the Services, such as Hosts, Contexts, Realms, Connectors, Log-
gers, and Valves.

• Resources such as Data Sources, Environment Entries, and User Database.

Understanding Roles, Groups, and Users
The Tomcat server authentication service includes the following components:

• Role - an abstract name for the permission to access a particular set of
resources. A role can be compared to a key that can open a lock. Many peo-
ple might have a copy of the key, and the lock doesn’t care who you are,
just that you have the right key.

• User - an individual (or application program) identity that has been authen-
ticated (authentication was discussed in the previous section). A user can
have a set of roles associated with that identity, which entitles them to
access all resources protected by those roles.

• Group - a set of authenticated users classified by common traits such as job
title or customer profile. Groups are also associated with a set of roles, and
every user that is a member of a group inherits all of the roles assigned to
that group.

• Realm - a complete database of roles, users, and groups that identify valid
users of a Web application (or a set of Web applications).

These concepts are addressed in more detail in Managing Roles and
Users (page 704). More information on admintool is available in Appendix A,
Tomcat Administration Tool.

ADDING ROLES USING ADMINTOOL 85
Adding Roles Using admintool
To set up new roles for container-managed security, follow these instructions.
Additions, deletions, and changes made in admintool are written to the tomcat-

users.xml file.

1. Scroll down the left pane of admintool to the User and Group Adminis-
tration node.

2. Select Role Administration.

3. From the Roles List, select Create New Role.

4. Enter a Role Name and Description, for example Customer or User.

5. Select Save.

Adding Users Using admintool
To set up new users for container-managed security, follow these instructions.
Additions, deletions, and changes made in admintool are written to the tomcat-

users.xml file.

1. Scroll down the left pane of admintool to the User and Group Adminis-
tration node.

2. Select User Administration.

3. From the Users List, select Create New User.

4. Enter a User Name, Password, and select a Role for the new user. If you
select the admin role for the new user, the user will be able to access
admintool.

5. Select Save.

Modifying the Application
Since the Java Web Services Developer Pack is intended for experimentation, it
supports iterative development. Whenever you make a change to an application,
you must redeploy and reload the application. The tasks we defined in the
build.xml file make it simple to deploy changes to both the ConverterBean and
the JSP page.

In the build.xml file, we set up a target to install the application on the running
Tomcat server and a target to reload the application onto the running Tomcat

86 GETTING STARTED WITH TOMCAT
server. These tasks are accomplished using the Tomcat Server Manager Tool,
which is the manager Web application. You may use the user name/password
combination that you set up during Java WSDP installation because it will have
the role name of manager associated with it. If you’ve forgotten the user
name/password combination that you set up during installation, you can look it
up in <JWSDP_HOME>/conf/tomcat-users.xml, which can be viewed with any
text editor.

The Tomcat reference documentation distributed with the Java WSDP contains
information about the manager application.

Modifying a Class File
To modify a class file in a Java component, you change the source code, recom-
pile it, and redeploy the application. When using the Tomcat manager Web
application, you do not need to stop and restart Tomcat in order to redeploy the
changed application. For example, suppose that you want to change the
exchange rate in the yenRate property of the ConverterBean component:

1. Edit ConverterBean.java in the source directory.

2. Recompile ConverterBean.java by typing ant build.

3. Redeploy ConverterBean.java by typing ant reload.

4. Reload the JSP page in the Web browser.

Modifying the Web Client
To modify a JSP page, you change the source code and redeploy the applica-
tion.When using the Tomcat manager Web application, you do not need to stop
and restart Tomcat in order to redeploy the changed Web client. For example,
suppose you wanted to modify a font or add additional descriptive text to the JSP
page. To modify the Web client:

1. Edit index.jsp in the source directory.

2. Reload the Web application by typing ant reload.

3. Reload the JSP page in the Web browser.

COMMON PROBLEMS AND THEIR SOLUTIONS 87
Common Problems and Their Solutions
Use the following guidelines for troubleshooting any problems you have creat-
ing, compiling, installing, deploying, and running the example application.

Errors Starting Tomcat

“Out of Environment Space” Error
Symptom: An “out of environment space” error when running the startup and
shutdown batch files in Microsoft Windows 9X/ME-based operating systems.

Solution: In the Microsoft Windows Explorer, right-click on the startup.bat

and shutdown.bat files. Select Properties, then select the Memory tab. Increase
the Initial Environment field to something like 4096. Select Apply.

After you select Apply, shortcuts will be created in the directory you use to start
and stop the container.

“Unable to Locate the Server localhost:8080” Error
Symptom: an “unable to locate server” error when trying to load a Web applica-
tion in a browser.

Solution: Tomcat can take quite some time before fully loading, so first of all,
make sure you’ve allowed at least 5 minutes for Tomcat to load before continu-
ing troubleshooting. To verify that Tomcat is running, point your browser to
http://localhost:8080. When the Tomcat index screen displays, you may
continue. If the index screen does not load immediately, wait up to several min-
utes and then retry. If Tomcat still has not loaded, check the log files, as
explained below, for further troubleshooting information.

When Tomcat starts up, it initializes itself and then loads all the Web applica-
tions in <JWSDP_HOME>/webapps. When you run Tomcat by calling startup.sh,
the server messages are logged to <JWSDP_HOME>/logs/launcher.server.log.
The progress of loading Web applications can be viewed in the file
<JWSDP_HOME>/logs/jwsdp_log.<date>.txt.

88 GETTING STARTED WITH TOMCAT
Compilation Errors

Ant Cannot Locate the Build File
Symptom: When you type ant build, these messages appear:

Buildfile: build.xml does not exist!
Build failed.

Solution: Start Ant from the <JWSDP_HOME>/docs/tutorial/examples/gs/
directory, or from the directory where you created the application. If you want to
run Ant from your current directory, then you must specify the build file on the
command line. For example, you would type this command on a single line:

ant -buildfile
<JWSDP_HOME>/docs/tutorial/examples/gs/build.xml
build

The Compiler Cannot Resolve Symbols
Symptom: When you type ant build, the compiler reports many errors, includ-
ing these:

cannot resolve symbol
. . .
BUILD FAILED
. . .
Compile failed, messages should have been provided

Solution: Make sure you are using the version of Ant that ships with this version
of the Java WSDP. The best way to ensure that you are using this version is to
use the full PATH to the Ant files to build the application,
<JWSDP_HOME>/jakarta-ant-1.5.1/bin/ant build. Other versions may not
include all of the functionality expected by the example application build files.

“Connection refused” Error
Symptom: When you type ant install at the terminal prompt, you get the fol-
lowing message:

<JWSDP_HOME>/docs/tutorial/examples/gs/build.xml:82:
java.net.ConnectException: Connection refused

DEPLOYMENT ERRORS 89
Solution: Tomcat has not fully started. Wait a few minutes, and then attempt to
install the application again. For more information on troubleshooting Tomcat
startup, see “Unable to Locate the Server localhost:8080” Error (page 87).

When attempting to run the install task, the system
appears to hang.
Symptom: When you type ant install, the system appears to hang.

Solution: The Tomcat startup script starts Tomcat in the background and then
returns the user to the command line prompt immediately. Even though you are
returned to the command line, the startup script may not have completely started
Tomcat. If the install task does not run immediately, wait up to several minutes
and then retry the install task. To verify that Tomcat is running, point your
browser to http://localhost:8080. When the Tomcat index screen displays,
you may continue. If the splash screen does not load immediately, wait up to sev-
eral minutes and then retry. If Tomcat still has not loaded, check the log files, as
explained below, for further troubleshooting information.

When Tomcat starts up, it initializes itself and then loads all the Web applica-
tions in <JWSDP_HOME>/webapps. When you run Tomcat by calling startup.sh,
the server messages are logged to <JWSDP_HOME>/logs/launcher.server.log.
The progress of loading Web applications can be viewed in the file
<JWSDP_HOME>/logs/jwsdp_log.<date>.txt.

Deployment Errors

Server returned HTTP response code: 401 for URL ...
Symptom: When you type ant install, these message appear:

BUILD FAILED
/home/you/gs/build.xml:44:
java.io.IOException: Server returned HTTP response code: 401
for URL: http://localhost:8080/manager/install?path= ...

Solution: Make sure that the user name and password in your build.proper-
ties file match a user name and password with the role of manager in the tom-

cat-users.xml file. For more information on setting up this information, see
Creating the Build Properties File (page 71).

90 GETTING STARTED WITH TOMCAT
Failure to run client application
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: The startup script starts the task in the background and then returns the
user to the command line prompt immediately. Even though you are returned to
the command line, the startup script may not have completely started Tomcat. If
the Web Client does not run immediately, wait up to a minute and then retry to
load the Web client. For more information on troubleshooting the startup of
Tomcat, see “Unable to Locate the Server localhost:8080” Error (page 87).

The localhost Machine Is Not Found
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Sometimes when you are behind a proxy and the firewall will not let
you access the localhost machine. To fix this, change the proxy setting so that
it does not use the proxy to access localhost.

To do this in the Netscape Navigator™ browser, select Edit -> Preferences ->
Advanced -> Proxies and select No Proxy for: localhost. In Internet
Explorer, select Tools -> Internet Options -> Connections -> LAN Settings.

The Application Has Not Been Deployed
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Deploy the application. For more detail, see Deploying the
Application (page 80).

“Build Failed: Application Already Exists at Path”
Error
Symptom: When you enter ant install at a terminal prompt, you get this mes-
sage:

[install] FAIL - Application already exists at path /GSApp

BUILD FAILED

<JWSDP_HOME>/docs/tutorial/examples/gs/build.xml:82: FAIL -
Application already exists at path /GSApp

This application has already been installed. If you’ve made changes to the appli-
cation since it was installed, use ant reload to update the application in Tomcat.

FURTHER INFORMATION 91
HTTP 500: No Context Error
Symptom: Get a No Context Error when attempting to run a deployed applica-
tion.

Solution: This error means that Tomcat is loaded, but it doesn’t know about your
application. If you have not deployed the application by running ant remove,
ant build, ant install, ant reload, do so now.

Solution: If Tomcat is loading, but has not yet loaded all of the existing contexts,
you will get this error. Continue to select the Reload or Refresh button on your
browser until either the application loads or you get a different error message.

Further Information
• Tomcat Administration Tool. Read Tomcat Administration

Tool (page 785) for further information about using admintool to config-
ure the behavior of Tomcat without having to stop and restart it.

• Tomcat Configuration Reference. For further information on the elements
that can be used to configure the behavior of Tomcat, read the Tomcat Con-
figuration Reference, which can be found at
<JWSDP_HOME>/docs/tomcat/config/index.html.

• Class Loader How-To. This document discusses decisions that application
developers and deployers must make about where to place class and
resource files to make them available to Web applications. This document
can be found at <JWSDP_HOME>/docs/tomcat/class-loader-

howto.html.

• JNDI Resources How-To. This document discusses configuring JNDI
Resources, Tomcat Standard Resource Factories, JDBC Data Sources, and
Custom Resource Factories. This document can be found at
<JWSDP_HOME>/docs/tomcat/jndi-resources-howto.html.

• Manager Application How-To. This document describes using the Man-
ager Application to deploy a new Web application, undeploy an existing
application, or reload an existing application without having to shut down
and restart Tomcat. This document can be found at
<JWSDP_HOME>/docs/tomcat/manager-howto.html.

• Proxy Support How-To. This document discusses running behind a proxy
server (or a web server that is configured to behave like a proxy server). In
particular, this document discusses how to manage the values returned by
the calls from Web applications that ask for the server name and port num-

92 GETTING STARTED WITH TOMCAT
ber to which the request was directed for processing. This document can
be found at <JWSDP_HOME>/docs/tomcat/proxy-howto.html.

• Realm Configuration How-To. This document discusses how to configure
Tomcat to support container-managed security by connecting to an exist-
ing database of user names, passwords, and user roles. This document can
be found at <JWSDP_HOME>/docs/tomcat/realm-howto.html.

• Security Manager How-To. This document discusses the use of a Securi-

tyManager while running Tomcat to protect your server from unauthorized
servlets, JSPs, JSP beans, and tag libraries. This document can be found at
<JWSDP_HOME>/docs/tomcat/security-manager-howto.html.

• SSL Configuration How-To. This document discusses how to install and
configure SSL support on Tomcat. Configuring SSL support on Tomcat
using Java WSDP is discussed in Installing and Configuring SSL
Support (page 721). The Tomcat documentation at
<JWSDP_HOME>/docs/tomcat/ssl-howto.html also discusses this topic,
however, the information in this tutorial is more up-to-date for the version
of Tomcat shipped with the Java WSDP.

4

93
Web Applications
Stephanie Bodoff

A Web application is a dynamic extension of a Web server. There are two
types of Web applications:

• Presentation-oriented. A presentation-oriented Web application generates
dynamic Web pages containing various types of markup language (HTML,
XML, and so on) in response to requests.

• Service-oriented. A service-oriented Web application implements the end-
point of a fine-grained Web service. Service-oriented Web applications are
often invoked by presentation-oriented applications.

In the Java 2 Platform, Web components provide the dynamic extension capabili-
ties for a Web server. Web components are either Java Servlets or JSP pages.
Servlets are Java programming language classes that dynamically process
requests and construct responses. JSP pages are text-based documents that exe-
cute as servlets but allow a more natural approach to creating static content.
Although servlets and JSP pages can be used interchangeably, each has its own
strengths. Servlets are best suited to service-oriented Web applications and man-
aging the control functions of a presentation-oriented application, such as dis-
patching requests and handling nontextual data. JSP pages are more appropriate
for generating text-based markup such as HTML, SVG, WML, and XML.

Web components are supported by the services of a runtime platform called a
Web container. In the Java Web Services Developer Pack (Java WSDP) Web
components run in the Tomcat Web container. The Web container provides ser-
vices such as request dispatching, security, concurrency, and life cycle manage-
ment. It also gives Web components access to APIs such as naming, transactions,
and e-mail.

94 WEB APPLICATIONS
This chapter describes the organization, configuration, and installation and
deployment procedures for Web applications. Chapters 12 and 11 cover how to
develop Web components for service-oriented Web applications. Chapters 14
and 15 cover how to develop the Web components for presentation-oriented Web
applications. Many features of JSP technology are determined by Java Servlet
technology, so you should familiarize yourself with that material even if you do
not intend to write servlets.

Most Web applications use the HTTP protocol, and support for HTTP is a major
aspect of Web components. For a brief summary of HTTP protocol features see
HTTP Overview (page 849).

Web Application Life Cycle
A Web application consists of Web components, static resource files such as
images, and helper classes and libraries. The Java WSDP provides many sup-
porting services that enhance the capabilities of Web components and make
them easier to develop. However, because it must take these services into
account, the process for creating and running a Web application is different from
that of traditional stand-alone Java classes.

Certain aspects of Web application behavior can be configured when the applica-
tion is deployed. The configuration information is maintained in a text file in
XML format called a Web application deployment descriptor. A deployment
descriptor must conform to the schema described in the Java Servlet specifica-
tion.

The process for creating, deploying, and executing a Web application can be
summarized as follows:

1. Develop the Web component code (including possibly a deployment
descriptor).

2. Build the Web application components along with any static resources (for
example, images) and helper classes referenced by the component.

3. Install or deploy the application into a Web container.

4. Access a URL that references the Web application.

Developing Web component code is covered in the later chapters. Steps 2
through 4 are expanded on in the following sections and illustrated with a Hello,
World style presentation-oriented application. This application allows a user to

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

WEB APPLICATION LIFE CYCLE 95
enter a name into an HTML form (Figure 4–1) and then displays a greeting after
the name is submitted (Figure 4–2):

Figure 4–1 Greeting Form

Figure 4–2 Response

The Hello application contains two Web components that generate the greeting
and the response. This tutorial has two versions of the application: a servlet ver-
sion called Hello1, in which the components are implemented by two servlet
classes, GreetingServlet.java and ResponseServlet.java, and a JSP ver-
sion called Hello2, in which the components are implemented by two JSP pages,
greeting.jsp and response.jsp. The two versions are used to illustrate the
tasks involved in packaging, deploying, and running an application that contains
Web components. If you are viewing this tutorial online, you must download the
tutorial bundle to get the source code for this example. See Running the
Examples (page xiii).

../examples/web/hello1/src/GreetingServlet.java
../examples/web/hello1/src/ResponseServlet.java
../examples/web/hello2/web/greeting.txt
../examples/web/hello2/web/response.txt

96 WEB APPLICATIONS
Web Application Archives
If you want to distribute a Web application, you package it in a Web application
archive (WAR), which is a JAR similar to the package used for Java class librar-
ies. In addition to Web components, a Web application archive can contain other
files including the following:

• Server-side utility classes (database beans, shopping carts, and so on).
Often these classes conform to the JavaBeans component architecture.

• Static Web presentation content (HTML, image, and sound files, and so
on)

• Client-side classes (applets and utility classes)

Web components and static Web content files are called Web resources.

A Web application can run from a WAR file or from an unpacked directory laid
out in the same format as a WAR.

WAR Directory Structure
The top-level directory of a WAR is the document root of the application. The
document root is where JSP pages, client-side classes and archives, and static
Web resources are stored.

The document root contains a subdirectory called WEB-INF, which contains the
following files and directories:

• web.xml - The Web application deployment descriptor

• Tag library descriptor files (see Tag Library Descriptors, page 647)

• classes - A directory that contains server-side classes: servlets, utility
classes, and JavaBeans components

• lib - A directory that contains JAR archives of libraries (tag libraries and
any utility libraries called by server-side classes)

You can also create application-specific subdirectories (that is, package directo-
ries) in either the document root or the WEB-INF/classes directory.

TUTORIAL EXAMPLE DIRECTORY STRUCTURE 97
Tutorial Example Directory Structure
To facilitate iterative development and keep Web application source separate
from compiled files, the source code for the tutorial examples is stored in the fol-
lowing structure under each application directory mywebapp:

• build.xml - Ant build file

• context.xml - Optional application configuration file

• src - Java source of servlets and JavaBeans components

• web - JSP pages and HTML pages, images

The Ant build files (build.xml) distributed with the examples contain targets to
create an unpacked WAR structure in the build subdirectory of mywebapp, copy
and compile files into that directory, and invoke the manager (see Tomcat Web
Application Manager, page 825) commands via special Ant tasks to install,
reload, remove, deploy, and undeploy applications. The tutorial example Ant tar-
gets are:

• prepare - Creates build directory and WAR subdirectories.

• build - Compiles and copies the mywebapp Web application files into the
build directory.

• install - Notifies Tomcat to install an application (see Installing Web
Applications, page 102) using the Ant install task.

• reload - Notifies Tomcat to reload the application (see Updating Web
Applications, page 105) using the Ant reload task.

• deploy - Notifies Tomcat to deploy the application (see Deploying Web
Applications, page 103) using the Ant deploy task.

• undeploy - Notifies Tomcat to undeploy the application (see Undeploying
Web Applications, page 107) using the Ant undeploy task.

• remove - Notifies Tomcat to remove the application (see Removing Web
Applications, page 107) using the Ant remove task.

Creating a WAR
You can manually create a WAR file in two ways:

• With the JAR tool distributed with the J2SE SDK. You simply execute the
following command in the build directory of a tutorial example:

jar cvf mywebapp.war .

98 WEB APPLICATIONS
• With the Ant war task

Both of these methods require you to have created a Web application deployment
descriptor.

Configuring Web Applications
Web applications are configured via elements contained in Web application
deployment descriptors. You can manually create descriptors using a text editor.
The following sections give a brief introduction to the Web application features
you will usually want to configure. A number of security parameters can be
specified; these are covered in Chapter 18. For a complete listing and description
of the features, see the Java Servlet specification.

In the following sections, some examples demonstrate procedures for configur-
ing the Hello, World application. If Hello,World does not use a specific configu-
ration feature, the section gives uses other examples for illustrating the
deployment descriptor element and describes generic procedures for specifying
the feature.

Note: Descriptor elements must appear in the deployment descriptor in the follow-
ing order: icon, display-name, description, distributable, context-param,
filter, filter-mapping, listener, servlet, servlet-mapping, session-con-
fig, mime-mapping, welcome-file-list, error-page, taglib, resource-env-

ref, resource-ref, security-constraint, login-config, security-role, env-
entry.

Prolog
Since the deployment descriptor is an XML document, it requires a prolog. The
prolog of the Web application deployment descriptor is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-
app_2_3.dtd">

http://java.sun.com/products/servlet/download.html

ALIAS PATHS 99
Alias Paths
When a request is received by Tomcat it must determine which Web component
should handle the request. It does so by mapping the URL path contained in the
request to a Web component. A URL path contains the context root (described in
Installing Web Applications, page 102) and an alias path

http://<host>:8080/context_root/alias_path

Before a servlet can be accessed, the Web container must have least one alias
path for the component. The alias path must start with a / and end with a string
or a wildcard expression with an extension (*.jsp, for example). Since Web
containers automatically map an alias path that ends with *.jsp, you do not have
to specify an alias path for a JSP page unless you wish to refer to the page by a
name other than its file name. In the example discussed in Updating Web
Applications (page 105), the greeting page has an alias but response.jsp is ref-
erenced by its file name.

To set up the mappings servlet version of the Hello application in the Web
deployment descriptor, you must add the following servlet and servlet-map-

ping elements to the Web application deployment descriptor. To define an alias
for a JSP page, you must replace the servlet-class subelement with a jsp-

file subelement in the servlet element.

<servlet>
<servlet-name>greeting</servlet-name>
<display-name>greeting</display-name>
<description>no description</description>
<servlet-class>GreetingServlet</servlet-class>

</servlet>
<servlet>

<servlet-name>response</servlet-name>
<display-name>response</display-name>
<description>no description</description>
<servlet-class>ResponseServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>greeting</servlet-name>
<url-pattern>/greeting</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>response</servlet-name>
<url-pattern>/response</url-pattern>

</servlet-mapping>

100 WEB APPLICATIONS
Context and Initialization Parameters
The Web components in a WAR share an object that represents their application
context (see Accessing the Web Context, page 598). You can pass parameters to
the context or Web component. To do so you must add a context-param or
init-param element to the Web application deployment descriptor. context-
param is a subelement of the top-level web-app element. init-param is a sub-
element of the servlet element. Here is the element used to declare a context
parameter that sets the resource bundle used in the example discussed in
Chapter 17:

<web-app>
<context-param>

<param-name>
javax.servlet.jsp.jstl.fmt.localizationContext

</param-name>
<param-value>messages.BookstoreMessages</param-value>

</context-param>
...

</web-app>

Event Listeners
To add an event listener class (described in Handling Servlet Life Cycle
Events, page 575), you must add a listener element to the Web application
deployment descriptor. Here is the element that declares the listener class used in
chapters 14 and 17:

<listener>
<listener-class>listeners.ContextListener</listener-class>

</listener>

Filter Mappings
A Web container uses filter mapping declarations to decide which filters to apply
to a request, and in what order (see Specifying Filter Mappings, page 592). The
container matches the request URI to a servlet as described in Alias
Paths (page 99). To determine which filters to apply, it matches filter mapping
declarations by servlet name or URL pattern. The order in which filters are
invoked is the order in which filter mapping declarations that match a request
URI for a servlet appear in the filter mapping list.

ERROR MAPPINGS 101
To specify a filter mapping, you must add an filter and filter-mapping ele-
ments to the Web application deployment descriptor. Here is the element used to
declare the order filter and map it to the ReceiptServlet discussed in
Chapter 14:

<filter>
<filter-name>OrderFilter<filter-name>
<filter-class>filters.OrderFilter<filter-class>

</filter>
<filter-mapping>

<filter-name>OrderFilter</filter-name>
<url-pattern>/receipt</url-pattern>

</filter-mapping>

Error Mappings
You can specify a mapping between the status code returned in an HTTP
response or a Java programming language exception returned by any Web com-
ponent and a Web resource (see Handling Errors, page 577). To set up the map-
ping, you must add an <error-page> element to the deployment descriptor.
Here is the element use to map OrderException to the page errorpage.html

used in Chapter 14:

<error-page>
<exception-type>exception.OrderException</exception-type>
<location>/errorpage.html</location>

</error-page>

Note: You can also define error pages for a JSP page contained in a WAR. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

References to Environment Entries,
Resource Environment Entries, or
Resources
If your Web components reference environment entries, resource environment
entries, or resources such as databases, you must declare the references with
<env-entry>, <resource-env-ref>, or <resource-ref> elements in the Web

102 WEB APPLICATIONS
application deployment descriptor. Here is the element used to declare a refer-
ence to the data source used in the Web technology chapters in this tutorial:

<resource-ref>
<res-ref-name>jdbc/BookDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Installing Web Applications
A context is a name that gets mapped to a Web application. For example, the
context of the Hello1 application is /hello1. To install an application to Tomcat,
you notify Tomcat that a new context is available.

You notify Tomcat of a new context with the Ant install task. Note that an
installed application is not available after Tomcat is restarted. To permanently
deploy an application, see Deploying Web Applications (page 103).

The Ant install task tells the manager running at the location specified by the
url attribute to install an application at the context specified by the path

attribute and the location containing the Web application files specified with the
war attribute. The value of the war attribute can be a WAR file
jar:file:/path/to/bar.war!/ or an unpacked directory
file:/path/to/foo.

<install url="url" path="mywebapp" war="file:build"
username="username" password="password" />

The username and password attributes are discussed in Tomcat Web Application
Manager (page 825).

Instead of providing a war attribute, you can specify configuration information
with the config attribute:

<install url="url"
path="mywebapp" config="file:build/context.xml"
username="username" password="password"/>

DEPLOYING WEB APPLICATIONS 103
The config attribute points to a configuration file that contains a context entry of
the form:

<Context path="/bookstore1"
docBase="../docs/tutorial/examples/web/bookstore1/build"
debug="0">

Note that the context entry implicitly specifies the location of the Web applica-
tion files through its docBase attribute.

The tutorial example build files contain an Ant install target that invokes the
Ant install task:

<target name="install"
description="Install web application" depends="build">
<install url="${url}" path="${mywebapp}"

config="file:build/context.xml"
username="${username}" password="${password}"/>

</target>

The Ant install task requires that a Web application deployment descriptor
(web.xml) be available. All of the tutorial example applications are distributed
with a deployment descriptor.

To install the Hello1 application described in Web Application Life
Cycle (page 94):

1. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/web/hello1.

2. Make sure Tomcat is started.

3. Execute ant install. The install target notifies Tomcat that the new
context is available.

Deploying Web Applications
You can use the Ant deploy task to permanently deploy a context to Tomcat
while Tomcat is running:

<deploy url="url" path="mywebapp"
war="file:/path/to/mywebapp.war"
username="username" password="password" />

104 WEB APPLICATIONS
Unlike the install task, which can reference an unpacked directory, the deploy

task requires a WAR. The task uploads the WAR to Tomcat and starts the appli-
cation. You can deploy to a remote server with this task.

The following other deployment methods are also available, but they require you
to restart Tomcat:

• Copy a Web application directory or WAR to <JWSDP_HOME>/webapps.

• Copy a configuration file named mywebapp.xml containing a context entry
to <JWSDP_HOME>/webapps. The format of a context entry is described in
the Server Configuration Reference at
<JWSDP_HOME>/docs/tomcat/config/context.html. Note that the con-
text entry implicitly specifies the location of the Web application files
through its docBase attribute. For example, here is the context entry for the
application discussed in Chapter 14:

<Context path="/bookstore1"
docBase="../docs/tutorial/examples/web/

bookstore1/build" debug="0">

Some of the example build files contain an Ant deploy target that invokes the
Ant deploy task.

Listing Installed and Deployed Web
Applications

If you want to list all Web applications currently available on Tomcat you use the
Ant list task:

<list url="url" username="username" password="password" />

The tutorial example build files contain an Ant list target that invokes the Ant

list task.

You can also see list applications by running the Manager Application:

http://<host>:8080/manager/list

RUNNING WEB APPLICATIONS 105
Running Web Applications
A Web application is executed when a Web browser references a URL that is
mapped to component. Once you have installed or deployed the Hello1 applica-
tion, you can run the Web application by pointing a browser at

http://<host>:8080/hello1/greeting

Replace <host> with the name of the host running Tomcat. If your browser is
running on the same host as Tomcat, you may replace <host> with localhost.

Updating Web Applications
During development, you will often need to make changes to Web applications.
After you modify a servlet, you must

1. Recompile the servlet class.

2. Update the application in the server.

3. Reload the URL in the client.

When you update a JSP page, you do not need to recompile or reload the appli-
cation, because Tomcat does this automatically.

To try this feature, modify the servlet version of the Hello application. For exam-
ple, you could change the greeting returned by GreetingServlet to be:

<h2>Hi, my name is Duke. What’s yours?</h2>

To update the file:

1. Edit GreetingServlet.java in the source directory
<JWSDP_HOME>/docs/tutorial/examples/web/hello1/src.

2. Run ant build. This task recompiles the servlet into the build directory.

The procedure for updating the application in the server depends on whether you
installed it using the Ant install task or deployed it using the Ant deploy task.

106 WEB APPLICATIONS
Reloading Web Applications
If you have installed an application using the Ant install command, you update
the application in the server using the Ant reload task:

<reload url="url" path="mywebapp"
username="username" password="password" />

The example build files contain an Ant remove target that invokes the Ant

remove task. Thus to update the Hello1 application in the server, execute ant

reload. To view the updated application, reload the Hello1 URL in the client.
Note that the reload task only picks up changes to Java classes, not changes to
the web.xml file. To reload web.xml, remove the application (see Removing Web
Applications, page 107) and install it again.

You should see the screen in Figure 4–3 in the browser:

Figure 4–3 New Greeting

To try this on the JSP version of the example, first build and deploy the JSP ver-
sion of the Hello application:

1. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/web/hello2.

2. Run ant build. The build target will spawn any necessary compilations
and copy files to the <JWSDP_HOME>/docs/tuto-

rial/examples/web/hello2/build directory.

REDEPLOYING WEB APPLICATIONS 107
3. Run ant install. The install target copies the build directory to
<JWSDP_HOME>/webapps and notifies Tomcat that the new application is
available.

Modify one of the JSP files. Then run ant build to copy the modified file into
docs/tutorial/examples/web/hello2/build. Remember, you don’t have to
reload the application in the server, because Tomcat automatically detects when
a JSP page has been modified. To view the modified application, reload the
Hello2 URL in the client.

Redeploying Web Applications
If you have deployed the application using the Ant deploy task you update the
application by using the Ant undeploy task (see Undeploying Web
Applications, page 107) and then using the Ant deploy task.

Removing Web Applications
If you want to take an installed Web application out of service, you invoke the
Ant remove task:

<remove url="url" path="mywebapp"
username="username" password="password" />

The example build files contain an Ant remove target that invokes the Ant

remove task.

Undeploying Web Applications
If you want to remove a deployed Web application, you use the Ant undeploy

task:

<undeploy url="url" path="mywebapp"
username="username" password="password" />

Some of the example build files contain an Ant undeploy target that invokes the
Ant undeploy task.

108 WEB APPLICATIONS
Internationalizing and Localizing Web
Applications

Internationalization is the process of preparing an application to support various
languages and data formats. Localization is the process of adapting an interna-
tionalized application to support a specific language or locale. Although all cli-
ent user interfaces should be internationalized and localized, it is particularly
important for Web applications because of the far-reaching nature of the Web.
For a good overview of internationalization and localization, see

http://java.sun.com/docs/books/tutorial/i18n/index.html

There are two approaches to internationalizing a Web application:

• Provide a version of the JSP page in each of the target locales and have a
controller servlet dispatch the request to the appropriate page (depending
on the requested locale). This approach is useful if large amounts of data
on a page or an entire Web application need to be internationalized.

• Isolate any locale-sensitive data on a page (such as error messages, string
literals, or button labels) into resource bundles, and access the data so that
the corresponding translated message is fetched automatically and inserted
into the page. Thus, instead of creating strings directly in your code, you
create a resource bundle that contains translations and read the translations
from that bundle using the corresponding key. A resource bundle can be
backed by a text file (properties resource bundle) or a class (list resource
bundle) containing the mappings.

In the following chapters on Web technology, the Duke’s Bookstore example is
internationalized and localized into English and Spanish. The key and value
pairs are contained in list resource bundles named mes-

sages.BookMessage_*.class. To give you an idea of what the key and string
pairs in a resource bundle look like, here are a few lines from the file mes-

sages.BookMessages.java.

{"TitleCashier", "Cashier"},
{"TitleBookDescription", "Book Description"},
{"Visitor", "You are visitor number "},
{"What", "What We”re Reading"},
{"Talk", " talks about how Web components can transform the way
you develop applications for the Web. This is a must read for
any self respecting Web developer!"},
{"Start", "Start Shopping"},

http://java.sun.com/docs/books/tutorial/i18n/index.html

ACCESSING DATABASES FROM WEB APPLICATIONS 109
To get the correct strings for a given user, a Web component retrieves the locale
(set by a browser language preference) from the request, opens the resource bun-
dle for that locale, and then saves the bundle as a session attribute (see Associat-
ing Attributes with a Session, page 599):

ResourceBundle messages = (ResourceBundle)session.
getAttribute("messages");
if (messages == null) {

Locale locale=request.getLocale();
messages = ResourceBundle.getBundle("WebMessages",

locale);
session.setAttribute("messages", messages);

}

A Web component retrieves the resource bundle from the session:

ResourceBundle messages =
(ResourceBundle)session.getAttribute("messages");

and looks up the string associated with the key TitleCashier as follows:

messages.getString(“TitleCashier”);

This has been a very brief introduction to internationalizing Web applications.
For more information on this subject see the Java BluePrints:

http://java.sun.com/blueprints

Accessing Databases from Web
Applications

Data that is shared between Web components and persistent between invocations
of a Web application is usually maintained by a database. Web applications use
the JDBC 2.0 API to access relational databases. For information on this API,
see

http://java.sun.com/docs/books/tutorial/jdbc

http://java.sun.com/blueprints
http://java.sun.com/docs/books/tutorial/jdbc

110 WEB APPLICATIONS
The Examples
The examples discussed in the chapters 14, 15, 16, and 17 require a database. For
this release we have tested the examples with the PointBase 4.5 database and we
provide an Ant build file to create the database tables and populate the database.
The remainder of this section describes how to

• Install and start the PointBase database server

• Populate the example tables

• Configure the Web application to reference a data source

• Define a data source in Tomcat

• Configure Tomcat to map the reference to the data source

Installing and Starting the Database
Server
You can download an evaluation copy of the PointBase 4.5 database from:

http://www.pointbase.com

Make sure to choose a platform-specific (UNIX or Windows) installation pack-
age. Install the client and server components. After you have downloaded and
installed the PointBase database, do the following:

1. Add a pb.home property to your build.properties file (discussed in
Managing the Examples, page xiv) that points to your PointBase install
directory. On Windows the syntax of the entry must be

pb.home=drive:\\<PB_HOME>

2. Copy <PB_HOME>/lib/pbclient45.jar to <JWSDP_HOME>/common/lib
to make the PointBase client library available to the example applications.
If Tomcat is running, restart it so that it loads the client library.

3. In a terminal window, go to <PB_HOME>/tools/server.

4. Start the PointBase server by typing start_server on UNIX or start-
server on Windows.

http://www.pointbase.com

POPULATING THE DATABASE 111
Populating the Database
1. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/web.

2. Execute ant. The default Ant task, create-book-db, uses the PointBase
console tool to execute the SQL statements in books.sql. At the end of
the processing, you should see the following output:

[java] ID
[java] ----------
[java] 201
[java] 202
[java] 203
[java] 204
[java] 205
[java] 206
[java] 207
[java]
[java] 7 Rows Selected.
[java]
[java] SQL>
[java]
[java] COMMIT;
[java] OK

Configuring the Web Application to
Reference a Data Source
In order to access a database from a Web application, you must declare resource
reference in the application’s Web application deployment descriptor (see Refer-
ences to Environment Entries, Resource Environment Entries, or
Resources, page 101). The resource reference declares a JNDI name, the type of
the data resource, and the kind of authentication used when the resource is
accessed:

<resource-ref>
<res-ref-name>jdbc/BookDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

112 WEB APPLICATIONS
The JNDI name is used to create a data source object in the database helper class
database.BookDB used by the tutorial examples. The res-auth element speci-
fies that the container will manage logging on to the database.

Defining a Data Source in Tomcat
In order to use a database you must create a data source in Tomcat. The data
source contains information about the driver class and URL used to connect to
the database and database login parameters. To define a data source in Tomcat,
you use admintool (see Configuring Data Sources, page 817) as follows:

1. Start admintool by opening a browser at:

http://localhost:8080/admin/index.jsp

2. Log in using the user name and password you specified when you installed
the Java WSDP.

3. Select the Data Sources entry under Resources.

4. Select Available Actions→Create New Data Source.

5. Enter pointbase in the JNDI Name field.

6. Enter jdbc:pointbase:server://localhost/sample in the Data
Source URL field.

7. Enter com.pointbase.jdbc.jdbcUniversalDriver in the JDBC Driver
Class field.

8. Enter public in the User Name and Password fields.

9. Click the Save button.

10.Click the Commit button.

Configuring Tomcat to Map the JNDI
Name to a Data Source
Since the resource reference declared in the Web application deployment
descriptor uses a JNDI name to refer to the data source, you must connect the
name to a data source by providing a resource link entry in Tomcat’s configura-

../examples/web/bookstore1/src/database/BookDB.java

FURTHER INFORMATION 113
tion. Here is the entry used by the application discussed in all the Web technol-
ogy chapters:

<Context path="/bookstore1"
docBase="../docs/tutorial/examples/web/bookstore1/build"
debug="0">
<ResourceLink name="jdbc/BookDB" global="pointbase"/>

</Context>

Since the resource link is a subentry of the context entry described in Installing
Web Applications (page 102) and Deploying Web Applications (page 103), you
add this entry to Tomcat’s configuration in the same ways that you add the con-
text entry: by passing the name of a configuration file containing the entry to the
config attribute of the Ant install task or by copying the configuration file
named mywebapp.xml that contains the context entry to
<JWSDP_HOME>/webapps.

If you are deploying the application using the Ant deploy task, you must pack-
age a configuration file named context.xml containing the context entry in the
META-INF directory of the WAR.

The examples discussed in chapters 14, 15, 16, and 17 show how to deploy
applications using the Ant deploy task mechanism.

Further Information
For further information on Web applications and Tomcat see:

• The Java Servlet 2.3 Specification, for details on configuring Web applica-
tions.

• The reference documentation on Tomcat distributed with the Java WSDP
at <JWSDP_HOME>/docs/tomcat/index.html.

http://www.jcp.org/aboutJava/communityprocess/final/jsr053/index.html

114 WEB APPLICATIONS

5

115
Java API for XML
Processing

Eric Armstrong

THE Java API for XML Processing (JAXP) is for processing XML data using
applications written in the Java programming language. JAXP leverages the
parser standards SAX (Simple API for XML Parsing) and DOM (Document
Object Model) so that you can choose to parse your data as a stream of events or
to build an object representation of it. JAXP also supports the XSLT (XML
Stylesheet Language Transformations) standard, giving you control over the pre-
sentation of the data and enabling you to convert the data to other XML docu-
ments or to other formats, such as HTML. JAXP also provides namespace
support, allowing you to work with DTDs that might otherwise have naming
conflicts.

Designed to be flexible, JAXP allows you to use any XML-compliant parser
from within your application. It does this with what is called a pluggability layer,
which allows you to plug in an implementation of the SAX or DOM APIs. The
pluggability layer also allows you to plug in an XSL processor, letting you con-
trol how your XML data is displayed.

The JAXP APIs
The main JAXP APIs are defined in the javax.xml.parsers package. That
package contains two vendor-neutral factory classes: SAXParserFactory and

116 JAVA API FOR XML PROCESSING
DocumentBuilderFactory that give you a SAXParser and a DocumentBuilder,
respectively. The DocumentBuilder, in turn, creates DOM-compliant Document
object.

The factory APIs give you the ability to plug in an XML implementation offered
by another vendor without changing your source code. The implementation you
get depends on the setting of the javax.xml.parsers.SAXParserFactory and
javax.xml.parsers.DocumentBuilderFactory system properties. The default
values (unless overridden at runtime) point to the JWSDP implementation.

The remainder of this section shows how the different JAXP APIs work when
you write an application.

An Overview of the Packages
The SAX and DOM APIs are defined by XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are:

javax.xml.parsers
The JAXP APIs, which provide a common interface for different vendors’
SAX and DOM parsers.

org.w3c.dom
Defines the Document class (a DOM), as well as classes for all of the compo-
nents of a DOM.

org.xml.sax
Defines the basic SAX APIs.

javax.xml.transform
Defines the XSLT APIs that let you transform XML into other forms.

The “Simple API” for XML (SAX) is the event-driven, serial-access mechanism
that does element-by-element processing. The API for this level reads and writes
XML to a data repository or the Web. For server-side and high-performance
apps, you will want to fully understand this level. But for many applications, a
minimal understanding will suffice.

The DOM API is generally an easier API to use. It provides a relatively familiar
tree structure of objects. You can use the DOM API to manipulate the hierarchy
of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it can
be accessed and manipulated by the user.

On the other hand, constructing the DOM requires reading the entire XML struc-
ture and holding the object tree in memory, so it is much more CPU and memory

THE SIMPLE API FOR XML (SAX) APIS 117
intensive. For that reason, the SAX API will tend to be preferred for server-side
applications and data filters that do not require an in-memory representation of
the data.

Finally, the XSLT APIs defined in javax.xml.transform let you write XML
data to a file or convert it into other forms. And, as you’ll see in the XSLT sec-
tion, of this tutorial, you can even use it in conjunction with the SAX APIs to
convert legacy data to XML.

The Simple API for XML (SAX) APIs
The basic outline of the SAX parsing APIs are shown at right. To start the pro-
cess, an instance of the SAXParserFactory class is used to generate an instance
of the parser.

Figure 5–1 SAX APIs

The parser wraps a SAXReader object. When the parser’s parse() method is
invoked, the reader invokes one of several callback methods implemented in the
application. Those methods are defined by the interfaces ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver.

Here is a summary of the key SAX APIs:

118 JAVA API FOR XML PROCESSING
SAXParserFactory

A SAXParserFactory object creates an instance of the parser determined by
the system property, javax.xml.parsers.SAXParserFactory.

SAXParser
The SAXParser interface defines several kinds of parse() methods. In gen-
eral, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methods in the
handler object.

SAXReader
The SAXParser wraps a SAXReader. Typically, you don’t care about that, but
every once in a while you need to get hold of it using SAXParser’s getXML-
Reader(), so you can configure it. It is the SAXReader which carries on the
conversation with the SAX event handlers you define.

DefaultHandler
Not shown in the diagram, a DefaultHandler implements the Con-

tentHandler, ErrorHandler, DTDHandler, and EntityResolver interfaces
(with null methods), so you can override only the ones you’re interested in.

ContentHandler
Methods like startDocument, endDocument, startElement, and endEle-

ment are invoked when an XML tag is recognized. This interface also
defines methods characters and processingInstruction, which are
invoked when the parser encounters the text in an XML element or an inline
processing instruction, respectively.

ErrorHandler
Methods error, fatalError, and warning are invoked in response to vari-
ous parsing errors. The default error handler throws an exception for fatal
errors and ignores other errors (including validation errors). That’s one rea-
son you need to know something about the SAX parser, even if you are using
the DOM. Sometimes, the application may be able to recover from a valida-
tion error. Other times, it may need to generate an exception. To ensure the
correct handling, you’ll need to supply your own error handler to the parser.

DTDHandler
Defines methods you will generally never be called upon to use. Used when
processing a DTD to recognize and act on declarations for an unparsed
entity.

EntityResolver
The resolveEntity method is invoked when the parser must identify data
identified by a URI. In most cases, a URI is simply a URL, which specifies
the location of a document, but in some cases the document may be identi-
fied by a URN—a public identifier, or name, that is unique in the Web space.

THE SAX PACKAGES 119
The public identifier may be specified in addition to the URL. The Entity-

Resolver can then use the public identifier instead of the URL to find the
document, for example to access a local copy of the document if one exists.

A typical application implements most of the ContentHandler methods, at a
minimum. Since the default implementations of the interfaces ignore all inputs
except for fatal errors, a robust implementation may want to implement the
ErrorHandler methods, as well.

The SAX Packages
The SAX parser is defined in the following packages listed in Table 5–1.

Table 5–1 SAX Packagess

 Package Description

 org.xml.sax
Defines the SAX interfaces. The name org.xml is the pack-
age prefix that was settled on by the group that defined the
SAX API.

 org.xml.sax.ext

Defines SAX extensions that are used when doing more
sophisticated SAX processing, for example, to process a doc-
ument type definitions (DTD) or to see the detailed syntax for
a file.

 org.xml.sax.helpers

 Contains helper classes that make it easier to use SAX—for
example, by defining a default handler that has null-methods
for all of the interfaces, so you only need to override the ones
you actually want to implement.

 javax.xml.parsers
Defines the SAXParserFactory class which returns the
SAXParser. Also defines exception classes for reporting
errors.

120 JAVA API FOR XML PROCESSING
The Document Object Model (DOM)
APIs

Figure 5–2 shows the JAXP APIs in action:

Figure 5–2 DOM APIs

You use the javax.xml.parsers.DocumentBuilderFactory class to get a Doc-
umentBuilder instance, and use that to produce a Document (a DOM) that con-
forms to the DOM specification. The builder you get, in fact, is determined by
the System property, javax.xml.parsers.DocumentBuilderFactory, which
selects the factory implementation that is used to produce the builder. (The plat-
form’s default value can be overridden from the command line.)

You can also use the DocumentBuilder newDocument() method to create an
empty Document that implements the org.w3c.dom.Document interface. Alter-
natively, you can use one of the builder’s parse methods to create a Document

from existing XML data. The result is a DOM tree like that shown in the dia-
gram.

Note: Although they are called objects, the entries in the DOM tree are actually
fairly low-level data structures. For example, under every element node (which cor-
responds to an XML element) there is a text node which contains the name of the
element tag! This issue will be explored at length in the DOM section of the tutorial,
but users who are expecting objects are usually surprised to find that invoking the

THE DOM PACKAGES 121
text() method on an element object returns nothing! For a truly object-oriented
tree, see the JDOM API at http://www.jdom.org.

The DOM Packages
The Document Object Model implementation is defined in the packages listed in
Table 5–2.:

Table 5–2 DOM Packages

 Package Description

 org.w3c.dom
Defines the DOM programming interfaces for XML (and, option-
ally, HTML) documents, as specified by the W3C.

 javax.xml.parsers

Defines the DocumentBuilderFactory class and the Docu-
mentBuilder class, which returns an object that implements the
W3C Document interface. The factory that is used to create the
builder is determined by the javax.xml.parsers system prop-
erty, which can be set from the command line or overridden when
invoking the new Instance method. This package also defines
the ParserConfigurationException class for reporting
errors.

122 JAVA API FOR XML PROCESSING
The XML Stylesheet Language for
Transformation (XSLT) APIs

Figure 5–3 shows the XSLT APIs in action.

Figure 5–3 XSLT APIs

A TransformerFactory object is instantiated, and used to create a Trans-

former. The source object is the input to the transformation process. A source
object can be created from SAX reader, from a DOM, or from an input stream.

Similarly, the result object is the result of the transformation process. That object
can be a SAX event handler, a DOM, or an output stream.

When the transformer is created, it may be created from a set of transformation
instructions, in which case the specified transformations are carried out. If it is
created without any specific instructions, then the transformer object simply cop-
ies the source to the result.

THE XSLT PACKAGES 123
The XSLT Packages
The XSLT APIs are defined in the following packages:

Compiling and Running the Programs
In the Java WSDP, the JAXP libraries are distributed in the directory
<JWSDP_HOME>/common/lib. To compile and run the sample programs, you'll
first need to install the JAXP libraries in the appropriate location. (The location
depends on which version of the JVM you are using.) See the JAXP release
notes at <JWSDP_HOME>/docs/jaxp/ReleaseNotes.html for details.

Where Do You Go from Here?
At this point, you have enough information to begin picking your own way
through the JAXP libraries. Your next step from here depends on what you want
to accomplish. You might want to go to:

Table 5–3 XSLT Packages

 Package Description

javax.xml.transform

Defines the TransformerFactory and
Transformer classes, which you use to get a
object capable of doing transformations. After
creating a transformer object, you invoke its
transform() method, providing it with an
input (source) and output (result).

javax.xml.transform.dom
Classes to create input (source) and output
(result) objects from a DOM.

javax.xml.transform.sax
Classes to create input (source) from a SAX
parser and output (result) objects from a SAX
event handler.

javax.xml.transform.stream
Classes to create input (source) and output
(result) objects from an I/O stream.

124 JAVA API FOR XML PROCESSING
The XML Thread
If you want to learn more about XML, spending as little time as possible on
the Java APIs. You will see all of the XML sections in the normal course of
the tutorial. Follow this thread if you want to bypass the API programming
steps:

• Understanding XML (page 41)

• Writing a Simple XML File (page 127)

• Substituting and Inserting Text (page 163)

• Creating a Document Type Definition (DTD) (page 168)

• Defining Attributes and Entities in the DTD (page 177)

• Referencing Binary Entities (page 184)

• Defining Parameter Entities and Conditional Sections (page 193)

Designing an XML Data Structure (page 63)
If you are creating XML data structures for an application and want some
tips on how to proceed.

Simple API for XML (page 125)
If the data structures have already been determined, and you are writing a
server application or an XML filter that needs to do the fastest possible pro-
cessing. This section also takes you step by step through the process of con-
structing an XML document.

Document Object Model (page 211)
If you need to build an object tree from XML data so you can manipulate it
in an application, or convert an in-memory tree of objects to XML. This part
of the tutorial ends with a section on namespaces.

XML Stylesheet Language for Transformations (page 289)
If you need to transform XML tags into some other form, if you want to gen-
erate XML output, or if you want to convert legacy data structures to XML.

6

125
Simple API for XML
Eric Armstrong

IN this chapter we focus on the Simple API for XML (SAX), an event-driven,
serial-access mechanism for accessing XML documents. This is the protocol that
most servlets and network-oriented programs will want to use to transmit and
receive XML documents, because it’s the fastest and least memory-intensive
mechanism that is currently available for dealing with XML documents.

The SAX protocol requires a lot more programming than the Document Object
Model (DOM). It’s an event-driven model (you provide the callback methods,
and the parser invokes them as it reads the XML data), which makes it harder to
visualize. Finally, you can’t “back up” to an earlier part of the document, or rear-
range it, any more than you can back up a serial data stream or rearrange charac-
ters you have read from that stream.

For those reasons, developers who are writing a user-oriented application that
displays an XML document and possibly modifies it will want to use the DOM
mechanism described in the next part of the tutorial, Document Object
Model (page 211).

However, even if you plan to build with DOM apps exclusively, there are several
important reasons for familiarizing yourself with the SAX model:

• Same Error Handling

When parsing a document for a DOM, the same kinds of exceptions are
generated, so the error handling for JAXP SAX and DOM applications
are identical.

• Handling Validation Errors

126 SIMPLE API FOR XML
By default, the specifications require that validation errors (which you’ll
be learning more about in this part of the tutorial) are ignored. If you want
to throw an exception in the event of a validation error (and you probably
do) then you need to understand how the SAX error handling works.

• Converting Existing Data

As you’ll see in the DOM section of the tutorial, there is a mechanism you
can use to convert an existing data set to XML—however, taking advan-
tage of that mechanism requires an understanding of the SAX model.

Note: The examples in this chapter can be found in <JWSDP_HOME>/docs/tuto-

rial/examples/jaxp/sax/samples.

When to Use SAX
When it comes to fast, efficient reading of XML data, SAX is hard to beat. It
requires little memory, because it does not construct an internal representation
(tree structure) of the XML data. Instead, it simply sends data to the application
as it is read — your application can then do whatever it wants to do with the data
it sees.

In effect, the SAX API acts like a serial I/O stream. You see the data as it streams
in, but you can’t go back to an earlier position or leap ahead to a different posi-
tion. In general, it works well when you simply want to read data and have the
application act on it.

It is also helpful to understand the SAX event model when you want to convert
existing data to XML. As you’ll see in Generating XML from an Arbitrary Data
Structure (page 312), the key to the conversion process is modifying an existing
application to deliver the appropriate SAX events as it reads the data.

But when you need to modify an XML structure — especially when you need to
modify it interactively, an in-memory structure like the Document Object Model
(DOM) may make more sense.

However, while DOM provides many powerful capabilities for large-scale docu-
ments (like books and articles), it also requires a lot of complex coding. (The
details of that process are highlighted in When to Use DOM (page 212).)

For simpler applications, that complexity may well be unnecessary. For faster
development and simpler applications, one of the object-oriented XML-pro-

WRITING A SIMPLE XML FILE 127
gramming standards may make the most sense, as described in JDOM and
dom4j (page 53).

Writing a Simple XML File
Let’s start out by writing up a simple version of the kind of XML data you could
use for a slide presentation. In this exercise, you’ll use your text editor to create
the data in order to become comfortable with the basic format of an XML file.
You’ll be using this file and extending it in later exercises.

Creating the File
Using a standard text editor, create a file called slideSample.xml.

Note: Here is a version of it that already exists: slideSample01.xml. (The brows-
able version is slideSample01-xml.html.) You can use this version to compare
your work, or just review it as you read this guide.

Writing the Declaration
Next, write the declaration, which identifies the file as an XML document. The
declaration starts with the characters “<?”, which is the standard XML identifier
for a processing instruction. (You’ll see other processing instructions later on in
this tutorial.)

 <?xml version='1.0' encoding='utf-8'?>

This line identifies the document as an XML document that conforms to version
1.0 of the XML specification, and says that it uses the 8-bit Unicode character-
encoding scheme. (For information on encoding schemes, see Java Encoding
Schemes (page 851).)

Since the document has not been specified as “standalone”, the parser assumes
that it may contain references to other documents. To see how to specify a docu-
ment as “standalone”, see The XML Prolog (page 44).

../examples/jaxp/sax/samples/slideSample01.xml
../examples/jaxp/sax/samples/slideSample01-xml.html

128 SIMPLE API FOR XML
Adding a Comment
Comments are ignored by XML parsers. You never see them in fact, unless you
activate special settings in the parser. You’ll see how to do that later on in the
tutorial, when we discuss Handling Lexical Events (page 200). For now, add the
text highlighted below to put a comment into the file.

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

Defining the Root Element
After the declaration, every XML file defines exactly one element, known as the
root element. Any other elements in the file are contained within that element.
Enter the text highlighted below to define the root element for this file, slide-
show:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow>

</slideshow>

Note: XML element names are case-sensitive. The end-tag must exactly match the
start-tag.

ADDING ATTRIBUTES TO AN ELEMENT 129
Adding Attributes to an Element
A slide presentation has a number of associated data items, none of which
require any structure. So it is natural to define them as attributes of the slide-

show element. Add the text highlighted below to set up some attributes:

...
<slideshow

title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

</slideshow>

When you create a name for a tag or an attribute, you can use hyphens (“-”),
underscores (“_”), colons (“:”), and periods (“.”) in addition to characters and
numbers. Unlike HTML, values for XML attributes are always in quotation
marks, and multiple attributes are never separated by commas.

Note: Colons should be used with care or avoided altogether, because they are used
when defining the namespace for an XML document.

Adding Nested Elements
XML allows for hierarchically structured data, which means that an element can
contain other elements. Add the text highlighted below to define a slide element
and a title element contained within it:

<slideshow
...
>

 <!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

</slideshow>

Here you have also added a type attribute to the slide. The idea of this attribute
is that slides could be earmarked for a mostly technical or mostly executive audi-

130 SIMPLE API FOR XML
ence with type="tech" or type="exec", or identified as suitable for both with
type="all".

More importantly, though, this example illustrates the difference between things
that are more usefully defined as elements (the title element) and things that
are more suitable as attributes (the type attribute). The visibility heuristic is pri-
marily at work here. The title is something the audience will see. So it is an ele-
ment. The type, on the other hand, is something that never gets presented, so it is
an attribute. Another way to think about that distinction is that an element is a
container, like a bottle. The type is a characteristic of the container (is it tall or
short, wide or narrow). The title is a characteristic of the contents (water, milk, or
tea). These are not hard and fast rules, of course, but they can help when you
design your own XML structures.

Adding HTML-Style Text
Since XML lets you define any tags you want, it makes sense to define a set of
tags that look like HTML. The XHTML standard does exactly that, in fact.
You’ll see more about that towards the end of the SAX tutorial. For now, type the
text highlighted below to define a slide with a couple of list item entries that use
an HTML-style tag for emphasis (usually rendered as italicized text):

...
<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

We’ll see later that defining a title element conflicts with the XHTML element
that uses the same name. We’ll discuss the mechanism that produces the conflict
(the DTD) and several possible solutions when we cover Parsing the Parameter-
ized DTD (page 197).

ADDING AN EMPTY ELEMENT 131
Adding an Empty Element
One major difference between HTML and XML, though, is that all XML must
be well-formed — which means that every tag must have an ending tag or be an
empty tag. You’re getting pretty comfortable with ending tags, by now. Add the
text highlighted below to define an empty list item element with no contents:

...
<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

Note that any element can be empty element. All it takes is ending the tag with
"/>" instead of ">". You could do the same thing by entering <item></item>,
which is equivalent.

Note: Another factor that makes an XML file well-formed is proper nesting. So
<i>some_text</i> is well-formed, because the <i>...</i> sequence is
completely nested within the .. tag. This sequence, on the other hand, is
not well-formed: <i>some_text</i>.

The Finished Product
Here is the completed version of the XML file:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
title="Sample Slide Show"
date="Date of publication"
author="Yours Truly"
>

<!-- TITLE SLIDE -->

132 SIMPLE API FOR XML
<slide type="all">
<title>Wake up to WonderWidgets!</title>

</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide
</slideshow>

Now that you’ve created a file to work with, you’re ready to write a program to
echo it using the SAX parser. You’ll do that in the next section.

Echoing an XML File with the SAX
Parser

In real life, you are going to have little need to echo an XML file with a SAX
parser. Usually, you’ll want to process the data in some way in order to do some-
thing useful with it. (If you want to echo it, it’s easier to build a DOM tree and
use that for output.) But echoing an XML structure is a great way to see the SAX
parser in action, and it can be useful for debugging.

In this exercise, you’ll echo SAX parser events to System.out. Consider it the
“Hello World” version of an XML-processing program. It shows you how to use
the SAX parser to get at the data, and then echoes it to show you what you’ve
got.

Note: The code discussed in this section is in Echo01.java. The file it operates on
is slideSample01.xml. (The browsable version is slideSample01-xml.html.)

../examples/jaxp/sax/samples/Echo01.java
../examples/jaxp/sax/samples/slideSample01.xml
../examples/jaxp/sax/samples/slideSample01-xml.html

CREATING THE SKELETON 133
Creating the Skeleton
Start by creating a file named Echo.java and enter the skeleton for the applica-
tion:

public class Echo
{

public static void main(String argv[])
{

}

}

Since we’re going to run it standalone, we need a main method. And we need
command-line arguments so we can tell the application which file to echo.

Importing Classes
Next, add the import statements for the classes the application will use:

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo
{

...

The classes in java.io, of course, are needed to do output. The org.xml.sax

package defines all the interfaces we use for the SAX parser. The SAX-

ParserFactory class creates the instance we use. It throws a ParserConfigu-

rationException if it is unable to produce a parser that matches the specified
configuration of options. (You’ll see more about the configuration options later.)
The SAXParser is what the factory returns for parsing, and the DefaultHandler

defines the class that will handle the SAX events that the parser generates.

134 SIMPLE API FOR XML
Setting up for I/O
The first order of business is to process the command line argument, get the
name of the file to echo, and set up the output stream. Add the text highlighted
below to take care of those tasks and do a bit of additional housekeeping:

public static void main(String argv[])

{
if (argv.length != 1) {

System.err.println("Usage: cmd filename");
System.exit(1);

}
try {

// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

}
catch (Throwable t) {

t.printStackTrace();
}
System.exit(0);

}

static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character
encoding. We could also have chosen US-ASCII, or UTF-16, which the Java
platform also supports. For more information on these character sets, see Java
Encoding Schemes (page 851).

Implementing the ContentHandler
Interface
The most important interface for our current purposes is the ContentHandler

interface. That interface requires a number of methods that the SAX parser
invokes in response to different parsing events. The major event handling meth-
ods are: startDocument, endDocument, startElement, endElement, and char-

acters.

The easiest way to implement that interface is to extend the DefaultHandler

class, defined in the org.xml.sax.helpers package. That class provides do-

IMPLEMENTING THE CONTENTHANDLER INTERFACE 135
nothing methods for all of the ContentHandler events. Enter the code high-
lighted below to extend that class:

public class Echo extends DefaultHandler
{

...
}

Note: DefaultHandler also defines do-nothing methods for the other major events,
defined in the DTDHandler, EntityResolver, and ErrorHandler interfaces. You’ll
learn more about those methods as we go along.

Each of these methods is required by the interface to throw a SAXException. An
exception thrown here is sent back to the parser, which sends it on to the code
that invoked the parser. In the current program, that means it winds up back at
the Throwable exception handler at the bottom of the main method.

When a start tag or end tag is encountered, the name of the tag is passed as a
String to the startElement or endElement method, as appropriate. When a
start tag is encountered, any attributes it defines are also passed in an
Attributes list. Characters found within the element are passed as an array of
characters, along with the number of characters (length) and an offset into the
array that points to the first character.

136 SIMPLE API FOR XML
Setting up the Parser
Now (at last) you’re ready to set up the parser. Add the text highlighted below to
set it up and get it started:

public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println("Usage: cmd filename");
System.exit(1);

}

// Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo();

 // Use the default (non-validating) parser
SAXParserFactory factory = SAXParserFactory.newInstance();
try {

// Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
SAXParser saxParser = factory.newSAXParser();
saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
t.printStackTrace();

}
System.exit(0);

}

With these lines of code, you created a SAXParserFactory instance, as deter-
mined by the setting of the javax.xml.parsers.SAXParserFactory system
property. You then got a parser from the factory and gave the parser an instance
of this class to handle the parsing events, telling it which input file to process.

Note: The javax.xml.parsers.SAXParser class is a wrapper that defines a number
of convenience methods. It wraps the (somewhat-less friendly)
org.xml.sax.Parser object. If needed, you can obtain that parser using the SAX-

Parser’s getParser() method.

For now, you are simply catching any exception that the parser might throw.
You’ll learn more about error processing in a later section of the tutorial, Han-
dling Errors with the Nonvalidating Parser (page 155).

WRITING THE OUTPUT 137
Writing the Output
The ContentHandler methods throw SAXExceptions but not IOExceptions,
which can occur while writing. The SAXException can wrap another exception,
though, so it makes sense to do the output in a method that takes care of the
exception-handling details. Add the code highlighted below to define an emit

method that does that:

static private Writer out;

private void emit(String s)
throws SAXException
{

try {
out.write(s);
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}
...

When emit is called, any I/O error is wrapped in SAXException along with a
message that identifies it. That exception is then thrown back to the SAX parser.
You’ll learn more about SAX exceptions later on. For now, keep in mind that
emit is a small method that handles the string output. (You’ll see it called a lot in
the code ahead.)

Spacing the Output
Here is another bit of infrastructure we need before doing some real processing.
Add the code highlighted below to define a nl() method that writes the kind of
line-ending character used by the current system:

private void emit(String s)
...

}

private void nl()
throws SAXException
{

String lineEnd = System.getProperty("line.separator");
try {

138 SIMPLE API FOR XML
out.write(lineEnd);
} catch (IOException e) {

throw new SAXException("I/O error", e);
}

}

Note: Although it seems like a bit of a nuisance, you will be invoking nl() many
times in the code ahead. Defining it now will simplify the code later on. It also pro-
vides a place to indent the output when we get to that section of the tutorial.

Handling Content Events
Finally, let’s write some code that actually processes the ContentHandler

events.

Document Events
Add the code highlighted below to handle the start-document and end-document
events:

static private Writer out;

public void startDocument()
throws SAXException
{

emit("<?xml version='1.0' encoding='UTF-8'?>");
nl();

}

public void endDocument()
throws SAXException
{

try {
nl();
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}

private void echoText()
...

HANDLING CONTENT EVENTS 139
Here, you are echoing an XML declaration when the parser encounters the start
of the document. Since you set up the OutputStreamWriter using the UTF-8
encoding, you include that specification as part of the declaration.

Note: However, the IO classes don’t understand the hyphenated encoding names,
so you specified “UTF8” rather than “UTF-8”.

At the end of the document, you simply put out a final newline and flush the out-
put stream. Not much going on there.

Element Events
Now for the interesting stuff. Add the code highlighted below to process the
start-element and end-element events:

public void startElement(String namespaceURI,
String sName, // simple name
String qName, // qualified name
Attributes attrs)

throws SAXException
{

String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespaceAware
emit("<"+eName);
if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);
emit(" ");
emit(aName+"=\""+attrs.getValue(i)+"\"");

}
}
emit(“>”);

}

public void endElement(String namespaceURI,
String sName, // simple name
String qName // qualified name
)

throws SAXException
{

140 SIMPLE API FOR XML
String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespaceAware
emit("<"+eName+">");

}

private void emit(String s)
...

With this code, you echoed the element tags, including any attributes defined in
the start tag. Note that when the startElement() method is invoked, the simple
name (“local name”) for elements and attributes could turn out to be the empty
string, if namespace processing was not enabled. The code handles that case by
using the qualified name whenever the simple name is the empty string.

Character Events
To finish handling the content events, you need to handle the characters that the
parser delivers to your application.

Parsers are not required to return any particular number of characters at one
time. A parser can return anything from a single character at a time up to several
thousand, and still be standard-conforming implementation. So, if your applica-
tion needs to process the characters it sees, it is wise to accumulate the characters
in a buffer, and operate on them only when you are sure they have all been found.

Add the line highlighted below to define the text buffer:

public class Echo01 extends DefaultHandler
{

StringBuffer textBuffer;

public static void main(String argv[])
{

...

HANDLING CONTENT EVENTS 141
Then add the code highlighted below to accumulate the characters the parser
delivers in the buffer:

public void endElement(...)
throws SAXException
{

...
}

public void characters(char buf[], int offset, int len)
throws SAXException
{

String s = new String(buf, offset, len);
if (textBuffer == null) {

textBuffer = new StringBuffer(s);
} else {

textBuffer.append(s);
}

}

private void emit(String s)
...

Next, add this method highlighted below to send the contents of the buffer to the
output stream.

public void characters(char buf[], int offset, int len)
throws SAXException
{

...
}

private void echoText()
throws SAXException
{

if (textBuffer == null) return;
String s = ""+textBuffer
emit(s);
textBuffer = null;

}

private void emit(String s)
...

142 SIMPLE API FOR XML
When this method is called twice in a row (which will happens at times, as we’ll
see next), the buffer will be null. So in that case, the method simply returns.
When the buffer is non-null, however, it’s contents are sent to the output stream.

Finally, add the code highlighted below to echo the contents of the buffer when-
ever an element starts or ends:

public void startElement(...)
throws SAXException
{

echoText();
String eName = sName; // element name
...

}

public void endElement(...)
throws SAXException
{

echoText();
String eName = sName; // element name
...

}

You’re done accumulating text when an element ends, of course. So you echo it
at that point, which clears the buffer before the next element starts.

But you also want to echo the accumulated text when an element starts! That’s
necessary for document-style data, which can contain XML elements that are
intermixed with text. For example, in this document fragment:

<para>This paragraph contains <bold>important</bold>
ideas.</para>

The initial text, “This paragraph contains” is terminated by the start of the
<bold> element. The text, “important” is terminated by the end tag, </bold>,
and the final text, “ideas.”, is terminated by the end tag, </para>.

Note: Most of the time, though, the accumulated text will be echoed when an
endElement() event occurs. When a startElement() event occurs after that, the
buffer will be empty. The first line in the echoText() method checks for that case,
and simply returns.

Congratulations! At this point you have written a complete SAX parser applica-
tion. The next step is to compile and run it.

COMPILING AND RUNNING THE PROGRAM 143
Note: To be strictly accurate, the character handler should scan the buffer for
ampersand characters ('&');and left-angle bracket characters ('<') and replace them
with the strings “&” or “<”, as appropriate. You’ll find out more about that
kind of processing when we discuss entity references in Substituting and Inserting
Text (page 163).

Compiling and Running the Program
In the Java WSDP, the JAXP libraries are distributed in the directory
<JWSDP_HOME>/common/lib. To compile the program you created, you'll first
need to install the JAXP JAR files in the appropriate location. (The names of the
JAR files depend on which version of JAXP you are using, and their location
depends of which version of the Java platform you are using. See the Java XML
release notes at <JWSDP_HOME>/docs/jaxp/ReleaseNotes.html for the latest
details.)

Note: Since JAXP 1.1 is built into version 1.4 of the Java 2 platform, you can also
execute the majority of the JAXP tutorial (SAX, DOM, and XSLT) sections, with-
out doing any special installation of the JAR files. However, to make use of the
added features in JAXP — XML Schema and the XSLTC compiling translator —
you will need to install JAXP 1.2, as described in the release notes.

For versions 1.2 and 1.3 of the Java 2 platform, you can execute the following
commands to compile and run the program:

javac -classpath jaxp-jar-files Echo.java
java -cp jaxp-jar-files Echo slideSample.xml

Alternatively, you could place the JAR files in the platform extensions directory
and use the simpler commands:

javac Echo.java
java Echo slideSample.xml

For version 1.4 of the Java 2 platform, you must identify the JAR files as newer
versions of the “endorsed standards” that are built into the Java 2 platform. To do
that, put the JAR files in the endorsed standards directory, jre/lib/endorsed.
(You copy all of the JAR files, except for jaxp-api.jar. You ignore that one
because the JAXP APIs are already built into the 1.4 platform.)

144 SIMPLE API FOR XML
You can then compile and run the program with these commands:

javac Echo.java
java Echo slideSample.xml

Note: You could also elect to set the java.endorsed.dirs system property on
the command line so that it points to a directory containing the necessary JAR files,
using an command-line option like this: -D”java.endorsed.dirs=somePath”.

Checking the Output
Here is part of the program’s output, showing some of its weird spacing:

...
<slideshow title="Sample Slide Show" date="Date of publication"
author="Yours Truly">

<slide type="all">
<title>Wake up to WonderWidgets!</title>

</slide>
...

Note: The program’s output is contained in Echo01-01.txt. (The browsable ver-
sion is Echo01-01.html.)

Looking at this output, a number of questions arise. Namely, where is the excess
vertical whitespace coming from? And why is it that the elements are indented
properly, when the code isn’t doing it? We’ll answer those questions in a
moment. First, though, there are a few points to note about the output:

• The comment defined at the top of the file

 <!-- A SAMPLE set of slides -->

does not appear in the listing. Comments are ignored, unless you implement
a LexicalHandler. You’ll see more about that later on in this tutorial.

• Element attributes are listed all together on a single line. If your window
isn’t really wide, you won’t see them all.

../examples/jaxp/sax/samples/Echo01-01.txt
../examples/jaxp/sax/samples/Echo01-01.html

IDENTIFYING THE EVENTS 145
• The single-tag empty element you defined (<item/>) is treated exactly the
same as a two-tag empty element (<item></item>). It is, for all intents and
purposes, identical. (It’s just easier to type and consumes less space.)

Identifying the Events
This version of the echo program might be useful for displaying an XML file,
but it’s not telling you much about what’s going on in the parser. The next step is
to modify the program so that you see where the spaces and vertical lines are
coming from.

Note: The code discussed in this section is in Echo02.java. The output it produces
is shown in Echo02-01.txt. (The browsable version is Echo02-01.html)

 Make the changes highlighted below to identify the events as they occur:

public void startDocument()
throws SAXException
{

nl();
nl();
emit("START DOCUMENT");
nl();
emit("<?xml version='1.0' encoding='UTF-8'?>");
nl();

}

public void endDocument()
throws SAXException
{

nl();
emit("END DOCUMENT");
try {
...

}

public void startElement(...)
throws SAXException
{

echoText();
nl();
emit("ELEMENT: ");
String eName = sName; // element name

../examples/jaxp/sax/samples/Echo02.java
../examples/jaxp/sax/samples/Echo02-01.txt
../examples/jaxp/sax/samples/Echo02-01.html

146 SIMPLE API FOR XML
if ("".equals(eName)) eName = qName; // not namespaceAware
emit("<"+eName);
if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {
String aName = attrs.getLocalName(i); // Attr name
if ("".equals(aName)) aName = attrs.getQName(i);
emit(" ");
emit(aName+"=\""+attrs.getValue(i)+"\"");
nl();
emit(" ATTR: ");
emit(aName);
emit("\t\"");
emit(attrs.getValue(i));
emit("\"");

}
}
if (attrs.getLength() > 0) nl();
emit(">");

}

public void endElement(...)
throws SAXException
{

echoText();
nl();
emit("END_ELM: ");
String eName = sName; // element name
if ("".equals(eName)) eName = qName; // not namespaceAware
emit("<"+eName+">");

}

...

private void echoText()
throws SAXException
{

if (textBuffer == null) return;
nl();
emit("CHARS: |");
String s = ""+textBuffer
emit(s);
emit("|");
textBuffer = null;

}

COMPRESSING THE OUTPUT 147
Compile and run this version of the program to produce a more informative out-
put listing. The attributes are now shown one per line, which is nice. But, more
importantly, output lines like this one:

 CHARS: |

|

show that both the indentation space and the newlines that separate the attributes
come from the data that the parser passes to the characters() method.

Note: The XML specification requires all input line separators to be normalized to
a single newline. The newline character is specified as in Java, C, and UNIX sys-
tems, but goes by the alias “linefeed” in Windows systems.

Compressing the Output
To make the output more readable, modify the program so that it only outputs
characters containing something other than whitespace.

Note: The code discussed in this section is in Echo03.java.

Make the changes shown below to suppress output of characters that are all
whitespace:

public void echoText()
throws SAXException
{

nl();
emit("CHARS: |");
emit("CHARS: ");
String s = ""+textBuffer;
if (!s.trim().equals("")) emit(s);
emit("|");

}

../examples/jaxp/sax/samples/Echo03.java

148 SIMPLE API FOR XML
Next, add the code highlighted below to echo each set of characters delivered by
the parser:

public void characters(char buf[], int offset, int len)
throws SAXException
{

if (textBuffer != null) {
echoText();
textBuffer = null;

}
String s = new String(buf, offset, len);
...

}

If you run the program now, you will see that you have eliminated the indenta-
tion as well, because the indent space is part of the whitespace that precedes the
start of an element. Add the code highlighted below to manage the indentation:

static private Writer out;

private String indentString = " "; // Amount to indent
private int indentLevel = 0;

...

public void startElement(...)
throws SAXException
{

indentLevel++;
nl();
emit("ELEMENT: ");
...

}

public void endElement(...)
throws SAXException
{

nl();
emit("END_ELM: ");
emit("</"+sName+">");
indentLevel--;

}
...
private void nl()
throws SAXException
{

...

INSPECTING THE OUTPUT 149
try {
out.write(lineEnd);
for (int i=0; i < indentLevel; i++)

out.write(indentString);
} catch (IOException e) {
...

}

This code sets up an indent string, keeps track of the current indent level, and
outputs the indent string whenever the nl method is called. If you set the indent
string to "", the output will be un-indented (Try it. You’ll see why it’s worth the
work to add the indentation.)

You’ll be happy to know that you have reached the end of the “mechanical” code
you have to add to the Echo program. From here on, you’ll be doing things that
give you more insight into how the parser works. The steps you’ve taken so far,
though, have given you a lot of insight into how the parser sees the XML data it
processes. It’s also given you a helpful debugging tool you can use to see what
the parser sees.

Inspecting the Output
There is part of the output from this version of the program:

ELEMENT: <slideshow
...
>
CHARS:
CHARS:

ELEMENT: <slide
...
END_ELM: </slide>

CHARS:
CHARS:

Note: The complete output is Echo03-01.txt. (The browsable version is
Echo03-01.html)

Note that the characters method was invoked twice in a row. Inspecting the
source file slideSample01.xml shows that there is a comment before the first
slide. The first call to characters comes before that comment. The second call

../examples/jaxp/sax/samples/Echo03-01.txt
../examples/jaxp/sax/samples/Echo03-01.html
../examples/jaxp/sax/samples/slideSample01.xml
../examples/jaxp/sax/samples/slideSample01.xml

150 SIMPLE API FOR XML
comes after. (Later on, you’ll see how to be notified when the parser encounters a
comment, although in most cases you won’t need such notifications.)

Note, too, that the characters method is invoked after the first slide element, as
well as before. When you are thinking in terms of hierarchically structured data,
that seems odd. After all, you intended for the slideshow element to contain
slide elements, not text. Later on, you’ll see how to restrict the slideshow ele-
ment using a DTD. When you do that, the characters method will no longer be
invoked.

In the absence of a DTD, though, the parser must assume that any element it sees
contains text like that in the first item element of the overview slide:

<item>Why WonderWidgets are great</item>

Here, the hierarchical structure looks like this:

ELEMENT: <item>
CHARS: Why

ELEMENT:
CHARS: WonderWidgets
END_ELM:

CHARS: are great
END_ELM: </item>

Documents and Data
In this example, it’s clear that there are characters intermixed with the hierarchi-
cal structure of the elements. The fact that text can surround elements (or be pre-
vented from doing so with a DTD or schema) helps to explain why you
sometimes hear talk about “XML data” and other times hear about “XML docu-
ments”. XML comfortably handles both structured data and text documents that
include markup. The only difference between the two is whether or not text is
allowed between the elements.

Note: In an upcoming section of this tutorial, you will work with the ignorable-

Whitespace method in the ContentHandler interface. This method can only be
invoked when a DTD is present. If a DTD specifies that slideshow does not contain
text, then all of the whitespace surrounding the slide elements is by definition
ignorable. On the other hand, if slideshow can contain text (which must be
assumed to be true in the absence of a DTD), then the parser must assume that

ADDING ADDITIONAL EVENT HANDLERS 151
spaces and lines it sees between the slide elements are significant parts of the doc-
ument.

Adding Additional Event Handlers
Besides ignorableWhitespace, there are two other ContentHandler methods
that can find uses in even simple applications: setDocumentLocator and pro-

cessingInstruction. In this section of the tutorial, you’ll implement those two
event handlers.

Identifying the Document’s Location
A locator is an object that contains the information necessary to find the docu-
ment. The Locator class encapsulates a system ID (URL) or a public identifier
(URN), or both. You would need that information if you wanted to find some-
thing relative to the current document—in the same way, for example, that an
HTML browser processes an href="anotherFile" attribute in an anchor tag—
the browser uses the location of the current document to find anotherFile.

You could also use the locator to print out good diagnostic messages. In addition
to the document’s location and public identifier, the locator contains methods
that give the column and line number of the most recently-processed event. The
setDocumentLocator method is called only once at the beginning of the parse,
though. To get the current line or column number, you would save the locator
when setDocumentLocator is invoked and then use it in the other event-han-
dling methods.

Note: The code discussed in this section is in Echo04.java. Its output is in Echo04-

01.txt. (The browsable version is Echo04-01.html.)

Start by removing the extra character-echoing code you added for the last exam-
ple:

public void characters(char buf[], int offset, int len)
throws SAXException
{

if (textBuffer != null) {
echoText();
textBuffer = null;

../examples/jaxp/sax/samples/Echo04.java
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.txt
../examples/jaxp/sax/samples/Echo04-01.html

152 SIMPLE API FOR XML
}
String s = new String(buf, offset, len);
...

}

Next. add the method highlighted below to the Echo program to get the docu-
ment locator and use it to echo the document’s system ID.

...
private String indentString = " "; // Amount to indent
private int indentLevel = 0;

public void setDocumentLocator(Locator l)
{

try {
out.write("LOCATOR");
out.write("SYS ID: " + l.getSystemId());
out.flush();

} catch (IOException e) {
// Ignore errors

}
}

public void startDocument()
...

Notes:

• This method, in contrast to every other ContentHandler method, does not
return a SAXException. So, rather than using emit for output, this code
writes directly to System.out. (This method is generally expected to sim-
ply save the Locator for later use, rather than do the kind of processing
that generates an exception, as here.)

• The spelling of these methods is “Id”, not “ID”. So you have getSystemId
and getPublicId.

When you compile and run the program on slideSample01.xml, here is the sig-
nificant part of the output:

LOCATOR
SYS ID: file:<path>/../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
...

HANDLING PROCESSING INSTRUCTIONS 153
Here, it is apparent that setDocumentLocator is called before startDocument.
That can make a difference if you do any initialization in the event handling
code.

Handling Processing Instructions
It sometimes makes sense to code application-specific processing instructions in
the XML data. In this exercise, you’ll add a processing instruction to your
slideSample.xml file and then modify the Echo program to display it.

Note: The code discussed in this section is in Echo05.java. The file it operates on
is slideSample02.xml. The output is in Echo05-02.txt. (The browsable versions
are slideSample02-xml.html and Echo05-02.html.)

As you saw in Understanding XML (page 41), the format for a processing
instruction is <?target data?>, where “target” is the target application that is
expected to do the processing, and “data” is the instruction or information for it
to process. Add the text highlighted below to add a processing instruction for a
mythical slide presentation program that will query the user to find out which
slides to display (technical, executive-level, or all):

<slideshow
...
>

<!-- PROCESSING INSTRUCTION -->
<?my.presentation.Program QUERY="exec, tech, all"?>

<!-- TITLE SLIDE -->

Notes:

• The “data” portion of the processing instruction can contain spaces, or may
even be null. But there cannot be any space between the initial <? and the
target identifier.

• The data begins after the first space.

• Fully qualifying the target with the complete Web-unique package prefix
makes sense, so as to preclude any conflict with other programs that might
process the same data.

../examples/jaxp/sax/samples/Echo05.java
../examples/jaxp/sax/samples/slideSample02.xml
../examples/jaxp/sax/samples/Echo05-02.txt
../examples/jaxp/sax/samples/slideSample02-xml.html
../examples/jaxp/sax/samples/Echo05-02.html

154 SIMPLE API FOR XML
• For readability, it seems like a good idea to include a colon (:) after the
name of the application, like this:

<?my.presentation.Program: QUERY="..."?>

The colon makes the target name into a kind of “label” that identifies the
intended recipient of the instruction. However, while the w3c spec allows “:”
in a target name, some versions of IE5 consider it an error. For this tutorial,
then, we avoid using a colon in the target name.

Now that you have a processing instruction to work with, add the code high-
lighted below to the Echo app:

public void characters(char buf[], int offset, int len)
...
}

public void processingInstruction(String target, String data)
throws SAXException
{

nl();
emit("PROCESS: ");
emit("<?"+target+" "+data+"?>");

}

private void echoText()
...

When your edits are complete, compile and run the program. The relevant part of
the output should look like this:

ELEMENT: <slideshow
...

>
PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
CHARS:
...

Summary
With the minor exception of ignorableWhitespace, you have used most of the
ContentHandler methods that you need to handle the most commonly useful
SAX events. You’ll see ignorableWhitespace a little later on. Next, though,
you’ll get deeper insight into how you handle errors in the SAX parsing process.

HANDLING ERRORS WITH THE NONVALIDATING PARSER 155
Handling Errors with the Nonvalidating
Parser

This version of the Echo program uses the nonvalidating parser. So it can’t tell if
the XML document contains the right tags, or if those tags are in the right
sequence. In other words, it can’t tell you if the document is valid. It can, how-
ever, tell whether or not the document is well-formed.

In this section of the tutorial, you’ll modify the slideshow file to generate differ-
ent kinds of errors and see how the parser handles them. You’ll also find out
which error conditions are ignored, by default, and see how to handle them.

Introducing an Error
The parser can generate one of three kinds of errors: fatal error, error, and warn-
ing. In this exercise, you’ll make a simple modification to the XML file to intro-
duce a fatal error. Then you’ll see how it’s handled in the Echo app.

Note: The XML structure you’ll create in this exercise is in slideSampleBad1.xml.
The output is in Echo05-Bad1.txt. (The browsable versions are slideSampleBad1-
xml.html and Echo05-Bad1.html.)

One easy way to introduce a fatal error is to remove the final “/” from the empty
item element to create a tag that does not have a corresponding end tag. That
constitutes a fatal error, because all XML documents must, by definition, be well
formed. Do the following:

1. Copy slideSample.xml to badSample.xml.

2. Edit badSample.xml and remove the character shown below:

...
<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>
...

../examples/jaxp/sax/samples/slideSampleBad1.xml
../examples/jaxp/sax/samples/Echo05-Bad1.txt
../examples/jaxp/sax/samples/slideSampleBad1-xml.html
../examples/jaxp/sax/samples/slideSampleBad1-xml.html
../examples/jaxp/sax/samples/Echo05-Bad1.html

156 SIMPLE API FOR XML
to produce:

...
<item>Why WonderWidgets are great</item>
<item>
<item>Who buys WonderWidgets</item>
...

3. Run the Echo program on the new file.

The output now gives you an error message that looks like this (after formatting
for readability):

org.xml.sax.SAXParseException:
The element type "item" must be terminated by the
matching end-tag “</item>”.

...
at org.apache.xerces.parsers.AbstractSAXParser...
...
at Echo.main(...)

Note: The message above was generated by the JAXP 1.2 libraries. If you are using
a different parser, the error message is likely to be somewhat different.

When a fatal error occurs, the parser is unable to continue. So, if the application
does not generate an exception (which you’ll see how to do a moment), then the
default error-event handler generates one. The stack trace is generated by the
Throwable exception handler in your main method:

 ...
} catch (Throwable t) {

t.printStackTrace();
}

That stack trace is not too useful, though. Next, you’ll see how to generate better
diagnostics when an error occurs.

Handling a SAXParseException
When the error was encountered, the parser generated a SAXParseException—a
subclass of SAXException that identifies the file and location where the error
occurred.

HANDLING ERRORS WITH THE NONVALIDATING PARSER 157
Note: The code you’ll create in this exercise is in Echo06.java. The output is in
Echo06-Bad1.txt. (The browsable version is Echo06-Bad1.html.)

Add the code highlighted below to generate a better diagnostic message when
the exception occurs:

...
} catch (SAXParseException spe) {

// Error generated by the parser
System.out.println("\n** Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

} catch (Throwable t) {
t.printStackTrace();

}

Running the program now generates an error message which is a bit more help-
ful, like this:

** Parsing error, line 22, uri file:<path>/slideSampleBad1.xml
The element type "item" must be ...

Note: The text of the error message depends on the parser used. This message was
generated using JAXP 1.2.

Note: Catching all throwables like this is not generally a great idea for production
applications. We’re doing it now so we can build up to full error handling gradually.
In addition, it acts as a catch-all for null pointer exceptions that can be thrown when
the parser is passed a null value.

Handling a SAXException
A more general SAXException instance may sometimes be generated by the
parser, but it more frequently occurs when an error originates in one of applica-
tion’s event handling methods. For example, the signature of the startDocument

../examples/jaxp/sax/samples/Echo06.java
../examples/jaxp/sax/samples/Echo06-Bad1.txt
../examples/jaxp/sax/samples/Echo06-Bad1.html

158 SIMPLE API FOR XML
method in the ContentHandler interface is defined as returning a SAXExcep-

tion:

public void startDocument() throws SAXException

All of the ContentHandler methods (except for setDocumentLocator) have
that signature declaration.

A SAXException can be constructed using a message, another exception, or
both. So, for example, when Echo.startDocument outputs a string using the
emit method, any I/O exception that occurs is wrapped in a SAXException and
sent back to the parser:

private void emit(String s)
throws SAXException
{

try {
out.write(s);
out.flush();

} catch (IOException e) {
throw new SAXException("I/O error", e);

}
}

Note: If you saved the Locator object when setDocumentLocator was invoked,
you could use it to generate a SAXParseException, identifying the document and
location, instead of generating a SAXException.

When the parser delivers the exception back to the code that invoked the parser,
it makes sense to use the original exception to generate the stack trace. Add the
code highlighted below to do that:

 ...
} catch (SAXParseException err) {

System.out.println("\n** Parsing error"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

HANDLING ERRORS WITH THE NONVALIDATING PARSER 159
x = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}

This code tests to see if the SAXException is wrapping another exception. If so,
it generates a stack trace originating from where that exception occurred to make
it easier to pinpoint the code responsible for the error. If the exception contains
only a message, the code prints the stack trace starting from the location where
the exception was generated.

Improving the SAXParseException Handler
Since the SAXParseException can also wrap another exception, add the code
highlighted below to use the contained exception for the stack trace:

 ...
} catch (SAXParseException err) {

System.out.println("\n** Parsing error"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exceptionx = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

}

The program is now ready to handle any SAX parsing exceptions it sees. You’ve
seen that the parser generates exceptions for fatal errors. But for nonfatal errors

160 SIMPLE API FOR XML
and warnings, exceptions are never generated by the default error handler, and
no messages are displayed. In a moment, you’ll learn more about errors and
warnings and find out how to supply an error handler to process them.

Handling a ParserConfigurationException
Finally, recall that the SAXParserFactory class could throw an exception if it
were for unable to create a parser. Such an error might occur if the factory could
not find the class needed to create the parser (class not found error), was not per-
mitted to access it (illegal access exception), or could not instantiate it (instantia-
tion error).

Add the code highlighted below to handle such errors:

} catch (SAXException sxe) {
Exceptionx = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (Throwable t) {
t.printStackTrace();

Admittedly, there are quite a few error handlers here. But at least now you know
the kinds of exceptions that can occur.

Note: A javax.xml.parsers.FactoryConfigurationError could also be thrown
if the factory class specified by the system property cannot be found or instantiated.
That is a non-trappable error, since the program is not expected to be able to recover
from it.

HANDLING ERRORS WITH THE NONVALIDATING PARSER 161
Handling an IOException
Finally, while we’re at it, let’s add a handler for IOExceptions:

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}

} catch (Throwable t) {
...

We’ll leave the handler for Throwables to catch null pointer errors, but note that
at this point it is doing the same thing as the IOException handler. Here, we’re
merely illustrating the kinds of exceptions that can occur, in case there are some
that your application could recover from.

Handling NonFatal Errors
A nonfatal error occurs when an XML document fails a validity constraint. If the
parser finds that the document is not valid, then an error event is generated. Such
errors are generated by a validating parser, given a DTD or schema, when a doc-
ument has an invalid tag, or a tag is found where it is not allowed, or (in the case
of a schema) if the element contains invalid data.

You won’t actually dealing with validation issues until later in this tutorial. But
since we’re on the subject of error handling, you’ll write the error-handling code
now.

The most important principle to understand about non-fatal errors is that they are
ignored, by default.

But if a validation error occurs in a document, you probably don’t want to con-
tinue processing it. You probably want to treat such errors as fatal. In the code
you write next, you’ll set up the error handler to do just that.

Note: The code for the program you’ll create in this exercise is in Echo07.java.

../examples/jaxp/sax/samples/Echo07.java

162 SIMPLE API FOR XML
To take over error handling, you override the DefaultHandler methods that
handle fatal errors, nonfatal errors, and warnings as part of the ErrorHandler

interface. The SAX parser delivers a SAXParseException to each of these meth-
ods, so generating an exception when an error occurs is as simple as throwing it
back.

Add the code highlighted below to override the handler for errors:

public void processingInstruction(String target, String data)
throws SAXException
{

...
}

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

Note: It can be instructive to examine the error-handling methods defined in
org.xml.sax.helpers.DefaultHandler. You’ll see that the error() and warn-

ing() methods do nothing, while fatalError() throws an exception. Of course,
you could always override the fatalError() method to throw a different exception.
But if your code doesn’t throw an exception when a fatal error occurs, then the SAX
parser will — the XML specification requires it.

Handling Warnings
Warnings, too, are ignored by default. Warnings are informative, and require a
DTD. For example, if an element is defined twice in a DTD, a warning is gener-
ated—it’s not illegal, and it doesn’t cause problems, but it’s something you
might like to know about since it might not have been intentional.

SUBSTITUTING AND INSERTING TEXT 163
Add the code highlighted below to generate a message when a warning occurs:

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{

System.out.println("** Warning"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

System.out.println(" " + err.getMessage());
}

Since there is no good way to generate a warning without a DTD or schema, you
won’t be seeing any just yet. But when one does occur, you’re ready!

Substituting and Inserting Text
The next thing we want to do with the parser is to customize it a bit, so you can
see how to get information it usually ignores. But before we can do that, you’re
going to need to learn a few more important XML concepts. In this section,
you’ll learn about:

• Handling Special Characters ("<", "&", and so on)

• Handling Text with XML-style syntax

Handling Special Characters
In XML, an entity is an XML structure (or plain text) that has a name. Referenc-
ing the entity by name causes it to be inserted into the document in place of the
entity reference. To create an entity reference, the entity name is surrounded by
an ampersand and a semicolon, like this:

 &entityName;

164 SIMPLE API FOR XML
Later, when you learn how to write a DTD, you’ll see that you can define your
own entities, so that &yourEntityName; expands to all the text you defined for
that entity. For now, though, we’ll focus on the predefined entities and character
references that don’t require any special definitions.

Predefined Entities
An entity reference like & contains a name (in this case, “amp”) between the
start and end delimiters. The text it refers to (&) is substituted for the name, like
a macro in a C or C++ program. Table 6–1 shows the predefined entities for spe-
cial characters.

Character References
A character reference like “ contains a hash mark (#) followed by a num-
ber. The number is the Unicode value for a single character, such as 65 for the
letter “A”, 147 for the left-curly quote, or 148 for the right-curly quote. In this
case, the “name” of the entity is the hash mark followed by the digits that iden-
tify the character.

Note: XML expects values to be specified in decimal. However, the Unicode charts
at http://www.unicode.org/charts/ specify values in hexadecimal! So you’ll need to
do a conversion to get the right value to insert into your XML data set.

Table 6–1 Predefined Entities

 Character Reference

 & &

 < <

 > >

 " "

 ' '

http://www.unicode.org/charts/

USING AN ENTITY REFERENCE IN AN XML DOCUMENT 165
Using an Entity Reference in an XML
Document
Suppose you wanted to insert a line like this in your XML document:

 Market Size < predicted

The problem with putting that line into an XML file directly is that when the
parser sees the left-angle bracket (<), it starts looking for a tag name, which
throws off the parse. To get around that problem, you put < in the file, instead
of “<”.

Note: The results of the modifications below are contained in slideSample03.xml.
The results of processing it are shown in Echo07-03.txt. (The browsable versions
are slideSample03-xml.html and Echo07-03.html.)

If you are following the programming tutorial, add the text highlighted below to
your slideSample.xml file:

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
...

</slide>

<slide type="exec">
<title>Financial Forecast</title>
<item>Market Size < predicted</item>
<item>Anticipated Penetration</item>
<item>Expected Revenues</item>
<item>Profit Margin </item>

</slide>

</slideshow>

When you run the Echo program on your XML file, you see the following out-
put:

ELEMENT: <item>
CHARS: Market Size < predicted
END_ELM: </item>

../examples/jaxp/sax/samples/slideSample03.xml
../examples/jaxp/sax/samples/Echo07-03.txt
../examples/jaxp/sax/samples/slideSample03-xml.html
../examples/jaxp/sax/samples/Echo07-03.html

166 SIMPLE API FOR XML
The parser converted the reference into the entity it represents, and passed the
entity to the application.

Handling Text with XML-Style Syntax
When you are handling large blocks of XML or HTML that include many of the
special characters, it would be inconvenient to replace each of them with the
appropriate entity reference. For those situations, you can use a CDATA section.

Note: The results of the modifications below are contained in slideSample04.xml.
The results of processing it are shown in Echo07-04.txt. (The browsable versions
are slideSample04-xml.html and Echo07-04.html.)

A CDATA section works like <pre>...</pre> in HTML, only more so—all
whitespace in a CDATA section is significant, and characters in it are not inter-
preted as XML. A CDATA section starts with <![CDATA[and ends with]]>. Add
the text highlighted below to your slideSample.xml file to define a CDATA sec-
tion for a fictitious technical slide:

 ...
<slide type="tech">

<title>How it Works</title>
<item>First we fozzle the frobmorten</item>
<item>Then we framboze the staten</item>
<item>Finally, we frenzle the fuznaten</item>
<item><![CDATA[Diagram:

frobmorten <--------------- fuznaten
| <3>^
| <1>| <1> = fozzle
V | <2> = framboze
Staten--------------------+<3> = frenzle

 <2>
]]></item>

</slide>
</slideshow>

When you run the Echo program on the new file, you see the following output:

ELEMENT: <item>
CHARS: Diagram:

frobmorten <--------------fuznaten
| <3> ^

../examples/jaxp/sax/samples/slideSample04.xml
../examples/jaxp/sax/samples/Echo07-04.txt
../examples/jaxp/sax/samples/slideSample04-xml.html
../examples/jaxp/sax/samples/Echo07-04.html

HANDLING CDATA AND OTHER CHARACTERS 167
 | <1> | <1> = fozzle
V | <2> = framboze

staten----------------------+ <3> = frenzle
<2>

END_ELM: </item>

You can see here that the text in the CDATA section arrived as it was written. Since
the parser didn’t treat the angle brackets as XML, they didn’t generate the fatal
errors they would otherwise cause. (Because, if the angle brackets weren’t in a
CDATA section, the document would not be well-formed.)

Handling CDATA and Other Characters
The existence of CDATA makes the proper echoing of XML a bit tricky. If the
text to be output is not in a CDATA section, then any angle brackets, amper-
sands, and other special characters in the text should be replaced with the appro-
priate entity reference. (Replacing left angle brackets and ampersands is most
important, other characters will be interpreted properly without misleading the
parser.)

But if the output text is in a CDATA section, then the substitutions should not
occur, to produce text like that in the example above. In a simple program like
our Echo application, it’s not a big deal. But many XML-filtering applications
will want to keep track of whether the text appears in a CDATA section, in order
to treat special characters properly.

One other area to watch for is attributes. The text of an attribute value could also
contain angle brackets and semicolons that need to be replaced by entity refer-
ences. (Attribute text can never be in a CDATA section, though, so there is never
any question about doing that substitution.)

Later in this tutorial, you will see how to use a LexicalHandler to find out
whether or not you are processing a CDATA section. Next, though, you will see
how to define a DTD.

168 SIMPLE API FOR XML
Creating a Document Type Definition
(DTD)

After the XML declaration, the document prolog can include a DTD, which lets
you specify the kinds of tags that can be included in your XML document. In
addition to telling a validating parser which tags are valid, and in what arrange-
ments, a DTD tells both validating and nonvalidating parsers where text is
expected, which lets the parser determine whether the whitespace it sees is sig-
nificant or ignorable.

Basic DTD Definitions
When you were parsing the slide show, for example, you saw that the charac-

ters method was invoked multiple times before and after comments and slide
elements. In those cases, the whitespace consisted of the line endings and inden-
tation surrounding the markup. The goal was to make the XML document read-
able—the whitespace was not in any way part of the document contents. To
begin learning about DTD definitions, let’s start by telling the parser where
whitespace is ignorable.

Note: The DTD defined in this section is contained in slideshow1a.dtd. (The
browsable version is slideshow1a-dtd.html.)

Start by creating a file named slideshow.dtd. Enter an XML declaration and a
comment to identify the file, as shown below:

<?xml version='1.0' encoding='utf-8'?>

<!--
DTD for a simple "slide show".

-->

Next, add the text highlighted below to specify that a slideshow element con-
tains slide elements and nothing else:

<!-- DTD for a simple "slide show". -->

<!ELEMENT slideshow (slide+)>

../examples/jaxp/sax/samples/slideshow1a.dtd
../examples/jaxp/sax/samples/slideshow1a-dtd.html

DEFINING TEXT AND NESTED ELEMENTS 169
As you can see, the DTD tag starts with <! followed by the tag name (ELEMENT).
After the tag name comes the name of the element that is being defined (slide-
show) and, in parentheses, one or more items that indicate the valid contents for
that element. In this case, the notation says that a slideshow consists of one or
more slide elements.

Without the plus sign, the definition would be saying that a slideshow consists
of a single slide element. The qualifiers you can add to an element definition
are listed in Table 6–2.

You can include multiple elements inside the parentheses in a comma separated
list, and use a qualifier on each element to indicate how many instances of that
element may occur. The comma-separated list tells which elements are valid and
the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after
defining an image element (coming up shortly), you could declare that every
image element must be paired with a title element in a slide by specifying
((image, title)+). Here, the plus sign applies to the image/title pair to
indicate that one or more pairs of the specified items can occur.

Defining Text and Nested Elements
Now that you have told the parser something about where not to expect text, let’s
see how to tell it where text can occur. Add the text highlighted below to define
the slide, title, item, and list elements:

<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

Table 6–2 DTD Element Qualifiers

 Qualifier Name Meaning

? Question Mark Optional (zero or one)

 * Asterisk Zero or more

+ Plus Sign One or more

170 SIMPLE API FOR XML
The first line you added says that a slide consists of a title followed by zero or
more item elements. Nothing new there. The next line says that a title consists
entirely of parsed character data (PCDATA). That’s known as “text” in most parts
of the country, but in XML-speak it’s called “parsed character data”. (That dis-
tinguishes it from CDATA sections, which contain character data that is not
parsed.) The "#" that precedes PCDATA indicates that what follows is a special
word, rather than an element name.

The last line introduces the vertical bar (|), which indicates an or condition. In
this case, either PCDATA or an item can occur. The asterisk at the end says that
either one can occur zero or more times in succession. The result of this specifi-
cation is known as a mixed-content model, because any number of item elements
can be interspersed with the text. Such models must always be defined with
#PCDATA specified first, some number of alternate items divided by vertical bars
(|), and an asterisk (*) at the end.

Limitations of DTDs
It would be nice if we could specify that an item contains either text, or text fol-
lowed by one or more list items. But that kind of specification turns out to be
hard to achieve in a DTD. For example, you might be tempted to define an item

like this:

<!ELEMENT item (#PCDATA | (#PCDATA, item+)) >

That would certainly be accurate, but as soon as the parser sees #PCDATA and
the vertical bar, it requires the remaining definition to conform to the mixed-con-
tent model. This specification doesn’t, so you get can error that says: Illegal
mixed content model for 'item'. Found (..., where the hex char-
acter 28 is the angle bracket the ends the definition.

Trying to double-define the item element doesn’t work, either. A specification
like this:

<!ELEMENT item (#PCDATA) >
<!ELEMENT item (#PCDATA, item+) >

produces a “duplicate definition” warning when the validating parser runs. The
second definition is, in fact, ignored. So it seems that defining a mixed content
model (which allows item elements to be interspersed in text) is about as good
as we can do.

SPECIAL ELEMENT VALUES IN THE DTD 171
In addition to the limitations of the mixed content model mentioned above, there
is no way to further qualify the kind of text that can occur where PCDATA has
been specified. Should it contain only numbers? Should be in a date format, or
possibly a monetary format? There is no way to say in the context of a DTD.

Finally, note that the DTD offers no sense of hierarchy. The definition for the
title element applies equally to a slide title and to an item title. When we
expand the DTD to allow HTML-style markup in addition to plain text, it would
make sense to restrict the size of an item title compared to a slide title, for
example. But the only way to do that would be to give one of them a different
name, such as “item-title”. The bottom line is that the lack of hierarchy in the
DTD forces you to introduce a “hyphenation hierarchy” (or its equivalent) in
your namespace. All of these limitations are fundamental motivations behind the
development of schema-specification standards.

Special Element Values in the DTD
Rather than specifying a parenthesized list of elements, the element definition
could use one of two special values: ANY or EMPTY. The ANY specification says
that the element may contain any other defined element, or PCDATA. Such a spec-
ification is usually used for the root element of a general-purpose XML docu-
ment such as you might create with a word processor. Textual elements could
occur in any order in such a document, so specifying ANY makes sense.

The EMPTY specification says that the element contains no contents. So the DTD
for e-mail messages that let you “flag” the message with <flag/> might have a
line like this in the DTD:

<!ELEMENT flag EMPTY>

Referencing the DTD
In this case, the DTD definition is in a separate file from the XML document.
That means you have to reference it from the XML document, which makes the
DTD file part of the external subset of the full Document Type Definition (DTD)
for the XML file. As you’ll see later on, you can also include parts of the DTD
within the document. Such definitions constitute the local subset of the DTD.

172 SIMPLE API FOR XML
Note: The XML written in this section is contained in slideSample05.xml. (The
browsable version is slideSample05-xml.html.)

To reference the DTD file you just created, add the line highlighted below to
your slideSample.xml file:

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

<slideshow

Again, the DTD tag starts with "<!". In this case, the tag name, DOCTYPE, says
that the document is a slideshow, which means that the document consists of
the slideshow element and everything within it:

<slideshow>
...
</slideshow>

This tag defines the slideshow element as the root element for the document.
An XML document must have exactly one root element. This is where that ele-
ment is specified. In other words, this tag identifies the document content as a
slideshow.

The DOCTYPE tag occurs after the XML declaration and before the root element.
The SYSTEM identifier specifies the location of the DTD file. Since it does not
start with a prefix like http:/ or file:/, the path is relative to the location of
the XML document. Remember the setDocumentLocator method? The parser
is using that information to find the DTD file, just as your application would to
find a file relative to the XML document. A PUBLIC identifier could also be used
to specify the DTD file using a unique name—but the parser would have to be
able to resolve it

The DOCTYPE specification could also contain DTD definitions within the XML
document, rather than referring to an external DTD file. Such definitions would
be contained in square brackets, like this:

<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [
...local subset definitions here...

]>

../examples/jaxp/sax/samples/slideSample05.xml
../examples/jaxp/sax/samples/slideSample05-xml.html

DTD’S EFFECT ON THE NONVALIDATING PARSER 173
You’ll take advantage of that facility later on to define some entities that can be
used in the document.

DTD’s Effect on the Nonvalidating
Parser

In the last section, you defined a rudimentary document type and used it in your
XML file. In this section, you’ll use the Echo program to see how the data
appears to the SAX parser when the DTD is included.

Note: The output shown in this section is contained in Echo07-05.txt. (The brows-
able version is Echo07-05.html.)

Running the Echo program on your latest version of slideSample.xml shows
that many of the superfluous calls to the characters method have now disap-
peared.

Where before you saw:

...
>
PROCESS: ...
CHARS:

ELEMENT: <slide
ATTR: ...

>
ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

END_ELM: </slide>
CHARS:

ELEMENT: <slide
ATTR: ...

>
...

Now you see:

...
>
PROCESS: ...

ELEMENT: <slide

../examples/jaxp/sax/samples/Echo07-05.txt
../examples/jaxp/sax/samples/Echo07-05.html

174 SIMPLE API FOR XML
ATTR: ...
>

ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

END_ELM: </slide>
ELEMENT: <slide

ATTR: ...
>
...

It is evident here that the whitespace characters which were formerly being ech-
oed around the slide elements are no longer being delivered by the parser,
because the DTD declares that slideshow consists solely of slide elements:

 <!ELEMENT slideshow (slide+)>

Tracking Ignorable Whitespace
Now that the DTD is present, the parser is no longer calling the characters

method with whitespace that it knows to be irrelevant. From the standpoint of an
application that is only interested in processing the XML data, that is great. The
application is never bothered with whitespace that exists purely to make the
XML file readable.

On the other hand, if you were writing an application that was filtering an XML
data file, and you wanted to output an equally readable version of the file, then
that whitespace would no longer be irrelevant—it would be essential. To get
those characters, you need to add the ignorableWhitespace method to your
application. You’ll do that next.

Note: The code written in this section is contained in Echo08.java. The output is
in Echo08-05.txt. (The browsable version is Echo08-05.html.)

../examples/jaxp/sax/samples/Echo08.java
../examples/jaxp/sax/samples/Echo08-05.txt
../examples/jaxp/sax/samples/Echo08-05.html

TRACKING IGNORABLE WHITESPACE 175
To process the (generally) ignorable whitespace that the parser is seeing, add the
code highlighted below to implement the ignorableWhitespace event handler
in your version of the Echo program:

public void characters (char buf[], int offset, int len)
...
}

public void ignorableWhitespace char buf[], int offset, int Len)
throws SAXException
{

nl();
emit("IGNORABLE");

}

public void processingInstruction(String target, String data)
...

This code simply generates a message to let you know that ignorable whitespace
was seen.

Note: Again, not all parsers are created equal. The SAX specification does not
require this method to be invoked. The Java XML implementation does so when-
ever the DTD makes it possible.

When you run the Echo application now, your output looks like this:

ELEMENT: <slideshow
ATTR: ...

>
IGNORABLE
IGNORABLE
PROCESS: ...
IGNORABLE
IGNORABLE

ELEMENT: <slide
ATTR: ...

>
IGNORABLE

ELEMENT: <title>
CHARS: Wake up to ...
END_ELM: </title>

IGNORABLE
END_ELM: </slide>

IGNORABLE

176 SIMPLE API FOR XML
IGNORABLE
ELEMENT: <slide

ATTR: ...
>
...

Here, it is apparent that the ignorableWhitespace is being invoked before and
after comments and slide elements, where characters was being invoked before
there was a DTD.

Cleanup
Now that you have seen ignorable whitespace echoed, remove that code from
your version of the Echo program—you won’t be needing it any more in the
exercises ahead.

Note: That change has been made in Echo09.java.

Documents and Data
Earlier, you learned that one reason you hear about XML documents, on the one
hand, and XML data, on the other, is that XML handles both comfortably,
depending on whether text is or is not allowed between elements in the structure.

In the sample file you have been working with, the slideshow element is an
example of a data element—it contains only subelements with no intervening
text. The item element, on the other hand, might be termed a document element,
because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of
the title element to include HTML-style markup, which will turn it into a docu-
ment element as well.

../examples/jaxp/sax/samples/Echo09.java

EMPTY ELEMENTS, REVISITED 177
Empty Elements, Revisited
Now that you understand how certain instances of whitespace can be ignorable,
it is time revise the definition of an “empty” element. That definition can now be
expanded to include

 <foo> </foo>

where there is whitespace between the tags and the DTD defines that whitespace
as ignorable.

Defining Attributes and Entities in the
DTD

The DTD you’ve defined so far is fine for use with the nonvalidating parser. It
tells where text is expected and where it isn’t, which is all the nonvalidating
parser is going to pay attention to. But for use with the validating parser, the
DTD needs to specify the valid attributes for the different elements. You’ll do
that in this section, after which you’ll define one internal entity and one external
entity that you can reference in your XML file.

Defining Attributes in the DTD
Let’s start by defining the attributes for the elements in the slide presentation.

Note: The XML written in this section is contained in slideshow1b.dtd. (The
browsable version is slideshow1b-dtd.html.)

Add the text highlighted below to define the attributes for the slideshow ele-
ment:

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow

title CDATA #REQUIRED
date CDATA #IMPLIED
author CDATA "unknown"

>
<!ELEMENT slide (title, item*)>

../examples/jaxp/sax/samples/slideshow1b.dtd
../examples/jaxp/sax/samples/slideshow1b-dtd.html

178 SIMPLE API FOR XML
The DTD tag ATTLIST begins the series of attribute definitions. The name that
follows ATTLIST specifies the element for which the attributes are being defined.
In this case, the element is the slideshow element. (Note once again the lack of
hierarchy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas
and other separators are not allowed, so formatting the definitions as shown
above is helpful for readability. The first element in each line is the name of the
attribute: title, date, or author, in this case. The second element indicates the
type of the data: CDATA is character data—unparsed data, once again, in which a
left-angle bracket (<) will never be construed as part of an XML tag. Table 6–3
presents the valid choices for the attribute type.

*This is a rapidly obsolescing specification which will be discussed in greater
length towards the end of this section.

Table 6–3 Attribute Types

 Attribute Type Specifies...

(value1 | value2 | ...) A list of values separated by vertical bars. (Example below)

CDATA “Unparsed character data”. (For normal people, a text string.)

ID A name that no other ID attribute shares.

IDREF A reference to an ID defined elsewhere in the document.

IDREFS A space-separated list containing one or more ID references.

ENTITY The name of an entity defined in the DTD.

ENTITIES A space-separated list of entities.

NMTOKEN
A valid XML name composed of letters, numbers, hyphens,
underscores, and colons.

NMTOKENS A space-separated list of names.

NOTATION
The name of a DTD-specified notation, which describes a
non-XML data format, such as those used for image files.*

DEFINING ENTITIES IN THE DTD 179
When the attribute type consists of a parenthesized list of choices separated by
vertical bars, the attribute must use one of the specified values. For an example,
add the text highlighted below to the DTD:

<!ELEMENT slide (title, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

This specification says that the slide element’s type attribute must be given as
type="tech", type="exec", or type="all". No other values are acceptable.
(DTD-aware XML editors can use such specifications to present a pop-up list of
choices.)

The last entry in the attribute specification determines the attributes default
value, if any, and tells whether or not the attribute is required. Table 6–4 shows
the possible choices.

Defining Entities in the DTD
So far, you’ve seen predefined entities like & and you’ve seen that an
attribute can reference an entity. It’s time now for you to learn how to define enti-
ties of your own.

Table 6–4 Attribute-Specification Parameters

 Specification Specifies...

 #REQUIRED The attribute value must be specified in the document.

 #IMPLIED
The value need not be specified in the document. If it isn’t, the
application will have a default value it uses.

 “defaultValue”
The default value to use, if a value is not specified in the docu-
ment.

#FIXED “fixedValue”
The value to use. If the document specifies any value at all, it
must be the same.

180 SIMPLE API FOR XML
Note: The XML defined here is contained in slideSample06.xml. The output is
shown in Echo09-06.txt. (The browsable versions are slideSample06-xml.html

and Echo09-06.html.)

Add the text highlighted below to the DOCTYPE tag in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">

]>

The ENTITY tag name says that you are defining an entity. Next comes the name
of the entity and its definition. In this case, you are defining an entity named
“product” that will take the place of the product name. Later when the product
name changes (as it most certainly will), you will only have to change the name
one place, and all your slides will reflect the new value.

The last part is the substitution string that replaces the entity name whenever it is
referenced in the XML document. The substitution string is defined in quotes,
which are not included when the text is inserted into the document.

Just for good measure, we defined two versions, one singular and one plural, so
that when the marketing mavens come up with “Wally” for a product name, you
will be prepared to enter the plural as “Wallies” and have it substituted correctly.

Note: Truth be told, this is the kind of thing that really belongs in an external DTD.
That way, all your documents can reference the new name when it changes. But,
hey, this is an example...

../examples/jaxp/sax/samples/slideSample06.xml
../examples/jaxp/sax/samples/Echo09-06.txt
../examples/jaxp/sax/samples/slideSample06-xml.html
../examples/jaxp/sax/samples/Echo09-06.html

ECHOING THE ENTITY REFERENCES 181
Now that you have the entities defined, the next step is to reference them in the
slide show. Make the changes highlighted below to do that:

<slideshow
title="WonderWidget&product; Slide Show"
...

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets&products;!</title>
</slide>

 <!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets&products; are

great</item>
<item/>
<item>Who buys WonderWidgets&products;</item>

</slide>

The points to notice here are that entities you define are referenced with the same
syntax (&entityName;) that you use for predefined entities, and that the entity
can be referenced in an attribute value as well as in an element’s contents.

Echoing the Entity References
When you run the Echo program on this version of the file, here is the kind of
thing you see:

ELEMENT: <title>
CHARS: Wake up to WonderWidgets!
END_ELM: </title>

Note that the product name has been substituted for the entity reference.

182 SIMPLE API FOR XML
Additional Useful Entities
Here are several other examples for entity definitions that you might find useful
when you write an XML document:

<!ENTITY ldquo "“"> <!-- Left Double Quote -->
<!ENTITY rdquo "”"> <!-- Right Double Quote -->
<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->
<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->
<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing External Entities
You can also use the SYSTEM or PUBLIC identifier to name an entity that is defined
in an external file. You’ll do that now.

Note: The XML defined here is contained in slideSample07.xml and in copy-

right.xml. The output is shown in Echo09-07.txt. (The browsable versions are
slideSample07-xml.html, copyright-xml.html and Echo09-07.html.)

To reference an external entity, add the text highlighted below to the DOCTYPE

statement in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
<!ENTITY product "WonderWidget">
<!ENTITY products "WonderWidgets">
<!ENTITY copyright SYSTEM "copyright.xml">

]>

This definition references a copyright message contained in a file named copy-

right.xml. Create that file and put some interesting text in it, perhaps something
like this:

 <!-- A SAMPLE copyright -->

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

../examples/jaxp/sax/samples/slideSample07.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/Echo09-07.txt
../examples/jaxp/sax/samples/slideSample07-xml.html
../examples/jaxp/sax/samples/copyright-xml.html
../examples/jaxp/sax/samples/Echo09-07.html

ECHOING THE EXTERNAL ENTITY 183
Finally, add the text highlighted below to your slideSample.xml file to refer-
ence the external entity:

<!-- TITLE SLIDE -->
...

</slide>

<!-- COPYRIGHT SLIDE -->
<slide type="all">

<item>©right;</item>
</slide>

You could also use an external entity declaration to access a servlet that produces
the current date using a definition something like this:

<!ENTITY currentDate SYSTEM
"http://www.example.com/servlet/CurrentDate?fmt=dd-MMM-

yyyy">

You would then reference that entity the same as any other entity:

 Today's date is ¤tDate;.

Echoing the External Entity
When you run the Echo program on your latest version of the slide presentation,
here is what you see:

...
END_ELM: </slide>
ELEMENT: <slide

ATTR: type "all"
>

ELEMENT: <item>
CHARS:

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

END_ELM: </item>
END_ELM: </slide>
...

184 SIMPLE API FOR XML
Note that the newline which follows the comment in the file is echoed as a char-
acter, but that the comment itself is ignored. That is the reason that the copyright
message appears to start on the next line after the CHARS: label, instead of imme-
diately after the label—the first character echoed is actually the newline that fol-
lows the comment.

Summarizing Entities
An entity that is referenced in the document content, whether internal or exter-
nal, is termed a general entity. An entity that contains DTD specifications that
are referenced from within the DTD is termed a parameter entity. (More on that
later.)

An entity which contains XML (text and markup), and which is therefore parsed,
is known as a parsed entity. An entity which contains binary data (like images) is
known as an unparsed entity. (By its very nature, it must be external.) We’ll be
discussing references to unparsed entities in the next section of this tutorial.

Referencing Binary Entities
This section contains no programming exercises. Instead, it discusses the options
for referencing binary files like image files and multimedia data files.

Using a MIME Data Type
There are two ways to go about referencing an unparsed entity like a binary
image file. One is to use the DTD’s NOTATION-specification mechanism. How-
ever, that mechanism is a complex, non-intuitive holdover that mostly exists for
compatibility with SGML documents. We will have occasion to discuss it in a bit
more depth when we look at the DTDHandler API, but suffice it for now to say
that the combination of the recently defined XML namespaces standard, in con-
junction with the MIME data types defined for electronic messaging attach-
ments, together provide a much more useful, understandable, and extensible
mechanism for referencing unparsed external entities.

Note: The XML described here is in slideshow1b.dtd. We won’t actually be echo-
ing any images. That’s beyond the scope of this tutorial’s Echo program. This sec-
tion is simply for understanding how such references can be made. It assumes that

../examples/jaxp/sax/samples/slideshow1b.dtd

USING A MIME DATA TYPE 185
the application which will be processing the XML data knows how to handle such
references.

To set up the slideshow to use image files, add the text highlighted below to your
slideshow.dtd file:

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image

alt CDATA #IMPLIED
src CDATA #REQUIRED
type CDATA "image/gif"

>

These modifications declare image as an optional element in a slide, define it as
empty element, and define the attributes it requires. The image tag is patterned
after the HTML 4.0 tag, img, with the addition of an image-type specifier, type.
(The img tag is defined in the HTML 4.0 Specification.)

The image tag’s attributes are defined by the ATTLIST entry. The alt attribute,
which defines alternate text to display in case the image can’t be found, accepts
character data (CDATA). It has an “implied” value, which means that it is optional,
and that the program processing the data knows enough to substitute something
like “Image not found”. On the other hand, the src attribute, which names the
image to display, is required.

The type attribute is intended for the specification of a MIME data type, as
defined at ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/.
It has a default value: image/gif.

Note: It is understood here that the character data (CDATA) used for the type attribute
will be one of the MIME data types. The two most common formats are:
image/gif, and image/jpeg. Given that fact, it might be nice to specify an attribute
list here, using something like:

type ("image/gif", "image/jpeg")

That won’t work, however, because attribute lists are restricted to name tokens. The
forward slash isn’t part of the valid set of name-token characters, so this declaration

186 SIMPLE API FOR XML
fails. Besides that, creating an attribute list in the DTD would limit the valid MIME
types to those defined today. Leaving it as CDATA leaves things more open ended,
so that the declaration will continue to be valid as additional types are defined.

In the document, a reference to an image named “intro-pic” might look some-
thing like this:

<image src="image/intro-pic.gif", alt="Intro Pic",
type="image/gif" />

The Alternative: Using Entity References
Using a MIME data type as an attribute of an element is a mechanism that is
flexible and expandable. To create an external ENTITY reference using the nota-
tion mechanism, you need DTD NOTATION elements for jpeg and gif data. Those
can of course be obtained from some central repository. But then you need to
define a different ENTITY element for each image you intend to reference! In
other words, adding a new image to your document always requires both a new
entity definition in the DTD and a reference to it in the document. Given the
anticipated ubiquity of the HTML 4.0 specification, the newer standard is to use
the MIME data types and a declaration like image, which assumes the applica-
tion knows how to process such elements.

Choosing your Parser Implementation
If no other factory class is specified, the default SAXParserFactory class is
used. To use a different manufacturer’s parser, you can change the value of the
environment variable that points to it. You can do that from the command line,
like this:

java -Djavax.xml.parsers.SAXParserFactory=yourFactoryHere ...

The factory name you specify must be a fully qualified class name (all package
prefixes included). For more information, see the documentation in the newIn-

stance() method of the SAXParserFactory class.

USING THE VALIDATING PARSER 187
Using the Validating Parser
By now, you have done a lot of experimenting with the nonvalidating parser. It’s
time to have a look at the validating parser and find out what happens when you
use it to parse the sample presentation.

Two things to understand about the validating parser at the outset are:

• A schema or Document Type Definition (DTD) is required.

• Since the schema/DTD is present, the ignorableWhitespace method is
invoked whenever possible.

Configuring the Factory
The first step is modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

Note: The code in this section is contained in Echo10.java.

To use the validating parser, make the changes highlighted below:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
// Use the default (non-validating) parser
// Use the validating parser
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);
try {

...

Here, you configured the factory so that it will produce a validating parser when
newSAXParser is invoked. You can also configure it to return a namespace-aware
parser using setNamespaceAware(true). The JWSDP implementation supports
any combination of configuration options. (If a combination is not supported by
any particular implementation, it is required to generate a factory configuration
error.)

../examples/jaxp/sax/samples/Echo10.java

188 SIMPLE API FOR XML
Validating with XML Schema
Although a full treatment of XML Schema is beyond the scope of this tutorial,
this section will show you the steps you need to take to validate an XML docu-
ment using an existing schema written in the XML Schema language. (To learn
more about XML Schema, you can review the online tutorial, XML Schema Part
0: Primer, at http://www.w3.org/TR/xmlschema-0/. You can also examine the
sample programs that are part of the JAXP download. They use a simple XML Schema
definition to validate personnel data stored in an XML file.)

Note: There are multiple schema-definition languages, including RELAX NG,
Schematron, and the W3C “XML Schema” standard. (Even a DTD qualifies as a
“schema”, although it is the only one that does not use XML syntax to describe
schema constraints.) However, “XML Schema” presents us with a terminology
challenge. While the phrase “XML Schema schema” would be precise, we’ll use the
phrase “XML Schema definition” to avoid the appearance of redundancy.

To be notified of validation errors in an XML document, the parser factory must
be configured to create a validating parser, as shown in the previous section. In
addition,

1. The appropriate properties must be set on the SAX parser.

2. The appropriate error handler must be set.

3. The document must be associated with a schema.

Setting the SAX Parser Properties
It’s helpful to start by defining the constants you’ll use when setting the proper-
ties:

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemaLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.org/2001/XMLSchema";

http://www.w3.org/TR/xmlschema-0/

VALIDATING WITH XML SCHEMA 189
Next, you need to configure the parser factory to generate a parser that is
namespace-aware parser, as well as validating:

...
SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setNamespaceAware(true);
factory.setValidating(true);

You’ll learn more about namespaces in Using Namespaces (page 277). For now,
understand that schema validation is a namespace-oriented process. Since JAXP-
compliant parsers are not namespace-aware by default, it is necessary to set the
property for schema validation to work.

The last step is to configure the parser to tell it which schema language to use.
Here, you will use the constants you defined earlier to specify the W3C’s XML
Schema language:

saxParser.setProperty(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

In the process, however, there is an extra error to handle. You’ll take a look at
that error next.

Setting up the Appropriate Error Handling
In addition to the error handling you’ve already learned about, there is one error
that can occur when you are configuring the parser for schema-based validation.
If the parser is not 1.2 compliant, and therefore does not support XML Schema,
it could throw a SAXNotRecognizedException.

To handle that case, you wrap the setProperty() statement in a try/catch
block, as shown in the code highlighted below.

...
SAXParser saxParser = factory.newSAXParser();
try {

saxParser.setProperty(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);
}
catch (SAXNotRecognizedException x) {

// Happens if the parser does not support JAXP 1.2
...

}
...

190 SIMPLE API FOR XML
Associating a Document with A Schema
Now that the program is ready to validate the data using an XML Schema defini-
tion, it is only necessary to ensure that the XML document is associated with
one. There are two ways to do that:

• With a schema declaration in the XML document.

• By specifying the schema to use in the application.

Note: When the application specifies the schema to use, it overrides any schema
declaration in the document.

To specify the schema definition in the document, you would create XML like
this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='YourSchemaDefinition.xsd'

>
...

The first attribute defines the XML NameSpace (xmlns) prefix, “xsi”, where
“xsi” stands for “XML Schema Instance”. The second line specifies the schema
to use for elements in the document that do not have a namespace prefix — that
is, for the elements you typically define in any simple, uncomplicated XML doc-
ument.

Note: You’ll be learning about namespaces in Using Namespaces (page 277). For
now, think of these attributes as the “magic incantation” you use to validate a simple
XML file that doesn’t use them. Once you’ve learned more about namespaces,
you’ll see how to use XML Schema to validate complex documents that use them.
Those ideas are discussed in Validating with Multiple Namespaces (page 283).

You can also specify the schema file in the application, using code like this:

static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml/jaxp/properties/schemaSource";

...

EXPERIMENTING WITH VALIDATION ERRORS 191
SAXParser saxParser = spf.newSAXParser();
...
saxParser.setProperty(JAXP_SCHEMA_SOURCE,

new File(schemaSource));

Now that you know how to make use of an XML Schema definition, we’ll turn
our attention to the kinds of errors you can see when the application is validating
its incoming data. To that, you’ll use a Document Type Definition (DTD) as you
experiment with validation.

Experimenting with Validation Errors
To see what happens when the XML document does not specify a DTD, remove
the DOCTYPE statement from the XML file and run the Echo program on it.

Note: The output shown here is contained in Echo10-01.txt. (The browsable ver-
sion is Echo10-01.html.)

The result you see looks like this:

<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 9, uri .../slideSample01.xml

Document root element "slideshow", must match DOCTYPE root
"null"

Note: The message above was generated by the JAXP 1.2 libraries. If you are using
a different parser, the error message is likely to be somewhat different.

This message says that the root element of the document must match the element
specified in the DOCTYPE declaration. That declaration specifies the document’s
DTD. Since you don’t have one yet, it’s value is “null”. In other words, the mes-
sage is saying that you are trying to validate the document, but no DTD has been
declared, because no DOCTYPE declaration is present.

So now you know that a DTD is a requirement for a valid document. That makes
sense. What happens when you run the parser on your current version of the
slide presentation, with the DTD specified?

../examples/jaxp/sax/samples/Echo10-01.txt
../examples/jaxp/sax/samples/Echo10-01.html

192 SIMPLE API FOR XML
Note: The output shown here, produced from slideSample07.xml is contained in
Echo10-07.txt. (The browsable version is Echo10-07.html.)

This time, the parser gives a different error message:

 ** Parsing error, line 29, uri file:...
The content of element type "slide" must match

"(image?,title,item*)

Note: The message above was generated by the JAXP 1.2 libraries. If you are using
a different parser, the error message is likely to be somewhat different.

This message says that the element found at line 29 (<item>) does not match the
definition of the <slide> element in the DTD. The error occurs because the def-
inition says that the slide element requires a title. That element is not
optional, and the copyright slide does not have one. To fix the problem, add the
question mark highlighted below to make title an optional element:

<!ELEMENT slide (image?, title?, item*)>

Now what happens when you run the program?

Note: You could also remove the copyright slide, which produces the same result
shown below, as reflected in Echo10-06.txt. (The browsable version is Echo10-

06.html.)

The answer is that everything runs fine until the parser runs into the tag
contained in the overview slide. Since that tag was not defined in the DTD, the
attempt to validate the document fails. The output looks like this:

 ...
ELEMENT: <title>
CHARS: Overview
END_ELM: </title>
ELEMENT: <item>
CHARS: Why ** Parsing error, line 28, uri: ...

Element "em" must be declared.
org.xml.sax.SAXParseException: ...
...

../examples/jaxp/sax/samples/slideSample07.xml
../examples/jaxp/sax/samples/Echo10-07.txt
../examples/jaxp/sax/samples/Echo10-07.html
../examples/jaxp/sax/samples/Echo10-06.txt
../examples/jaxp/sax/samples/Echo10-06.html
../examples/jaxp/sax/samples/Echo10-06.html

ERROR HANDLING IN THE VALIDATING PARSER 193
Note: The message above was generated by the JAXP 1.2 libraries. If you are using
a different parser, the error message is likely to be somewhat different.

The error message identifies the part of the DTD that caused validation to fail. In
this case it is the line that defines an item element as (#PCDATA | item).

Exercise: Make a copy of the file and remove all occurrences of from
it. Can the file be validated now? (In the next section, you’ll learn how to
define parameter entries so that we can use XHTML in the elements we are
defining as part of the slide presentation.)

Error Handling in the Validating Parser
It is important to recognize that the only reason an exception is thrown when the
file fails validation is as a result of the error-handling code you entered in the
early stages of this tutorial. That code is reproduced below:

public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

If that exception is not thrown, the validation errors are simply ignored.

Exercise: Try commenting out the line that throws the exception. What hap-
pens when you run the parser now?

In general, a SAX parsing error is a validation error, although we have seen that
it can also be generated if the file specifies a version of XML that the parser is
not prepared to handle. The thing to remember is that your application will not
generate a validation exception unless you supply an error handler like the one
above.

Defining Parameter Entities and
Conditional Sections

Just as a general entity lets you reuse XML data in multiple places, a parameter
entity lets you reuse parts of a DTD in multiple places. In this section of the tuto-

194 SIMPLE API FOR XML
rial, you’ll see how to define and use parameter entities. You’ll also see how to
use parameter entities with conditional sections in a DTD.

Creating and Referencing a Parameter
Entity
Recall that the existing version of the slide presentation could not be validated
because the document used tags, and those are not part of the DTD. In gen-
eral, we’d like to use a whole variety of HTML-style tags in the text of a slide,
not just one or two, so it makes more sense to use an existing DTD for XHTML
than it does to define all the tags we might ever need. A parameter entity is
intended for exactly that kind of purpose.

Note: The DTD specifications shown here are contained in slideshow2.dtd. The
XML file that references it is slideSample08.xml. (The browsable versions are
slideshow2-dtd.html and slideSample08-xml.html.)

Open your DTD file for the slide presentation and add the text highlighted below
to define a parameter entity that references an external DTD file:

<!ELEMENT slide (image?, title?, item*)>
<!ATTLIST slide

...
>

<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT title ...

Here, you used an <!ENTITY> tag to define a parameter entity, just as for a gen-
eral entity, but using a somewhat different syntax. You included a percent sign
(%) before the entity name when you defined the entity, and you used the percent
sign instead of an ampersand when you referenced it.

Also, note that there are always two steps for using a parameter entity. The first
is to define the entity name. The second is to reference the entity name, which
actually does the work of including the external definitions in the current DTD.
Since the URI for an external entity could contain slashes (/) or other characters
that are not valid in an XML name, the definition step allows a valid XML name

../examples/jaxp/sax/samples/slideshow2.dtd
../examples/jaxp/sax/samples/slideSample08.xml
../examples/jaxp/sax/samples/slideshow2-dtd.html
../examples/jaxp/sax/samples/slideSample08-xml.html

CREATING AND REFERENCING A PARAMETER ENTITY 195
to be associated with an actual document. (This same technique is used in the
definition of namespaces, and anywhere else that XML constructs need to refer-
ence external documents.)

Notes:

• The DTD file referenced by this definition is xhtml.dtd. You can either
copy that file to your system or modify the SYSTEM identifier in the
<!ENTITY> tag to point to the correct URL.

• This file is a small subset of the XHTML specification, loosely modeled
after the Modularized XHTML draft, which aims at breaking up the DTD
for XHTML into bite-sized chunks, which can then be combined to create
different XHTML subsets for different purposes. When work on the mod-
ularized XHTML draft has been completed, this version of the DTD
should be replaced with something better. For now, this version will suffice
for our purposes.

The whole point of using an XHTML-based DTD was to gain access to an entity
it defines that covers HTML-style tags like and . Looking through
xhtml.dtd reveals the following entity, which does exactly what we want:

 <!ENTITY % inline "#PCDATA|em|b|a|img|br">

This entity is a simpler version of those defined in the Modularized XHTML
draft. It defines the HTML-style tags we are most likely to want to use -- empha-
sis, bold, and break, plus a couple of others for images and anchors that we may
or may not use in a slide presentation. To use the inline entity, make the
changes highlighted below in your DTD file:

<!ELEMENT title (#PCDATA %inline;)*>
<!ELEMENT item (#PCDATA %inline; | item)* >

These changes replaced the simple #PCDATA item with the inline entity. It is
important to notice that #PCDATA is first in the inline entity, and that inline is
first wherever we use it. That is required by XML’s definition of a mixed-content
model. To be in accord with that model, you also had to add an asterisk at the
end of the title definition. (In the next two sections, you’ll see that our defini-
tion of the title element actually conflicts with a version defined in xhtml.dtd,
and see different ways to resolve the problem.)

Note: The Modularized XHTML DTD defines both inline and Inline entities,
and does so somewhat differently. Rather than specifying #PCDATA|em|b|a|img|Br,

196 SIMPLE API FOR XML
their definitions are more like (#PCDATA|em|b|a|img|Br)*. Using one of those def-
initions, therefore, looks more like this:

<!ELEMENT title %Inline; >

Conditional Sections
Before we proceed with the next programming exercise, it is worth mentioning
the use of parameter entities to control conditional sections. Although you can-
not conditionalize the content of an XML document, you can define conditional
sections in a DTD that become part of the DTD only if you specify include. If
you specify ignore, on the other hand, then the conditional section is not
included.

Suppose, for example, that you wanted to use slightly different versions of a
DTD, depending on whether you were treating the document as an XML docu-
ment or as a SGML document. You could do that with DTD definitions like the
following:

someExternal.dtd:
<![INCLUDE [

... XML-only definitions
]]>
<![IGNORE [

... SGML-only definitions
]]>
... common definitions

The conditional sections are introduced by "<![", followed by the INCLUDE or
IGNORE keyword and another "[". After that comes the contents of the condi-
tional section, followed by the terminator: "]]>". In this case, the XML defini-
tions are included, and the SGML definitions are excluded. That’s fine for XML
documents, but you can’t use the DTD for SGML documents. You could change
the keywords, of course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the INCLUDE

and IGNORE keywords:

someExternal.dtd:
<![%XML; [

... XML-only definitions
]]>

PARSING THE PARAMETERIZED DTD 197
<![%SGML; [
... SGML-only definitions

]]>
... common definitions

Then each document that uses the DTD can set up the appropriate entity defini-
tions:

<!DOCTYPE foo SYSTEM "someExternal.dtd" [
<!ENTITY % XML "INCLUDE" >
<!ENTITY % SGML "IGNORE" >

]>
<foo>

...
</foo>

This procedure puts each document in control of the DTD. It also replaces the
INCLUDE and IGNORE keywords with variable names that more accurately reflect
the purpose of the conditional section, producing a more readable, self-docu-
menting version of the DTD.

Parsing the Parameterized DTD
This section uses the Echo program to see what happens when you reference
xhtml.dtd in slideshow.dtd. It also covers the kinds of warnings that are gen-
erated by the SAX parser when a DTD is present.

Note: The output described in this section is contained in Echo10-08.txt. (The
browsable version is Echo10-08.html.)

When you try to echo the slide presentation, you find that it now contains a new
error. The relevant part of the output is shown here (formatted for readability):

<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 22, uri: .../slideshow.dtd
Element type "title" must not be declared more than once.

Note: The message above was generated by the JAXP 1.2 libraries. If you are using
a different parser, the error message is likely to be somewhat different.

../examples/jaxp/sax/samples/Echo10-08.txt
../examples/jaxp/sax/samples/Echo10-08.html

198 SIMPLE API FOR XML
It seems that xhtml.dtd defines a title element which is entirely different from
the title element defined in the slideshow DTD. Because there is no hierarchy
in the DTD, these two definitions conflict.

Note: The Modularized XHTML DTD also defines a title element that is intended
to be the document title, so we can’t avoid the conflict by changing xhtml.dtd—
the problem would only come back to haunt us later.

You could also use XML namespaces to resolve the conflict, or use one of the
more hierarchical schema proposals described in Schema Standards (page 56).
For now, though, let’s simply rename the title element in slideshow.dtd.

Note: The XML shown here is contained in slideshow3.dtd and
slideSample09.xml, which references copyright.xml and xhtml.dtd. The results
of processing are shown in Echo10-09.txt. (The browsable versions are
slideshow3-dtd.html, slideSample09-xml.html, copyright-xml.html, xhtml-
dtd.html, and Echo10-09.html.)

To keep the two title elements separate, we’ll resort to a “hyphenation hierar-
chy”. Make the changes highlighted below to change the name of the title ele-
ment in slideshow.dtd to slide-title:

<!ELEMENT slide (image?, slide-title?, item*)>
<!ATTLIST slide

type (tech | exec | all) #IMPLIED
>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT slide-title (%inline;)*>

../examples/jaxp/sax/samples/xhtml.dtd
../examples/jaxp/sax/samples/slideshow3.dtd
../examplesjaxp/sax/samples/slidesample09.xml
../examplesjaxp/sax/samples/slidesample09.xml
../examples/jaxp/sax/samples/copyright.xml
../examples/jaxp/sax/samples/xhtml.dtd
../examples/jaxp/sax/samples/Echo10-09.txt
../examples/jaxp/sax/samples/slideshow3-dtd.html
../examples/jaxp/sax/samples/slideSample09-xml.html
../examples/jaxp/sax/samples/copyright-xml.html
../examples/jaxp/sax/samples/Echo10-09.html
../examples/jaxp/sax/samples/Echo10-09.html
../examples/jaxp/sax/samples/Echo10-09.html
../examples/jaxp/sax/samples/Echo10-09.html

DTD WARNINGS 199
The next step is to modify the XML file to use the new element name. To do that,
make the changes highlighted below:

...
<slide type="all">
<slide-title>Wake up to ... </slide-title>
</slide>

...

<!-- OVERVIEW -->
<slide type="all">
<slide-title>Overview</slide-title>
<item>...

Now run the Echo program on this version of the slide presentation. It should run
to completion and display output like that shown in Echo10-09.

Congratulations! You have now read a fully validated XML document. The
changes you made had the effect of putting your DTD’s title element into a
slideshow “namespace” that you artificially constructed by hyphenating the
name. Now the title element in the “slideshow namespace” (slide-title,
really) no longer conflicts with the title element in xhtml.dtd. In the next sec-
tion of the tutorial, you’ll see how to do that without renaming the definition. To
finish off this section, we’ll take a look at the kinds of warnings that the validat-
ing parser can produce when processing the DTD.

DTD Warnings
As mentioned earlier in this tutorial, warnings are generated only when the SAX
parser is processing a DTD. Some warnings are generated only by the validating
parser. The nonvalidating parser’s main goal is operate as rapidly as possible, but
it too generates some warnings. (The explanations that follow tell which does
what.)

The XML specification suggests that warnings should be generated as result of:

• Providing additional declarations for entities, attributes, or notations.

(Such declarations are ignored. Only the first is used. Also, note that
duplicate definitions of elements always produce a fatal error when vali-
dating, as you saw earlier.)

• Referencing an undeclared element type.

200 SIMPLE API FOR XML
(A validity error occurs only if the undeclared type is actually used in the
XML document. A warning results when the undeclared element is refer-
enced in the DTD.)

• Declaring attributes for undeclared element types.

The Java XML SAX parser also emits warnings in other cases, such as:

• No <!DOCTYPE ...> when validating.

• Referencing an undefined parameter entity when not validating.

(When validating, an error results. Although nonvalidating parsers are not
required to read parameter entities, the Java XML parser does so. Since it
is not a requirement, the Java XML parser generates a warning, rather
than an error.)

• Certain cases where the character-encoding declaration does not look
right.

At this point, you have digested many XML concepts, including DTDs, external
entities. You have also learned your way around the SAX parser. The remainder
of the SAX tutorial covers advanced topics that you will only need to understand
if you are writing SAX-based applications. If your primary goal is to write
DOM-based applications, you can skip ahead to Document Object
Model (page 211).

Handling Lexical Events
You saw earlier that if you are writing text out as XML, you need to know if you
are in a CDATA section. If you are, then angle brackets (<) and ampersands (&)
should be output unchanged. But if you’re not in a CDATA section, they should be
replaced by the predefined entities < and &. But how do you know if
you’re processing a CDATA section?

Then again, if you are filtering XML in some way, you would want to pass com-
ments along. Normally the parser ignores comments. How can you get com-
ments so that you can echo them?

Finally, there are the parsed entity definitions. If an XML-filtering app sees
&myEntity; it needs to echo the same string—not the text that is inserted in its
place. How do you go about doing that?

HOW THE LEXICALHANDLER WORKS 201
This section of the tutorial answers those questions. It shows you how to use
org.xml.sax.ext.LexicalHandler to identify comments, CDATA sections, and ref-
erences to parsed entities.

Comments, CDATA tags, and references to parsed entities constitute lexical infor-
mation—that is, information that concerns the text of the XML itself, rather than
the XML’s information content. Most applications, of course, are concerned only
with the content of an XML document. Such apps will not use the LexicalEv-

entListener API. But apps that output XML text will find it invaluable.

Note: Lexical event handling is a optional parser feature. Parser implementations
are not required to support it. (The JWSDP implementation does so.) This discus-
sion assumes that the parser you are using does so, as well.

How the LexicalHandler Works
To be informed when the SAX parser sees lexical information, you configure the
XmlReader that underlies the parser with a LexicalHandler. The LexicalHan-

dler interface defines these even-handling methods:

comment(String comment)
Passes comments to the application.

startCDATA(), endCDATA()
Tells when a CDATA section is starting and ending, which tells your applica-
tion what kind of characters to expect the next time characters() is called.

startEntity(String name), endEntity(String name)
Gives the name of a parsed entity.

startDTD(String name, String publicId, String systemId), endDTD()
Tells when a DTD is being processed, and identifies it.

Working with a LexicalHandler
In the remainder of this section, you’ll convert the Echo app into a lexical han-
dler and play with its features.

Note: The code shown in this section is in Echo11.java. The output is shown in
Echo11-09.txt. (The browsable version is Echo11-09.html.)

../examples/jaxp/sax/samples/Echo11.java
../examples/jaxp/sax/samples/Echo11-09.txt
../examples/jaxp/sax/samples/Echo11-09.html

202 SIMPLE API FOR XML
To start, add the code highlighted below to implement the LexicalHandler

interface and add the appropriate methods.

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.LexicalHandler;
...
public class Echo extends HandlerBase

implements LexicalHandler
{

public static void main(String argv[])
{

...
// Use an instance of ourselves as the SAX event handler
DefaultHandler handler = new Echo();
Echo handler = new Echo();
...

At this point, the Echo class extends one class and implements an additional
interface. You changed the class of the handler variable accordingly, so you can
use the same instance as either a DefaultHandler or a LexicalHandler, as
appropriate.

Next, add the code highlighted below to get the XMLReader that the parser dele-
gates to, and configure it to send lexical events to your lexical handler:

public static void main(String argv[])
{

...
try {

...
// Parse the input
SAXParser saxParser = factory.newSAXParser();
XMLReader xmlReader = saxParser.getXMLReader();
xmlReader.setProperty(

"http://xml.org/sax/properties/lexical-handler",
handler
);

saxParser.parse(new File(argv[0]), handler);
} catch (SAXParseException spe) {

...

Here, you configured the XMLReader using the setProperty() method defined
in the XMLReader class. The property name, defined as part of the SAX standard,
is the URL, http://xml.org/sax/properties/lexical-handler.

WORKING WITH A LEXICALHANDLER 203
Finally, add the code highlighted below to define the appropriate methods that
implement the interface.

public void warning(SAXParseException err)
...

}

public void comment(char[] ch, int start, int length)throws SAX-
Exception
{
}

public void startCDATA()
throws SAXException
{
}

pubic void endCDATA()
throws SAXException
{
}

public void startEntity(String name)
throws SAXException
{
}

public void endEntity(String name)
throws SAXException
{
}

public void startDTD(
String name, String publicId, String systemId)

throws SAXException
{
}

public void endDTD()
throws SAXException
{
}

private void echoText()
...

204 SIMPLE API FOR XML
You have now turned the Echo class into a lexical handler. In the next section,
you’ll start experimenting with lexical events.

Echoing Comments
The next step is to do something with one of the new methods. Add the code
highlighted below to echo comments in the XML file:

public void comment(char[] ch, int start, int length)
throws SAXException

{
String text = new String(ch, start, length);
nl();
emit("COMMENT: "+text);

}

When you compile the Echo program and run it on your XML file, the result
looks something like this:

COMMENT: A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT:

DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT: ...

The line endings in the comments are passed as part of the comment string, once
again normalized to newlines. You can also see that comments in the DTD are
echoed along with comments from the file. (That can pose problems when you
want to echo only comments that are in the data file. To get around that problem,
you can use the startDTD and endDTD methods.)

Echoing Other Lexical Information
To finish up this section, you’ll exercise the remaining LexicalHandler meth-
ods.

Note: The code shown in this section is in Echo12.java. The file it operates on is
slideSample10.xml. (The browsable version is slideSample10-xml.html.) The
results of processing are in Echo12-10.

../examples/jaxp/sax/samples/Echo12.java
../examples/jaxp/sax/samples/slideSample10.xml
../examples/jaxp/sax/samples/slideSample10-xml.html
../examples/jaxp/sax/samples/Echo12-10.txt

WORKING WITH A LEXICALHANDLER 205
Make the changes highlighted below to remove the comment echo (you don’t
need that any more) and echo the other events, along with any characters that
have been accumulated when an event occurs:

public void comment(char[] ch, int start, int length)
throws SAXException
{

String text = new String(ch, start, length);
nl();
emit("COMMENT: "+text);

}

public void startCDATA()
throws SAXException
{

echoText();
nl();
emit("START CDATA SECTION");

}

public void endCDATA()
throws SAXException
{

echoText();
nl();
emit("END CDATA SECTION");

}

public void startEntity(String name)
throws SAXException
{

echoText();
nl();
emit("START ENTITY: "+name);

}

public void endEntity(String name)
throws SAXException
{

echoText();
nl();
emit("END ENTITY: "+name);

}

public void startDTD(String name, String publicId, String
systemId)
throws SAXException

206 SIMPLE API FOR XML
{
nl();
emit("START DTD: "+name

+" publicId=" + publicId
+" systemId=" + systemId);

}

public void endDTD()
throws SAXException
{

nl();
emit("END DTD");

}

Here is what you see when the DTD is processed:

START DTD: slideshow
publicId=null
systemId=file:/..../samples/slideshow3.dtd

START ENTITY: ...
...
END DTD

Note: To see events that occur while the DTD is being processed, use
org.xml.sax.ext.DeclHandler.

Here is some of the additional output you see when the internally defined prod-

ucts entity is processed with the latest version of the program:

START ENTITY: products
CHARS: WonderWidgets
END ENTITY: products

And here is the additional output you see as a result of processing the external
copyright entity:

START ENTITY: copyright
CHARS:

This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

END ENTITY: copyright

USING THE DTDHANDLER AND ENTITYRESOLVER 207
Finally, you get output that shows when the CDATA section was processed:

START CDATA SECTION
CHARS: Diagram:

frobmorten <--------------fuznaten
| <3> ^

 | <1> | <1> = fozzle
V | <2> = framboze

staten----------------------+ <3> = frenzle
<2>

END CDATA SECTION

In summary, the LexicalHandler gives you the event-notifications you need to
produce an accurate reflection of the original XML text.

Note: To accurately echo the input, you would modify the characters() method to
echo the text it sees in the appropriate fashion, depending on whether or not the pro-
gram was in CDATA mode.

Using the DTDHandler and
EntityResolver

In this section of the tutorial, we’ll carry on a short discussion of the two remain-
ing SAX event handlers: DTDHandler and EntityResolver. The DTDHandler is
invoked when the DTD encounters an unparsed entity or a notation declaration.
The EntityResolver comes into play when a URN (public ID) must be
resolved to a URL (system ID).

The DTDHandler API
In the section Referencing Binary Entities (page 184) you saw a method for ref-
erencing a file that contains binary data, like an image file, using MIME data
types. That is the simplest, most extensible mechanism to use. For compatibility
with older SGML-style data, though, it is also possible to define an unparsed
entity.

208 SIMPLE API FOR XML
The NDATA keyword defines an unparsed entity, like this:

 <!ENTITY myEntity SYSTEM "..URL.." NDATA gif>

The NDATA keyword says that the data in this entity is not parsable XML data, but
is instead data that uses some other notation. In this case, the notation is named
“gif”. The DTD must then include a declaration for that notation, which would
look something like this:

 <!NOTATION gif SYSTEM "..URL..">

When the parser sees an unparsed entity or a notation declaration, it does nothing
with the information except to pass it along to the application using the DTDHan-

dler interface. That interface defines two methods:

notationDecl(String name, String publicId, String systemId)

unparsedEntityDecl(String name, String publicId,
String systemId, String notationName)

The notationDecl method is passed the name of the notation and either the
public or system identifier, or both, depending on which is declared in the DTD.
The unparsedEntityDecl method is passed the name of the entity, the appropri-
ate identifiers, and the name of the notation it uses.

Note: The DTDHandler interface is implemented by the DefaultHandler class.

Notations can also be used in attribute declarations. For example, the following
declaration requires notations for the GIF and PNG image-file formats:

<!ENTITY image EMPTY>
<!ATTLIST image

...
type NOTATION (gif | png) "gif"

>

Here, the type is declared as being either gif, or png. The default, if neither is
specified, is gif.

Whether the notation reference is used to describe an unparsed entity or an
attribute, it is up to the application to do the appropriate processing. The parser
knows nothing at all about the semantics of the notations. It only passes on the
declarations.

THE ENTITYRESOLVER API 209
The EntityResolver API
The EntityResolver API lets you convert a public ID (URN) into a system ID
(URL). Your application may need to do that, for example, to convert something
like href="urn:/someName" into “http://someURL”.

The EntityResolver interface defines a single method:

resolveEntity(String publicId, String systemId)

This method returns an InputSource object, which can be used to access the
entity’s contents. Converting an URL into an InputSource is easy enough. But
the URL that is passed as the system ID will be the location of the original docu-
ment which is, as likely as not, somewhere out on the Web. To access a local
copy, if there is one, you must maintain a catalog somewhere on the system that
maps names (public IDs) into local URLs.

Further Information
For further information on the Simple API for XML processing (SAX) standard,
see:

• The SAX standard page: http://www.saxproject.org/

For more information on schema-based validation mechanisms, see:

• The W3C standard validation mechanism, XML Schema:
http://www.w3c.org/XML/Schema

• RELAX NG’s regular-expression based validation mechanism:
http://www.oasis-open.org/committees/relax-ng/

• Schematron’s assertion-based validation mechansim:
http://www.ascc.net/xml/resource/schematron/schematron.html

http://www.saxproject.org/
http://www.w3c.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html

210 SIMPLE API FOR XML

7

Document Object

Model
Eric Armstrong

IN the SAX chapter, you wrote an XML file that contains slides for a presenta-
tion. You then used the SAX API to echo the XML to your display.

In this chapter, you’ll use the Document Object Model (DOM) to build a small
SlideShow application. You’ll start by constructing a DOM and inspecting it,
then see how to write a DOM as an XML structure, display it in a GUI, and
manipulate the tree structure.

A Document Object Model is a garden-variety tree structure, where each node
contains one of the components from an XML structure. The two most common
types of nodes are element nodes and text nodes. Using DOM functions lets you
create nodes, remove nodes, change their contents, and traverse the node hierar-
chy.

In this chapter, you’ll parse an existing XML file to construct a DOM, display
and inspect the DOM hierarchy, convert the DOM into a display-friendly JTree,
and explore the syntax of namespaces. You’ll also create a DOM from scratch,
and see how to use some of the implementation-specific features in Sun’s JAXP
implementation to convert an existing data set to XML.

First though, we’ll make sure that DOM is the most appropriate choice for your
application. We’ll do that in the next section, When to Use DOM.

Note: The examples in this chapter can be found in <JWSDP_HOME>/docs/tuto-

rial/examples/jaxp/dom/samples.
211

212 DOCUMENT OBJECT MODEL
When to Use DOM
The Document Object Model (DOM) is a standard that is, above all, designed for
documents (for example, articles and books). In addition, the JAXP 1.2 imple-
mentation supports XML Schema, which may be an important consideration for
any given application.

On the other hand, if you are dealing with simple data structures, and if XML
Schema isn’t a big part of your plans, then you may find that one of the more
object-oriented standards like JDOM and dom4j (page 53) is better suited for
your purpose.

From the start, DOM was intended to be language neutral. Because it was
designed for use with languages like C or Perl, DOM does not take advantage of
Java's object-oriented features. That fact, in addition to the document/data dis-
tinction, also helps to account for the ways in which processing a DOM differs
from processing a JDOM or dom4j structure.

In this section, we'll examine the differences between the models underlying
those standards to give help you choose the one that is most appropriate for your
application.

Documents vs. Data
The major point of departure between the document model used in DOM and the
data model used in JDOM or dom4j lies in:

• The kind of node that exists in the hierarchy.

• The capacity for “mixed-content”.

It is the difference in what constitutes a “node” in the data hierarchy that prima-
rily accounts for the differences in programming with these two models. How-
ever, it is the capacity for mixed-content which, more than anything else,
accounts for the difference in how the standards define a “node”. So we'll start
by examining DOM's “mixed-content model”.

Mixed Content Model
Recall from the discussion of Document-Driven Programming (DDP) (page 49)
that text and elements can be freely intermixed in a DOM hierarchy. That kind of
structure is dubbed “mixed content” in the DOM model.

MIXED CONTENT MODEL 213
Mixed content occurs frequently in documents. For example, to represent this
structure:

<sentence>This is an <bold>important</bold> idea.</sentence>

The hierarchy of DOM nodes would look something like this, where each line
represents one node:

ELEMENT: sentence
+ TEXT: This is an
+ ELEMENT: bold

+ TEXT: important
+ TEXT: idea.

Note that the sentence element contains text, followed by a subelement, followed
by additional text. It is that intermixing of text and elements that defines the
“mixed-content model”.

Kinds of Nodes
In order to provide the capacity for mixed content, DOM nodes are inherently
very simple. In the example above, for instance, the “content” of the first element
(it’s value) simply identifies the kind of node it is.

First time users of a DOM are usually thrown by this fact. After navigating to the
<sentence> node, they ask for the node's “content”, and expect to get something
useful. Instead, all they get is the name of the element, “sentence”.

Note: The DOM Node API defines nodeValue(), node.nodeType(), and node-

Name() methods. For the first element node, nodeName() returns “sentence”, while
nodeValue() returns null. For the first text node, nodeName() returns “#text”, and
nodeValue() returns “This is an “. The important point is that the value of an ele-
ment is not the same as its content.

Instead, obtaining the content you care about when processing a DOM means
inspecting the list of subelements the node contains, ignoring those you aren't
interested in, and processing the ones you do care about.

214 DOCUMENT OBJECT MODEL
For example, in the example above, what does it mean if you ask for the “text” of
the sentence? Any of the following could be reasonable, depending on your
application:

• This is an

• This is an idea.

• This is an important idea.

• This is an <bold>important</bold> idea.

A Simpler Model
With DOM, you are free to create the semantics you need. However, you are also
required to do the processing necessary to implement those semantics. Standards
like JDOM and dom4j, on the other hand, make it a lot easier to do simple
things, because each node in the hierarchy is an object.

Although JDOM and dom4j make allowances for elements with mixed content,
they are not primarily designed for such situations. Instead, they are targeted for
applications where the XML structure contains data.

As described in Traditional Data Processing (page 49), the elements in a data
structure typically contain either text or other elements, but not both. For exam-
ple, here is some XML that represents a simple address book:

<addressbook>
<entry>

<name>Fred</name>
<email>fred@home</email>

</entry>
 ...

</addressbook>

Note: For very simple XML data structures like this one, you could also use the reg-
ular expression package (java.util.regex) built into version 1.4 of the Java platform.

In JDOM and dom4j, once you navigate to an element that contains text, you
invoke a method like text() to get it's content. When processing a DOM,
though, you would have to inspect the list of subelements to “put together” the
text of the node, as you saw earlier -- even if that list only contained one item (a
TEXT node).

INCREASING THE COMPLEXITY 215
So for simple data structures like the address book above, you could save your-
self a bit of work by using JDOM or dom4j. It may make sense to use one of
those models even when the data is technically “mixed”, but when there is
always one (and only one) segment of text for a given node.

Here is an example of that kind of structure, which would also be easily pro-
cessed in JDOM or dom4j:

<addressbook>
<entry>Fred

<email>fred@home</email>
</entry>
...

</addressbook>

Here, each entry has a bit of identifying text, followed by other elements. With
this structure, the program could navigate to an entry, invoke text() to find out
who it belongs to, and process the <email> sub element if it is at the correct
node.

Increasing the Complexity
But to get a full understanding of the kind of processing you need to do when
searching or manipulating a DOM, it is important to know the kinds of nodes
that a DOM can conceivably contain.

Here is an example that tries to bring the point home. It is a representation of this
data:

<sentence>
The &projectName; <![CDATA[<i>project</i>]]> is
<?editor: red><bold>important</bold><?editor: normal>.

</sentence>

This sentence contains an entity reference — a pointer to an “entity” which is
defined elsewhere. In this case, the entity contains the name of the project. The
example also contains a CDATA section (uninterpreted data, like <pre> data in
HTML), as well as processing instructions (<?...?>) that in this case tell the
editor to which color to use when rendering the text.

216 DOCUMENT OBJECT MODEL
Here is the DOM structure for that data. It’s fairly representative of the kind of
structure that a robust application should be prepared to handle:

+ ELEMENT: sentence
+ TEXT: The
+ ENTITY REF: projectName

+ COMMENT: The latest name we're using
+ TEXT: Eagle

+ CDATA: <i>project</i>
+ TEXT: is
+ PI: editor: red
+ ELEMENT: bold

+ TEXT: important
+ PI: editor: normal

This example depicts the kinds of nodes that may occur in a DOM. Although
your application may be able to ignore most of them most of the time, a truly
robust implementation needs to recognize and deal with each of them.

Similarly, the process of navigating to a node involves processing subelements,
ignoring the ones you don't care about and inspecting the ones you do care
about, until you find the node you are interested in.

Often, in such cases, you are interested in finding a node that contains specific
text. For example, in The DOM API (page 10) you saw an example where you
wanted to find a <coffee> node whose <name> element contains the text,
“Mocha Java”. To carry out that search, the program needed to work through the
list of <coffee> elements and, for each one: a) get the <name> element under it
and, b) examine the TEXT node under that element.

That example made some simplifying assumptions, however. It assumed that
processing instructions, comments, CDATA nodes, and entity references would
not exist in the data structure. Many simple applications can get away with such
assumptions. Truly robust applications, on the other hand, need to be prepared to
deal with the all kinds of valid XML data.

(A “simple” application will work only so long as the input data contains the
simplified XML structures it expects. But there are no validation mechanisms to
ensure that more complex structures will not exist. After all, XML was specifi-
cally designed to allow them.)

CHOOSING YOUR MODEL 217
To be more robust, the sample code described in The DOM API (page 10),
would have to do these things:

1. When searching for the <name> element:

a. Ignore comments, attributes, and processing instructions.

b. Allow for the possibility that the <coffee> subelements do not occur in
the expected order.

c. Skip over TEXT nodes that contain ignorable whitespace, if not validat-
ing.

2. When extracting text for a node:

a. Extract text from CDATA nodes as well as text nodes.

b. Ignore comments, attributes, and processing instructions when gather-
ing the text.

c. If an entity reference node or another element node is encountered,
recurse. (That is, apply the text-extraction procedure to all subnodes.)

Note: The JAXP 1.2 parser does not insert entity reference nodes into the
DOM. Instead, it inserts a TEXT node containing the contents of the refer-
ence. The JAXP 1.1 parser which is built into the 1.4 platform, on the other
hand, does insert entity reference nodes. So a robust implementation which
is parser-independent needs to be prepared to handle entity reference nodes.

Many applications, of course, won’t have to worry about such things, because
the kind of data they see will be strictly controlled. But if the data can come from
a variety of external sources, then the application will probably need to take
these possibilities into account.

The code you need to carry out these functions is given near the end of the DOM
tutorial in Searching for Nodes (page 274) and Obtaining Node
Content (page 275). Right now, the goal is simply to determine whether DOM is
suitable for your application.

Choosing Your Model
As you can see, when you are using DOM, even a simple operation like getting
the text from a node can take a bit of programming. So if your programs will be
handling simple data structures, JDOM, dom4j, or even the 1.4 regular expres-
sion package (java.util.regex) may be more appropriate for your needs.

218 DOCUMENT OBJECT MODEL
For full-fledged documents and complex applications, on the other hand, DOM
gives you a lot of flexibility. And if you need to use XML Schema, then once
again DOM is the way to go for now, at least.

If you will be processing both documents and data in the applications you
develop, then DOM may still be your best choice. After all, once you have writ-
ten the code to examine and process a DOM structure, it is fairly easy to custom-
ize it for a specific purpose. So choosing to do everything in DOM means you'll
only have to deal with one set of APIs, rather than two.

Plus, the DOM standard is a standard. It is robust and complete, and it has many
implementations. That is a significant decision-making factor for many large
installations — particularly for production applications, to prevent doing large
rewrites in the event of an API change.

Finally, even though the text in an address book may not permit bold, italics, col-
ors, and font sizes today, someday you may want to handle things. Since DOM
will handle virtually anything you throw at it, choosing DOM makes it easier to
“future-proof” your application.

Reading XML Data into a DOM
In this section of the tutorial, you’ll construct a Document Object Model (DOM)
by reading in an existing XML file. In the following sections, you’ll see how to
display the XML in a Swing tree component and practice manipulating the
DOM.

Note: In the next part of the tutorial, XML Stylesheet Language for
Transformations (page 289), you’ll see how to write out a DOM as an XML file.
(You’ll also see how to convert an existing data file into XML with relative ease.)

Creating the Program
The Document Object Model (DOM) provides APIs that let you create nodes,
modify them, delete and rearrange them. So it is relatively easy to create a DOM,
as you’ll see in later in section 5 of this tutorial, Creating and Manipulating a
DOM (page 268).

CREATING THE PROGRAM 219
Before you try to create a DOM, however, it is helpful to understand how a
DOM is structured. This series of exercises will make DOM internals visible by
displaying them in a Swing JTree.

Create the Skeleton
Now that you’ve had a quick overview of how to create a DOM, let’s build a sim-
ple program to read an XML document into a DOM then write it back out again.

Note: The code discussed in this section is in DomEcho01.java. The file it operates
on is slideSample01.xml. (The browsable version is slideSample01-xml.html.)

Start with a normal basic logic for an app, and check to make sure that an argu-
ment has been supplied on the command line:

public class DomEcho {
public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println(

"Usage: java DomEcho filename");
System.exit(1);

}
}// main

}// DomEcho

Import the Required Classes
In this section, you’re going to see all the classes individually named. That’s so
you can see where each class comes from when you want to reference the API
documentation. In your own apps, you may well want to replace import state-
ments like those below with the shorter form: javax.xml.parsers.*.

Add these lines to import the JAXP APIs you’ll be using:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

../examples/jaxp/dom/samples/DomEcho01.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html

220 DOCUMENT OBJECT MODEL
Add these lines for the exceptions that can be thrown when the XML document
is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.IOException;

Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

Note: A DOMException is only thrown when traversing or manipulating a DOM.
Errors that occur during parsing are reporting using a different mechanism that is
covered below.

Declare the DOM
The org.w3c.dom.Document class is the W3C name for a Document Object
Model (DOM). Whether you parse an XML document or create one, a Docu-
ment instance will result. We’ll want to reference that object from another
method later on in the tutorial, so define it as a global object here:

public class DomEcho
{

static Document document;

public static void main(String argv[])
{

It needs to be static, because you’re going to generate its contents from the
main method in a few minutes.

Handle Errors
Next, put in the error handling logic. This logic is basically the same as the code
you saw in Handling Errors with the Nonvalidating Parser (page 155) in the

CREATING THE PROGRAM 221
SAX tutorial, so we won’t go into it in detail here. The major point worth noting
is that a JAXP-conformant document builder is required to report SAX excep-
tions when it has trouble parsing the XML document. The DOM parser does not
have to actually use a SAX parser internally, but since the SAX standard was
already there, it seemed to make sense to use it for reporting errors. As a result,
the error-handling code for DOM and SAX applications are very similar:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}

try {

} catch (SAXParseException spe) {
// Error generated by the parser

System.out.println("\n** Parsing error"
+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated during parsing
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

 } catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

 } catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}

}// main

222 DOCUMENT OBJECT MODEL
Instantiate the Factory
Next, add the code highlighted below to obtain an instance of a factory that can
give us a document builder:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
try {

Get a Parser and Parse the File
Now, add the code highlighted below to get a instance of a builder, and use it to
parse the specified file:

try {
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));

} catch (SAXParseException spe) {

Save This File!
By now, you should be getting the idea that every JAXP application starts
pretty much the same way. You’re right! Save this version of the file as a
template. You’ll use it later on as the basis for an XSLT transformation
application.

Run the Program
Throughout most of the DOM tutorial, you’ll be using the sample slideshows
you saw in the SAX section. In particular, you’ll use slideSample01.xml, a
simple XML file with nothing much in it, and slideSample10.xml, a more com-
plex example that includes a DTD, processing instructions, entity references,
and a CDATA section.

For instructions on how to compile and run your program, see Compiling and
Running the Program from the SAX tutorial. Substitute “DomEcho” for “Echo”
as the name of the program, and you’re ready to roll.

ADDITIONAL INFORMATION 223
For now, just run the program on slideSample01.xml. If it ran without error,
you have successfully parsed an XML document and constructed a DOM. Con-
gratulations!

Note: You’ll have to take my word for it, for the moment, because at this point you
don’t have any way to display the results. But that feature is coming shortly...

Additional Information
Now that you have successfully read in a DOM, there are one or two more things
you need to know in order to use DocumentBuilder effectively. Namely, you
need to know about:

• Configuring the Factory

• Handling Validation Errors

Configuring the Factory
By default, the factory returns a nonvalidating parser that knows nothing about
namespaces. To get a validating parser, and/or one that understands namespaces,
you configure the factory to set either or both of those options using the com-
mand(s) highlighted below:

public static void main(String argv[])
{

if (argv.length != 1) {
...

}
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setValidating(true);
factory.setNamespaceAware(true);
try {

...

Note: JAXP-conformant parsers are not required to support all combinations of
those options, even though the reference parser does. If you specify an invalid com-
bination of options, the factory generates a ParserConfigurationException when
you attempt to obtain a parser instance.

224 DOCUMENT OBJECT MODEL
You’ll be learning more about how to use namespaces in the last section of the
DOM tutorial, Using Namespaces (page 277). To complete this section, though,
you’ll want to learn something about...

Handling Validation Errors
Remember when you were wading through the SAX tutorial, and all you really
wanted to do was construct a DOM? Well, here’s when that information begins
to pay off.

Recall that the default response to a validation error, as dictated by the SAX
standard, is to do nothing. The JAXP standard requires throwing SAX excep-
tions, so you use exactly the same error handling mechanisms as you used for a
SAX application. In particular, you need to use the DocumentBuilder’s setEr-
rorHandler method to supply it with an object that implements the SAX
ErrorHandler interface.

Note: DocumentBuilder also has a setEntityResolver method you can use

The code below uses an anonymous inner class to define that ErrorHandler.
The highlighted code is the part that makes sure validation errors generate an
exception.

builder.setErrorHandler(
new org.xml.sax.ErrorHandler() {

// ignore fatal errors (an exception is guaranteed)
public void fatalError(SAXParseException exception)
throws SAXException {
}
// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{

throw e;
}

 // dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{

System.out.println("** Warning"
+ ", line " + err.getLineNumber()
+ ", uri " + err.getSystemId());

LOOKING AHEAD 225
System.out.println(" " + err.getMessage());
}

);

This code uses an anonymous inner class to generate an instance of an object
that implements the ErrorHandler interface. Since it has no class name, it’s
“anonymous”. You can think of it as an “ErrorHandler” instance, although tech-
nically it’s a no-name instance that implements the specified interface. The code
is substantially the same as that described in Handling Errors with the Nonvali-
dating Parser (page 155). For a more complete background on validation issues,
refer to Using the Validating Parser (page 187).

Looking Ahead
In the next section, you’ll display the DOM structure in a JTree and begin to
explore its structure. For example, you’ll see how entity references and CDATA
sections appear in the DOM. And perhaps most importantly, you’ll see how text
nodes (which contain the actual data) reside under element nodes in a DOM.

Displaying a DOM Hierarchy
To create a Document Object Hierarchy (DOM) or manipulate one, it helps to
have a clear idea of how the nodes in a DOM are structured. In this section of the
tutorial, you’ll expose the internal structure of a DOM.

Echoing Tree Nodes
What you need at this point is a way to expose the nodes in a DOM so you can
see what it contains. To do that, you’ll convert a DOM into a JTreeModel and
display the full DOM in a JTree. It’s going to take a bit of work, but the end
result will be a diagnostic tool you can use in the future, as well as something
you can use to learn about DOM structure now.

Convert DomEcho to a GUI App
Since the DOM is a tree, and the Swing JTree component is all about displaying
trees, it makes sense to stuff the DOM into a JTree, so you can look at it. The

226 DOCUMENT OBJECT MODEL
first step in that process is to hack up the DomEcho program so it becomes a GUI
application.

Note: The code discussed in this section is in DomEcho02.java.

Add Import Statements
Start by importing the GUI components you’re going to need to set up the appli-
cation and display a JTree:

// GUI components and layouts
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

Later on in the DOM tutorial, we’ll tailor the DOM display to generate a user-
friendly version of the JTree display. When the user selects an element in that
tree, you’ll be displaying subelements in an adjacent editor pane. So, while we’re
doing the setup work here, import the components you need to set up a divided
view (JSplitPane) and to display the text of the subelements (JEditorPane):

import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

Add a few support classes you’re going to need to get this thing off the ground:

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

Finally, import some classes to make a fancy border:

// For creating borders
import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

../examples/jaxp/dom/samples/DomEcho02.java

CONVERT DOMECHO TO A GUI APP 227
(These are optional. You can skip them and the code that depends on them if you
want to simplify things.)

Create the GUI Framework
The next step is to convert the application into a GUI application. To do that, the
static main method will create an instance of the main class, which will have
become a GUI pane.

Start by converting the class into a GUI pane by extending the Swing JPanel

class:

public class DomEcho02 extends JPanel
{

// Global value so it can be ref'd by the tree-adapter
static Document document;
...

While you’re there, define a few constants you’ll use to control window sizes:

public class DomEcho02 extends JPanel
{

// Global value so it can be ref'd by the tree-adapter
static Document document;

static final int windowHeight = 460;
static final int leftWidth = 300;
static final int rightWidth = 340;
static final int windowWidth = leftWidth + rightWidth;

Now, in the main method, invoke a method that will create the outer frame that
the GUI pane will sit in:

public static void main(String argv[])
{

...
DocumentBuilderFactory factory ...
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));
makeFrame();

 } catch (SAXParseException spe) {
...

228 DOCUMENT OBJECT MODEL
Next, you’ll need to define the makeFrame method itself. It contains the standard
code to create a frame, handle the exit condition gracefully, give it an instance of
the main panel, size it, locate it on the screen, and make it visible:

 ...
} // main

public static void makeFrame()
{

// Set up a GUI framework
JFrame frame = new JFrame("DOM Echo");
frame.addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e)
{System.exit(0);}

});

// Set up the tree, the views, and display it all
final DomEcho02 echoPanel = new DomEcho02();
frame.getContentPane().add("Center", echoPanel);
frame.pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
int w = windowWidth + 10;
int h = windowHeight + 10;
frame.setLocation(screenSize.width/3 - w/2,

screenSize.height/2 - h/2);
frame.setSize(w, h);
frame.setVisible(true)

} // makeFrame

Add the Display Components
The only thing left in the effort to convert the program to a GUI application is to
create the class constructor and make it create the panel’s contents. Here is the
constructor:

public class DomEcho02 extends JPanel
{

...
static final int windowWidth = leftWidth + rightWidth;

public DomEcho02()
{
} // Constructor

CONVERT DOMECHO TO A GUI APP 229
Here, you make use of the border classes you imported earlier to make a regal
border (optional):

public DomEcho02()
{

// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder cb = new CompoundBorder(eb,bb);
this.setBorder(new CompoundBorder(cb,eb));

} // Constructor

Next, create an empty tree and put it a JScrollPane so users can see its contents
as it gets large:

public DomEcho02(
{

...

// Set up the tree
JTree tree = new JTree();

// Build left-side view
JScrollPane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

} // Constructor

Now create a non-editable JEditPane that will eventually hold the contents
pointed to by selected JTree nodes:

public DomEcho02(
{

....

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

} // Constructor

230 DOCUMENT OBJECT MODEL
With the left-side JTree and the right-side JEditorPane constructed, create a
JSplitPane to hold them:

public DomEcho02()
{

....

// Build split-pane view
JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
treeView, htmlView);

splitPane.setContinuousLayout(true);
splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

} // Constructor

With this code, you set up the JSplitPane with a vertical divider. That produces
a “horizontal split” between the tree and the editor pane. (More of a horizontal
layout, really.) You also set the location of the divider so that the tree got the
width it prefers, with the remainder of the window width allocated to the editor
pane.

 Finally, specify the layout for the panel and add the split pane:

public DomEcho02()
{

...

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Congratulations! The program is now a GUI application. You can run it now to
see what the general layout will look like on screen. For reference, here is the
completed constructor:

public DomEcho02()
{

// Make a nice border
EmptyBorder eb = new EmptyBorder(5,5,5,5);
BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
CompoundBorder CB = new CompoundBorder(eb,bb);

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 231
this.setBorder(new CompoundBorder(CB,eb));

// Set up the tree
JTree tree = new JTree();

// Build left-side view
JScrollPane treeView = new JScrollPane(tree);
treeView.setPreferredSize(

new Dimension(leftWidth, windowHeight));

// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

// Build split-pane view
JSplitPane splitPane =

new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
treeView, htmlView)

splitPane.setContinuousLayout(true);
splitPane.setDividerLocation(leftWidth);
splitPane.setPreferredSize(

new Dimension(windowWidth + 10, windowHeight+10));

// Add GUI components
this.setLayout(new BorderLayout());
this.add("Center", splitPane);

} // Constructor

Create Adapters to Display the DOM in
a JTree
Now that you have a GUI framework to display a JTree in, the next step is get
the JTree to display the DOM. But a JTree wants to display a TreeModel. A
DOM is a tree, but it’s not a TreeModel. So you’ll need to create an adapter class
that makes the DOM look like a TreeModel to a JTree.

Now, when the TreeModel passes nodes to the JTree, JTree uses the toString

function of those nodes to get the text to display in the tree. The standard
toString function isn’t going to be very pretty, so you’ll need to wrap the DOM
nodes in an AdapterNode that returns the text we want. What the TreeModel

232 DOCUMENT OBJECT MODEL
gives to the JTree, then, will in fact be AdapterNode objects that wrap DOM
nodes.

Note: The classes that follow are defined as inner classes. If you are coding for the
1.1 platform, you will need to define these class as external classes.

Define the AdapterNode Class
Start by importing the tree, event, and utility classes you’re going to need to
make this work:

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho extends JPanel
{

Moving back down to the end of the program, define a set of strings for the node
element types:

 ...
} // makeFrame

// An array of names for DOM node-types
// (Array indexes = nodeType() values.)
static final String[] typeName = {

"none",
"Element",
"Attr",
"Text",
"CDATA",
"EntityRef",
"Entity",
"ProcInstr",
"Comment",
"Document",
"DocType",
"DocFragment",
"Notation",

};

} // DomEcho

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 233
These are the strings that will be displayed in the JTree. The specification of
these nodes types can be found in the Document Object Model (DOM) Level 2
Core Specification at http://www.w3.org/TR/2000/REC-DOM/Level-2-Core-
20001113, under the specification for Node. That table is reproduced below, with
the headings modified for clarity, and with the nodeType() column added:

Table 7–1 Node Types

 Node nodeName() nodeValue() attributes nodeType()

 Attr
name of
attribute

value of
attribute

null 2

 CDATASection #cdata-section
content of
the CDATA
section

null 4

 Comment #comment
content of the
comment

null 8

 Document #document null null 9

 DocumentFragment
#document-
fragment

null null 11

 DocumentType
document
type name

null null 10

 Element tag name null NamedNodeMap 1

 Entity entity name null null 6

 EntityReference
name of entity
referenced

null null 5

 Notation notation name null null 12

 ProcessingInstruc-
tion

target
entire content
excluding the
target

null 7

 Text #text
content of the
text node

null 3

234 DOCUMENT OBJECT MODEL
Suggestion:
Print this table and keep it handy. You need it when working with the DOM,
because all of these types are intermixed in a DOM tree. So your code is for-
ever asking, “Is this the kind of node I’m interested in?”.

Next, define the AdapterNode wrapper for DOM nodes as an inner class:

static final String[] typeName = {
...

};

public class AdapterNode
{

org.w3c.dom.Node domNode;

// Construct an Adapter node from a DOM node
public AdapterNode(org.w3c.dom.Node node) {

domNode = node;
}

// Return a string that identifies this node
// in the tree
public String toString() {

String s = typeName[domNode.getNodeType()];
String nodeName = domNode.getNodeName();
if (! nodeName.startsWith("#")) {

s += ": " + nodeName;
}
if (domNode.getNodeValue() != null) {

if (s.startsWith("ProcInstr"))
s += ", ";

else
s += ": ";

// Trim the value to get rid of NL's
// at the front
String t = domNode.getNodeValue().trim();
int x = t.indexOf(");
if (x >= 0) t = t.substring(0, x);
s += t;

}
return s;

}

} // AdapterNode

} // DomEcho

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 235
This class declares a variable to hold the DOM node, and requires it to be speci-
fied as a constructor argument. It then defines the toString operation, which
returns the node type from the String array, and then adds to that additional
information from the node, to further identify it.

As you can see in the table of node types in org.w3c.dom.Node, every node has
a type, and name, and a value, which may or may not be empty. In those cases
where the node name starts with “#”, that field duplicates the node type, so there
is in point in including it. That explains the lines that read:

if (! nodeName.startsWith("#")) {
s += ": " + nodeName;

}

The remainder of the toString method deserves a couple of notes, as well. For
instance, these lines:

if (s.startsWith("ProcInstr"))
s += ", ";

else
s += ": ";

Merely provide a little “syntactic sugar”. The type field for a Processing Instruc-
tions end with a colon (:) anyway, so those codes keep from doubling the colon.

The other interesting lines are:

String t = domNode.getNodeValue().trim();
int x = t.indexOf(");
if (x >= 0) t = t.substring(0, x);
s += t;

Those lines trim the value field down to the first newline (linefeed) character in
the field. If you leave those lines out, you will see some funny characters (square
boxes, typically) in the JTree.

Note: Recall that XML stipulates that all line endings are normalized to newlines,
regardless of the system the data comes from. That makes programming quite a bit
simpler.

Wrapping a DomNode and returning the desired string are the AdapterNode’s
major functions. But since the TreeModel adapter will need to answer questions
like “How many children does this node have?” and satisfy commands like

236 DOCUMENT OBJECT MODEL
“Give me this node’s Nth child”, it will be helpful to define a few additional util-
ity methods. (The adapter could always access the DOM node and get that infor-
mation for itself, but this way things are more encapsulated.)

Next, add the code highlighted below to return the index of a specified child, the
child that corresponds to a given index, and the count of child nodes:

public class AdapterNode
{

...
public String toString() {

...
}

public int index(AdapterNode child) {
//System.err.println("Looking for index of " + child);
int count = childCount();
for (int i=0; i<count; i++) {

AdapterNode n = this.child(i);
if (child == n) return i;

}
return -1; // Should never get here.

}

public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.
org.w3c.dom.Node node =

domNode.getChildNodes().item(searchIndex);
return new AdapterNode(node);

}

public int childCount() {
return domNode.getChildNodes().getLength();

}

} // AdapterNode

} // DomEcho

Note: During development, it was only after I started writing the TreeModel adapter
that I realized these were needed, and went back to add them. In just a moment,
you’ll see why.

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 237
Define the TreeModel Adapter
Now, at last, you are ready to write the TreeModel adapter. One of the really nice
things about the JTree model is the relative ease with which you convert an
existing tree for display. One of the reasons for that is the clear separation
between the displayable view, which JTree uses, and the modifiable view, which
the application uses. For more on that separation, see Understanding the Tree-
Model at http://java.sun.com/products/jfc/tsc/arti-

cles/jtree/index.html. For now, the important point is that to satisfy the
TreeModel interface we only need to (a) provide methods to access and report on
children and (b) register the appropriate JTree listener, so it knows to update its
view when the underlying model changes.

Add the code highlighted below to create the TreeModel adapter and specify the
child-processing methods:

...
} // AdapterNode

// This adapter converts the current Document (a DOM) into
// a JTree model.
public class DomToTreeModelAdapter implements
javax.swing.tree.TreeModel
{

// Basic TreeModel operations
public Object getRoot() {

//System.err.println("Returning root: " +document);
return new AdapterNode(document);

}

public boolean isLeaf(Object aNode) {
// Determines whether the icon shows up to the left.
// Return true for any node with no children
AdapterNode node = (AdapterNode) aNode;
if (node.childCount() > 0) return false;
return true;

}

public int getChildCount(Object parent)
AdapterNode node = (AdapterNode) parent;
return node.childCount();

}

public Object getChild(Object parent, int index) {
AdapterNode node = (AdapterNode) parent;
return node.child(index);

238 DOCUMENT OBJECT MODEL
}

public int getIndexOfChild(Object parent, Object child) {
AdapterNode node = (AdapterNode) parent;
return node.index((AdapterNode) child);

}

public void valueForPathChanged(
TreePath path, Object newValue)

{
// Null. We won't be making changes in the GUI
// If we did, we would ensure the new value was
// really new and then fire a TreeNodesChanged event.

}

} // DomToTreeModelAdapter

} // DomEcho

In this code, the getRoot method returns the root node of the DOM, wrapped as
an AdapterNode object. From here on, all nodes returned by the adapter will be
AdapterNodes that wrap DOM nodes. By the same token, whenever the JTree

asks for the child of a given parent, the number of children that parent has, etc.,
the JTree will be passing us an AdapterNode. We know that, because we control
every node the JTree sees, starting with the root node.

JTree uses the isLeaf method to determine whether or not to display a clickable
expand/contract icon to the left of the node, so that method returns true only if
the node has children. In this method, we see the cast from the generic object
JTree sends us to the AdapterNode object we know it has to be. We know it is
sending us an adapter object, but the interface, to be general, defines objects, so
we have to do the casts.

The next three methods return the number of children for a given node, the child
that lives at a given index, and the index of a given child, respectively. That’s all
pretty straightforward.

The last method is invoked when the user changes a value stored in the JTree. In
this app, we won’t support that. But if we did, the application would have to
make the change to the underlying model and then inform any listeners that a
change had occurred. (The JTree might not be the only listener. In many an
application it isn’t, in fact.)

CREATE ADAPTERS TO DISPLAY THE DOM IN A JTREE 239
To inform listeners that a change occurred, you’ll need the ability to register
them. That brings us to the last two methods required to implement the Tree-

Model interface. Add the code highlighted below to define them:

public class DomToTreeModelAdapter ...
{

...
public void valueForPathChanged(

TreePath path, Object newValue)
{

...
}
private Vector listenerList = new Vector();
public void addTreeModelListener(

TreeModelListener listener) {
if (listener != null
&& ! listenerList.contains(listener)) {

listenerList.addElement(listener);
}

}

public void removeTreeModelListener(
TreeModelListener listener)

{
if (listener != null) {

listenerList.removeElement(listener);
}

}

} // DomToTreeModelAdapter

Since this application won’t be making changes to the tree, these methods will
go unused, for now. However, they’ll be there in the future, when you need them.

Note: This example uses Vector so it will work with 1.1 apps. If coding for 1.2 or
later, though, I’d use the excellent collections framework instead:

private LinkedList listenerList = new LinkedList();

240 DOCUMENT OBJECT MODEL
The operations on the List are then add and remove. To iterate over the list, as in
the operations below, you would use:

Iterator it = listenerList.iterator();
while (it.hasNext()) {

TreeModelListener listener = (TreeModelListener) it.next();
...

}

Here, too, are some optional methods you won’t be using in this application. At
this point, though, you have constructed a reasonable template for a TreeModel
adapter. In the interests of completeness, you might want to add the code high-
lighted below. You can then invoke them whenever you need to notify JTree lis-
teners of a change:

public void removeTreeModelListener(
TreeModelListener listener)

{
...

}

public void fireTreeNodesChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesChanged(e);
}

}

public void fireTreeNodesInserted(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesInserted(e);
}

}

public void fireTreeNodesRemoved(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeNodesRemoved(e);
}

}

FINISHING UP 241
public void fireTreeStructureChanged(TreeModelEvent e) {
Enumeration listeners = listenerList.elements();
while (listeners.hasMoreElements()) {

TreeModelListener listener =
(TreeModelListener) listeners.nextElement();

listener.treeStructureChanged(e);
}

}

} // DomToTreeModelAdapter

Note: These methods are taken from the TreeModelSupport class described in
Understanding the TreeModel. That architecture was produced by Tom Santos and
Steve Wilson, and is a lot more elegant than the quick hack going on here. It seemed
worthwhile to put them here, though, so they would be immediately at hand when
and if they’re needed.

Finishing Up
At this point, you are basically done. All you need to do is jump back to the con-
structor and add the code to construct an adapter and deliver it to the JTree as
the TreeModel:

// Set up the tree
JTree tree = new JTree(new DomToTreeModelAdapter());

You can now compile and run the code on an XML file. In the next section, you
will do that, and explore the DOM structures that result.

Examining the Structure of a DOM
In this section, you’ll use the GUI-fied DomEcho application you created in the
last section to visually examine a DOM. You’ll see what nodes make up the
DOM, and how they are arranged. With the understanding you acquire, you’ll be
well prepared to construct and modify Document Object Model structures in the
future.

242 DOCUMENT OBJECT MODEL
Displaying A Simple Tree
We’ll start out by displaying a simple file, so you get an idea of basic DOM
structure. Then we’ll look at the structure that results when you include some of
the more advanced XML elements.

Note: The code used to create the figures in this section is in DomEcho02.java. The
file displayed is slideSample01.xml. (The browsable version is slideSample01-

xml.html.)

Figure 7–1 shows the tree you see when you run the DomEcho program on the
first XML file you created in the DOM tutorial.

Figure 7–1 Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element type. After
that comes the element name, if any, and then the element value. This view
shows three element types: Document, Comment, and Element. There is only
Document type for the whole tree—that is the root node. The Comment node dis-
plays the value attribute, while the Element node displays the element name,
“slideshow”.

Compare Figure 7–1 with the code in the AdapterNode’s toString method to
see whether the name or value is being displayed for a particular node. If you
need to make it more clear, modify the program to indicate which property is
being displayed (for example, with N: name, V: value).

../examples/jaxp/dom/samples/DomEcho02.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html
../examples/jaxp/dom/samples/slideSample01-xml.html

DISPLAYING A SIMPLE TREE 243
Expanding the slideshow element brings up the display shown in Figure 7–2.

Figure 7–2 Element Node Expanded, No Attribute Nodes Showing

Here, you can see the Text nodes and Comment nodes that are interspersed
between Slide elements. The empty Text nodes exist because there is no DTD to
tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be Element and Text nodes.)

Important!
Text nodes exist under element nodes in a DOM, and data is always stored in
text nodes. Perhaps the most common error in DOM processing is to navigate to
an element node and expect it to contain the data that is stored in that element.
Not so! Even the simplest element node has a text node under it. For example,
given <size>12</size>, there is an element node (size), and a text node under
it which contains the actual data (12).

Notably absent from this picture are the Attribute nodes. An inspection of the
table in org.w3c.dom.Node shows that there is indeed an Attribute node type.
But they are not included as children in the DOM hierarchy. They are instead
obtained via the Node interface getAttributes method.

244 DOCUMENT OBJECT MODEL
Note: The display of the text nodes is the reason for including the lines below in the
AdapterNode’s toString method. If your remove them, you’ll see the funny char-
acters (typically square blocks) that are generated by the newline characters that are
in the text.

String t = domNode.getNodeValue().trim();
int x = t.indexOf(");
if (x >= 0) t = t.substring(0, x);
s += t;

Displaying a More Complex Tree
Here, you’ll display the example XML file you created at the end of the SAX
tutorial, to see how entity references, processing instructions, and CDATA sec-
tions appear in the DOM.

Note: The file displayed in this section is slideSample10.xml. The
slideSample10.xml file references slideshow3.dtd which, in turn, references
copyright.xml and a (very simplistic) xhtml.dtd. (The browsable versions are
slideSample10-xml.html, slideshow3-dtd.html, copyright-xml.html, and
xhtml-dtd.html.)

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideshow3.dtd
../examples/jaxp/dom/samples/copyright.xml
../examples/jaxp/dom/samples/xhtml.dtd
../examples/jaxp/dom/samples/slideSample10-xml.html
../examples/jaxp/dom/samples/slideshow3-dtd.html
../examples/jaxp/dom/samples/copyright-xml.html
../examples/jaxp/dom/samples/xhtml-dtd.html

DISPLAYING A MORE COMPLEX TREE 245
Figure 7–3 shows the result of running the DomEcho application on
slideSample10.xml, which includes a DOCTYPE entry that identifies the docu-
ment’s DTD.

Figure 7–3 DocType Node Displayed

The DocType interface is actually an extension of w3c.org.dom.Node. It defines
a getEntities method that you would use to obtain Entity nodes—the nodes
that define entities like the product entity, which has the value “WonderWid-
gets”. Like Attribute nodes, Entity nodes do not appear as children of DOM
nodes.

246 DOCUMENT OBJECT MODEL
When you expand the slideshow node, you get the display shown in Figure 7–4.

Figure 7–4 Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do
appear in the tree. The name property contains the target-specification, which
identifies the application that the instruction is directed to. The value property
contains the text of the instruction.

Note that empty text nodes are also shown here, even though the DTD specifies
that a slideshow can contain slide elements only, never text. Logically, then,
you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated ignorableWhitespace

events, rather than character events.)

DISPLAYING A MORE COMPLEX TREE 247
Moving down to the second slide element and opening the item element under
it brings up the display shown in Figure 7–5.

Figure 7–5 JAXP 1.2 DOM — Item Text Returned from an Entity Reference

248 DOCUMENT OBJECT MODEL
Here, you can see that a text node containing the copyright text was inserted into
the DOM, rather than the entity reference which pointed to it.

For most applications, the insertion of the text is exactly what you want. That
way, when you’re looking for the text under a node, you don’t have to worry
about an entity references it might contain.

For other applications, though, you may need the ability to reconstruct the origi-
nal XML. For example, an editor application would need to save the result of
user modifications without throwing away entity references in the process.

Various DocumentBuilderFactory APIs give you control over the kind of DOM
structure that is created. For example, add the highlighted line below to produce
the DOM structure shown in Figure 7–6.

public static void main(String argv[])
{

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
factory.setExpandEntityReferences(true);
...

DISPLAYING A MORE COMPLEX TREE 249
Figure 7–6 JAXP 1.1 in 1.4 Platform — Entity Reference Node Displayed

Here, the Entity Reference node is highlighted. Note that the entity reference
contains multiple nodes under it. This example shows only comment and a text
nodes, but the entity could conceivably contain other element nodes, as well.

250 DOCUMENT OBJECT MODEL
Finally, moving down to the last item element under the last slide brings up the
display shown in Figure 7–7.

Figure 7–7 CDATA Node Displayed

Here, the CDATA node is highlighted. Note that there are no nodes under it. Since
a CDATA section is entirely uninterpreted, all of its contents are contained in the
node’s value property.

Summary of Lexical Controls
Lexical information is the information you need to reconstruct the original syn-
tax of an XML document. As we discussed earlier, preserving lexical informa-
tion is important for editing applications, where you want to save a document
that is an accurate reflection of the original -- complete with comments, entity
references, and any CDATA sections it may have included at the outset.

A majority of applications, however, are only concerned with the content of the
XML structures. They can afford to ignore comments, and they don’t care
whether data was coded in a CDATA section, as plain text, or whether it included
an entity reference. For such applications, a minimum of lexical information is

FINISHING UP 251
desirable, because it simplifies the number and kind of DOM nodes that the
application has to be prepared to examine.

The following DocumentBuilderFactory methods give you control over the
lexical information you see in the DOM:

• setCoalescing()

To convert CDATA nodes to Text node and append to an adjacent Text
node (if any).

• setExpandEntityReferences()

To expand entity reference nodes.

• setIgnoringComments()

To ignore comments.

• setIgnoringElementContentWhitespace()

To ignore ignorable whitespace in element content.

The default values for all of these properties is false. Table 7–2 shows the set-
tings you need to preserve all the lexical information necessary to reconstruct the
original document, in its original form. It also shows the settings that construct
the simplest possible DOM, so the application can focus on the data’s semantic
content, without having to worry about lexical syntax details.

Finishing Up
At this point, you have seen most of the nodes you will ever encounter in a DOM
tree. There are one or two more that we’ll mention in the next section, but you

Table 7–2 Configuring DocumentBuilderFactory

API
Preserve Lexical
Info

Focus on
Content

setCoalescing() false true

setExpandEntityReferences() true false

setIgnoringComments() false true

setIgnoringElement
ContentWhitespace()

false true

252 DOCUMENT OBJECT MODEL
now know what you need to know to create or modify a DOM structure. In the
next section, you’ll see how to convert a DOM into a JTree that is suitable for an
interactive GUI. Or, if you prefer, you can skip ahead to the 5th section of the
DOM tutorial, Creating and Manipulating a DOM (page 268), where you’ll learn
how to create a DOM from scratch.

Constructing a User-Friendly JTree from
a DOM

Now that you know what a DOM looks like internally, you’ll be better prepared
to modify a DOM or construct one from scratch. Before going on to that, though,
this section presents some modifications to the JTreeModel that let you produce
a more user-friendly version of the JTree suitable for use in a GUI.

Compressing the Tree View
Displaying the DOM in tree form is all very well for experimenting and to learn
how a DOM works. But it’s not the kind of “friendly” display that most users
want to see in a JTree. However, it turns out that very few modifications are
needed to turn the TreeModel adapter into something that will present a user-
friendly display. In this section, you’ll make those modifications.

Note: The code discussed in this section is in DomEcho03.java. The file it operates
on is slideSample01.xml. (The browsable version is slideSample01-xml.html.)

Make the Operation Selectable
When you modify the adapter, you’re going to compress the view of the DOM,
eliminating all but the nodes you really want to display. Start by defining a bool-
ean variable that controls whether you want the compressed or uncompressed
view of the DOM:

public class DomEcho extends JPanel
{

static Document document;
boolean compress = true;

 static final int windowHeight = 460;
 ...

../examples/jaxp/dom/samples/DomEcho03.java
../examples/jaxp/dom/samples/slideSample01.xml
../examples/jaxp/dom/samples/slideSample01-xml.html

COMPRESSING THE TREE VIEW 253
Identify Tree Nodes

The next step is to identify the nodes you want to show up in the tree. To do that,
add the code highlighted below:

...
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;

public class DomEcho extends JPanel
{

...

public static void makeFrame() {
...

}

// An array of names for DOM node-type
static final String[] typeName = {

...
};

static final int ELEMENT_TYPE = Node.ELEMENT_NODE;

// The list of elements to display in the tree
static String[] treeElementNames = {

"slideshow",
"slide",
"title", // For slideshow #1
"slide-title", // For slideshow #10
"item",

};

boolean treeElement(String elementName) {
for (int i=0; i<treeElementNames.length; i++) {

if (elementName.equals(treeElementNames[i]))
return true;

}
return false;

}

With this code, you set up a constant you can use to identify the ELEMENT node
type, declared the names of the elements you want in the tree, and created a
method tells whether or not a given element name is a “tree element”. Since
slideSample01.xml has title elements and slideSample10.xml has slide-

254 DOCUMENT OBJECT MODEL
title elements, you set up the contents of this arrays so it would work with
either data file.

Note: The mechanism you are creating here depends on the fact that structure nodes
like slideshow and slide never contain text, while text usually does appear in con-
tent nodes like item. Although those “content” nodes may contain subelements in
slideShow10.xml, the DTD constrains those subelements to be XHTML nodes.
Because they are XHTML nodes (an XML version of HTML that is constrained to
be well-formed), the entire substructure under an item node can be combined into
a single string and displayed in the htmlPane that makes up the other half of the
application window. In the second part of this section, you’ll do that concatenation,
displaying the text and XHTML as content in the htmlPane.

Although you could simply reference the node types defined in the class,
org.w3c.dom.Node, defining the ELEMENT_TYPE constant keeps the code a little
more readable. Each node in the DOM has a name, a type, and (potentially) a list
of subnodes. The functions that return these values are getNodeName(), getNo-
deType, and getChildNodes(). Defining our own constants will let us write
code like this:

Node node = nodeList.item(i);
int type = node.getNodeType();
if (type == ELEMENT_TYPE) {

....

As a stylistic choice, the extra constants help us keep the reader (and ourselves!)
clear about what we’re doing. Here, it is fairly clear when we are dealing with a
node object, and when we are dealing with a type constant. Otherwise, it would
be fairly tempting to code something like, if (node == ELEMENT_NODE), which
of course would not work at all.

Control Node Visibility
The next step is to modify the AdapterNode’s childCount function so that it
only counts “tree element” nodes—nodes which are designated as displayable in
the JTree. Make the modifications highlighted below to do that:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

COMPRESSING THE TREE VIEW 255
...
public AdapterNode child(int searchIndex) {

...
}
public int childCount() {

if (!compress) {
// Indent this
return domNode.getChildNodes().getLength();

}
int count = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++)
{

org.w3c.dom.Node node =
domNode.getChildNodes().item(i);

if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName()))
{

++count;
}

}
return count;

}
} // AdapterNode

The only tricky part about this code is checking to make sure the node is an ele-
ment node before comparing the node. The DocType node makes that necessary,
because it has the same name, “slideshow”, as the slideshow element.

Control Child Access
Finally, you need to modify the AdapterNode’s child function to return the Nth
item from the list of displayable nodes, rather than the Nth item from all nodes in
the list. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public int index(AdapterNode child) {

...
}
public AdapterNode child(int searchIndex) {
//Note: JTree index is zero-based.

256 DOCUMENT OBJECT MODEL
org.w3c.dom.Node node =
domNode.getChildNodes()Item(searchIndex);

if (compress) {
// Return Nth displayable node
int elementNodeIndex = 0;
for (int i=0;

i<domNode.getChildNodes().getLength(); i++)
{

node = domNode.getChildNodes()Item(i);
if (node.getNodeType() == ELEMENT_TYPE
&& treeElement(node.getNodeName())
&& elementNodeIndex++ == searchIndex) {

break;
}

}
}
return new AdapterNode(node);

} // child
} // AdapterNode

There’s nothing special going on here. It’s a slightly modified version the same
logic you used when returning the child count.

Check the Results
When you compile and run this version of the application on
slideSample01.xml, and then expand the nodes in the tree, you see the results
shown in Figure 7–8. The only nodes remaining in the tree are the high-level
“structure” nodes.

COMPRESSING THE TREE VIEW 257
Figure 7–8 Tree View with a Collapsed Hierarchy

Extra Credit
The way the application stands now, the information that tells the application
how to compress the tree for display is “hard-coded”. Here are some ways you
could consider extending the app:

Use a Command-Line Argument
Whether you compress or don’t compress the tree could be determined by a
command line argument, rather than being a hard-coded boolean variable.
On the other hand, the list the list of elements that goes into the tree is still
hard coded, so maybe that option doesn’t make much sense, unless...

Read the treeElement list from a file
If you read the list of elements to include in the tree from an external file,
that would make the whole application command driven. That would be
good. But wouldn’t it be really nice to derive that information from the DTD
or schema, instead? So you might want to consider...

Automatically Build the List
Watch out, though! As things stand right now, there are no standard DTD
parsers! If you use a DTD, then, you’ll need to write your parser to make
sense out of its somewhat arcane syntax. You’ll probably have better luck if
you use a schema, instead of a DTD. The nice thing about schemas is that

258 DOCUMENT OBJECT MODEL
use XML syntax, so you can use an XML parser to read the schema the same
way you use any other file.

As you analyze the schema, note that the JTree-displayable structure nodes
are those that have no text, while the content nodes may contain text and,
optionally, XHTML subnodes. That distinction works for this example, and
will likely work for a large body of real-world applications. It’s pretty easy
to construct cases that will create a problem, though, so you’ll have to be on
the lookout for schema/DTD specifications that embed non-XHTML ele-
ments in text-capable nodes, and take the appropriate action.

Acting on Tree Selections
Now that the tree is being displayed properly, the next step is to concatenate the
subtrees under selected nodes to display them in the htmlPane. While you’re at
it, you’ll use the concatenated text to put node-identifying information back in
the JTree.

Note: The code discussed in this section is in DomEcho04.java.

Identify Node Types
When you concatenate the subnodes under an element, the processing you do is
going to depend on the type of node. So the first thing to is to define constants
for the remaining node types. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{

...
// An array of names for DOM node-types
static final String[] typeName = {

...
};
static final int ELEMENT_TYPE = 1;
static final int ATTR_TYPE =Node.ATTRIBUTE_NODE;
static final int TEXT_TYPE =Node.TEXT_NODE;
static final int CDATA_TYPE = Node.CDATA_SECTION_NODE;
static final int ENTITYREF_TYPE =

Node.ENTITY_REFERENCE_NODE;
static final int ENTITY_TYPE =Node.ENTITY_NODE;
static final int PROCINSTR_TYPE =

 Node.PROCESSING_INSTRUCTION_NODE;

../examples/jaxp/dom/samples/DomEcho04.java

ACTING ON TREE SELECTIONS 259
static final int COMMENT_TYPE = Node.COMMENT_NODE;
static final int DOCUMENT_TYPE =Node.DOCUMENT_NODE;
static final int DOCTYPE_TYPE =Node.DOCUMENT_TYPE_NODE;
static final int DOCFRAG_TYPE =Node.DOCUMENT_FRAGMENT_NODE;
static final int NOTATION_TYPE =Node.NOTATION_NODE;

Concatenate Subnodes to Define Element
Content
Next, you need to define add the method that concatenates the text and subnodes
for an element and returns it as the element’s “content”. To define the content

method, you’ll need to add the big chunk of code highlighted below, but this is
the last big chunk of code in the DOM tutorial!.

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public String toString() {
...
}
public String content() {

String s = "";
org.w3c.dom.NodeList nodeList =

domNode.getChildNodes();
for (int i=0; i<nodeList.getLength(); i++) {

org.w3c.dom.Node node = nodeList.item(i);
int type = node.getNodeType();
AdapterNode adpNode = new AdapterNode(node);
if (type == ELEMENT_TYPE) {

if (treeElement(node.getNodeName()))
continue;

s += "<" + node.getNodeName() + ">";
s += adpNode.content();
s += "</" + node.getNodeName() + ">";

} else if (type == TEXT_TYPE) {
s += node.getNodeValue();

} else if (type == ENTITYREF_TYPE) {
// The content is in the TEXT node under it
s += adpNode.content();

} else if (type == CDATA_TYPE) {
StringBuffer sb = new StringBuffer(

node.getNodeValue());
for (int j=0; j<sb.length(); j++) {

260 DOCUMENT OBJECT MODEL
if (sb.charAt(j) == '<') {
sb.setCharAt(j, '&');
sb.insert(j+1, "lt;");
j += 3;

} else if (sb.charAt(j) == '&') {
sb.setCharAt(j, '&');
sb.insert(j+1, "amp;");
j += 4;

}
}
s += "<pre>" + sb + "</pre>";

}
}
return s;

}
...

} // AdapterNode

Note: This code collapses EntityRef nodes, as inserted by the JAXP 1.1 parser that
ins included in the 1.4 Java platform. With JAXP 1.2, that portion of the code is not
necessary because entity references are converted to text nodes by the parser. Other
parsers may well insert such nodes, however, so including this code “future proofs”
your application, should you use a different parser in the future.

Although this code is not the most efficient that anyone ever wrote, it works and
it will do fine for our purposes. In this code, you are recognizing and dealing
with the following data types:

Element
For elements with names like the XHTML “em” node, you return the node’s
content sandwiched between the appropriate and tags. However,
when processing the content for the slideshow element, for example, you
don’t include tags for the slide elements it contains so, when returning a
node’s content, you skip any subelements that are themselves displayed in
the tree.

Text
No surprise here. For a text node, you simply return the node’s value.

Entity Reference
Unlike CDATA nodes, Entity References can contain multiple subelements.
So the strategy here is to return the concatenation of those subelements.

ACTING ON TREE SELECTIONS 261
CDATA
Like a text node, you return the node’s value. However, since the text in this
case may contain angle brackets and ampersands, you need to convert them
to a form that displays properly in an HTML pane. Unlike the XML CDATA
tag, the HTML <pre> tag does not prevent the parsing of character-format
tags, break tags and the like. So you have to convert left-angle brackets (<)
and ampersands (&) to get them to display properly.

On the other hand, there are quite a few node types you are not processing with
the code above. It’s worth a moment to examine them and understand why:

Attribute
These nodes do not appear in the DOM, but are obtained by invoking
getAttributes on element nodes.

Entity
These nodes also do not appear in the DOM. They are obtained by invoking
getEntities on DocType nodes.

Processing Instruction
These nodes don’t contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document
This is the root node for the DOM. There’s no data to display for that.

DocType
The DocType node contains the DTD specification, with or without external
pointers. It only appears under the root node, and has no data to display in
the tree.

Document Fragment
This node is equivalent to a document node. It’s a root node that the DOM
specification intends for holding intermediate results during cut/paste opera-
tions, for example. Like a document node, there’s no data to display.

Notation
We’re just flat out ignoring this one. These nodes are used to include binary
data in the DOM. As discussed earlier in Referencing Binary Entities and
Using the DTDHandler and EntityResolver (page 207), the MIME types (in
conjunction with namespaces) make a better mechanism for that.

262 DOCUMENT OBJECT MODEL
Display the Content in the JTree
With the content-concatenation out of the way, only a few small programming
steps remain. The first is to modify toString so that it uses the node’s content
for identifying information. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{

...
public class AdapterNode
{

...
public String toString() {

...
if (! nodeName.startsWith("#")) {

s += ": " + nodeName;
}
if (compress) {

String t = content().trim();
int x = t.indexOf(");
if (x >= 0) t = t.substring(0, x);
s += " " + t;
return s;

}
if (domNode.getNodeValue() != null) {

...
}
return s;

}

Wire the JTree to the JEditorPane
Returning now to the app’s constructor, create a tree selection listener and use to
wire the JTree to the JEditorPane:

public class DomEcho extends JPanel
{

...
public DomEcho()
{

...
// Build right-side view
JEditorPane htmlPane = new JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

ACTING ON TREE SELECTIONS 263
new Dimension(rightWidth, windowHeight));

tree.addTreeSelectionListener(
new TreeSelectionListener() {

public void valueChanged(TreeSelectionEvent e)
{
TreePath p = e.getNewLeadSelectionPath();
if (p != null) {
AdapterNode adpNode =

(AdapterNode)
p.getLastPathComponent();

htmlPane.setText(adpNode.content());
}

}
}

);

Now, when a JTree node is selected, it’s contents are delivered to the htmlPane.

Note: The TreeSelectionListener in this example is created using an anonymous
inner-class adapter. If you are programming for the 1.1 version of the platform,
you’ll need to define an external class for this purpose.

If you compile this version of the app, you’ll discover immediately that the htm-

lPane needs to be specified as final to be referenced in an inner class, so add
the keyword highlighted below:

public DomEcho04()
{

...
// Build right-side view
final JEditorPane htmlPane = new

JEditorPane("text/html","");
htmlPane.setEditable(false);
JScrollPane htmlView = new JScrollPane(htmlPane);
htmlView.setPreferredSize(

new Dimension(rightWidth, windowHeight));

Run the App
When you compile the application and run it on slideSample10.xml (the
browsable version is slideSample10-xml.html), you get a display like that

../examples/jaxp/dom/samples/slideSample10.xml
../examples/jaxp/dom/samples/slideSample10-xml.html

264 DOCUMENT OBJECT MODEL
shown in Figure 7–9. Expanding the hierarchy shows that the JTree now
includes identifying text for a node whenever possible.

Figure 7–9 Collapsed Hierarchy Showing Text in Nodes

ACTING ON TREE SELECTIONS 265
Selecting an item that includes XHTML subelements produces a display like
that shown in Figure 7–10:

Figure 7–10 Node with Tag Selected

266 DOCUMENT OBJECT MODEL
Selecting a node that contains an entity reference causes the entity text to be
included, as shown in Figure 7–11:

Figure 7–11 Node with Entity Reference Selected

ACTING ON TREE SELECTIONS 267
Finally, selecting a node that includes a CDATA section produces results like those
shown in Figure 7–12:

Figure 7–12 Node with CDATA Component Selected

Extra Credit
Now that you have the application working, here are some ways you might think
about extending it in the future:

Use Title Text to Identify Slides
Special case the slide element so that the contents of the title node is
used as the identifying text. When selected, convert the title node’s contents
to a centered H1 tag, and ignore the title element when constructing the
tree.

Convert Item Elements to Lists
Remove item elements from the JTree and convert them to HTML lists
using , , tags, including them in the slide’s content when the
slide is selected.

268 DOCUMENT OBJECT MODEL
Handling Modifications
A full discussion of the mechanisms for modifying the JTree’s underlying data
model is beyond the scope of this tutorial. However, a few words on the subject
are in order.

Most importantly, note that if you allow the user to modifying the structure by
manipulating the JTree, you have take the compression into account when you
figure out where to apply the change. For example, if you are displaying text in
the tree and the user modifies that, the changes would have to be applied to text
subelements, and perhaps require a rearrangement of the XHTML subtree.

When you make those changes, you’ll need to understand more about the inter-
actions between a JTree, it’s TreeModel, and an underlying data model. That
subject is covered in depth in the Swing Connection article, Understanding the
TreeModel at http://java.sun.com/products/jfc/tsc/arti-

cles/jtree/index.html.

Finishing Up
You now understand pretty much what there is know about the structure of a
DOM, and you know how to adapt a DOM to create a user-friendly display in a
JTree. It has taken quite a bit of coding, but in return you have obtained valuable
tools for exposing a DOM’s structure and a template for GUI apps. In the next
section, you’ll make a couple of minor modifications to the code that turn the
application into a vehicle for experimentation, and then experiment with build-
ing and manipulating a DOM.

Creating and Manipulating a DOM
By now, you understand the structure of the nodes that make up a DOM. A DOM
is actually very easy to create. This section of the DOM tutorial is going to take
much less work than anything you’ve see up to now. All the foregoing work,
however, generated the basic understanding that will make this section a piece of
cake.

http://java.sun.com/products/jfc/tsc/articles/jtree/
http://java.sun.com/products/jfc/tsc/articles/jtree/

OBTAINING A DOM FROM THE FACTORY 269
Obtaining a DOM from the Factory
In this version of the application, you’re still going to create a document builder
factory, but this time you’re going to tell it create a new DOM instead of parsing
an existing XML document. You’ll keep all the existing functionality intact,
however, and add the new functionality in such a way that you can “flick a
switch” to get back the parsing behavior.

Note: The code discussed in this section is in DomEcho05.java.

Modify the Code
Start by turning off the compression feature. As you work with the DOM in this
section, you’re going to want to see all the nodes:

public class DomEcho05 extends JPanel
{

...
boolean compress = true;
boolean compress = false;

Next, you need to create a buildDom method that creates the document object.
The easiest way to do that is to create the method and then copy the DOM-con-
struction section from the main method to create the buildDom. The modifica-
tions shown below show you the changes you need to make to make that code
suitable for the buildDom method.

public class DomEcho05 extends JPanel
{

...
public static void makeFrame() {

...
}
public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.parse(new File(argv[0]));
document = builder.newDocument();

} catch (SAXException sxe) {

../examples/jaxp/dom/samples/DomEcho05.java

270 DOCUMENT OBJECT MODEL
...
 } catch (ParserConfigurationException pce) {

// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
...

}
}

In this code, you replaced the line that does the parsing with one that creates a
DOM. Then, since the code is no longer parsing an existing file, you removed
exceptions which are no longer thrown: SAXException and IOException.

And since you are going to be working with Element objects, add the statement
to import that class at the top of the program:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

Create Element and Text Nodes
Now, for your first experiment, add the Document operations to create a root
node and several children:

public class DomEcho05 extends JPanel
{

...
public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.newDocument();
// Create from whole cloth
 Element root =

(Element)
document.createElement("rootElement");

document.appendChild(root);
root.appendChild(

document.createTextNode("Some"));
root.appendChild(

document.createTextNode(" "));
root.appendChild(

OBTAINING A DOM FROM THE FACTORY 271
document.createTextNode("text"));
} catch (ParserConfigurationException pce) {

// Parser with specified options can't be built
pce.printStackTrace();

}
}

Finally, modify the argument-list checking code at the top of the main method so
you invoke buildDom and makeFrame instead of generating an error, as shown
below:

public class DomEcho05 extends JPanel
{

...
public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println("...");
System.exit(1);
buildDom();
makeFrame();
return;

}

That’s all there is to it! Now, if you supply an argument the specified file is
parsed and, if you don’t, the experimental code that builds a DOM is executed.

Run the App
Compile and run the program with no arguments produces the result shown in
Figure 7–13:

272 DOCUMENT OBJECT MODEL
Figure 7–13 Element Node and Text Nodes Created

 Normalizing the DOM
In this experiment, you’ll manipulate the DOM you created by normalizing it
after it has been constructed.

Note: The code discussed in this section is in DomEcho06.java.

Add the code highlighted below to normalize the DOM:.

public static void buildDom()
{

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

try {
...
root.appendChild(document.createTextNode("Some"));
root.appendChild(document.createTextNode(" "));
root.appendChild(document.createTextNode("text"));
document.getDocumentElement().normalize();

} catch (ParserConfigurationException pce) {
...

../examples/jaxp/dom/samples/DomEcho06.java

NORMALIZING THE DOM 273
In this code, getDocumentElement returns the document’s root node, and the
normalize operation manipulates the tree under it.

When you compile and run the application now, the result looks like Figure 7–
14:

Figure 7–14 Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single
node. The normalize operation is one that you will typically want to use after
making modifications to a DOM, to ensure that the resulting DOM is as compact
as possible.

Note: Now that you have this program to experiment with, see what happens to
other combinations of CDATA, entity references, and text nodes when you normalize
the tree.

274 DOCUMENT OBJECT MODEL
Other Operations
To complete this section, we’ll take a quick look at some of the other operations
you might want to apply to a DOM, including:

• Traversing nodes

• Searching for nodes

• Obtaining node content

• Creating attributes

• Removing and changing nodes

• Inserting nodes

Traversing Nodes
The org.w3c.dom.Node interface defines a number of methods you can use to
traverse nodes, including getFirstChild, getLastChild, getNextSibling,
getPreviousSibling, and getParentNode. Those operations are sufficient to
get from anywhere in the tree to any other location in the tree.

Searching for Nodes
However, when you are searching for a node with a particular name, there is a bit
more to take into account. Although it is tempting to get the first child and
inspect it to see if it is the right one, the search has to account for the fact that the
first child in the sublist could be a comment or a processing instruction. If the
XML data wasn’t validated, it could even be a text node containing ignorable
whitespace.

In essence, you need to look through the list of child nodes, ignoring the ones
that are of no concern, and examining the ones you care about. Here is an exam-
ple of the kind of routine you need to write when searching for nodes in a DOM
hierarchy. It is presented here in its entirety (complete with comments) so you
can use it for a template in your applications.

/**
* Find the named subnode in a node's sublist.
 * Ignores comments and processing instructions.
 * Ignores TEXT nodes (likely to exist and contain

ignorable whitespace,
 * if not validating.
 * Ignores CDATA nodes and EntityRef nodes.

OTHER OPERATIONS 275
 * Examines element nodes to find one with the specified
name.
 *
 * @param name the tag name for the element to find
 * @param node the element node to start searching from
 * @return the Node found
 */

public Node findSubNode(String name, Node node) {
if (node.getNodeType() != Node.ELEMENT_NODE) {

System.err.println("Error: Search node not of element
type");

System.exit(22);
}

if (! node.hasChildNodes()) return null;

NodeList list = node.getChildNodes();
for (int i=0; i < list.getLength(); i++) {

Node subnode = list.item(i);
if (subnode.getNodeType() == Node.ELEMENT_NODE) {

if (subnode.getNodeName() == name) return subnode;
}

}
return null;

}

For a deeper explanation of this code, see Increasing the Complexity (page 215)
in When to Use DOM.

Note, too, that you can use APIs described in Summary of Lexical
Controls (page 250) to modify the kind of DOM the parser constructs. The nice
thing about this code, though, is that will work for most any DOM.

Obtaining Node Content
When you want to get the text that a node contains, you once again need to look
through the list of child nodes, ignoring entries that are of no concern, and accu-
mulating the text you find in TEXT nodes, CDATA nodes, and EntityRef nodes.

Here is an example of the kind of routine you need to use for that process:

/**
 * Return the text that a node contains. This routine:
 * Ignores comments and processing instructions.
* Concatenates TEXT nodes, CDATA nodes, and the results of
 * recursively processing EntityRef nodes.

276 DOCUMENT OBJECT MODEL
 * Ignores any element nodes in the sublist.
 * (Other possible options are to recurse into element

sublists
 * or throw an exception.)
 *
 * @param node a DOM node
 * @return a String representing its contents
 */

public String getText(Node node) {
StringBuffer result = new StringBuffer();
if (! node.hasChildNodes()) return "";

NodeList list = node.getChildNodes();
for (int i=0; i < list.getLength(); i++) {

Node subnode = list.item(i);
if (subnode.getNodeType() == Node.TEXT_NODE) {

result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node.CDATA_SECTION_NODE)
{

result.append(subnode.getNodeValue());
}
else if (subnode.getNodeType() ==

Node.ENTITY_REFERENCE_NODE)
{

// Recurse into the subtree for text
// (and ignore comments)
result.append(getText(subnode));

}
}
return result.toString();

}

For a deeper explanation of this code, see Increasing the Complexity (page 215)
in When to Use DOM.

Again, you can simplify this code by using the APIs described in Summary of
Lexical Controls (page 250) to modify the kind of DOM the parser constructs.
But the nice thing about this code, once again, is that will work for most any
DOM.

Creating Attributes
The org.w3c.dom.Element interface, which extends Node, defines a setAt-

tribute operation, which adds an attribute to that node. (A better name from the

FINISHING UP 277
Java platform standpoint would have been addAttribute, since the attribute is
not a property of the class, and since a new object is created.)

You can also use the Document’s createAttribute operation to create an
instance of Attribute, and use an overloaded version of setAttribute to add
that.

Removing and Changing Nodes
To remove a node, you use its parent Node’s removeChild method. To change it,
you can either use the parent node’s replaceChild operation or the node’s set-
NodeValue operation.

Inserting Nodes
The important thing to remember when creating new nodes is that when you cre-
ate an element node, the only data you specify is a name. In effect, that node
gives you a hook to hang things on. You “hang an item on the hook” by adding to
its list of child nodes. For example, you might add a text node, a CDATA node,
or an attribute node. As you build, keep in mind the structure you examined in
the exercises you’ve seen in this tutorial. Remember: Each node in the hierarchy
is extremely simple, containing only one data element.

Finishing Up
Congratulations! You’ve learned how a DOM is structured and how to manipu-
late it. And you now have a DomEcho application that you can use to display a
DOM’s structure, condense it down to GUI-compatible dimensions, and experi-
ment with to see how various operations affect the structure. Have fun with it!

Using Namespaces
As you saw previously, one way or another it is necessary to resolve the conflict
between the title element defined in slideshow.dtd and the one defined in
xhtml.dtd when the same name is used for different purposes. In the previous
exercise, you hyphenated the name in order to put it into a different
“namespace”. In this section, you’ll see how to use the XML namespace stan-
dard to do the same thing without renaming the element.

278 DOCUMENT OBJECT MODEL
The primary goal of the namespace specification is to let the document author
tell the parser which DTD or schema to use when parsing a given element. The
parser can then consult the appropriate DTD or schema for an element definition.
Of course, it is also important to keep the parser from aborting when a “dupli-
cate” definition is found, and yet still generate an error if the document refer-
ences an element like title without qualifying it (identifying the DTD or
schema to use for the definition).

Note: Namespaces apply to attributes as well as to elements. In this section, we con-
sider only elements. For more information on attributes, consult the namespace
specification at http://www.w3.org/TR/REC-xml-names/.

Defining a Namespace in a DTD
In a DTD, you define a namespace that an element belongs to by adding an
attribute to the element’s definition, where the attribute name is xmlns (“xml
namespace”). For example, you could do that in slideshow.dtd by adding an
entry like the following in the title element’s attribute-list definition:

<!ELEMENT title (%inline;)*>
<!ATTLIST title

xmlns CDATA #FIXED "http://www.example.com/slideshow"
>

Declaring the attribute as FIXED has several important features:

• It prevents the document from specifying any non-matching value for the
xmlns attribute (as described in Defining Attributes in the DTD).

• The element defined in this DTD is made unique (because the parser
understands the xmlns attribute), so it does not conflict with an element
that has the same name in another DTD. That allows multiple DTDs to use
the same element name without generating a parser error.

• When a document specifies the xmlns attribute for a tag, the document
selects the element definition with a matching attribute.

To be thorough, every element name in your DTD would get the exact same
attribute, with the same value. (Here, though, we’re only concerned about the
title element.) Note, too, that you are using a CDATA string to supply the URI.
In this case, we’ve specified an URL. But you could also specify a URN, possi-
bly by specifying a prefix like urn: instead of http:. (URNs are currently being

REFERENCING A NAMESPACE 279
researched. They’re not seeing a lot of action at the moment, but that could
change in the future.)

Referencing a Namespace
When a document uses an element name that exists in only one of the.DTDs or
schemas it references, the name does not need to be qualified. But when an ele-
ment name that has multiple definitions is used, some sort of qualification is a
necessity.

Note: In point of fact, an element name is always qualified by it’s default
namespace, as defined by name of the DTD file it resides in. As long as there as is
only one definition for the name, the qualification is implicit.

You qualify a reference to an element name by specifying the xmlns attribute, as
shown here:

<title xmlns="http://www.example.com/slideshow">
Overview

</title>

The specified namespace applies to that element, and to any elements contained
within it.

Defining a Namespace Prefix
When you only need one namespace reference, it’s not such a big deal. But when
you need to make the same reference several times, adding xmlns attributes
becomes unwieldy. It also makes it harder to change the name of the namespace
at a later date.

The alternative is to define a namespace prefix, which as simple as specifying
xmlns, a colon (:) and the prefix name before the attribute value, as shown here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
...>

...
</SL:slideshow>

280 DOCUMENT OBJECT MODEL
This definition sets up SL as a prefix that can be used to qualify the current ele-
ment name and any element within it. Since the prefix can be used on any of the
contained elements, it makes the most sense to define it on the XML document’s
root element, as shown here.

Note: The namespace URI can contain characters which are not valid in an XML
name, so it cannot be used as a prefix directly. The prefix definition associates an
XML name with the URI, which allows the prefix name to be used instead. It also
makes it easier to change references to the URI in the future.

When the prefix is used to qualify an element name, the end-tag also includes the
prefix, as highlighted here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
...>

...
<slide>

<SL:title>Overview</SL:title>
</slide>
...

</SL:slideshow>

Finally, note that multiple prefixes can be defined in the same element, as shown
here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
xmlns:xhtml='urn:...'>

...
</SL:slideshow>

With this kind of arrangement, all of the prefix definitions are together in one
place, and you can use them anywhere they are needed in the document. This
example also suggests the use of URN to define the xhtml prefix, instead of an
URL. That definition would conceivably allow the application to reference a
local copy of the XHTML DTD or some mirrored version, with a potentially
beneficial impact on performance.

Validating with XML Schema
Now that you understand more about namespaces, you’re ready to take a deeper
look at the process of XML Schema validation. Although a full treatment of

OVERVIEW OF THE VALIDATION PROCESS 281
XML Schema is beyond the scope of this tutorial, this section will show you the
steps you need to take to validate an XML document using an XML Schema def-
inition. (To learn more about XML Schema, you can review the online tutorial,
XML Schema Part 0: Primer, at http://www.w3.org/TR/xmlschema-0/. You can
also examine the sample programs that are part of the JAXP download. They use a sim-
ple XML Schema definition to validate personnel data stored in an XML file.)

Note: There are multiple schema-definition languages, including RELAX NG,
Schematron, and the W3C “XML Schema” standard. (Even a DTD qualifies as a
“schema”, although it is the only one that does not use XML syntax to describe
schema constraints.) However, “XML Schema” presents us with a terminology
challenge. While the phrase “XML Schema schema” would be precise, we’ll use the
phrase “XML Schema definition” to avoid the appearance of redundancy.

At the end of this section, you’ll also learn how to use an XML Schema defini-
tion to validate a document that contains elements from multiple namespaces.

Overview of the Validation Process
To be notified of validation errors in an XML document,

1. The factory must configured, and the appropriate error handler set.

2. The document must be associated with at least one schema, and possibly
more.

Configuring the DocumentBuilder
Factory
It’s helpful to start by defining the constants you’ll use when configuring the fac-
tory. (These are same constants you define when using XML Schema for SAX
parsing.)

static final String JAXP_SCHEMA_LANGUAGE =
"http://java.sun.com/xml/jaxp/properties/schemaLanguage";

static final String W3C_XML_SCHEMA =
"http://www.w3.org/2001/XMLSchema";

http://www.w3.org/TR/xmlschema-0/

282 DOCUMENT OBJECT MODEL
Next, you need to configure DocumentBuilderFactory to generate a
namespace-aware, validating parser that uses XML Schema:

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
factory.setNamespaceAware(true);
factory.setValidating(true);

try {
factory.setAttribute(JAXP_SCHEMA_LANGUAGE, W3C_XML_SCHEMA);

}
catch (IllegalArgumentException x) {

// Happens if the parser does not support JAXP 1.2
...

}

Since JAXP-compliant parsers are not namespace-aware by default, it is neces-
sary to set the property for schema validation to work. You also set a factory
attribute specify the parser language to use. (For SAX parsing, on the other hand,
you set a property on the parser generated by the factory.)

Associating a Document with a Schema
Now that the program is ready to validate with an XML Schema definition, it is
only necessary to ensure that the XML document is associated with (at least)
one. There are two ways to do that:

1. With a schema declaration in the XML document.

2. By specifying the schema(s) to use in the application.

Note: When the application specifies the schema(s) to use, it overrides any schema
declarations in the document.

To specify the schema definition in the document, you would create XML like
this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation='YourSchemaDefinition.xsd'

>
...

VALIDATING WITH MULTIPLE NAMESPACES 283
The first attribute defines the XML NameSpace (xmlns) prefix, “xsi”, where
“xsi” stands for “XML Schema Instance”. The second line specifies the schema
to use for elements in the document that do not have a namespace prefix — that
is, for the elements you typically define in any simple, uncomplicated XML doc-
ument. (You’ll see how to deal with multiple namespaces in the next section.)

To can also specify the schema file in the application, like this:

static final String schemaSource = "YourSchemaDefinition.xsd";
static final String JAXP_SCHEMA_SOURCE =

"http://java.sun.com/xml/jaxp/properties/schemaSource";
...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
...
factory.setAttribute(JAXP_SCHEMA_SOURCE,

new File(schemaSource));

Here, too, there are mechanisms at your disposal that will let you specify multi-
ple schemas. We’ll take a look at those next.

Validating with Multiple Namespaces
Namespaces let you combine elements that serve different purposes in the same
document, without having to worry about overlapping names.

Note: The material discussed in this section also applies to validating when using
the SAX parser. You’re seeing it here, because at this point you’ve learned enough
about namespaces for the discussion to make sense.

To contrive an example, consider an XML data set that keeps track of personnel
data. The data set may include information from the w2 tax form, as well as
information from the employee’s hiring form, with both elements named <form>

in their respective schemas.

If a prefix is defined for the “tax” namespace, and another prefix defined for the
“hiring” namespace, then the personnel data could include segments like this:

<employee id=”...”>
<name>....</name>
<tax:form>

...w2 tax form data...

284 DOCUMENT OBJECT MODEL
</tax:form>
<hiring:form>

...employment history, etc....
</hiring:form>

</employee>

The contents of the tax:form element would obviously be different from the
contents of the hiring:form, and would have to be validated differently.

Note, too, that there is a “default” namespace in this example, that the unquali-
fied element names employee and name belong to. For the document to be prop-
erly validated, the schema for that namespace must be declared, as well as the
schemas for the tax and hiring namespaces.

Note: The “default” namespace is actually a specific namespace. It is defined as the
“namespace that has no name”. So you can’t simply use one namespace as your
default this week, and another namespace as the default later on. This “unnamed
namespace” or “null namespace” is like the number zero. It doesn’t have any value,
to speak of (no name), but it is still precisely defined. So a namespace that does have
a name can never be used as the “default” namespace.

When parsed, each element in the data set will be validated against the appropri-
ate schema, as long as those schemas have been declared. Again, the schemas
can either be declared as part of the XML data set, or in the program. (It is also
possible to mix the declarations. In general, though, it is a good idea to keep all
of the declarations together in one place.)

Declaring the Schemas in the XML Data Set
To declare the schemas to use for the example above in the data set, the XML
code would look something like this:

<documentRoot
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="employeeDatabase.xsd"
xsi:schemaLocation=

”http://www.irs.gov/ fullpath/w2TaxForm.xsd
 http://www.ourcompany.com/ relpath/hiringForm.xsd“

xmlns:tax="http://www.irs.gov/"
xmlns:hiring="http://www.ourcompany.com/"

>
...

VALIDATING WITH MULTIPLE NAMESPACES 285
The noNamespaceSchemaLocation declaration is something you’ve seen before,
as are the last two entries, which define the namespace prefixes tax and hiring.
What’s new is the entry in the middle, which defines the locations of the schemas
to use for each namespace referenced in the document.

The xsi:schemaLocation declaration consists of entry pairs, where the first
entry in each pair is a fully qualified URI that specifies the namespace, and the
second entry contains a full path or a relative path to the schema definition. (In
general, fully qualified paths are recommended. That way, only one copy of the
schema will tend to exist.)

Of particular note is the fact that the namespace prefixes cannot be used when
defining the schema locations. The xsi:schemaLocation declaration only
understands namespace names, not prefixes.

Declaring the Schemas in the Application
To declare the equivalent schemas in the application, the code would look some-
thing like this:

static final String employeeSchema = "employeeDatabase.xsd";
static final String taxSchema = "w2TaxForm.xsd";
static final String hiringSchema = "hiringForm.xsd";

static final String[] schemas = {
employeeSchema,
taxSchema,
hiringSchema,
};

static final String JAXP_SCHEMA_SOURCE =
"http://java.sun.com/xml/jaxp/properties/schemaSource";

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance()
...
factory.setAttribute(JAXP_SCHEMA_SOURCE, schemas);

Here, the array of strings that points to the schema definitions (.xsd files) is
passed as the argument to factory.setAttribute method. Note the differences from
when you were declaring the schemas to use as part of the XML data set:

• There is no special declaration for the “default” (unnamed) schema.

286 DOCUMENT OBJECT MODEL
• You don’t specify the namespace name. Instead, you only give pointers to
the .xsd files.

To make the namespace assignments, the parser reads the .xsd files, and finds in
them the name of the target namespace they apply to. Since the files are speci-
fied with URIs, the parser can use an EntityResolver (if one has been defined) to
find a local copy of the schema.

If the schema definition does not define a target namespace, then it applies to the
“default” (unnamed, or null) namespace. So, in the example above, you would
expect to see these target namespace declarations in the schemas:

• employeeDatabase.xsd — none

• w2TaxForm.xsd — http://www.irs.gov/

• hiringForm.xsd — http://www.ourcompany.com

At this point, you have seen two possible values for the schema source property
when invoking the factory.setAttribute() method, a File object in fac-

tory.setAttribute(JAXP_SCHEMA_SOURCE, new File(schemaSource)). and
an array of strings in factory.setAttribute(JAXP_SCHEMA_SOURCE, sche-

mas). Here is a complete list of the possible values for that argument:

• String that points to the URI of the schema

• InputStream with the contents of the schema

• SAX InputSource

• File

• an array of Objects, each of which is one of the types defined above.

Note: An array of Objects can be used only when the schema language (like
http://java.sun.com/xml/jaxp/properties/schemaLanguage) has the ability to
assemble a schema at runtime. Also: When an array of Objects is passed it is illegal
to have two schemas that share the same namespace.

Further Information
For further information on the TreeModel, see:

• Understanding the TreeModel: http://java.sun.com/prod-

ucts/jfc/tsc/articles/jtree/index.html

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

FURTHER INFORMATION 287
For further information on the W3C Document Object Model (DOM), see:

• The DOM standard page: http://www.w3.org/DOM/

For more information on schema-based validation mechanisms, see:

• The W3C standard validation mechanism, XML Schema:
http://www.w3.org/XML/Schema

• RELAX NG’s regular-expression based validation mechanism:
http://www.oasis-open.org/committees/relax-ng/

• Schematron’s assertion-based validation mechansim:
http://www.ascc.net/xml/resource/schematron/schematron.html

http://www.w3.org/DOM/
http://www.w3.org/XML/Schema
http://www.oasis-open.org/committees/relax-ng/
http://www.ascc.net/xml/resource/schematron/schematron.html

288 DOCUMENT OBJECT MODEL

289

8

XML Stylesheet

Language for
Transformations

Eric Armstrong

THE XML Stylesheet Language for Transformations (XSLT) defines mecha-
nisms for addressing XML data (XPath) and for specifying transformations on
the data, in order to convert it into other forms. JAXP includes two implementa-
tions of XSLT, an interpreting version (Xalan) and a compiling version (XSLTC)
that lets you save pre-compiled versions of desired transformations as translets,
for the most efficient runtime processing later on.

In this chapter, you’ll learn how to use both Xalan and XSLTC. You’ll write out
a Document Object Model (DOM) as an XML file, and you’ll see how to gener-
ate a DOM from an arbitrary data file in order to convert it to XML. Finally,
you’ll convert XML data into a different form, unlocking the mysteries of the
XPath addressing mechanism along the way.

Note: The examples in this chapter can be found in <JWSDP_HOME>/docs/tuto-

rial/examples/jaxp/xslt/samples.

290 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Introducing XSLT and XPath
The XML Stylesheet Language (XSL) has three major subcomponents:

XSL-FO
The “flow object” standard. By far the largest subcomponent, this standard
gives mechanisms for describing font sizes, page layouts, and how informa-
tion “flows” from one page to another. This subcomponent is not covered by
JAXP, nor is it included in this tutorial.

XSLT
This is the transformation language, which lets you define a transformation
from XML into some other format. For example, you might use XSLT to
produce HTML, or a different XML structure. You could even use it to pro-
duce plain text or to put the information in some other document format.
(And as you’ll see in Generating XML from an Arbitrary Data
Structure (page 312), a clever application can press it into service to manipu-
late non-XML data, as well.)

XPath
At bottom, XSLT is a language that lets you specify what sorts of things to
do when a particular element is encountered. But to write a program for dif-
ferent parts of an XML data structure, you need to be able to specify the part
of the structure you are talking about at any given time. XPath is that specifi-
cation language. It is an addressing mechanism that lets you specify a path to
an element so that, for example, <article><title> can be distinguished
from <person><title>. That way, you can describe different kinds of trans-
lations for the different <title> elements.

The remainder of this section describes the packages that make up the JAXP
Transformation APIs. It then discusses the factory configuration parameters you
use to select the Xalan or XSLTC transformation engine.

The JAXP Transformation Packages
Here is a description of the packages that make up the JAXP Transformation
APIs:

javax.xml.transform
This package defines the factory class you use to get a Transformer object.
You then configure the transformer with input (Source) and output (Result)
objects, and invoke its transform() method to make the transformation

CHOOSING THE TRANSFORMATION ENGINE 291
happen. The source and result objects are created using classes from one of
the other three packages.

(Whether you get the Xalan interpreting transformer or the XSLTC compil-
ing transformer is determined by factory configuration settings, which will
be discussed momentarily.)

javax.xml.transform.dom
Defines the DOMSource and DOMResult classes that let you use a DOM as an
input to or output from a transformation.

javax.xml.transform.sax
Defines the SAXSource and SAXResult classes that let you use a SAX event
generator as input to a transformation, or deliver SAX events as output to a
SAX event processor.

javax.xml.transform.stream
Defines the StreamSource and StreamResult classes that let you use an I/O
stream as an input to or output from a transformation.

Choosing the Transformation Engine
This section provides the information you need to help you choose between the
interpreting transformer (Xalan) and the compiling transformer (XSLTC).

Performance Considerations
For a single-pass translation, the interpreting transformer (Xalan) tends to be
slightly faster than the compiling transformer (XSLTC), because it isn’t generat-
ing and saving the byte-codes in the small Java classes that are run as translets.

But when a transformation will be used multiple times, it makes sense to use the
XSLTC transformation engine because, in such settings, XSLTC is the clear win-
ner when it comes to memory requirements and performance.

An XSLTC translet tends to be small, because it implements only those transla-
tions that the stylesheet actually performs. And it tends to be fast, both because it
is smaller and because the lexical handling necessary to interpret the stylesheet
has already been performed. Finally, translets tends to load faster and generally
be more sparing of system resources, due to their small size.

For example, a servlet that will be running for long periods of time tends to ben-
efit by using XSLTC. Similarly, a transformation that is run from the command

292 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
line tends to run faster when XSLTC is used. You’ll see more about that process
in Transforming from the Command Line (page 351).

In addition to making it possible to cache translets, XSLTC provides a number of
other options to help you maximize performance:

• Control of inlining

By default, XSLTC “inlines” transformation code, which means that the
code responsible for translating an element contains the transformation
code for all possible subelements of that element.

For small and medium-size stylesheets, that implementation produces the
fastest possible code. However, complex stylesheets tend to produce
translets that are extremely large.

To solve that problem, XSLTC lets you disable inlining. To do that, you
use the -n option when compiling XSLTC translets from the command
line. When generating an XSLTC transformer using a JAXP factory class,
you use the factory’s setAttribute() method to set the “disable-
inlining” feature with code like this:

TransformerFactory tf = new TransformerFactory();

tf.setAttribute("disable-inlining", Boolean.TRUE);

• Document-model caching

When XSLTC operates on XML data, it creates it’s own internal Docu-
ment Object Model (something like the W3C DOM you’ve already seen,
only simpler). Since the construction of the document model takes time,
XSLTC provides a way to cache the model, to help speed up subsequent
transformations.

That feature can come in handy in a servlet that serves up XML docu-
ments, for example. If a transform converts them to HTML when they are
accessed on the Web, then caching the in-memory representation of the
document can have a potentially large impact on performance. Here is a
sample of the code you would use:

final SAXParser parser = factory.newSAXParser();

final XMLReader reader = parser.getXMLReader();

XSLTCSource source = new XSLTCSource();

source.build(reader, xmlfile);

FUNCTIONALITY CONSIDERATIONS 293
The source object can then be reused in multiple transformations, with-
out having to re-read the file.

• Caching of compiled stylesheets

XSLTC also lets you save compiled versions of stylesheets, so you can
use them to create multiple Transformer objects more rapidly. For exam-
ple, that kind of capability can improve the startup time of a multi-
threaded servlet. If the servlet generates a hundred threads to service input
requests, it can compile the stylesheet once and then use the compiled
version to generate a transformer for each thread.

Precompiled stylesheets are stored in Templates objects. When you cre-
ate a Transformer object directly (without using a Templates object),
you use code like this:

TransformerFactory factory =

TransformerFactory.newInstance();

Transformer xformer = factory.newTransformer(myStyleSheet);

xformer.transform(myXmlInput,

new StreamResult(System.out));

But you can also create an intermediate Templates object that you can
save and reuse, like this:

TransformerFactory factory =

TransformerFactory.newInstance();

Templates templates = factory.newTemplates(myStyleSheet);

Transformer xformer = templates.newTransformer();

xformer.transform(myXmlInput,

new StreamResult(System.out));

Note: There are also rules for things to do and things to avoid when designing your
stylesheets, in order to get maximum performance with XSLT. For more informa-
tion on that subject, see http://xml.apache.org/xalan-

j/xsltc/xsltc_performance.html.

Functionality Considerations
While XSLTC tends to be a higher performance choice for many applications,
Xalan has some advantages in functionality. Among those advantages are the
support for the standard query language, SQL.

http://xml.apache.org/xalan-j/xsltc/xsltc_performance.html
http://xml.apache.org/xalan-j/xsltc/xsltc_performance.html

294 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Making Your Choice
Whether you get the Xalan or XSLTC transformation engine is determined by
factory configuration settings. By default, the JAXP factory creates a Xalan
transformer. To get an XSLTC transformer, the preferred method is to set the
TransformationFactory system property like this:

javax.xml.transform.TransformerFactory=
org.apache.xalan.xsltc.trax.TransformerFactoryImpl

At times, though, it is not possible to set a system property — for example,
because the application is a servlet, and changing the system property would
affect other servlets running in the same container. In that case, you can instanti-
ate the XSLTC transformation engine directly, with a command like this:

new org.apache.xalan.xsltc.trax.TransformerFactoryImpl(..)

You could also pass the factory value to the application, and use the ClassLoader
to create an instance of it at runtime.

Note: To explicitly specify the Xalan transformer, you would use the value
org.apache.xalan.processor.TransformerFactoryImpl, instead of
org.apache.xalan.xsltc.trax.TransformerFactoryImpl.

There is also a “smart transformer” that uses the Xalan transform engine when
you generate Transformer objects, and the XSLTC transform engine when you
generate intermediate Templates objects. To get an instance of the smart trans-
former, use the value org.apache.xalan.xsltc.trax.SmartTransformerImpl
either to set the transformer factory system property or use that class to instanti-
ate a parser directly.

How XPath Works
The XPath specification is the foundation for a variety of specifications, includ-
ing XSLT and linking/addressing specifications like XPointer. So an understand-
ing of XPath is fundamental to a lot of advanced XML usage. This section
provides a thorough introduction to XPATH in the context of XSLT, so you can
refer to it as needed later on.

XPATH EXPRESSIONS 295
Note: In this tutorial, you won’t actually use XPath until you get to the end of this
section, Transforming XML Data with XSLT (page 327). So, if you like, you can
skip this section and go on ahead to the next section, Writing Out a DOM as an
XML File (page 305). (When you get to the end of that section, there will be a note
that refers you back here, so you don’t forget!)

XPATH Expressions
In general, an XPath expression specifies a pattern that selects a set of XML
nodes. XSLT templates then use those patterns when applying transformations.
(XPointer, on the other hand, adds mechanisms for defining a point or a range,
so that XPath expressions can be used for addressing.)

The nodes in an XPath expression refer to more than just elements. They also
refer to text and attributes, among other things. In fact, the XPath specification
defines an abstract document model that defines seven different kinds of nodes:

• root

• element

• text

• attribute

• comment

• processing instruction

• namespace

Note: The root element of the XML data is modeled by an element node. The XPath
root node contains the document’s root element, as well as other information relat-
ing to the document.

The XSLT/XPath Data Model
Like the DOM, the XSLT/XPath data model consists of a tree containing a vari-
ety of nodes. Under any given element node, there are text nodes, attribute
nodes, element nodes, comment nodes, and processing instruction nodes.

In this abstract model, syntactic distinctions disappear, and you are left with a
normalized view of the data. In a text node, for example, it makes no difference

296 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
whether the text was defined in a CDATA section, or if it included entity refer-
ences. The text node will consist of normalized data, as it exists after all parsing
is complete. So the text will contain a < character, regardless of whether an entity
reference like < or a CDATA section was used to include it. (Similarly, the
text will contain an & character, regardless of whether it was delivered using
& or it was in a CDATA section.)

In this section of the tutorial, we’ll deal mostly with element nodes and text
nodes. For the other addressing mechanisms, see the XPath Specification.

Templates and Contexts
An XSLT template is a set of formatting instructions that apply to the nodes
selected by an XPATH expression. In an stylesheet, a XSLT template would look
something like this:

<xsl:template match="//LIST">
...

</xsl:template>

The expression //LIST selects the set of LIST nodes from the input stream.
Additional instructions within the template tell the system what to do with them.

The set of nodes selected by such an expression defines the context in which
other expressions in the template are evaluated. That context can be considered
as the whole set — for example, when determining the number of the nodes it
contains.

The context can also be considered as a single member of the set, as each mem-
ber is processed one by one. For example, inside of the LIST-processing tem-
plate, the expression @type refers to the type attribute of the current LIST node.
(Similarly, the expression @* refers to all of attributes for the current LIST ele-
ment.)

Basic XPath Addressing
An XML document is a tree-structured (hierarchical) collection of nodes. As
with a hierarchical directory structure, it is useful to specify a path that points a

http://www.w3.org/TR/xpath

BASIC XPATH ADDRESSING 297
particular node in the hierarchy. (Hence the name of the specification: XPath.) In
fact, much of the notation of directory paths is carried over intact:

• The forward slash / is used as a path separator.

• An absolute path from the root of the document starts with a /.

• A relative path from a given location starts with anything else.

• A double period .. indicates the parent of the current node.

• A single period . indicates the current node.

For example, In an XHTML document (an XML document that looks like
HTML, but which is well-formed according to XML rules) the path /h1/h2/

would indicate an h2 element under an h1. (Recall that in XML, element names
are case sensitive, so this kind of specification works much better in XHTML
than it would in plain HTML, because HTML is case-insensitive.)

In a pattern-matching specification like XSLT, the specification /h1/h2 selects
all h2 elements that lie under an h1 element. To select a specific h2 element,
square brackets [] are used for indexing (like those used for arrays). The path
/h1[4]/h2[5] would therefore select the fifth h2 element under the fourth h1

element.

Note: In XHTML, all element names are in lowercase. That is a fairly common con-
vention for XML documents. However, uppercase names are easier to read in a tuto-
rial like this one. So, for the remainder of the XSLT tutorial, all XML element
names will be in uppercase. (Attribute names, on the other hand, will remain in low-
ercase.)

A name specified in an XPath expression refers to an element. For example, “h1”
in /h1/h2 refers to an h1 element. To refer to an attribute, you prefix the attribute
name with an @ sign. For example, @type refers to the type attribute of an ele-
ment. Assuming you have an XML document with LIST elements, for example,
the expression LIST/@type selects the type attribute of the LIST element.

Note: Since the expression does not begin with /, the reference specifies a list
node relative to the current context—whatever position in the document that hap-
pens to be.

298 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Basic XPath Expressions
The full range of XPath expressions takes advantage of the wildcards, operators,
and functions that XPath defines. You’ll be learning more about those shortly.
Here, we’ll take a look at a couple of the most common XPath expressions, sim-
ply to introduce them.

The expression @type="unordered" specifies an attribute named type whose
value is “unordered”. And you already know that an expression like
LIST/@type specifies the type attribute of a LIST element.

You can combine those two notations to get something interesting! In XPath, the
square-bracket notation ([]) normally associated with indexing is extended to
specify selection criteria. So the expression LIST[@type="unordered"] selects
all LIST elements whose type value is “unordered”.

Similar expressions exist for elements, where each element has an associated
string-value. (You’ll see how the string-value is determined for a complicated
element in a little while. For now, we’ll stick with simple elements that have a
single text string.)

Suppose you model what’s going on in your organization with an XML structure
that consists of PROJECT elements and ACTIVITY elements that have a text string
with the project name, multiple PERSON elements to list the people involved and,
optionally, a STATUS element that records the project status. Here are some more
examples that use the extended square-bracket notation:

• /PROJECT[.="MyProject"]—selects a PROJECT named "MyProject".

• /PROJECT[STATUS]—selects all projects that have a STATUS child element.

• /PROJECT[STATUS="Critical"]—selects all projects that have a STATUS

child element with the string-value “Critical”.

Combining Index Addresses
The XPath specification defines quite a few addressing mechanisms, and they
can be combined in many different ways. As a result, XPath delivers a lot of
expressive power for a relatively simple specification. This section illustrates
two more interesting combinations:

• LIST[@type="ordered"][3]—selects all LIST elements of type
“ordered”, and returns the third.

WILDCARDS 299
• LIST[3][@type="ordered"]—selects the third LIST element, but only if
it is of type “ordered”.

Note: Many more combinations of address operators are listed in section 2.5 of the
XPath Specification. This is arguably the most useful section of the spec for defin-
ing an XSLT transform.

Wildcards
By definition, an unqualified XPath expression selects a set of XML nodes that
matches that specified pattern. For example, /HEAD matches all top-level HEAD
entries, while /HEAD[1] matches only the first. Table 8–1 lists the wildcards that
can be used in XPath expressions to broaden the scope of the pattern matching.

In the project database example, for instance, /*/PERSON[.="Fred"] matches
any PROJECT or ACTIVITY element that includes Fred.

Extended-Path Addressing
So far, all of the patterns we’ve seen have specified an exact number of levels in
the hierarchy. For example, /HEAD specifies any HEAD element at the first level in
the hierarchy, while /*/* specifies any element at the second level in the hierar-
chy. To specify an indeterminate level in the hierarchy, use a double forward
slash (//). For example, the XPath expression //PARA selects all paragraph ele-
ments in a document, wherever they may be found.

Table 8–1 XPath Wildcard

Wildcard Meaning

* Matches any element node (not attributes or text).

node()
Matches any node of any kind: element node, text node, attribute node,
processing instruction node, namespace node, or comment node.

@* Matches any attribute node.

http://www.w3.org/TR/xpath

300 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The // pattern can also be used within a path. So the expression
/HEAD/LIST//PARA indicates all paragraph elements in a subtree that begins
from /HEAD/LIST.

XPath Data Types and Operators
XPath expressions yield either a set of nodes, a string, a boolean (true/false
value), or a number. Table 8–2 lists the operators that can be used in an Xpath
expression

Finally, expressions can be grouped in parentheses, so you don’t have to worry
about operator precedence.

Note: “Operator precedence” is a term that answers the question, “If you specify a

+ b * c, does that mean (a+b) * c or a + (b*c)?”. (The operator precedence is
roughly the same as that shown in the table.)

String-Value of an Element
Before continuing, it’s worthwhile to understand how the string-value of a more
complex element is determined. We’ll do that now.

Table 8–2 XPath Operators

Operator Meaning

|
Alternative. For example, PARA|LIST selects all PARA and LIST
elements.

or, and Returns the or/and of two boolean values.

=, != Equal or not equal, for booleans, strings, and numbers.

<, >, <=, >=
Less than, greater than, less than or equal to, greater than or equal
to—for numbers.

+, -, *, div, mod
Add, subtract, multiply, floating-point divide, and modulus
(remainder) operations (e.g. 6 mod 4 = 2)

XPATH FUNCTIONS 301
The string-value of an element is the concatenation of all descendent text nodes,
no matter how deep. So, for a “mixed-model” XML data element like this:

<PARA>This paragraph contains a bold word</PARA>

The string-value of <PARA> is “This paragraph contains a bold word”. In particu-
lar, note that is a child of <PARA> and that the text contained in all children is
concatenated to form the string-value.

Also, it is worth understanding that the text in the abstract data model defined by
XPath is fully normalized. So whether the XML structure contains the entity ref-
erence < or “<” in a CDATA section, the element’s string-value will contain
the “<” character. Therefore, when generating HTML or XML with an XSLT
stylesheet, occurrences of “<” will have to be converted to < or enclosed in a
CDATA section. Similarly, occurrences of “&” will need to be converted to
&.

XPath Functions
This section ends with an overview of the XPath functions. You can use XPath
functions to select a collection of nodes in the same way that you would use an
an element specification like those you have already seen. Other functions return
a string, a number, or a boolean value. For example, the expression
/PROJECT/text() gets the string-value of PROJECT nodes.

Many functions depend on the current context. In the example above, the context
for each invocation of the text() function is the PROJECT node that is currently
selected.

There are many XPath functions—too many to describe in detail here. This sec-
tion provides a quick listing that shows the available XPath functions, along with
a summary of what they do.

Note: Skim the list of functions to get an idea of what’s there. For more information,
see Section 4 of the XPath Specification.

http://www.w3.org/TR/xpath

302 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Node-set functions
Many XPath expressions select a set of nodes. In essence, they return a node-set.
One function does that, too.

• id(...)—returns the node with the specified id.

(Elements only have an ID when the document has a DTD, which specifies
which attribute has the ID type.)

Positional functions
These functions return positionally-based numeric values.

• last()—returns the index of the last element.

For example: /HEAD[last()] selects the last HEAD element.

• position()—returns the index position.

For example: /HEAD[position() <= 5] selects the first five HEAD ele-
ments

• count(...)—returns the count of elements.

For example: /HEAD[count(HEAD)=0] selects all HEAD elements that have
no subheads.

XPATH FUNCTIONS 303
String functions
These functions operate on or return strings.

• concat(string, string, ...)—concatenates the string values

• starts-with(string1, string2)—returns true if string1 starts with
string2

• contains(string1, string2)—returns true if string1 contains
string2

• substring-before(string1, string2)—returns the start of string1

before string2 occurs in it

• substring-after(string1, string2)—returns the remainder of
string1 after string2 occurs in it

• substring(string, idx)—returns the substring from the index position
to the end, where the index of the first char = 1

• substring(string, idx, len)—returns the substring from the index
position, of the specified length

• string-length()—returns the size of the context-node’s string-value

The context node is the currently selected node — the node that was
selected by an XPath expression in which a function like string-

length() is applied.

• string-length(string)—returns the size of the specified string

• normalize-space()—returns the normalized string-value of the current
node (no leading or trailing whitespace, and sequences of whitespace char-
acters converted to a single space)

• normalize-space(string)—returns the normalized string-value of the
specified string

• translate(string1, string2, string3)—converts string1, replac-
ing occurrences of characters in string2 with the corresponding character
from string3

Note: XPath defines 3 ways to get the text of an element: text(), string(object),
and the string-value implied by an element name in an expression like this:
/PROJECT[PERSON="Fred"].

304 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Boolean functions
These functions operate on or return boolean values:

• not(...)—negates the specified boolean value

• true()—returns true

• false()—returns false

• lang(string)—returns true if the language of the context node (specified
by xml:Lang attributes) is the same as (or a sublanguage of) the specified
language. For example: Lang("en") is true for
<PARA_xml:Lang="en">...</PARA>

Numeric functions
These functions operate on or return numeric values.

• sum(...)—returns the sum of the numeric value of each node in the spec-
ified node-set

• floor(N)—returns the largest integer that is not greater than N

• ceiling(N)—returns the smallest integer that is greater than N

• round(N)—returns the integer that is closest to N

Conversion functions
These functions convert one data type to another.

• string(...)—returns the string value of a number, boolean, or node-set

• boolean(...)—returns a boolean value for a number, string, or node-set
(a non-zero number, a non-empty node-set, and a non-empty string are all
true)

• number(...)—returns the numeric value of a boolean, string, or node-set
(true is 1, false is 0, a string containing a number becomes that number, the
string-value of a node-set is converted to a number)

SUMMARY 305
Namespace functions
These functions let you determine the namespace characteristics of a node.

• local-name()—returns the name of the current node, minus the
namespace prefix

• local-name(...)—returns the name of the first node in the specified
node set, minus the namespace prefix

• namespace-uri()—returns the namespace URI from the current node

• namespace-uri(...)—returns the namespace URI from the first node in
the specified node set

• name()—returns the expanded name (URI plus local name) of the current
node

• name(...)—returns the expanded name (URI plus local name) of the first
node in the specified node set

Summary
XPath operators, functions, wildcards, and node-addressing mechanisms can be
combined in wide variety of ways. The introduction you’ve had so far should
give you a good head start at specifying the pattern you need for any particular
purpose.

Writing Out a DOM as an XML File
Once you have constructed a DOM, either by parsing an XML file or building it
programmatically, you frequently want to save it as XML. This section shows
you how to do that using the Xalan transform package.

Using that package, you’ll create a transformer object to wire a DomSource to a
StreamResult. You’ll then invoke the transformer’s transform() method to
write out the DOM as XML data.

Reading the XML
The first step is to create a DOM in memory by parsing an XML file. By now,
you should be getting pretty comfortable with the process.

306 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Note: The code discussed in this section is in TransformationApp01.java.

The code below provides a basic template to start from. (It should be familiar.
It’s basically the same code you wrote at the start of the DOM tutorial. If you
saved it then, that version should be pretty much the equivalent of what you see
below.)

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

import java.io.*;

public class TransformationApp
{

static Document document;

public static void main(String argv[])
{

if (argv.length != 1) {
System.err.println (

"Usage: java TransformationApp filename");
System.exit (1);

}

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

//factory.setNamespaceAware(true);
//factory.setValidating(true);

try {
File f = new File(argv[0]);
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.parse(f);

} catch (SAXParseException spe) {
// Error generated by the parser
System.out.println("\n** Parsing error"

../examples/jaxp/xslt/samples/TransformationApp01.java

CREATING A TRANSFORMER 307
+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
// I/O error
ioe.printStackTrace();

}
} // main

}

Creating a Transformer
The next step is to create a transformer you can use to transmit the XML to Sys-

tem.out.

Note: The code discussed in this section is in TransformationApp02.java. The file
it runs on is slideSample01.xml. The output is in TransformationLog02.txt.
(The browsable versions are slideSample01-xml.html and
TransformationLog02.html.)

../examples/jaxp/xslt/samples/TransformationApp02.java
../examples/jaxp/xslt/samples/slideSample01.xml
../examples/jaxp/xslt/samples/TransformationLog02.txt
../examples/jaxp/xslt/samples/slideSample01-xml.html
../examples/jaxp/xslt/samples/TransformationLog02.html

308 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
 Start by adding the import statements highlighted below:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import java.io.*;

Here, you’ve added a series of classes which should now be forming a standard
pattern: an entity (Transformer), the factory to create it (TransformerFac-
tory), and the exceptions that can be generated by each. Since a transformation
always has a source and a result, you then imported the classes necessary to use
a DOM as a source (DomSource), and an output stream for the result (StreamRe-
sult).

Next, add the code to carry out the transformation:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

 // Use a Transformer for output
TransformerFactory tFactory =

TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();

DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you created a transformer object, used the DOM to construct a source
object, and used System.out to construct a result object. You then told the trans-
former to operate on the source object and output to the result object.

Note: In this case, the “transformer” isn’t actually changing anything. In XSLT ter-
minology, you are using the identity transform, which means that the “transforma-
tion” generates a copy of the source, unchanged.

CREATING A TRANSFORMER 309
Finally, add the code highlighted below to catch the new errors that can be gener-
ated:

} catch (TransformerConfigurationException tce) {
// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)

x = tce.getException();
x.printStackTrace();

} catch (TransformerException te) {
// Error generated by the parser
System.out.println ("* Transformation error");
System.out.println(" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
x.printStackTrace();

} catch (SAXParseException spe) {
...

Notes:

• TransformerExceptions are thrown by the transformer object.

• TransformerConfigurationExceptions are thrown by the factory.

• To preserve the XML document’s DOCTYPE setting, it is also necessary to add the
following code:

import javax.xml.transform.OutputKeys;
...
if (document.getDoctype() != null){

String systemValue = (new
File(document.getDoctype().getSystemId())).getName();

transformer.setOutputProperty(
OutputKeys.DOCTYPE_SYSTEM, systemValue
);

}

310 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Writing the XML
For instructions on how to compile and run the program, see Compiling and
Running the Program (page 143) from the SAX tutorial. (If you’re working
along, substitute “TransformationApp” for “Echo” as the name of the program.
If you are compiling the sample code, use “TransformationApp02”.) When you
run the program on slideSample01.xml, this is the output you see:

<?xml version="1.0" encoding="UTF-8"?>
<!-- A SAMPLE set of slides -->
<slideshow author="Yours Truly" date="Date of publication"
title="Sample Slide Show">

<!-- TITLE SLIDE -->
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

<!-- OVERVIEW -->
<slide type="all">

<title>Overview</title>
<item>Why WonderWidgets are great</item>
<item/>
<item>Who buys WonderWidgets</item>

</slide>

</slideshow>

Note: The order of the attributes may vary, depending on which parser you are
using.

To find out more about configuring the factory and handling validation errors, see Read-
ing XML Data into a DOM, Additional Information (page 223).

Writing Out a Subtree of the DOM
It is also possible to operate on a subtree of a DOM. In this section of the tuto-
rial, you’ll experiment with that option.

WRITING OUT A SUBTREE OF THE DOM 311
Note: The code discussed in this section is in TransformationApp03.java. The
output is in TransformationLog03.txt. (The browsable version is
TransformationLog03.html.)

The only difference in the process is that now you will create a DOMSource using
a node in the DOM, rather than the entire DOM. The first step will be to import
the classes you need to get the node you want. Add the code highlighted below
to do that:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

The next step is to find a good node for the experiment. Add the code highlighted
below to select the first <slide> element:

try {
File f = new File(argv[0]);
DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.parse(f);

// Get the first <slide> element in the DOM
NodeList list = document.getElementsByTagName("slide");
Node node = list.item(0);

Finally, make the changes shown below to construct a source object that consists
of the subtree rooted at that node:

DOMSource source = new DOMSource(document);
DOMSource source = new DOMSource(node);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Now run the app. Your output should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<slide type="all">

<title>Wake up to WonderWidgets!</title>
</slide>

../examples/jaxp/xslt/samples/TransformationApp03.java
../examples/jaxp/xslt/samples/TransformationLog03.txt
../examples/jaxp/xslt/samples/TransformationLog03.html

312 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Clean Up
Because it will be easiest to do now, make the changes shown below to back out
the additions you made in this section. (TransformationApp04.java contains
these changes.)

Import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
...

try {
...
// Get the first <slide> element in the DOM
NodeList list = document.getElementsByTagName("slide");
Node node = list.item(0);
...
DOMSource source = new DOMSource(node);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Summary
At this point, you’ve seen how to use a transformer to write out a DOM, and how
to use a subtree of a DOM as the source object in a transformation. In the next
section, you’ll see how to use a transformer to create XML from any data struc-
ture you are capable of parsing.

Generating XML from an Arbitrary Data
Structure

In this section, you’ll use XSLT to convert an arbitrary data structure to XML.

In general outline, then:

1. You’ll modify an existing program that reads the data, in order to make it
generate SAX events. (Whether that program is a real parser or simply a
data filter of some kind is irrelevant for the moment.)

2. You’ll then use the SAX “parser” to construct a SAXSource for the trans-
formation.

../examples/jaxp/xslt/samples/TransformationApp04.java

CREATING A SIMPLE FILE 313
3. You’ll use the same StreamResult object you created in the last exercise,
so you can see the results. (But note that you could just as easily create a
DOMResult object to create a DOM in memory.)

4. You’ll wire the source to the result, using the transformer object to make
the conversion.

For starters, you need a data set you want to convert and a program capable of
reading the data. In the next two sections, you’ll create a simple data file and a
program that reads it.

Creating a Simple File
We’ll start by creating a data set for an address book. You can duplicate the pro-
cess, if you like, or simply make use of the data stored in PersonalAddress-

Book.ldif.

The file shown below was produced by creating a new address book in Netscape
Messenger, giving it some dummy data (one address card) and then exporting it
in LDIF format.

Note: LDIF stands for LDAP Data Interchange Format. LDAP, turn, stands for
Lightweight Directory Access Protocol. I prefer to think of LDIF as the “Line
Delimited Interchange Format”, since that is pretty much what it is.

Figure 8–1 shows the address book entry that was created.

314 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Figure 8–1 Address Book Entry

Exporting the address book produces a file like the one shown below. The parts
of the file that we care about are shown in bold.

dn: cn=Fred Flintstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z
cn: Fred Flintstone
xmozillanickname: Fred
mail: Fred@barneys.house
xmozillausehtmlmail: TRUE
givenname: Fred
sn: Flintstone
telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager

CREATING A SIMPLE PARSER 315
cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

Note that each line of the file contains a variable name, a colon, and a space fol-
lowed by a value for the variable. The sn variable contains the person’s surname
(last name) and the variable cn contains the DisplayName field from the address
book entry.

Creating a Simple Parser
The next step is to create a program that parses the data.

Note: The code discussed in this section is in AddressBookReader01.java. The
output is in AddressBookReaderLog01.txt.

The text for the program is shown below. It’s an absurdly simple program that
doesn’t even loop for multiple entries because, after all, it’s just a demo!

import java.io.*;

public class AddressBookReader
{

public static void main(String argv[])
{

// Check the arguments
if (argv.length != 1) {

System.err.println (
"Usage: java AddressBookReader filename");

System.exit (1);
}
String filename = argv[0];
File f = new File(filename);
AddressBookReader01 reader = new AddressBookReader01();
reader.parse(f);

}

/** Parse the input */
public void parse(File f)
{

try {

../examples/jaxp/xslt/samples/AddressBookReader01.java
../examples/jaxp/xslt/samples/AddressBookReaderLog01.txt

316 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
// Get an efficient reader for the file
FileReader r = new FileReader(f);
BufferedReader br = new BufferedReader(r);

 // Read the file and display it's contents.
String line = br.readLine();
while (null != (line = br.readLine())) {

if (line.startsWith("xmozillanickname: "))
break;

}
output("nickname", "xmozillanickname", line);
line = br.readLine();
output("email", "mail", line);
line = br.readLine();
output("html", "xmozillausehtmlmail", line);
line = br.readLine();
output("firstname","givenname", line);
line = br.readLine();
output("lastname", "sn", line);
line = br.readLine();
output("work", "telephonenumber", line);
line = br.readLine();
output("home", "homephone", line);
line = br.readLine();
output("fax", "facsimiletelephonenumber",

line);
line = br.readLine();
output("pager", "pagerphone", line);
line = br.readLine();
output("cell", "cellphone", line);

}
catch (Exception e) {

e.printStackTrace();
}

}

void output(String name, String prefix, String line)
{

int startIndex = prefix.length() + 2;
// 2=length of ": "

String text = line.substring(startIndex);
System.out.println(name + ": " + text);

}
}

This program contains three methods:

MODIFYING THE PARSER TO GENERATE SAX EVENTS 317
main
The main method gets the name of the file from the command line, creates
an instance of the parser, and sets it to work parsing the file. This method
will be going away when we convert the program into a SAX parser. (That’s
one reason for putting the parsing code into a separate method.)

parse
This method operates on the File object sent to it by the main routine. As
you can see, it’s about as simple as it can get. The only nod to efficiency is
the use of a BufferedReader, which can become important when you start
operating on large files.

output
The output method contains the logic for the structure of a line. Starting
from the right It takes three arguments. The first argument gives the method
a name to display, so we can output “html” as a variable name, instead of
“xmozillausehtmlmail”. The second argument gives the variable name
stored in the file (xmozillausehtmlmail). The third argument gives the line
containing the data. The routine then strips off the variable name from the
start of the line and outputs the desired name, plus the data.

Running this program on PersonalAddressBook.ldif produces this output:

nickname: Fred
email: Fred@barneys.house
html: TRUE
firstname: Fred
lastname: Flintstone
work: 999-Quarry
home: 999-BedrockLane
fax: 888-Squawk
pager: 777-pager
cell: 555-cell

I think we can all agree that’s a bit more readable.

Modifying the Parser to Generate SAX
Events
The next step is to modify the parser to generate SAX events, so you can use it as
the basis for a SAXSource object in an XSLT transform.

318 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Note: The code discussed in this section is in AddressBookReader02.java.

 Start by importing the additional classes you’re going to need:

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.AttributesImpl;

Next, modify the application so that it extends XmlReader. That change converts
the application into a parser that generates the appropriate SAX events.

public class AddressBookReader
implements XMLReader

{

Now, remove the main method. You won’t be needing that any more.

public static void main(String argv[])
{

// Check the arguments
if (argv.length != 1) {

System.err.println ("Usage: Java AddressBookReader
filename");

System.exit (1);
}
String filename = argv[0];
File f = new File(filename);
AddressBookReader02 reader = new AddressBookReader02();
reader.parse(f);

}

Add some global variables that will come in handy in a few minutes:

public class AddressBookReader
implements XMLReader

{
ContentHandler handler;

// We're not doing namespaces, and we have no
// attributes on our elements.
String nsu = ""; // NamespaceURI

../examples/jaxp/xslt/samples/AddressBookReader02.java

MODIFYING THE PARSER TO GENERATE SAX EVENTS 319
Attributes atts = new AttributesImpl();
String rootElement = "addressbook";

String indent = "\n "; // for readability!

The SAX ContentHandler is the object that is going to get the SAX events the
parser generates. To make the application into an XmlReader, you’ll be defining
a setContentHandler method. The handler variable will hold a reference to
the object that is sent when setContentHandler is invoked.

And, when the parser generates SAX element events, it will need to supply
namespace and attribute information. Since this is a simple application, you’re
defining null values for both of those.

You’re also defining a root element for the data structure (addressbook), and
setting up an indent string to improve the readability of the output.

Next, modify the parse method so that it takes an InputSource as an argument,
rather than a File, and account for the exceptions it can generate:

public void parse(File f)InputSource input)
throws IOException, SAXException

Now make the changes shown below to get the reader encapsulated by the
InputSource object:

try {
// Get an efficient reader for the file
FileReader r = new FileReader(f);
java.io.Reader r = input.getCharacterStream();
BufferedReader Br = new BufferedReader(r);

Note: In the next section, you’ll create the input source object and what you put in
it will, in fact, be a buffered reader. But the AddressBookReader could be used
by someone else, somewhere down the line. This step makes sure that the process-
ing will be efficient, regardless of the reader you are given.

320 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The next step is to modify the parse method to generate SAX events for the start
of the document and the root element. Add the code highlighted below to do
that:

/** Parse the input */
public void parse(InputSource input)
...
{

try {
...
// Read the file and display its contents.
String line = br.readLine();
while (null != (line = br.readLine())) {

if (line.startsWith("xmozillanickname: ")) break;
}

if (handler==null) {
throw new SAXException("No content handler");

}

handler.startDocument();
handler.startElement(nsu, rootElement,

rootElement, atts);

output("nickname", "xmozillanickname", line);
...
output("cell", "cellphone", line);

handler.ignorableWhitespace("\n".toCharArray(),
0, // start index
1 // length
);

handler.endElement(nsu, rootElement, rootElement);
handler.endDocument();

}
catch (Exception e) {
...

Here, you first checked to make sure that the parser was properly configured
with a ContentHandler. (For this app, we don’t care about anything else.) You
then generated the events for the start of the document and the root element, and
finished by sending the end-event for the root element and the end-event for the
document.

MODIFYING THE PARSER TO GENERATE SAX EVENTS 321
A couple of items are noteworthy, at this point:

• We haven’t bothered to send the setDocumentLocator event, since that is
optional. Were it important, that event would be sent immediately before
the startDocument event.

• We’ve generated an ignorableWhitespace event before the end of the
root element. This, too, is optional, but it drastically improves the readabil-
ity of the output, as you’ll see in a few moments. (In this case, the
whitespace consists of a single newline, which is sent the same way that
characters are sent to the characters method: as a character array, a start-
ing index, and a length.)

Now that SAX events are being generated for the document and the root ele-
ment, the next step is to modify the output method to generate the appropriate
element events for each data item. Make the changes shown below to do that:

void output(String name, String prefix, String line)
throws SAXException
{

int startIndex = prefix.length() + 2; // 2=length of ": "
String text = line.substring(startIndex);
System.out.println(name + ": " + text);

int textLength = line.length() - startIndex;
handler.ignorableWhitespace(indent.toCharArray(),

0, // start index
indent.length()
);

handler.startElement(nsu, name, name /*"qName"*/, atts);
handler.characters(line.toCharArray(),

startIndex,
textLength);

handler.endElement(nsu, name, name);
}

Since the ContentHandler methods can send SAXExceptions back to the parser,
the parser has to be prepared to deal with them. In this case, we don’t expect any,
so we’ll simply allow the application to fail if any occur.

You then calculate the length of the data, and once again generate some ignor-
able whitespace for readability. In this case, there is only one level of data, so we
can use a fixed-indent string. (If the data were more structured, we would have to
calculate how much space to indent, depending on the nesting of the data.)

322 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Note: The indent string makes no difference to the data, but will make the output a
lot easier to read. Once everything is working, try generating the result without that
string! All of the elements will wind up concatenated end to end, like this:
<addressbook><nickname>Fred</nickname><email>...

Next, add the method that configures the parser with the ContentHandler that is
to receive the events it generates:

void output(String name, String prefix, String line)
throws SAXException

{
...

}

/** Allow an application to register a content event handler. */
public void setContentHandler(ContentHandler handler) {

this.handler = handler;
}

/** Return the current content handler. */
public ContentHandler getContentHandler() {

return this.handler;
}

There are several more methods that must be implemented in order to satisfy the
XmlReader interface. For the purpose of this exercise, we’ll generate null meth-
ods for all of them. For a production application, though, you may want to con-
sider implementing the error handler methods to produce a more robust app. For
now, though, add the code highlighted below to generate null methods for them:

/** Allow an application to register an error event handler. */
public void setErrorHandler(ErrorHandler handler)
{ }

/** Return the current error handler. */
public ErrorHandler getErrorHandler()
{ return null; }

MODIFYING THE PARSER TO GENERATE SAX EVENTS 323
Finally, add the code highlighted below to generate null methods for the remain-
der of the XmlReader interface. (Most of them are of value to a real SAX parser,
but have little bearing on a data-conversion application like this one.)

/** Parse an XML document from a system identifier (URI). */
public void parse(String systemId)
throws IOException, SAXException
{ }

 /** Return the current DTD handler. */
public DTDHandler getDTDHandler()
{ return null; }

/** Return the current entity resolver. */
public EntityResolver getEntityResolver()
{ return null; }

/** Allow an application to register an entity resolver. */
public void setEntityResolver(EntityResolver resolver)
{ }

/** Allow an application to register a DTD event handler. */
public void setDTDHandler(DTDHandler handler)
{ }

/** Look up the value of a property. */
public Object getProperty(String name)
{ return null; }

/** Set the value of a property. */
public void setProperty(String name, Object value)
{ }

/** Set the state of a feature. */
public void setFeature(String name, boolean value)
{ }

/** Look up the value of a feature. */
public boolean getFeature(String name)
{ return false; }

Congratulations! You now have a parser you can use to generate SAX events. In
the next section, you’ll use it to construct a SAX source object that will let you
transform the data into XML.

324 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Using the Parser as a SAXSource
Given a SAX parser to use as an event source, you can (easily!) construct a trans-
former to produce a result. In this section, you’ll modify the TransformerApp

you’ve been working with to produce a stream output result, although you could
just as easily produce a DOM result.

Note: The code discussed in this section is in TransformationApp04.java. The
results of running it are in TransformationLog04.txt.

Important!

Make sure you put the AddressBookReader aside and open up the Transforma-

tionApp. The work you do in this section affects the TransformationApp! (The
look pretty similar, so it’s easy to start working on the wrong one.)

Start by making the changes shown below to import the classes you’ll need to
construct a SAXSource object. (You won’t be needing the DOM classes at this
point, so they are discarded here, although leaving them in doesn’t do any harm.)

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.stream.StreamResult;

Next, remove a few other holdovers from our DOM-processing days, and add the
code to create an instance of the AddressBookReader:

public class TransformationApp
{

// Global value so it can be ref'd by the tree-adapter
static Document document;

 public static void main(String argv[])
{

...
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

../examples/jaxp/xslt/samples/TransformationApp04.java
../examples/jaxp/xslt/samples/TransformationLog04.txt

USING THE PARSER AS A SAXSOURCE 325
//factory.setNamespaceAware(true);
//factory.setValidating(true);

// Create the sax "parser".
AddressBookReader saxReader = new AddressBookReader();

try {
File f = new File(argv[0]);
DocumentBuilder builder =

factory.newDocumentBuilder();
document = builder.parse(f);

Guess what! You’re almost done. Just a couple of steps to go. Add the code high-
lighted below to construct a SAXSource object:

// Use a Transformer for output
...
Transformer transformer = tFactory.newTransformer();

// Use the parser as a SAX source for input
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(fr);
InputSource inputSource = new InputSource(br);
SAXSource source = new SAXSource(saxReader, inputSource);

StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you constructed a buffered reader (as mentioned earlier) and encapsulated
it in an input source object. You then created a SAXSource object, passing it the
reader and the InputSource object, and passed that to the transformer.

When the application runs, the transformer will configure itself as the Con-

tentHandler for the SAX parser (the AddressBookReader) and tell the parser to
operate on the inputSource object. Events generated by the parser will then go
to the transformer, which will do the appropriate thing and pass the data on to the
result object.

Finally, remove the exceptions you no longer need to worry about, since the
TransformationApp no longer generates them:

catch (SAXParseException spe) {
// Error generated by the parser
System.out.println("\n** Parsing error"

+ ", line " + spe.getLineNumber()
+ ", uri " + spe.getSystemId());

System.out.println(" " + spe.getMessage());

326 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
// Use the contained exception, if any
Exception x = spe;
if (spe.getException() != null)

x = spe.getException();
x.printStackTrace();

} catch (SAXException sxe) {
// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

} catch (ParserConfigurationException pce) {
// Parser with specified options can't be built
pce.printStackTrace();

} catch (IOException ioe) {
...

You’re done! You have now created a transformer which will use a SAXSource as
input, and produce a StreamResult as output.

Doing the Conversion
Now run the application on the address book file. Your output should look like
this:

<?xml version="1.0" encoding="UTF-8"?>
<addressbook>

<nickname>Fred</nickname>
<email>fred@barneys.house</email>
<html>TRUE</html>
<firstname>Fred</firstname>
<lastname>Flintstone</lastname>
<work>999-Quarry</work>
<home>999-BedrockLane</home>
<fax>888-Squawk</fax>
<pager>777-pager</pager>
<cell>555-cell</cell>

</addressbook>

TRANSFORMING XML DATA WITH XSLT 327
You have now successfully converted an existing data structure to XML. And it
wasn’t even that hard. Congratulations!

Transforming XML Data with XSLT
The XML Stylesheet Language for Transformations (XSLT) can be used for
many purposes. For example, with a sufficiently intelligent stylesheet, you could
generate PDF or PostScript output from the XML data. But generally, XSLT is
used to generate formatted HTML output, or to create an alternative XML repre-
sentation of the data.

In this section of the tutorial, you’ll use an XSLT transform to translate XML
input data to HTML output.

Note: The XSLT specification is large and complex. So this tutorial can only scratch
the surface. It will give you enough of a background to get started, so you can under-
take simple XSLT processing tasks. It should also give you a head start when you
investigate XSLT further. For a more thorough grounding, consult a good reference
manual, such as Michael Kay's XSLT Programmer's Reference.

Defining a Simple <article> Document
Type
We’ll start by defining a very simple document type that could be used for writ-
ing articles. Our <article> documents will contain these structure tags:

• <TITLE> — The title of the article

• <SECT> — A section, consisting of a heading and a body

• <PARA> — A paragraph

• <LIST> — A list.

• <ITEM> — An entry in a list

• <NOTE> — An aside, which will be offset from the main text

The slightly unusual aspect of this structure is that we won’t create a separate
element tag for a section heading. Such elements are commonly created to dis-
tinguish the heading text (and any tags it contains) from the body of the section
(that is, any structure elements underneath the heading).

328 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Instead, we’ll allow the heading to merge seamlessly into the body of a section.
That arrangement adds some complexity to the stylesheet, but that will give us a
chance to explore XSLT’s template-selection mechanisms. It also matches our
intuitive expectations about document structure, where the text of a heading is
directly followed by structure elements, which can simplify outline-oriented
editing.

Note: However, that structure is not easily validated, because XML’s mixed-content
model allows text anywhere in a section, whereas we want to confine text and inline
elements so that they only appear before the first structure element in the body of
the section. The assertion-based validator (Schematron (page 58)) can do it, but
most other schema mechanisms can’t. So we’ll dispense with defining a DTD for
the document type.

In this structure, sections can be nested. The depth of the nesting will determine
what kind of HTML formatting to use for the section heading (for example, h1
or h2). Using a plain SECT tag (instead of numbered sections) is also useful with
outline-oriented editing, because it lets you move sections around at will without
having to worry about changing the numbering for that section or for any of the
other sections that might be affected by the move.

For lists, we’ll use a type attribute to specify whether the list entries are unor-

dered (bulleted), alpha (enumerated with lower case letters), ALPHA (enumer-
ated with uppercase letters), or numbered.

We’ll also allow for some inline tags that change the appearance of the text:

• — bold

• <I> — italics

• <U> — underline

• <DEF> — definition

• <LINK> — link to a URL

Note: An inline tag does not generate a line break, so a style change caused by an
inline tag does not affect the flow of text on the page (although it will affect the
appearance of that text). A structure tag, on the other hand, demarcates a new seg-
ment of text, so at a minimum it always generates a line break, in addition to other
format changes.

CREATING A TEST DOCUMENT 329
The <DEF> tag will be used for terms that are defined in the text. Such terms will
be displayed in italics, the way they ordinarily are in a document. But using a
special tag in the XML will allow an index program to find such definitions and
add them to an index, along with keywords in headings. In the Note above, for
example, the definitions of inline tags and structure tags could have been marked
with <DEF> tags, for future indexing.

Finally, the LINK tag serves two purposes. First, it will let us create a link to a
URL without having to put the URL in twice — so we can code
<link>http//...</link> instead of http//....
Of course, we’ll also want to allow a form that looks like <link tar-

get="...">...name...</link>. That leads to the second reason for the
<link> tag—it will give us an opportunity to play with conditional expressions
in XSLT.

Note: Although the article structure is exceedingly simple (consisting of only 11
tags), it raises enough interesting problems to get a good view of XSLT’s basic
capabilities. But we’ll still leave large areas of the specification untouched. The last
part of this tutorial will point out the major features we skipped.

Creating a Test Document
Here, you’ll create a simple test document using nested <SECT> elements, a few
<PARA> elements, a <NOTE> element, a <LINK>, and a <LIST type="unor-

dered">. The idea is to create a document with one of everything, so we can
explore the more interesting translation mechanisms.

Note: The sample data described here is contained in article1.xml. (The brows-
able version is article1-xml.html.)

To make the test document, create a file called article.xml and enter the XML
data shown below.

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

<PARA>This section will introduce a subsection.</PARA>
<SECT>The Subsection Heading

<PARA>This is the text of the subsection.

../examples/jaxp/xslt/samples/article1.xml
../examples/jaxp/xslt/samples/article1-xml.html

330 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
</PARA>
</SECT>

</SECT>
</ARTICLE>

Note that in the XML file, the subsection is totally contained within the major
section. (In HTML, on the other hand, headings do not contain the body of a sec-
tion.) The result is an outline structure that is harder to edit in plain-text form,
like this, but is much easier to edit with an outline-oriented editor.

Someday, given an tree-oriented XML editor that understands inline tags like
 and <I>, it should be possible to edit an article of this kind in outline form,
without requiring a complicated stylesheet. (Such an editor would allow the
writer to focus on the structure of the article, leaving layout until much later in
the process.) In such an editor, the article-fragment above would look something
like this:

<ARTICLE>
<TITLE>A Sample Article
<SECT>The First Major Section

<PARA>This section will introduce a subsection.
<SECT>The Subheading

<PARA>This is the text of the subsection. Note that ...

Note: At the moment, tree-structured editors exist, but they treat inline tags like
and <I> the same way that they treat other structure tags, which can make the “out-
line” a bit difficult to read.

Writing an XSLT Transform
In this part of the tutorial, you’ll begin writing an XSLT transform that will con-
vert the XML article and render it in HTML.

Note: The transform described in this section is contained in article1a.xsl. (The
browsable version is article1a-xsl.html.)

Start by creating a normal XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

../examples/jaxp/xslt/samples/article1a.xsl
../examples/jaxp/xslt/samples/article1a-xsl.html

PROCESSING THE BASIC STRUCTURE ELEMENTS 331
Then add the lines highlighted below to create an XSL stylesheet:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
>

</xsl:stylesheet>

Now, set it up to produce HTML-compatible output:

<xsl:stylesheet
...
>
<xsl:output method="html"/>

 ...

</xsl:stylesheet>

We’ll get into the detailed reasons for that entry later on in this section. But for
now, note that if you want to output anything besides well-formed XML, then
you’ll need an <xsl:output> tag like the one shown, specifying either “text”
or “html”. (The default value is “xml”.)

Note: When you specify XML output, you can add the indent attribute to produce
nicely indented XML output. The specification looks like this:
<xsl:output method="xml" indent="yes"/>.

Processing the Basic Structure Elements
You’ll start filling in the stylesheet by processing the elements that go into creat-
ing a table of contents — the root element, the title element, and headings. You’ll
also process the PARA element defined in the test document.

Note: If on first reading you skipped the section of this tutorial that discusses the
XPAth addressing mechanisms, How XPath Works (page 294), now is a good time
to go back and review that section.

332 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Begin by adding the main instruction that processes the root element:

<xsl:template match="/">
<html><body>

<xsl:apply-templates/>
</body></html>

</xsl:template>

</xsl:stylesheet>

The new XSL commands are shown in bold. (Note that they are defined in the
“xsl” namespace.) The instruction <xsl:apply-templates> processes the chil-
dren of the current node. In this case, the current node is the root node.

Despite its simplicity, this example illustrates a number of important ideas, so
it’s worth understanding thoroughly. The first concept is that a stylesheet con-
tains a number of templates, defined with the <xsl:template> tag. Each tem-
plate contains a match attribute, which selects the elements that the template will
be applied to, using the XPath addressing mechanisms described in How XPath
Works (page 294).

Within the template, tags that do not start with the xsl: namespace prefix are
simply copied. The newlines and whitespace that follow them are also copied,
which helps to make the resulting output readable.

Note: When a newline is not present, whitespace is generally ignored. To include
whitespace in the output in such cases, or to include other text, you can use the
<xsl:text> tag. Basically, an XSLT stylesheet expects to process tags. So every-
thing it sees needs to be either an <xsl:..> tag, some other tag, or whitespace.

In this case, the non-XSL tags are HTML tags. So when the root tag is matched,
XSLT outputs the HTML start-tags, processes any templates that apply to chil-
dren of the root, and then outputs the HTML end-tags.

Process the <TITLE> Element
Next, add a template to process the article title:

<xsl:template match="/ARTICLE/TITLE">
<h1 align="center"> <xsl:apply-templates/> </h1>

</xsl:template>

</xsl:stylesheet>

PROCESSING THE BASIC STRUCTURE ELEMENTS 333
In this case, you specified a complete path to the TITLE element, and output
some HTML to make the text of the title into a large, centered heading. In this
case, the apply-templates tag ensures that if the title contains any inline tags
like italics, links, or underlining, they will be processed as well.

More importantly, the apply-templates instruction causes the text of the title to
be processed. Like the DOM data model, the XSLT data model is based on the
concept of text nodes contained in element nodes (which, in turn, can be con-
tained in other element nodes, and so on). That hierarchical structure constitutes
the source tree. There is also a result tree, which contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the
result of XSLT operations, it is helpful to understand the structure of those trees,
and their contents. (For more on this subject, see The XSLT/XPath Data
Model (page 295).)

Process Headings
To continue processing the basic structure elements, add a template to process
the top-level headings:

<xsl:template match="/ARTICLE/SECT">
<h2> <xsl:apply-templates

select="text()|B|I|U|DEF|LINK"/> </h2>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

</xsl:stylesheet>

Here, you’ve specified the path to the topmost SECT elements. But this time,
you’ve applied templates in two stages, using the select attribute. For the first
stage, you selected text nodes using the XPath text() function, as well as inline
tags like bold and italics. (The vertical pipe (|) is used to match multiple items —
text, or a bold tag, or an italics tag, etc.) In the second stage, you selected the
other structure elements contained in the file, for sections, paragraphs, lists, and
notes.

Using the select attribute let you put the text and inline elements between the
<h2>...</h2> tags, while making sure that all of the structure tags in the section
are processed afterwards. In other words, you made sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, which
is important for HTML output.

334 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
In general, using the select clause lets you apply all templates to a subset of the
information available in the current context. As another example, this template
selects all attributes of the current node:

<xsl:apply-templates select="@*"/></attributes>

Next, add the virtually identical template to process subheadings that are nested
one level deeper:

<xsl:template match="/ARTICLE/SECT/SECT">
<h3> <xsl:apply-templates

select="text()|B|I|U|DEF|LINK"/> </h3>
<xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>

</xsl:template>

</xsl:stylesheet>

Generate a Runtime Message
You could add templates for deeper headings, too, but at some point you have to
stop, if only because HTML only goes down to five levels. But for this example,
you’ll stop at two levels of section headings. But if the XML input happens to
contain a third level, you’ll want to deliver an error message to the user. This sec-
tion shows you how to do that.

Note: We could continue processing SECT elements that are further down, by
selecting them with the expression /SECT/SECT//SECT. The // selects any SECT
elements, at any depth, as defined by the XPath addressing mechanism. But we’ll
take the opportunity to play with messaging, instead.

Add the following template to generate an error when a section is encountered
that is nested too deep:

<xsl:template match="/ARTICLE/SECT/SECT/SECT">
<xsl:message terminate="yes">

Error: Sections can only be nested 2 deep.
</xsl:message>

</xsl:template>

</xsl:stylesheet>

WRITING THE BASIC PROGRAM 335
The terminate="yes" clause causes the transformation process to stop after the
message is generated. Without it, processing could still go on with everything in
that section being ignored.

As an additional exercise, you could expand the stylesheet to handle sections
nested up to four sections deep, generating <h2>...<h5> tags. Generate an error
on any section nested five levels deep.

Finally, finish up the stylesheet by adding a template to process the PARA tag:

<xsl:template match="PARA">
<p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

Writing the Basic Program
In this part of the tutorial, you’ll modify the program that used XSLT to echo an
XML file unchanged, changing it so it uses your stylesheet.

Note: The code shown in this section is contained in Stylizer.java. The result is
stylizer1a.html. (The browser-displayable version of the HTML source is
stylizer1a-src.html.)

Start by copying TransformationApp02, which parses an XML file and writes
to System.out. Save it as Stylizer.java.

Next, modify occurrences of the class name and the usage section of the pro-
gram:

public class TransformationAppStylizer
{

if (argv.length != 1 2) {
System.err.println (

"Usage: java TransformationApp filename");
"Usage: java Stylizer stylesheet xmlfile");

System.exit (1);
}
...

../examples/jaxp/xslt/samples/Stylizer.java
../examples/jaxp/xslt/samples/stylizer1a.html
../examples/jaxp/xslt/samples/stylizer1a-src.html

336 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Then modify the program to use the stylesheet when creating the Transformer

object.

...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
...

public class Stylizer
{

...
public static void main (String argv[])
{

...
try {

File f = new File(argv[0]);
File stylesheet = new File(argv[0]);
File datafile = new File(argv[1]);

DocumentBuilder builder =
factory.newDocumentBuilder();

document = builder.parse(f datafile);
...
StreamSource stylesource =

new StreamSource(stylesheet);
Transformer transformer =

Factory.newTransformer(stylesource);
...

This code uses the file to create a StreamSource object, and then passes the
source object to the factory class to get the transformer.

Note: You can simplify the code somewhat by eliminating the DOMSource class
entirely. Instead of creating a DOMSource object for the XML file, create a Stream-

Source object for it, as well as for the stylesheet.

Now compile and run the program using article1a.xsl on article1.xml. The
results should look like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

TRIMMING THE WHITESPACE 337
<h2>The First Major Section

</h2>

<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading

</h3>

<p>This is the text of the subsection.

</p>

</body>
</html>

At this point, there is quite a bit of excess whitespace in the output. You’ll see
how to eliminate most of it in the next section.

Trimming the Whitespace
If you recall, when you took a look at the structure of a DOM, there were many
text nodes that contained nothing but ignorable whitespace. Most of the excess
whitespace in the output came from these nodes. Fortunately, XSL gives you a
way to eliminate them. (For more about the node structure, see The XSLT/XPath
Data Model (page 295).)

Note: The stylesheet described here is article1b.xsl. The result is
stylizer1b.html. (The browser-displayable versions are article1b-xsl.html

and stylizer1b-src.html.)

To remove some of the excess whitespace, add the line highlighted below to the
stylesheet.

<xsl:stylesheet ...
>
<xsl:output method="html"/>
<xsl:strip-space elements="SECT"/>
...

../examples/jaxp/xslt/samples/article1b.xsl
../examples/jaxp/xslt/samples/stylizer1b.html
../examples/jaxp/xslt/samples/article1b-xsl.html
../examples/jaxp/xslt/samples/stylizer1b-src.html

338 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
This instruction tells XSL to remove any text nodes under SECT elements that
contain nothing but whitespace. Nodes that contain text other than whitespace
will not be affected, and other kinds of nodes are not affected.

Now, when you run the program, the result looks like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h2>The First Major Section
</h2>

<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading

</h3>
<p>This is the text of the subsection.

</p>

</body>
</html>

That’s quite an improvement. There are still newline characters and white space
after the headings, but those come from the way the XML is written:

<SECT>The First Major Section
____<PARA>This section will introduce a subsection.</PARA>
^^^^

Here, you can see that the section heading ends with a newline and indentation
space, before the PARA entry starts. That’s not a big worry, because the browsers
that will process the HTML routinely compress and ignore the excess space. But
there is still one more formatting tool at our disposal.

Note: The stylesheet described here is article1c.xsl. The result is
stylizer1c.html. (The browser-displayable versions are article1c-xsl.html

and stylizer1c-src.html.)

../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/stylizer1c.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/stylizer1c-src.html

TRIMMING THE WHITESPACE 339
To get rid of that last little bit of whitespace, add this template to the stylesheet:

<xsl:template match="text()">
<xsl:value-of select="normalize-space()"/>

</xsl:template>

</xsl:stylesheet>

The output now looks like this:

<html>
<body>
<h1 align="center">A Sample Article</h1>
<h2>The First Major Section</h2>
<p>This section will introduce a subsection.</p>
<h3>The Subsection Heading</h3>
<p>This is the text of the subsection.</p>
</body>
</html>

That is quite a bit better. Of course, it would be nicer if it were indented, but that
turns out to be somewhat harder than expected! Here are some possible avenues
of attack, along with the difficulties:

Indent option
Unfortunately, the indent="yes" option that can be applied to XML output
is not available for HTML output. Even if that option were available, it
wouldn’t help, because HTML elements are rarely nested! Although HTML
source is frequently indented to show the implied structure, the HTML tags
themselves are not nested in a way that creates a real structure.

Indent variables
The <xsl:text> function lets you add any text you want, including
whitespace. So, it could conceivably be used to output indentation space.
The problem is to vary the amount of indentation space. XSLT variables
seem like a good idea, but they don’t work here. The reason is that when you
assign a value to a variable in a template, the value is only known within that
template (statically, at compile time value). Even if the variable is defined
globally, the assigned value is not stored in a way that lets it be dynamically
known by other templates at runtime. Once <apply-templates/> invokes
other templates, they are unaware of any variable settings made in other tem-
plates.

340 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Parameterized templates
Using a “parameterized template” is another way to modify a template’s
behavior. But determining the amount of indentation space to pass as the
parameter remains the crux of the problem!

At the moment, then, there does not appear to be any good way to control the
indentation of HTML-formatted output. That would be inconvenient if you
needed to display or edit the HTML as plain text. But it’s not a problem if you do
your editing on the XML form, only use the HTML version for display in a
browser. (When you view stylizer1c.html, for example, you see the results you
expect.)

Processing the Remaining Structure
Elements
In this section, you’ll process the LIST and NOTE elements that add additional
structure to an article.

Note: The sample document described in this section is article2.xml, and the
stylesheet used to manipulate it is article2.xsl. The result is stylizer2.html.
(The browser-displayable versions are article2-xml.html, article2-xsl.html,
and stylizer2-src.html.)

Start by adding some test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

...
</SECT>
<SECT>The Second Major Section

<PARA>This section adds a LIST and a NOTE.
<PARA>Here is the LIST:

<LIST type="ordered">
<ITEM>Pears</ITEM>
<ITEM>Grapes</ITEM>

</LIST>
</PARA>
<PARA>And here is the NOTE:

<NOTE>Don't forget to go to the hardware store
on your way to the grocery!

../examples/jaxp/xslt/samples/article2.xml
../examples/jaxp/xslt/samples/article2.xsl
../examples/jaxp/xslt/samples/stylizer2.html
../examples/jaxp/xslt/samples/article2-xml.html
../examples/jaxp/xslt/samples/article2-xsl.html
../examples/jaxp/xslt/samples/stylizer2-src.html

PROCESSING THE REMAINING STRUCTURE ELEMENTS 341
</NOTE>
</PARA>

</SECT>
</ARTICLE>

Note: Although the list and note in the XML file are contained in their respective
paragraphs, it really makes no difference whether they are contained or not—the
generated HTML will be the same, either way. But having them contained will
make them easier to deal with in an outline-oriented editor.

Modify <PARA> handling
Next, modify the PARA template to account for the fact that we are now allowing
some of the structure elements to be embedded with a paragraph:

<xsl:template match="PARA">
<p><xsl:apply-templates/></p>
<p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/>

</p>
<xsl:apply-templates select="PARA|LIST|NOTE"/>

</xsl:template>

This modification uses the same technique you used for section headings. The
only difference is that SECT elements are not expected within a paragraph. (How-
ever, a paragraph could easily exist inside another paragraph, as quoted material,
for example.)

Process <LIST> and <ITEM> elements
Now you’re ready to add a template to process LIST elements:

<xsl:template match="LIST">
<xsl:if test="@type='ordered'">

<xsl:apply-templates/>

</xsl:if>
<xsl:if test="@type='unordered'">

<xsl:apply-templates/>

342 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
</xsl:if>
</xsl:template>

</xsl:stylesheet>

The <xsl:if> tag uses the test="" attribute to specify a boolean condition. In
this case, the value of the type attribute is tested, and the list that is generated
changes depending on whether the value is ordered or unordered.

The two important things to note for this example are:

• There is no else clause, nor is there a return or exit statement, so it takes
two <xsl:if> tags to cover the two options. (Or the <xsl:choose> tag
could have been used, which provides case-statement functionality.)

• Single quotes are required around the attribute values. Otherwise, the
XSLT processor attempts to interpret the word ordered as an XPath func-
tion, instead of as a string.

Now finish up LIST processing by handling ITEM elements:

<xsl:template match="ITEM">
<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Ordering Templates in a Stylesheet
By now, you should have the idea that templates are independent of one another,
so it doesn’t generally matter where they occur in a file. So from here on, we’ll
just show the template you need to add. (For the sake of comparison, they’re
always added at the end of the example stylesheet.)

Order does make a difference when two templates can apply to the same node. In
that case, the one that is defined last is the one that is found and processed. For
example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify a template pattern that looks like this: //LIST//LIST. In that
template, you would use the HTML option to generate an alphabetic enumera-
tion, instead of a numeric one.

But such an element could also be identified by the pattern //LIST. To make sure
the proper processing is done, the template that specifies //LIST would have to
appear before the template the specifies //LIST//LIST.

PROCESSING THE REMAINING STRUCTURE ELEMENTS 343
Process <NOTE> Elements
The last remaining structure element is the NOTE element. Add the template
shown below to handle that.

<xsl:template match="NOTE">
<blockquote>Note:

<xsl:apply-templates/>
</p></blockquote>

</xsl:template>

</xsl:stylesheet>

This code brings up an interesting issue that results from the inclusion of the

 tag. To be well-formed XML, the tag must be specified in the stylesheet as

, but that tag is not recognized by many browsers. And while most brows-
ers recognize the sequence
</br>, they all treat it like a paragraph break,
instead of a single line break.

In other words, the transformation must generate a
 tag, but the stylesheet
must specify
. That brings us to the major reason for that special output tag
we added early in the stylesheet:

<xsl:stylesheet ... >
<xsl:output method="html"/>
...

</xsl:stylesheet>

That output specification converts empty tags like
 to their HTML form,

, on output. That conversion is important, because most browsers do not
recognize the empty tags. Here is a list of the affected tags:

area frame isindex
base hr link
basefont img meta
br input param
col

To summarize, by default XSLT produces well-formed XML on output. And
since an XSL stylesheet is well-formed XML to start with, you cannot easily put
a tag like
 in the middle of it. The “<xsl:output method="html"/>”
solves the problem, so you can code
 in the stylesheet, but get
 in the
output.

344 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
The other major reason for specifying <xsl:output method="html"/> is that,
as with the specification <xsl:output method="text"/>, generated text is not
escaped. For example, if the stylesheet includes the < entity reference, it will
appear as the < character in the generated text. When XML is generated, on the
other hand, the < entity reference in the stylesheet would be unchanged, so it
would appear as < in the generated text.

Note: If you actually want < to be generated as part of the HTML output, you’ll
need to encode it as &lt;—that sequence becomes < on output, because
only the & is converted to an & character.

Run the Program
Here is the HTML that is generated for the second section when you run the pro-
gram now:

...
<h2>The Second Major Section</h2>
<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

Pears
Grapes

<p>And here is the NOTE:</p>
<blockquote>
Note:

Don't forget to go to the hardware store on your way to the
grocery!
</blockquote>

Process Inline (Content) Elements
The only remaining tags in the ARTICLE type are the inline tags — the ones that
don’t create a line break in the output, but which instead are integrated into the
stream of text they are part of.

Inline elements are different from structure elements, in that they are part of the
content of a tag. If you think of an element as a node in a document tree, then
each node has both content and structure. The content is composed of the text

PROCESS INLINE (CONTENT) ELEMENTS 345
and inline tags it contains. The structure consists of the other elements (structure
elements) under the tag.

Note: The sample document described in this section is article3.xml, and the
stylesheet used to manipulate it is article3.xsl. The result is stylizer3.html.
(The browser-displayable versions are article3-xml.html, article3-xsl.html,
and stylizer3-src.html.)

Start by adding one more bit of test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>

<TITLE>A Sample Article</TITLE>
<SECT>The First Major Section

...
</SECT>
<SECT>The Second Major Section

...
</SECT>
<SECT>The <I>Third</I> Major Section

<PARA>In addition to the inline tag in the heading,
this section defines the term <DEF>inline</DEF>,
which literally means "no line break". It also
adds a simple link to the main page for the Java
platform (<LINK>http://java.sun.com</LINK>),
as well as a link to the
<LINK target="http://java.sun.com/xml">XML</LINK>
page.

</PARA>
</SECT>

</ARTICLE>

Now, process the inline <DEF> elements in paragraphs, renaming them to HTML
italics tags:

<xsl:template match="DEF">
<i> <xsl:apply-templates/> </i>

</xsl:template>

../examples/jaxp/xslt/samples/article3.xml
../examples/jaxp/xslt/samples/article3.xsl
../examples/jaxp/xslt/samples/stylizer3.html
../examples/jaxp/xslt/samples/article3-xml.html
../examples/jaxp/xslt/samples/article3-xsl.html
../examples/jaxp/xslt/samples/stylizer3-src.html

346 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Next, comment out the text-node normalization. It has served its purpose, and
now you’re to the point that you need to preserve important spaces:

<!--
<xsl:template match="text()">

<xsl:value-of select="normalize-space()"/>
</xsl:template>

-->

This modification keeps us from losing spaces before tags like <I> and <DEF>.
(Try the program without this modification to see the result.)

Now, process basic inline HTML elements like , <I>, <U> for bold, italics,
and underlining.

<xsl:template match="B|I|U">
<xsl:element name="{name()}">

<xsl:apply-templates/>
</xsl:element>

</xsl:template>

The <xsl:element> tag lets you compute the element you want to generate.
Here, you generate the appropriate inline tag using the name of the current ele-
ment. In particular, note the use of curly braces ({}) in the name=".." expres-
sion. Those curly braces cause the text inside the quotes to be processed as an
XPath expression, instead of being interpreted as a literal string. Here, they cause
the XPath name() function to return the name of the current node.

Curly braces are recognized anywhere that an attribute value template can occur.
(Attribute value templates are defined in section 7.6.2 of the XSLT specification,
and they appear several places in the template definitions.). In such expressions,
curly braces can also be used to refer to the value of an attribute, {@foo}, or to
the content of an element {foo}.

Note: You can also generate attributes using <xsl:attribute>. For more informa-
tion, see Section 7.1.3 of the XSLT Specification.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

PROCESS INLINE (CONTENT) ELEMENTS 347
The last remaining element is the LINK tag. The easiest way to process that tag
will be to set up a named template that we can drive with a parameter:

<xsl:template name="htmLink">
<xsl:param name="dest" select="UNDEFINED"/>
<xsl:element name="a">

<xsl:attribute name="href">
<xsl:value-of select="$dest"/>

</xsl:attribute>
<xsl:apply-templates/>

</xsl:element>
</xsl:template>

The major difference in this template is that, instead of specifying a match

clause, you gave the template a name with the name="" clause. So this template
only gets executed when you invoke it.

Within the template, you also specified a parameter named dest, using the
<xsl:param> tag. For a bit of error checking, you used the select clause to give
that parameter a default value of UNDEFINED. To reference the variable in the
<xsl:value-of> tag, you specified “$dest”.

Note: Recall that an entry in quotes is interpreted as an expression, unless it is fur-
ther enclosed in single quotes. That’s why the single quotes were needed earlier, in
"@type='ordered'"—to make sure that ordered was interpreted as a string.

The <xsl:element> tag generates an element. Previously, we have been able to
simply specify the element we want by coding something like <html>. But here
you are dynamically generating the content of the HTML anchor (<a>) in the
body of the <xsl:element> tag. And you are dynamically generating the href

attribute of the anchor using the <xsl:attribute> tag.

The last important part of the template is the <apply-templates> tag, which
inserts the text from the text node under the LINK element. Without it, there
would be no text in the generated HTML link.

Next, add the template for the LINK tag, and call the named template from within
it:

<xsl:template match="LINK">
<xsl:if test="@target">

<!--Target attribute specified.-->
<xsl:call-template name="htmLink">

<xsl:with-param name="dest" select="@target"/>

348 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
</xsl:call-template>
</xsl:if>

</xsl:template>

<xsl:template name="htmLink">
...

The test="@target" clause returns true if the target attribute exists in the
LINK tag. So this <xsl-if> tag generates HTML links when the text of the link
and the target defined for it are different.

The <xsl:call-template> tag invokes the named template, while <xsl:with-

param> specifies a parameter using the name clause, and its value using the
select clause.

As the very last step in the stylesheet construction process, add the <xsl-if> tag
shown below to process LINK tags that do not have a target attribute.

<xsl:template match="LINK">
<xsl:if test="@target">

...
</xsl:if>

<xsl:if test="not(@target)">
<xsl:call-template name="htmLink">

<xsl:with-param name="dest">
<xsl:apply-templates/>

</xsl:with-param>
</xsl:call-template>

</xsl:if>
</xsl:template>

The not(...) clause inverts the previous test (remember, there is no else

clause). So this part of the template is interpreted when the target attribute is
not specified. This time, the parameter value comes not from a select clause,
but from the contents of the <xsl:with-param> element.

Note: Just to make it explicit: Parameters and variables (which are discussed in a
few moments in Appendix 8, What Else Can XSLT Do?What Else Can XSLT
Do? (page 349) can have their value specified either by a select clause, which lets
you use XPath expressions, or by the content of the element, which lets you use
XSLT tags.

PRINTING THE HTML 349
The content of the parameter, in this case, is generated by the <xsl:apply-tem-

plates/> tag, which inserts the contents of the text node under the LINK ele-
ment.

Run the Program
When you run the program now, the results should look something like this:

...
<h2>The <I>Third</I> Major Section

</h2>
<p>In addition to the inline tag in the heading, this section

defines the term <i>inline</i>, which literally means
"no line break". It also adds a simple link to the
main page for the Java platform (http://java.sun.com),
as well as a link to the
XML page.

</p>

Good work! You have now converted a rather complex XML file to HTML. (As
seemingly simple as it appear at first, it certainly provided a lot of opportunity
for exploration.)

Printing the HTML
You have now converted an XML file to HTML. One day, someone will produce
an HTML-aware printing engine that you’ll be able to find and use through the
Java Printing Service API. At that point, you’ll have ability to print an arbitrary
XML file by generating HTML—all you’ll have to do is set up a stylesheet and
use your browser.

What Else Can XSLT Do?
As lengthy as this section of the tutorial has been, it has still only scratched the
surface of XSLT’s capabilities. Many additional possibilities await you in the
XSLT Specification. Here are a few of the things to look for:

import (Section 2.6.2) and include (Section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The
include statement simply inserts any definitions from the included file. The

http://www.w3.org/TR/xslt

350 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
import statement lets you override definitions in the imported file with defi-
nitions in your own stylesheet.

for-each loops (Section 8)
Loop over a collection of items and process each one, in turn.

choose (case statement) for conditional processing (Section 9.2)
Branch to one of multiple processing paths depending on an input value.

generating numbers (Section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric
literals. XSLT provides three numbering modes:

• single: Numbers items under a single heading, like an ordered list in
HTML.

• multiple: Produces multi-level numbering like “A.1.3”.

• any: Consecutively numbers items wherever they appear, as with foot-
notes in a chapter.

formatting numbers (Section 12.3)
Control enumeration formatting, so you get numerics (format="1"), upper-
case alphabetics (format="A"), lowercase alphabetics (format="a"), or
compound numbers, like “A.1”, as well as numbers and currency amounts
suited for a specific international locale.

sorting output (Section 10)
Produce output in some desired sorting order.

mode-based templates (Section 5.7)
Process an element multiple times, each time in a different “mode”. You add
a mode attribute to templates, and then specify <apply-templates

mode="..."> to apply only the templates with a matching mode. Combine
with the <apply-templates select="..."> attribute to apply mode-based
processing to a subset of the input data.

variables (Section 11)
Variables, like parameters, let you control a template’s behavior. But they are
not as valuable as you might think. The value of a variable is only known
within the scope of the current template or <xsl:if> tag (for example) in
which it is defined. You can’t pass a value from one template to another, or
even from an enclosed part of a template to another part of the same tem-
plate.

These statements are true even for a “global” variable. You can change its
value in a template, but the change only applies to that template. And when
the expression used to define the global variable is evaluated, that evaluation
takes place in the context of the structure’s root node. In other words, global

TRANSFORMING FROM THE COMMAND LINE 351
variables are essentially runtime constants. Those constants can be useful for
changing the behavior of a template, especially when coupled with include

and import statements. But variables are not a general-purpose data-man-
agement mechanism.

The Trouble with Variables
It is tempting to create a single template and set a variable for the destination of
the link, rather than go to the trouble of setting up a parameterized template and
calling it two different ways. The idea would be to set the variable to a default
value (say, the text of the LINK tag) and then, if target attribute exists, set the
destination variable to the value of the target attribute.

That would be a good idea—if it worked. But once again, the issue is that vari-
ables are only known in the scope within which they are defined. So when you
code an <xsl:if> tag to change the value of the variable, the value is only
known within the context of the <xsl:if> tag. Once </xsl:if> is encountered,
any change to the variable’s setting is lost.

A similarly tempting idea is the possibility of replacing the
text()|B|I|U|DEF|LINK specification with a variable ($inline). But since the
value of the variable is determined by where it is defined, the value of a global
inline variable consists of text nodes, nodes, and so on, that happen to exist
at the root level. In other words, the value of such a variable, in this case, is null.

Transforming from the Command Line
When you are running a transformation from the command line, it makes a lot of
sense to use XSLTC. Although the Xalan interpreting transformer contains a
command-line mechanism as well, it doesn’t save the pre-compiled byte-codes
as translets for later use, as XSLTC does.

There are two steps to running XSLTC from the command line:

1. Compile the translet.

2. Run the compiled translet on the data.

Note: For detailed information on this subject, you can also consult the excellent
usage guide at http://xml.apache.org/xalan-j/xsltc_usage.html.

http://xml.apache.org/xalan-j/xsltc_usage.html

352 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Compiling the Translet
To compile the article3.xsl stylesheet into a translet, execute this command:

java org.apache.xalan.xsltc.cmdline.Compile article3.xsl

Note: For version 1.3 of the Java platform, you’ll need to include the appropriate
classpath settings, as described in Compiling and Running the Program (page 143).

The result is a class file (the translet) named article3.class.

Here are the arguments that can be specified when compiling a translet:

java org.apache.xalan.xsltc.cmdline.Compile
-o transletName -d directory -j jarFile
-p packageName {-u stylesheetURI | stylesheetFile }

where:

• -o transletName

Specifies the name of the generated translet class (the output class).
The .class suffix is optional. If not present, it is automatically added to
the name specified by the stylesheet argument.

• -d directory

Specifies the destination directory.
(Default is the current working directory.)

• -j jarFile

Outputs the generated translet class files into a JAR file named jarFile.jar.
When this option is used, only the JAR file is created.

• -p packageName

Specifies a package name for the generated translet classes.

• -u stylesheetURI

Specifies the stylesheet with a URI such as http://myser-

ver/stylesheet1.xsl.

• stylesheetFile

(No flag) The pathname of the stylesheet file.

RUNNING THE TRANSLET 353
Running the Translet
To run the compiled translet on the sample file article3.xml, execute this com-
mand:

java org.apache.xalan.xsltc.cmdline.Transform
article3.xml article3

Note: Again set the classpath, as described in Compiling and Running the
Program (page 143), if you are running on version 1.3 of the Java platform.

This command adds the current directory to the classpath, so the translet can be
found. The output goes to System.out.

Here are the possible arguments that can be specified when running a translet:

java org.apache.xalan.xsltc.cmdline.Transform
{-u documentURI | documentFilename}
className [name=value...]

where:

• -u documentURI

Specifies the XML input document with a URI.

• documentFilename

Specifies the filename for an XML input document.

• className

The translet that performs the transformation. (Here, you can’t specify the
.class suffix, the same way you omit it when running a java application.)

• name=value ...

Optional set of one or more stylesheet parameters specified as name-value
pairs.

354 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Concatenating Transformations with a
Filter Chain

It is sometimes useful to create a filter chain — a concatenation of XSLT trans-
formations in which the output of one transformation becomes the input of the
next. This section of the tutorial shows you how to do that.

Writing the Program
Start by writing a program to do the filtering. This example will show the full
source code, but you can use one of the programs you’ve been working on as a
basis, to make things easier.

Note: The code described here is contained in FilterChain.java.

The sample program includes the import statements that identify the package
locations for each class:

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.XMLFilter;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

../examples/jaxp/xslt/samples/FilterChain.java

WRITING THE PROGRAM 355
The program also includes the standard error handlers you’re used to. They’re
listed here, just so they are all gathered together in one place:

}
catch (TransformerConfigurationException tce) {

// Error generated by the parser
System.out.println ("* Transformer Factory error");
System.out.println(" " + tce.getMessage());

// Use the contained exception, if any
Throwable x = tce;
if (tce.getException() != null)

x = tce.getException();
x.printStackTrace();

}
catch (TransformerException te) {

// Error generated by the parser
System.out.println ("* Transformation error");
System.out.println(" " + te.getMessage());

// Use the contained exception, if any
Throwable x = te;
if (te.getException() != null)

x = te.getException();
x.printStackTrace();

}
catch (SAXException sxe) {

// Error generated by this application
// (or a parser-initialization error)
Exception x = sxe;
if (sxe.getException() != null)

x = sxe.getException();
x.printStackTrace();

}
catch (ParserConfigurationException pce) {

// Parser with specified options can't be built
pce.printStackTrace();

}
catch (IOException ioe) {

// I/O error
ioe.printStackTrace();

}

356 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
In between the import statements and the error handling, the core of the program
consists of the code shown below.

public static void main (String argv[])
{

if (argv.length != 3) {
System.err.println (

"Usage: java FilterChain style1 style2 xmlfile");
System.exit (1);

}

 try {
// Read the arguments
File stylesheet1 = new File(argv[0]);
File stylesheet2 = new File(argv[1]);
File datafile = new File(argv[2]);

 // Set up the input stream
BufferedInputStream bis = new

BufferedInputStream(newFileInputStream(datafile));
InputSource input = new InputSource(bis);

 // Set up to read the input file (see Note #1)
SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
SAXParser parser = spf.newSAXParser();
XMLReader reader = parser.getXMLReader();

 // Create the filters (see Note #2)
SAXTransformerFactory stf =

(SAXTransformerFactory)
TransformerFactory.newInstance();

XMLFilter filter1 = stf.newXMLFilter(
new StreamSource(stylesheet1));

XMLFilter filter2 = stf.newXMLFilter(
new StreamSource(stylesheet2));

// Wire the output of the reader to filter1 (see Note #3)
// and the output of filter1 to filter2
filter1.setParent(reader);
filter2.setParent(filter1);

 // Set up the output stream
StreamResult result = new StreamResult(System.out);

// Set up the transformer to process the SAX events generated
// by the last filter in the chain

Transformer transformer = stf.newTransformer();

UNDERSTANDING HOW THE FILTER CHAIN WORKS 357
SAXSource transformSource = new SAXSource(
filter2, input);

transformer.transform(transformSource, result);
} catch (...) {

...

Notes:

1. The Xalan transformation engine currently requires a namespace-aware
SAX parser. XSLTC does not make that requirement.

2. This weird bit of code is explained by the fact that SAXTransformerFac-
tory extends TransformerFactory, adding methods to obtain filter
objects. The newInstance() method is a static method defined in Trans-

formerFactory, which (naturally enough) returns a TransformerFactory
object. In reality, though, it returns a SAXTransformerFactory. So, to get
at the extra methods defined by SAXTransformerFactory, the return value
must be cast to the actual type.

3. An XMLFilter object is both a SAX reader and a SAX content handler. As
a SAX reader, it generates SAX events to whatever object has registered to
receive them. As a content handler, it consumes SAX events generated by
its “parent” object — which is, of necessity, a SAX reader, as well. (Call-
ing the event generator a “parent” must make sense when looking at the
internal architecture. From an external perspective, the name doesn’t
appear to be particularly fitting.) The fact that filters both generate and con-
sume SAX events allows them to be chained together.

Understanding How the Filter Chain
Works
The code listed above shows you how to set up the transformation. Figure 8–2
should help you understand what’s happening when it executes.

358 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
Figure 8–2 Operation of Chained Filters

When you create the transformer, you pass it at a SAXSource object, which
encapsulates a reader (in this case, filter2) and an input stream. You also pass
it a pointer to the result stream, where it directs its output. The diagram shows
what happens when you invoke transform() on the transformer. Here is an
explanation of the steps:

1. The transformer sets up an internal object as the content handler for
filter2, and tells it to parse the input source.

2. filter2, in turn, sets itself up as the content handler for filter1, and tells
it to parse the input source.

3. filter1, in turn, tells the parser object to parse the input source.

4. The parser does so, generating SAX events which it passes to filter1.

5. filter1, acting in its capacity as a content handler, processes the events
and does its transformations. Then, acting in its capacity as a SAX reader
(XMLReader), it sends SAX events to filter2.

6. filter2 does the same, sending its events to the transformer’s content
handler, which generates the output stream.

TESTING THE PROGRAM 359
Testing the Program
To try out the program, you’ll create an XML file based on a tiny fraction of the
XML DocBook format, and convert it to the ARTICLE format defined here. Then
you’ll apply the ARTICLE stylesheet to generate an HTML version.

Note: This example processes small-docbook-article.xml using docbookToAr-

ticle.xsl and article1c.xsl. The result is filterout.html (The browser-dis-
playable versions are small-docbook-article-xml.html, docbookToArticle-

xsl.html, article1c-xsl.html, and filterout-src.html.) See the O’Reilly
Web pages for a good description of the DocBook article format.

Start by creating a small article that uses a minute subset of the XML DocBook
format:

<?xml version="1.0"?>
<Article>

<ArtHeader>
<Title>Title of my (Docbook) article</Title>

</ArtHeader>
<Sect1>

<Title>Title of Section 1.</Title>
<Para>This is a paragraph.</Para>

</Sect1>
</Article>

Next, create a stylesheet to convert it into the ARTICLE format:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0"
>
<xsl:output method="xml"/> (see Note #1)

 <xsl:template match="/">
<ARTICLE>

<xsl:apply-templates/>
</ARTICLE>

</xsl:template>

<!-- Lower level titles strip element tag --> (see Note #2)

<!-- Top-level title -->
<xsl:template match="/Article/ArtHeader/Title"> (Note #3)

../examples/jaxp/xslt/samples/small-docbook-article.xml
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/filterout.html
../examples/jaxp/xslt/samples/small-docbook-article-xml.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/docbookToArticle-xsl.html
../examples/jaxp/xslt/samples/article1c-xsl.html
../examples/jaxp/xslt/samples/filterout-src.html

360 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
<TITLE> <xsl:apply-templates/> </TITLE>
</xsl:template>

 <xsl:template match="//Sect1"> (see Note #4)
<SECT><xsl:apply-templates/></SECT>

</xsl:template>

 <xsl:template match="Para">
<PARA><xsl:apply-templates/></PARA> (see Note #5)

</xsl:template>

</xsl:stylesheet>

Notes:

1. This time, the stylesheet is generating XML output.

2. The template that follows (for the top-level title element) matches only the
main title. For section titles, the TITLE tag gets stripped. (Since no template
conversion governs those title elements, they are ignored. The text nodes
they contain, however, are still echoed as a result of XSLT’s built in tem-
plate rules— so only the tag is ignored, not the text. More on that below.)

3. The title from the DocBook article header becomes the ARTICLE title.

4. Numbered section tags are converted to plain SECT tags.

5. This template carries out a case conversion, so Para becomes PARA.

Although it hasn’t been mentioned explicitly, XSLT defines a number of built-in
(default) template rules. The complete set is listed in Section 5.8 of the specifica-
tion. Mainly, they provide for the automatic copying of text and attribute nodes,
and for skipping comments and processing instructions. They also dictate that
inner elements are processed, even when their containing tags don’t have tem-
plates. That is the reason that the text node in the section title is processed, even
though the section title is not covered by any template.

Now, run the FilterChain program, passing it the stylesheet above (docbook-
ToArticle.xsl), the ARTICLE stylesheet (article1c.xsl), and the small Doc-

../examples/jaxp/xslt/samples/article1c.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl
../examples/jaxp/xslt/samples/docbookToArticle.xsl

CONCLUSION 361
Book file (small-docbook-article.xml), in that order. The result should like
this:

<html>
<body>
<h1 align="center">Title of my (Docbook) article</h1>
<h2>Title of Section 1.</h2>
<p>This is a paragraph.</p>
</body>
</html>

Note: This output was generated using JAXP 1.0. However, the first filter in the
chain is not currently translating any of the tags in the input file. Until that defect
is fixed, the output you see will consist of concatenated plain text in the HTML
output, like this: “Title of my (Docbook) article Title of Section 1. This

is a paragraph.”.

Conclusion
Congratulations! You have completed the XSLT tutorial. There is a lot you do
with XML and XSLT, and you are now prepared to explore the many exciting
possibilities that await.

Further Information
For more information on XSL stylesheets, XSLT, and transformation engines,
see:

• A great introduction to XSLT that starts with a simple HTML page and
uses XSLT to customize it, one step at a time:
http://www.xfront.com/rescuing-xslt.html

• Extensible Stylesheet Language (XSL):
http://www.w3.org/Style/XSL/

• The XML Path Language: http://www.w3.org/TR/xpath

• The Xalan transformation engine: http://xml.apache.org/xalan-j/

• The XSLTC transformation engine: http://xml.apache.org/xalan-j/

• Tips for using XSLTC: http://xml.apache.org/xalan-

j/xsltc_usage.html

../examples/jaxp/xslt/samples/small-docbook-article.xml
http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/
http://www.w3.org/TR/xpath
http://xml.apache.org/xalan-j/xsltc_usage.html
http://xml.apache.org/xalan-j/xsltc_usage.html
http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-j/
http://www.xfront.com/rescuing-xslt.html
http://www.xfront.com/rescuing-xslt.html

362 XML STYLESHEET LANGUAGE FOR TRANSFORMATIONS
• Designing stylesheets to maximize performance with XSLTC:
http://xml.apache.org/xalan-j/xsltc/xsltc_performance.html

http://xml.apache.org/xalan-j/xsltc/xsltc_performance.html

9

363
Binding XML Schema
to Java Classes with

JAXB
Scott Fordin

THE Java™ Architecture for XML Binding (JAXB) is a Java technology that
enables you to generate Java classes from XML schemas. As part of this process,
JAXB also provides methods for unmarshalling XML instance documents into
Java content trees, and then marshalling Java content trees back into XML
instance documents. Put another way, JAXB provides a fast and convenient way
to bind XML schemas to Java representations, making it easy for Java develop-
ers to incorporate XML data and processing functions in Java applications.

What this all means is that you can leverage the flexibility of platform-neutral
XML data in Java applications without having to deal with or even know XML
programming techniques. Moreover, you can take advantage of XML strengths
without having to rely on heavyweight, complex XML processing models like
SAX or DOM. JAXB hides the details and gets rid of the extraneous relation-
ships in SAX and DOM—generated JAXB classes describe only the relation-
ships actually defined in the source schemas. The result is highly portable XML
data joined with highly portable Java code that can be used to create flexible,
lightweight applications and Web services.

364 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
This chapter describes the JAXB architecture, functions, and core concepts. You
should read this chapter before proceeding to Chapter 10, which provides sample
code and step-by-step procedures for using JAXB.

JAXB Architecture
This section describes the components and interactions in the JAXB processing
model. After providing a general overview, this section goes into more detail
about core JAXB features. The topics in this section include:

• Architectural Overview

• The JAXB Binding Process

• JAXB Binding Framework

• More About javax.xml.bind

• More About Unmarshalling

• More About Marshalling

• More About Validation

ARCHITECTURAL OVERVIEW 365
Architectural Overview
Figure 9–1 shows the components that make up a JAXB implementation.

Figure 9–1 JAXB Architectural Overview

366 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
As shown in Figure 9–1, a JAXB implementation comprises the following eight
core components.

Table 9–1 Core Components in a JAXB Implementation

Component Description

XML Schema An XML schema uses XML syntax to describe the relationships among
elements, attributes and entities in an XML document. The purpose of an
XML schema is to define a class of XML documents that must adhere to
a particular set of structural rules and data constraints. For example, you
may want to define separate schemas for chapter-oriented books, for an
online purchase order system, or for a personnel database. In the context
of JAXB, an XML document containing data that is constrained by an
XML schema is referred to as a document instance, and the structure and
data within a document instance is referred to as a content tree.

Binding
Declarations

By default, the JAXB binding compiler binds Java classes and packages
to a source XML schema based on rules defined in Section 5, “Binding
XML Schema to Java Representations,” in the JAXB Specification. In
most cases, the default binding rules are sufficient to generate a robust
set of schema-derived classes from a wide range of schemas. There may
be times, however, when the default binding rules are not sufficient for
your needs. JAXB supports customizations and overrides to the default
binding rules by means of binding declarations made either inline as
annotations in a source schema, or as statements in an external binding
customization file that is passed to the JAXB binding compiler. Note that
custom JAXB binding declarations also allow you to customize your
generated JAXB classes beyond the XML-specific constraints in an
XML schema to include Java-specific refinements such as class and
package name mappings.

Binding
Compiler

The JAXB binding compiler is the core of the JAXB processing model.
Its function is to transform, or bind, a source XML schema to a set of
JAXB content classes in the Java programming language. Basically, you
run the JAXB binding compiler using an XML schema (optionally with
custom binding declarations) as input, and the binding compiler gener-
ates Java classes that map to constraints in the source XML schema.

Binding
Framework
Implementation

The JAXB binding framework implementation is a runtime API that pro-
vides interfaces for unmarshalling, marshalling, and validating XML
content in a Java application. The binding framework comprises inter-
faces in the javax.xml.bind package.

Schema-Derived
Classes

These are the schema-derived classes generated by the binding JAXB
compiler. The specific classes will vary depending on the input schema.

ARCHITECTURAL OVERVIEW 367
Java
Application

In the context of JAXB, a Java application is a client application that uses
the JAXB binding framework to unmarshal XML data, validate and mod-
ify Java content objects, and marshal Java content back to XML data.
Typically, the JAXB binding framework is wrapped in a larger Java
application that may provide UI features, XML transformation functions,
data processing, or whatever else is desired.

XML Input
Documents

XML content that is unmarshalled as input to the JAXB binding frame-
work -- that is, an XML instance document, from which a Java represen-
tation in the form of a content tree is generated. In practice, the term
“document” may not have the conventional meaning, as an XML
instance document does not have to be a completely formed, selfstanding
document file; it can instead take the form of streams of data passed
between applications, or of sets of database fields, or of XML infosets, in
which blocks of information contain just enough information to describe
where they fit in the schema structure.

In JAXB, the unmarshalling process supports validation of the XML
input document against the constraints defined in the source schema.
This validation process is optional, however, and there may be cases in
which you know by other means that an input document is valid and so
you may choose for performance reasons to skip validation during
unmarshalling. In any case, validation before (by means of a third-party
application) or during unmarshalling is important, because it assures that
an XML document generated during marshalling will also be valid with
respect to the source schema. Validation is discussed more later in this
chapter.

XML Output
Documents

XML content that is marshalled out to an XML document. In JAXB,
marshalling involves parsing an XML content object tree and writing out
an XML document that is an accurate representation of the original XML
document, and is valid with respect the source schema. JAXB can mar-
shal XML data to XML documents, SAX content handlers, and DOM
nodes.

Table 9–1 Core Components in a JAXB Implementation (Continued)

Component Description

368 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
The JAXB Binding Process
Figure 9–2 shows what occurs during the JAXB binding process.

Figure 9–2 Steps in the JAXB Binding Process

The general steps in the JAXB data binding process are:

1. Generate classes. An XML schema is used as input to the JAXB binding
compiler to generate JAXB classes based on that schema.

2. Compile classes. All of the generated classes, source files, and application
code must be compiled.

3. Unmarshal. XML documents written according to the constraints in the
source schema are unmarshalled by the JAXB binding framework. Note
that JAXB also supports unmarshalling XML data from sources other than
files/documents, such as DOM nodes, string buffers, SAX Sources, and so
forth.

4. Generate content tree. The unmarshalling process generates a content tree
of data objects instantiated from the generated JAXB classes; this content
tree represents the structure and content of the source XML documents.

5. Validate (optional). The unmarshalling process optionally involves valida-
tion of the source XML documents before generating the content tree.
Note that if you modify the content tree in Step 6, below, you can also use
the JAXB Validate operation to validate the changes before marshalling the
content back to an XML document.

JAXB BINDING FRAMEWORK 369
6. Process content. The client application can modify the XML data repre-
sented by the Java content tree by means of interfaces generated by the
binding compiler.

7. Marshal. The processed content tree is marshalled out to one or more XML
output documents. The content may be validated before marshalling.

To summarize, using JAXB involves two discrete sets of activities:

• Generate and compile JAXB classes from a source schema, and build an
application that implements these classes

• Run the application to unmarshal, process, validate, and marshal XML
content through the JAXB binding framework

These two steps are usually performed at separate times in two distinct phases.
Typically, for example, there is an application development phase in which
JAXB classes are generated and compiled, and a binding implementation is built,
followed by a deployment phase in which the generated JAXB classes are used
to process XML content in an ongoing “live” production setting.

Note: Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of con-
tent trees by direct invocation of the appropriate factory methods. Once created, a
content tree may be revalidated, either in whole or in part, at any time. See Sample
Application 3 (page 414) for an example of using the ObjectFactory class to
directly add content to a content tree.

JAXB Binding Framework
The JAXB binding framework is implemented in three Java packages:

• The javax.xml.bind package defines abstract classes and interfaces that
are used directly with content classes.
The javax.xml.bind package defines the Unmarshaller, Validator,
and Marshaller classes, which are auxiliary objects for providing their
respective operations.

The JAXBContext class is the entry point for a Java application into the
JAXB framework. A JAXBContext instance manages the binding relation-
ship between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation oper-
ations.

370 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
The javax.xml.bind package also defines a rich hierarchy of validation
event and exception classes for use when marshalling or unmarshalling
errors occur, when constraints are violated, and when other types of errors
are detected.

• The javax.xml.bind.util package contains utility classes that may be
used by client applications to manage marshalling, unmarshalling, and val-
idation events.

• The javax.xml.bind.helper package provides partial default implemen-
tations for some of the javax.xml.bind interfaces. Implementations of
JAXB can extend these classes and implement the abstract methods. These
APIs are not intended to be directly used by applications using JAXB
architecture.

The main package in the JAXB binding framework, javax.bind.xml, is
described in more detail below.

More About javax.xml.bind
The three core functions provided by the primary binding framework package,
javax.xml.bind, are marshalling, unmarshalling, and validation. The main cli-
ent entry point into the binding framework is the JAXBContext class.

JAXBContext provides an abstraction for managing the XML/Java binding infor-
mation necessary to implement the unmarshal, marshal and validate operations.
A client application obtains new instances of this class by means of the newIn-

stance(contextPath) method; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

The contextPath parameter contains a list of Java package names that contain
schema-derived interfaces—specifically the interfaces generated by the JAXB
binding compiler. The value of this parameter initializes the JAXBContext object
to enable management of the schema-derived interfaces. To this end, the JAXB
provider implementation must supply an implementation class containing a
method with the following signature:

public static JAXBContext createContext(String contextPath,
ClassLoader classLoader)

 throws JAXBException;

MORE ABOUT UNMARSHALLING 371
Note: The JAXB provider implementation must generate a jaxb.properties file
in each package containing schema-derived classes. This property file must contain
a property named javax.xml.bind.context.factory whose value is the name of
the class that implements the createContext API.

The class supplied by the provider does not have to be assignable to
javax.xml.bind.JAXBContext, it simply has to provide a class that implements the
createContext API. By allowing for multiple Java packages to be specified, the
JAXBContext instance allows for the management of multiple schemas at one time.

More About Unmarshalling
The Unmarshaller class in the javax.xml.bind package provides the client
application the ability to convert XML data into a tree of Java content objects.
The unmarshal method for a schema (within a namespace) allows for any global
XML element declared in the schema to be unmarshalled as the root of an
instance document. The JAXBContext object allows the merging of global ele-
ments across a set of schemas (listed in the contextPath). Since each schema in
the schema set can belong to distinct namespaces, the unification of schemas to
an unmarshalling context should be namespace-independent. This means that a
client application is able to unmarshal XML documents that are instances of any
of the schemas listed in the contextPath; for example:

JAXBContext jc = JAXBContext.newInstance(
"com.acme.foo:com.acme.bar");

Unmarshaller u = jc.createUnmarshaller();

FooObject fooObj =
(FooObject)u.unmarshal(new File("foo.xml")); // ok

BarObject barObj =
(BarObject)u.unmarshal(new File("bar.xml")); // ok

BazObject bazObj =
(BazObject)u.unmarshal(new File("baz.xml"));
// error, "com.acme.baz" not in contextPath

A client application may also generate Java content trees explicitly rather than
unmarshalling existing XML data. To do so, the application needs to have access
and knowledge about each of the schema-derived ObjectFactory classes that
exist in each of Java packages contained in the contextPath. For each schema-

372 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
derived Java class, there will be a static factory method that produces objects of
that type. For example, assume that after compiling a schema, you have a pack-
age com.acme.foo that contains a schema-derived interface named Purchase-

Order. To create objects of that type, the client application would use the
following factory method:

ObjectFactory objFactory = new ObjectFactory();

com.acme.foo.PurchaseOrder po =
objFactory.createPurchaseOrder();

Note: Because multiple ObjectFactory classes are generated when there are mul-
tiple packages on the contextPath, if you have multiple packages on the contex-

tPath, you should use the complete package name when referencing an
ObjectFactory class in one of those packages.

Once the client application has an instance of the schema-derived object, it can
use the mutator methods to set content on it.

Note: The JAXB provider implementation must generate a class in each package
that contains all of the necessary object factory methods for that package named
ObjectFactory as well as the newInstance(javaContentInterface) method.

More About Marshalling
The Marshaller class in the javax.xml.bind package provides the client appli-
cation the ability to convert a Java content tree back into XML data. There is no
difference between marshalling a content tree that is created manually using the
factory methods and marshalling a content tree that is the result an unmarshal
operation. Clients can marshal a Java content tree back to XML data to a
java.io.OutputStream or a java.io.Writer. The marshalling process can
alternatively produce SAX2 event streams to a registered ContentHandler or
produce a DOM Node object.

MORE ABOUT MARSHALLING 373
A simple example that unmarshals an XML document and then marshals it back
out is a follows:

JAXBContext jc = JAXBContext.newInstance("com.acme.foo");

// unmarshal from foo.xml
Unmarshaller u = jc.createUnmarshaller();
FooObject fooObj =

(FooObject)u.unmarshal(new File("foo.xml"));

// marshal to System.out
Marshaller m = jc.createMarshaller();
m.marshal(fooObj, System.out);

By default, the Marshaller uses UTF-8 encoding when generating XML data to
a java.io.OutputStream or a java.io.Writer. Use the setProperty API to
change the output encoding used during these marshal operations. Client appli-
cations are expected to supply a valid character encoding name as defined in the
W3C XML 1.0 Recommendation (http://www.w3.org/TR/2000/REC-xml-
20001006#charencoding) and supported by your Java Platform.

Client applications are not required to validate the Java content tree prior to call-
ing one of the marshal APIs. There is also no requirement that the Java content
tree be valid with respect to its original schema in order to marshal it back into
XML data. Different JAXB Providers can support marshalling invalid Java con-
tent trees at varying levels, however all JAXB providers must be able to marshal
a valid content tree back to XML data. A JAXB provider must throw a Marshal-

Exception when it is unable to complete the marshal operation due to invalid
content. Some JAXB providers will fully allow marshalling invalid content, oth-
ers will fail on the first validation error.

Table 9–2 shows the properties that the Marshaller class supports.

Table 9–2 Marshaller Properties

Property Description

jaxb.encoding Value must be a java.lang.String; the output
encoding to use when marshalling the XML data.
The Marshaller will use “UTF-8” by default if
this property is not specified.

http://www.w3.org/TR/2000/REC-xml-20001006#charencoding
http://www.w3.org/TR/2000/REC-xml-20001006#charencoding

374 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
More About Validation
The Validator class in the javax.xml.bind package is responsible for control-
ling the validation of content trees during runtime. When the unmarshalling pro-
cess incorporates validation and it successfully completes without any validation
errors, both the input document and the resulting content tree are guaranteed to
be valid. By contrast, the marshalling process does not actually perform valida-
tion. If only validated content trees are marshalled, this guarantees that generated
XML documents are always valid with respect to the source schema.

Some XML parsers, like SAX and DOM, allow schema validation to be dis-
abled, and there are cases in which you may want to disable schema validation to
improve processing speed and/or to process documents containing invalid or
incomplete content. JAXB supports these processing scenarios by means of the
exception handling you choose implement in your JAXB-enabled application. In
general, if a JAXB implementation cannot unambiguously complete unmarshal-
ling or marshalling, it will terminate processing with an exception.

jaxb.formatted.output Value must be a java.lang.Boolean; controls
whether or not the Marshaller will format the
resulting XML data with line breaks and indenta-
tion. A true value for this property indicates
human readable indented XML data, while a
false value indicates unformatted XML data. The
Marshaller defaults to false (unformatted) if
this property is not specified.

jaxb.schemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:schemaLoca-
tion attribute in the generated XML data. The for-
mat of the schemaLocation attribute value is
discussed in an easy to understand, non-normative
form in Section 5.6 of the W3C XML Schema Part
0: Primer and specified in Section 2.6 of the W3C
XML Schema Part 1: Structures.

jaxb.noNamespaceSchemaLocation Value must be a java.lang.String; allows the
client application to specify an xsi:noNamespac-
eSchemaLocation attribute in the generated
XML data.

Table 9–2 Marshaller Properties (Continued)

Property Description

MORE ABOUT VALIDATION 375
Note: The Validator class is responsible for managing On-Demand Validation
(see below). The Unmarshaller class is responsible for managing Unmarshal-Time
Validation during the unmarshal operations. Although there is no formal method of
enabling validation during the marshal operations, the Marshaller may detect
errors, which will be reported to the ValidationEventHandler registered on it.

A JAXB client can perform two types of validation:

• Unmarshal-Time validation enables a client application to receive informa-
tion about validation errors and warnings detected while unmarshalling
XML data into a Java content tree, and is completely orthogonal to the
other types of validation. To enable or disable it, use the Unmar-

shaller.setValidating method. All JAXB Providers are required to
support this operation.

• On-Demand validation enables a client application to receive information
about validation errors and warnings detected in the Java content tree. At
any point, client applications can call the Validator.validate method on
the Java content tree (or any sub-tree of it). All JAXB Providers are
required to support this operation.

If the client application does not set an event handler on its Validator, Unmar-
shaller, or Marshaller prior to calling the validate, unmarshal, or marshal
methods, then a default event handler will receive notification of any errors or
warnings encountered. The default event handler will cause the current operation
to halt after encountering the first error or fatal error (but will attempt to continue
after receiving warnings).

There are three ways to handle events encountered during the unmarshal, vali-
date, and marshal operations:

• Use the default event handler.

The default event handler will be used if you do not specify one via the
setEventHandler APIs on Validator, Unmarshaller, or Marshaller.

• Implement and register a custom event handler.

Client applications that require sophisticated event processing can imple-
ment the ValidationEventHandler interface and register it with the
Unmarshaller and/or Validator.

• Use the ValidationEventCollector utility.

For convenience, a specialized event handler is provided that simply col-
lects any ValidationEvent objects created during the unmarshal, vali-

376 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
date, and marshal operations and returns them to the client application as
a java.util.Collection.

Validation events are handled differently, depending on how the client applica-
tion is configured to process them. However, there are certain cases where a
JAXB Provider indicates that it is no longer able to reliably detect and report
errors. In these cases, the JAXB Provider will set the severity of the Valida-

tionEvent to FATAL_ERROR to indicate that the unmarshal, validate, or marshal
operations should be terminated. The default event handler and Validation-

EventCollector utility class must terminate processing after being notified of a
fatal error. Client applications that supply their own ValidationEventHandler

should also terminate processing after being notified of a fatal error. If not, unex-
pected behavior may occur.

XML Schemas
Because XML schemas are such an important component of the JAXB process-
ing model—and because other data binding facilities like JAXP work with DTDs
instead of schemas—it is useful to review here some basics about what XML
schemas are and how they work.

XML Schemas are a powerful way to describe allowable elements, attributes,
entities, and relationships in an XML document. A more robust alternative to
DTDs, the purpose of an XML schema is to define classes of XML documents
that must adhere to a particular set of structural and data constraints—that is, you
may want to define separate schemas for chapter-oriented books, for an online
purchase order system, or for a personnel database. In the context of JAXB, an
XML document containing data that is constrained by an XML schema is
referred to as a document instance, and the structure and data within a document
instance is referred to as a content tree.

Note: In practice, the term “document” is not always accurate, as an XML instance
document does not have to be a completely formed, selfstanding document file; it
can instead take the form of streams of data passed between applications, or of sets
of database fields, or of XML infosets in which blocks of information contain just
enough information to describe where they fit in the schema structure.

XML SCHEMAS 377
The following sample code is taken from the W3C's Schema Part 0: Primer
(http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/), and illustrates
an XML document, po.xml, for a simple purchase order.

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Mill Valley</city>
<state>CA</state>
<zip>90952</zip>

</shipTo>
<billTo country="US">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>PA</state>
<zip>95819</zip>

</billTo>
<comment>Hurry, my lawn is going wild!</comment>

<items>
<item partNum="872-AA">

<productName>Lawnmower</productName>
<quantity>1</quantity>
<USPrice>148.95</USPrice>
<comment>Confirm this is electric</comment>

</item>
<item partNum="926-AA">

<productName>Baby Monitor</productName>
<quantity>1</quantity>
<USPrice>39.98</USPrice>
<shipDate>1999-05-21</shipDate>

</item>
</items>

</purchaseOrder>

The root element, purchaseOrder, contains the child elements shipTo, billTo,
comment, and items. All of these child elements except comment contain other
child elements. The leaves of the tree are the child elements like name, street,
city, and state, which do not contain any further child elements. Elements that
contain other child elements or can accept attributes are referred to as complex
types. Elements that contain only PCDATA and no child elements are referred to as
simple types.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

378 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
The complex types and some of the simple types in po.xml are defined in the
purchase order schema below. Again, this example schema, po.xsd, is derived
from the W3C's Schema Part 0: Primer (http://www.w3.org/TR/2001/REC-
xmlschema-0-20010502/).

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN"

fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="productName"
type="xsd:string"/>

<xsd:element name="quantity">
<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

XML SCHEMAS 379
<xsd:element name="shipDate" type="xsd:date"
minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"

use="required"/>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

In this example, the schema comprises, similar to a DTD, a main or root schema
element and several child elements, element, complexType, and simpleType.
Unlike a DTD, this schema also specifies as attributes data types like decimal,
date, fixed, and string. The schema also specifies constraints like pattern

value, minOccurs, and positiveInteger, among others. In DTDs, you can
only specify data types for textual data (PCDATA and CDATA); XML schema sup-
ports more complex textual and numeric data types and constraints, all of which
have direct analogs in the Java language.

Note that every element in this schema has the prefix xsd:, which is associated
with the W3C XML Schema namespace. To this end, the namespace declaration,
xmlns:xsd="http://www.w3.org/2001/XMLSchema", is declared as an
attribute to the schema element.

Namespace support is another important feature of XML schemas because it
provides a means to differentiate between elements written against different
schemas or used for varying purposes, but which may happen to have the same
name as other elements in a document. For example, suppose you declared two
namespaces in your schema, one for foo and another for bar. Two XML docu-
ments are combined, one from a billing database and another from an shipping
database, each of which was written against a different schema. By specifying
namespaces in your schema, you can differentiate between, say, foo:address
and bar:address.

380 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Representing XML Content
This section describes how JAXB represents XML content as Java objects. Spe-
cifically, the topics in this section are as follows:

• Binding XML Names to Java Identifiers

• Java Representation of XML Schema

Binding XML Names to Java Identifiers
XML schema languages use XML names—strings that match the Name produc-
tion defined in XML 1.0 (Second Edition) (http://www.w3.org/XML/) to label
schema components. This set of strings is much larger than the set of valid Java
class, method, and constant identifiers. To resolve this discrepancy, JAXB uses
several name-mapping algorithms.

The JAXB name-mapping algorithm maps XML names to Java identifiers in a
way that adheres to standard Java API design guidelines, generates identifiers
that retain obvious connections to the corresponding schema, and is unlikely to
result in many collisions.

Refer to Chapter 10 for information about changing default XML name map-
pings. See Appendix C in the JAXB Specification for complete details about the
JAXB naming algorithm.

Java Representation of XML Schema
JAXB supports the grouping of generated classes and interfaces in Java pack-
ages. A package comprises:

• A name, which is either derived directly from the XML namespace URI,
or specified by a binding customization of the XML namespace URI

• A set of Java content interfaces representing the content models declared
within the schema

• A Set of Java element interfaces representing element declarations occur-
ring within the schema

• An ObjectFactory class containing:

http://java.sun.com/xml/downloads/jaxb.html
http://www.w3.org/XML/

BINDING XML SCHEMAS 381
• An instance factory method for each Java content interface and Java ele-
ment interface within the package; for example, given a Java content
interface named Foo, the derived factory method would be:

public Foo createFoo() throws JAXBException;

• Dynamic instance factory allocator; creates an instance of the specified
Java content interface; for example:

public Object newInstance(Class javaContentInterface)
 throws JAXBException;

• getProperty and setProperty APIs that allow the manipulation of
provider-specified properties

• Set of typesafe enum classes

• Package javadoc

Binding XML Schemas
This section describes the default XML-to-Java bindings used by JAXB. All of
these bindings can be overridden on global or case-by-case levels by means of a
custom binding declaration. The topics in this section are as follows:

• Simple Type Definitions

• Default Data Type Bindings

• Default Binding Rules Summary

See the JAXB Specification for complete information about the default JAXB
bindings.

Simple Type Definitions
A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the follow-
ing Java property attributes (common to the schema components) include:

• Base type

• Collection type, if any

• Predicate

http://java.sun.com/xml/downloads/jaxb.html

382 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
The rest of the Java property attributes are specified in the schema component
using the simple type definition.

Default Data Type Bindings
The Java language provides a richer set of data type than XML schema. Table 9–
3 lists the mapping of XML data types to Java data types in JAXB.

Table 9–3 JAXB Mapping of XML Schema Built-in Data Types

XML Schema Type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime java.util.Calendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time java.util.Calendar

DEFAULT BINDING RULES SUMMARY 383
Default Binding Rules Summary
The JAXB binding model follows the default binding rules summarized below:

• Bind the following to Java package:

• XML Namespace URI

• Bind the following XML Schema components to Java content interface:

• Named complex type

• Anonymous inlined type definition of an element declaration

• Bind to typesafe enum class:

• A named simple type definition with a basetype that derives from
“xsd:NCName” and has enumeration facets.

• Bind the following XML Schema components to a Java Element interface:

• A global element declaration to a Element interface.

• Local element declaration that can be inserted into a general content list.

• Bind to Java property:

• Attribute use

• Particle with a term that is an element reference or local element decla-
ration.

• Bind model group with a repeating occurrence and complex type defini-
tions with mixed {content type} to:

• A general content property; a List content-property that holds Java
instances representing element information items and character data
items.

xsd:date java.util.Calendar

xsd:anySimpleType java.lang.String

Table 9–3 JAXB Mapping of XML Schema Built-in Data Types (Continued)

XML Schema Type Java Data Type

384 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Customizing JAXB Bindings
The default JAXB bindings can be overridden at a global scope or on a case-by-
case basis as needed by using custom binding declarations. As described previ-
ously, JAXB uses default binding rules that can be customized by means of bind-
ing declarations made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file that is passed to
the JAXB binding compiler

Custom JAXB binding declarations also allow you to customize your generated
JAXB classes beyond the XML-specific constraints in an XML schema to
include Java-specific refinements such as class and package name mappings.

You do not need to provide a binding instruction for every declaration in your
schema to generate Java classes. For example, the binding compiler uses a gen-
eral name-mapping algorithm to bind XML names to names that are acceptable
in the Java programming language. However, if you want to use a different nam-
ing scheme for your classes, you can specify custom binding declarations to
make the binding compiler generate different names. There are many other cus-
tomizations you can make with the binding declaration, including:

• Name the package, derived classes, and methods

• Assign types to the methods within the derived classes

• Choose which elements to bind to classes

• Decide how to bind each attribute and element declaration to a property in
the appropriate content class

• Choose the type of each attribute-value or content specification

Note: Relying on the default JAXB binding behavior rather than requiring a binding
declaration for each XML Schema component bound to a Java representation makes
it easier to keep pace with changes in the source schema. In most cases, the default
rules are robust enough that a usable binding can be produced with no custom bind-
ing declaration at all.

Code examples showing how to customize JAXB bindings are provided in Chap-
ter 10.

SCOPE 385
Scope
When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.

Table 9–4 lists the four scopes for custom bindings.

Scope Inheritance
The different scopes form a taxonomy. The taxonomy defines both the inherit-
ance and overriding semantics of customization values. A customization value
defined in one scope is inherited for use in a binding declaration covered by
another scope as shown by the following inheritance hierarchy:

• A schema element in schema scope inherits a customization value defined
in global scope.

• A schema element in definition scope inherits a customization value
defined in schema or global scope.

• A schema element in component scope inherits a customization value
defined in definition, schema or global scope.

Table 9–4 Custom Binding Scopes

Scope Description

Global A customization value defined in <globalBindings> has global scope. A
global scope covers all the schema elements in the source schema and (recur-
sively) any schemas that are included or imported by the source schema.

Schema A customization value defined in <schemaBindings> has schema scope. A
schema scope covers all the schema elements in the target name space of a
schema.

Definition A customization value in binding declarations of a type definition and global
declaration has definition scope. A definition scope covers all schema elements
that reference the type definition or the global declaration.

Component A customization value in a binding declaration has component scope if the
customization value applies only to the schema element that was annotated
with the binding declaration.

386 BINDING XML SCHEMA TO JAVA CLASSES WITH JAXB
Similarly, a customization value defined in one scope can override a customiza-
tion value inherited from another scope as shown below:

• Value in schema scope overrides a value inherited from global scope.

• Value in definition scope overrides a value inherited from schema scope or
global scope.

• Value in component scope overrides a value inherited from definition,
schema or global scope.

What is Not Supported
See Section E.2, “Not Required XML Schema Concepts,” in the JAXB Specifica-
tion for the latest information about unsupported or non-required schema con-
cepts.

JAXB APIs and Tools
The JAXB APIs and tools are shipped in the jaxb-1.0 subdirectory of the Java
WSDP. This directory contains a set of sample applications, javadoc API docu-
mentation, a JAXB binding compiler (xjc), implementations of the runtime
binding framework APIs contained in the javax.xml.bind package. For instruc-
tions on using the JAXB, see Chapter 10.

http://java.sun.com/xml/downloads/jaxb.html

10
387
Using JAXB
Scott Fordin

THIS chapter provides hands-on instructions for using the Java Architecture
for XML Binding (JAXB). Specifically, this chapter provides nine sample Java
applications, each of which demonstrates and builds upon key JAXB features
and concepts. It is recommended that you follow these procedures in the order
presented.

After reading this chapter, you should feel comfortable enough with JAXB that
you can:

• Generate JAXB Java classes from an XML schema

• Use schema-derived JAXB classes to unmarshal and marshal XML con-
tent in a Java application

• Create a Java content tree from scratch using schema-derived JAXB
classes

• Validate XML content during unmarshalling and at runtime

• Customize JAXB schema-to-Java bindings

The primary goals of the basic sample applications are to highlight the core set
of JAXB functions using default settings and bindings. After familiarizing your-
self with these core features and functions, you may wish to continue with Cus-
tomizing JAXB Bindings (page 422) for instructions on using four additional
sample applications that demonstrate how to modify the default JAXB bindings.

388 USING JAXB
Note: The Purchase Order schema, po.xsd, and the Purchase Order XML file,
po.xml, used in these samples are derived from the W3C XML Schema Part 0:
Primer (http://www.w3.org/TR/xmlschema-0/), edited by David C. Fallside.

General Usage Instructions
This section provides general usage instructions for the sample applications used
in this chapter, including how to build and run the applications both manually
and using the Ant build tool, and provides details about the default schema-to-
JAXB bindings used in these examples. Specifically, the topics in this section are
as follows:

• Description

• System Requirements

• Using the Sample Applications

• Configuring and Running the Samples Manually

• Configuring and Running the Samples With Ant

• About the Schema-to-Java Bindings

• Schema-Derived JAXB Classes

Description
There are nine sample applications in this chapter; the first five demonstrate
basic JAXB concepts like ummarshalling, marshalling, and validating XML con-
tent, while the last four demonstrate various ways you can customize the binding
of XML schemas to Java objects. Each of the sample applications in this chapter
is based on a Purchase Order scenario. With the exception of Sample Applica-

http://www.w3.org/TR/xmlschema-0/

DESCRIPTION 389
tion 9, each uses an XML document, po.xml, written against an XML schema,
po.xsd.

Note: These sample applications are all located in the
$JAXB_HOME/examples/users-guide directory.

Table 10–1 Sample JAXB Application Descriptions

Sample Application
Name Description

Sample Application 1
Demonstrates how to unmarshal an XML document into a Java
content tree and access the data contained within it.

Sample Application 2 Demonstrates how to modify a Java content tree.

Sample Application 3
Demonstrates how to use the ObjectFactory class to create a
Java content tree from scratch and then marshal it to XML data.

Sample Application 4 Demonstrates how to enable validation during unmarshalling.

Sample Application 5 Demonstrates how to validate a Java content tree at runtime.

Sample Application 6
Demonstrates how to customize the default JAXB bindings by
means of inline annotations in an XML schema.

Sample Application 7
Similar to Sample Application 6, this sample illustrates alternate,
more terse bindings of XML simpleType definitions to Java
datatypes.

Sample Application 8
Illustrates how to use an external binding declarations file to pass
binding customizations for a read-only schema to the JAXB bind-
ing compiler.

Sample Application 9

Illustrates how to use customizations to resolve name conflicts
reported by the JAXB binding compiler. Additionally, this sample
illustrates how to bind a choice model group to a Java interface,
and how to manipulate a JAXB List property. It is recommended
that you first run ant fail in the application directory to see the
errors reported by the JAXB binding compiler, and then look at
binding.xjb to see how the errors were resolved. Running ant
alone uses the binding customizations to resolve the name con-
flicts while compiling the schema.

390 USING JAXB
Each sample application directory contains several base files:

• po.xsd is the XML schema you will use as input to the JAXB binding
compiler, and from which schema-derived JAXB Java classes will be gen-
erated. For Sample Applications 6 and 7, this file contains inline binding
customizations. Note that Sample Application 9 uses example.xsd rather
than po.xsd.

• po.xml is the Purchase Order XML file containing sample XML content,
and is the file you will unmarshal into a Java content tree in each example.
This file is almost exactly the same in each sample application, with minor
content differences to highlight different JAXB concepts. Note that Sam-
ple Application 9 uses example.xml rather than po.xml.

• Main.java is the main Java class for each sample application.

• build.xml is an Ant project file provided for your convenience. As shown
later in this chapter, you can generate and compile schema-derived JAXB
classes manually using standard Java and JAXB commands, or you can use
Ant to generate, compile, and run the classes automatically. The
build.xml file varies across the sample applications.

• MyDatatypeConverter.java in Sample Application 6 is a Java class used
to provide custom datatype conversions.

• binding.xjb in Sample Applications 8 and 9 is an external binding dec-
larations file that is passed to the JAXB binding compiler to customize the
default JAXB bindings.

• example.xsd in Sample Application 9 is a short schema file containing
deliberate naming conflicts, with the purpose of illustrating how to resolve
such conflicts with custom JAXB bindings.

System Requirements
The use the JAXB sample applications described here, you need Java SDK,
Standard Edition 1.3.1 or later software. Instructions are provided for using the
applications under the Solaris/Linux and Windows NT/2000/XP operating envi-
ronments. Instructions are provided for running the applications manually or
automatically using Ant, which is shipped with the JWSDP (see Building the
Examples, page xiv).

USING THE SAMPLE APPLICATIONS 391
Using the Sample Applications
As with all applications that implement schema-derived JAXB classes, as
described above, there are two distinct phases in using JAXB:

1. Generating and compiling JAXB Java classes from an XML source
schema

2. Unmarshalling, validating, processing, and marshalling XML content

In the case of these sample applications, you have a choice of performing these
steps “by hand,” or by using Ant with the build.xml project file included in each
sample application directory.

Note: It is recommended that you familiarize yourself with the manual process for
at least Sample Application 1. The manual process is similar for each of the sample
applications.

Configuring and Running the Samples
Manually
This section describes how to configure and run Sample Application 1. The
instructions for the other sample applications are essentially the same; just
change the SampleApp1 directory to the directory for the application you want to
use.

Solaris/Linux
1. Set environment variables:

export JAVA_HOME=<your J2SE installation directory>

export JWSDP_HOME=<your JWSDP1.1 installation directory>

export JAXB_HOME=$JWSDP_HOME/jaxb-1.0

export JAXB_LIBS=$JAXB_HOME/lib

export JAXP_LIBS=$JWSDP_HOME/jaxp-1.2.2/lib

export JWSDP_LIBS=$JWSDP_HOME/jwsdp-shared/lib

2. Set your PATH:

export PATH=$JAXB_HOME/bin:$JWSDP_HOME/jwsdp-shared/bin:$PATH

392 USING JAXB
3. Update your CLASSPATH:

export CLASSPATH=$JAXB_LIBS/jaxb-api.jar: \

$JAXB_LIBS/jaxb-ri.jar: \

$JAXB_LIBS/jaxb-xjc.jar: \

$JAXB_LIBS/jaxb-libs.jar: \

$JAXP_LIBS/jaxp-api.jar: \

$JAXP_LIBS/endorsed/xercesImpl.jar: \

$JAXP_LIBS/endorsed/xalan.jar: \

$JAXP_LIBS/endorsed/sax.jar: \

$JAXP_LIBS/endorsed/dom.jar: \

$JWSDP_LIBS/jax-qname.jar: \

$JWSDP_LIBS/namespace.jar:.

4. Change to the desired sample application directory.

For example, to run Sample Application 1:

cd $JAXB_HOME/examples/users-guide/SampleApp1

5. Use the xjc.sh command to generate JAXB Java classes from the source
XML schema.

$JAXB_HOME/bin/xjc.sh po.xsd -p primer.po

po.xsd is the name of the source XML schema. The -p primer.po

switch tells the JAXB compiler to put the generated classes in a Java
package named primer.po. For the purposes of this example, the package
name must be primer.po. See JAXB Compiler Options (page 396) for a
complete list of JAXB binding compiler options.

6. Generate API documentation for the application using the Javadoc tool
(optional).

$JAVA_HOME/bin/javadoc -package primer.po -sourcepath .
-d docs/api -windowtitle "Generated Interfaces for po.xsd"

7. Compile the generated JAXB Java classes.

$JAVA_HOME/bin/javac Main.java primer/po/*.java primer/
po/impl/*.java

8. Run the Main class.

$JAVA_HOME/bin/java Main

The po.xml file is unmarshalled into a Java content tree, and the XML
data in the content tree is written to System.out.

CONFIGURING AND RUNNING THE SAMPLES MANUALLY 393
Windows NT/2000/XP
1. Set environment variables:

set JAVA_HOME=<your J2SE installation directory>

set JWSDP_HOME=<your JWSDP1.1 installation directory>

set JAXB_HOME=%JWSDP_HOME%\jaxb-1.0

set JAXB_LIBS=%JAXB_HOME%\lib

set JAXP_LIBS=%JWSDP_HOME%\jaxp-1.2.2\lib

set JWSDP_LIBS=%JWSDP_HOME%\jwsdp-shared\lib

2. Set your PATH:

set PATH=%JAXB_HOME%\bin;%JWSDP_HOME%\jwsdp-shared\bin;%PATH%

3. Update your CLASSPATH:

set CLASSPATH=%JAXB_LIBS%\jaxb-api.jar;

%JAXB_LIBS%\jaxb-ri.jar;

%JAXB_LIBS%\jaxb-xjc.jar;

%JAXB_LIBS%\jaxb-libs.jar;

%JAXP_LIBS%\jaxb-api.jar;

%JAXP_LIBS%\endorsed\xercesImpl.jar;

%JAXP_LIBS%\endorsed\xalan.jar;

%JAXP_LIBS%\endorsed\sax.jar;

%JAXP_LIBS%\endorsed\dom.jar;

%JWSDP_LIBS%\jax-qname.jar;

%JWSDP_LIBS%\namespace.jar;.

The line breaks shown above are for legibility only; be sure to enter your
CLASSPATH on a single line.

4. Change to the desired sample application directory.

For example, to run Sample Application 1:

cd %JAXB_HOME%\examples\users-guide\SampleApp1

5. Use the xjc.bat command to generate JAXB Java classes from the source
XML schema.

%JAXB_HOME%\bin\xjc.bat po.xsd -p primer.po

po.xsd is the name of the source XML schema. The -p primer.po

switch tells the JAXB compiler to put the generated classes in a Java
package named primer.po. For the purposes of this example, the package

394 USING JAXB
name must be primer.po. See JAXB Compiler Options (page 396) for a
complete list of JAXB binding compiler options.

6. Generate API documentation for the application using the Javadoc tool
(optional).

%JAVA_HOME%\bin\javadoc -package primer.po -sourcepath .

-d docs\api -windowtitle "Generated Interfaces for po.xsd"

7. Compile the schema-derived JAXB Java classes.

%JAVA_HOME%\bin\javac Main.java primer\po*.java

 primer\po\impl*.java

8. Run the Main class.

%JAVA_HOME%\bin\java Main

The po.xml file is unmarshalled into a Java content tree, and the XML
data in the content tree is written to System.out.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 398). The methods
used for building and processing the Java content tree in each of the basic appli-
cations are analyzed in Basic Sample Applications (page 409).

Configuring and Running the Samples
With Ant
The build.xml file included in each sample application directory is an Ant
project file. The Apache Ant build tool is included with the Java Web Services
Developer Pack, and you can use this project to automatically perform all the
steps listed in Configuring and Running the Samples Manually (page 391). Spe-
cifically, using Ant with the included build.xml project files does the following:

1. Updates your CLASSPATH to include the necessary schema-derived JAXB
classes.

2. Runs the JAXB binding compiler to generate JAXB Java classes from the
XML source schema, po.xsd, and puts the classes in a package named
primer.po.

3. Generates API documentation from the schema-derived JAXB classes
using the Javadoc tool.

4. Compiles the schema-derived JAXB classes.

5. Runs the Main class for the sample application.

CONFIGURING AND RUNNING THE SAMPLES WITH ANT 395
As mentioned previously, it is recommended that you familiarize yourself with
the manual steps for performing these tasks for at least the first sample applica-
tion.

Solaris/Linux
1. Set environment variables:

export JAVA_HOME=<your J2SE installation directory>

export JWSDP_HOME=<your JWSDP1.1 installation directory>

export JAXB_HOME=$JWSDP_HOME/jaxb-1.0

export ANT_HOME=$JWSDP_HOME/jakarta-ant-1.5.1

2. Set your PATH:

export PATH=$JAXB_HOME/bin:$JWSDP_HOME/jwsdp-shared/bin:$PATH

3. Change to the desired sample application directory.

For example, to run Sample Application 1:

cd $JAXB_HOME/examples/users-guide/SampleApp1

4. Run Ant:

$ANT_HOME/bin/ant -emacs

5. Repeat these steps for each sample application.

Windows NT/2000/XP
1. Set environment variables:

set JAVA_HOME=<your J2SE installation directory>

set JWSDP_HOME=<your JWSDP1.1 installation directory>

set JAXB_HOME=%JWSDP_HOME%\jaxb-1.0

set ANT_HOME=%JWSDP_HOME%\jakarta-ant-1.5.1

2. Set your PATH:

set PATH=%JAXB_HOME%\bin;%JWSDP_HOME%\jwsdp-shared\bin;%PATH%

3. Change to the desired sample application directory.

For example, to run Sample Application 1:

cd %JAXB_HOME%\examples\users-guide\SampleApp1

396 USING JAXB
4. Run Ant:
%ANT_HOME%\bin\ant -emacs

5. Repeat these steps for each sample application.

The schema-derived JAXB classes and how they are bound to the source schema
is described in About the Schema-to-Java Bindings (page 398). The methods
used for building and processing the Java content tree are described in Basic
Sample Applications (page 409).

JAXB Compiler Options
The JAXB schema binding compiler is located in the <JWSDP_HOME>/jaxb-

1.0/bin directory. There are two scripts in this directory: xjc.sh

(Solaris/Linux) and xjc.bat (Windows).

Both xjc.sh and xjc.bat take the same command-line options. You can display
quick usage instructions by invoking the scripts without any options, or with the
-help switch. The syntax is as follows:

xjc [-options ...] <schema>

The xjc command-line options are listed in Table 10–2.

Table 10–2 xjc Command-Line Options

Option or
Argument Description

<schema> One or more schema files to compile.

-nv

Do not perform strict validation of the input schema(s). By default,
xjc performs strict validation of the source schema before process-
ing. Note that this does not mean the binding compiler will not per-
form any validation; it simply means that it will perform less-strict
validation.

-extension

By default, xjc strictly enforces the rules outlined in the Compatibil-
ity chapter of the JAXB Specification. Specifically, Appendix E.2
defines a set of W3C XML Schema features that are not completely
supported by JAXB v1.0. In some cases, you may be able to use
these extensions with the -extension switch. In the default (strict)
mode, you are also limited to using only the binding customizations
defined in the specification. By using the -extension switch, you
can enable the JAXB Vendor Extensions.

http://java.sun.com/xml/downloads/jaxb.html

JAXB COMPILER OPTIONS 397
The command invoked by the xjc.sh and xjc.bat scripts is equivalent to the
Java command:

$JAVA_HOME/bin/java -jar $JAXB_HOME/lib/jaxb-xjc.jar

-b <file>

Specify one or more external binding files to process (each binding
file must have it's own -b switch). The syntax of the external binding
files is extremely flexible. You may have a single binding file that
contains customizations for multiple schemas, or you can break the
customizations into multiple bindings files; for example:

xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings123.xjb
xjc schema1.xsd schema2.xsd schema3.xsd -b
bindings1.xjb -b bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the com-
mand line does not matter.

-d <dir>
By default, xjc will generate Java content classes in the current
directory. Use this option to specify an alternate output directory.
The directory must already exist; xjc will not create it for you.

-p <pkg>
Specifies the target package for schema-derived classes. This option
overrides any binding customization for package name as well as the
default package name algorithm defined in the JAXB Specification.

-host <proxyHost> Set http.proxyHost to <proxyHost>.

-port <proxyPort> Set http.proxyPort to <proxyPort>.

-classpath <arg>
Specify where to find client application class files used by the
<jxb:javaType> and <xjc:superClass> customizations.

-readOnly
Generated source files will be marked read-only. By default, xjc
does not write-protect the schema-derived source files it generates.

-help Display this help message.

Table 10–2 xjc Command-Line Options (Continued)

Option or
Argument Description

398 USING JAXB
About the Schema-to-Java Bindings
When you run the JAXB binding compiler against the po.xsd XML schema used in the
first five sample applications, the JAXB binding compiler generates a Java package
named primer.po containing eleven classes, making a total of twelve classes in each of
the first five sample applications:

Table 10–3 Schema-Derived JAXB Classes in Sample Applications 1 Through 5

Class Description

primer/po/
Comment.java

Public interface extending javax.xml.bind.Element;
binds to the global schema element named comment. Note
that JAXB generates element interfaces for all global element
declarations.

primer/po/
Items.java

Public interface that binds to the schema complexType
named Items.

primer/po/
ObjectFactory.java

Public class extending com.sun.xml.bind.DefaultJAXB-
ContextImpl; used to create instances of specified inter-
faces. For example, the ObjectFactory createComment()
method instantiates a Comment object.

primer/po/
PurchaseOrder.java

Public interface extending javax.xml.bind.Element, and
PurchaseOrderType; binds to the global schema element
named PurchaseOrder.

primer/po/
PurchaseOrderType.java

Public interface that binds to the schema complexType
named PurchaseOrderType.

primer/po/
USAddress.java

Public interface that binds to the schema complexType
named USAddress.

primer/po/impl/
CommentImpl.java

Implementation of Comment.java.

primer/po/impl/
ItemsImpl.java

Implementation of Items.java

primer/po/impl/
PurchaseOrderImpl.java

Implementation of PurchaseOrder.java

primer/po/impl/
PurchaseOrderType-
Impl.java

Implementation of PurchaseOrderType.java

ABOUT THE SCHEMA-TO-JAVA BINDINGS 399

ed)
Note: You should never directly use the generated implementation classes—that is,
*Impl.java in the <packagename>/impl directory. These classes are not directly
referenceable because the class names in this directory are not standardized by the
JAXB specification. The ObjectFactory method is the only portable means to cre-
ate an instance of a schema-derived interface. There is also an ObjectFac-

tory.newInstance(Class JAXBinterface) method that enables you to create
instances of interfaces.

These classes and their specific bindings to the source XML schema for Sample
Applications 1 through 5 are described below.

primer/po/impl/
USAddressImpl.java

Implementation of USAddress.java

Table 10–4 Schema-to-Java Bindings for Sample Applications 1 Through 5

XML Schema
JAXB
Binding

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
PurchaseOr-
der.java

<xsd:element name="comment" type="xsd:string"/>
Comment.ja-
va

<xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

PurchaseOr-
der-
Type.java

Table 10–3 Schema-Derived JAXB Classes in Sample Applications 1 Through 5 (Continu

Class Description

400 USING JAXB
<xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

USAd-
dress.java

<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1" maxOc-
curs="unbounded">

Items.java

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>

Items.Item-
Type

 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

Table 10–4 Schema-to-Java Bindings for Sample Applications 1 Through 5

XML Schema
JAXB
Binding

SCHEMA-DERIVED JAXB CLASSES 401
Schema-Derived JAXB Classes
The code for the individual classes generated by the JAXB binding compiler for
Sample Applications 1 through 5 is listed below, followed by brief explanations
of its functions. The classes listed here are:

• Comment.java

• Items.java

• ObjectFactory.java

• PurchaseOrder.java

• PurchaseOrderType.java

• USAddress.java

Comment.java
In Comment.java:

• The Comment.java class is part of the primer.po package.

• Comment is a public interface that extends javax.xml.bind.Element.

• Content in instantiations of this class bind to the XML schema element
named comment.

• The getValue() and setValue() methods are used to get and set strings
representing XML comment elements in the Java content tree.

<xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>
 </xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Table 10–4 Schema-to-Java Bindings for Sample Applications 1 Through 5

XML Schema
JAXB
Binding

402 USING JAXB
The Comment.java code looks like this:

package primer.po;

public interface Comment
 extends javax.xml.bind.Element
{

 String getValue();
 void setValue(String value);
}

Items.java
In Items.java, below:

• The Items.java class is part of the primer.po package.

• The class provides public interfaces for Items and ItemType.

• Content in instantiations of this class bind to the XML ComplexTypes
Items and its child element ItemType.

• Item provides the getItem() method.

• ItemType provides methods for:

• getPartNum();

• setPartNum(String value);

• getComment();

• setComment(java.lang.String value);

• getUSPrice();

• setUSPrice(java.math.BigDecimal value);

• getProductName();

• setProductName(String value);

• getShipDate();

• setShipDate(java.util.Calendar value);

• getQuantity();

• setQuantity(java.math.BigInteger value);

SCHEMA-DERIVED JAXB CLASSES 403
The Items.java code looks like this:

package primer.po;

public interface Items {
 java.util.List getItem();

 public interface ItemType {
 String getPartNum();
 void setPartNum(String value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 java.math.BigDecimal getUSPrice();
 void setUSPrice(java.math.BigDecimal value);
 String getProductName();
 void setProductName(String value);
 java.util.Calendar getShipDate();
 void setShipDate(java.util.Calendar value);
 java.math.BigInteger getQuantity();
 void setQuantity(java.math.BigInteger value);
 }
}

ObjectFactory.java
In ObjectFactory.java, below:

• The ObjectFactory class is part of the primer.po package.

• ObjectFactory provides factory methods for instantiating Java interfaces
representing XML content in the Java content tree.

• Method names are generated by concatenating:

• The string constant create

• If the Java content interface is nested within another interface, then the
concatenation of all outer Java class names

• The name of the Java content interface

• JAXB implementation-specific code was removed in this example to
make it easier to read.

For example, in this case, for the Java interface primer.po.Items.ItemType,
ObjectFactory creates the method createItemsItemType().

404 USING JAXB
The ObjectFactory.java code looks like this:

package primer.po;

public class ObjectFactory
 extends com.sun.xml.bind.DefaultJAXBContextImpl {

 /**
 * Create a new ObjectFactory that can be used to create
 * new instances of schema derived classes for package:
 * primer.po
 */
 public ObjectFactory() {
 super(new primer.po.ObjectFactory.GrammarInfoImpl());
 }

 /**
 * Create an instance of the specified Java content
 * interface.
 */
 public Object newInstance(Class javaContentInterface)
 throws javax.xml.bind.JAXBException
 {
 return super.newInstance(javaContentInterface);
 }

 /**
 * Get the specified property. This method can only be
 * used to get provider specific properties.
 * Attempting to get an undefined property will result
 * in a PropertyException being thrown.
 */
 public Object getProperty(String name)
 throws javax.xml.bind.PropertyException
 {
 return super.getProperty(name);
 }

 /**
 * Set the specified property. This method can only be
 * used to set provider specific properties.
 * Attempting to set an undefined property will result
 * in a PropertyException being thrown.
 */
 public void setProperty(String name, Object value)
 throws javax.xml.bind.PropertyException
 {
 super.setProperty(name, value);

SCHEMA-DERIVED JAXB CLASSES 405
 }

 /**
 * Create an instance of PurchaseOrder
 */
 public primer.po.PurchaseOrder createPurchaseOrder()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrder)
 newInstance((primer.po.PurchaseOrder.class)));
 }

 /**
 * Create an instance of ItemsItemType
 */
 public primer.po.Items.ItemType createItemsItemType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items.ItemType)
 newInstance((primer.po.Items.ItemType.class)));
 }

 /**
 * Create an instance of USAddress
 */
 public primer.po.USAddress createUSAddress()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.USAddress)
 newInstance((primer.po.USAddress.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Comment)
 newInstance((primer.po.Comment.class)));
 }

 /**
 * Create an instance of Comment
 */
 public primer.po.Comment createComment(String value)
 throws javax.xml.bind.JAXBException
 {

406 USING JAXB
 return new primer.po.impl.CommentImpl(value);
 }

 /**
 * Create an instance of Items
 */
 public primer.po.Items createItems()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.Items)
 newInstance((primer.po.Items.class)));
 }

 /**
 * Create an instance of PurchaseOrderType
 */
 public primer.po.PurchaseOrderType
createPurchaseOrderType()
 throws javax.xml.bind.JAXBException
 {
 return ((primer.po.PurchaseOrderType)
 newInstance((primer.po.PurchaseOrderType.class)));
 }
}

PurchaseOrder.java
In PurchaseOrder.java, below:

• The PurchaseOrder class is part of the primer.po package.

• PurchaseOrder is a public interface that extends javax.xml.bind.Ele-

ment and primer.po.PurchaseOrderType.

• Content in instantiations of this class bind to the XML schema element
named purchaseOrder.

The PurchaseOrder.java code looks like this:

package primer.po;

public interface PurchaseOrder
extends javax.xml.bind.Element, primer.po.PurchaseOrderType

{
}

SCHEMA-DERIVED JAXB CLASSES 407
PurchaseOrderType.java
In PurchaseOrderType.java, below:

• The PurchaseOrderType class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema child ele-
ment named PurchaseOrderType.

• PurchaseOrderType is a public interface that provides the following
methods:

• getItems();

• setItems(primer.po.Items value);

• getOrderDate();

• setOrderDate(java.util.Calendar value);

• getComment();

• setComment(java.lang.String value);

• getBillTo();

• setBillTo(primer.po.USAddress value);

• getShipTo();

• setShipTo(primer.po.USAddress value);

The PurchaseOrderType.java code looks like this:

package primer.po;

public interface PurchaseOrderType {
 primer.po.Items getItems();
 void setItems(primer.po.Items value);
 java.util.Calendar getOrderDate();
 void setOrderDate(java.util.Calendar value);
 java.lang.String getComment();
 void setComment(java.lang.String value);
 primer.po.USAddress getBillTo();
 void setBillTo(primer.po.USAddress value);
 primer.po.USAddress getShipTo();
 void setShipTo(primer.po.USAddress value);
}

408 USING JAXB
USAddress.java
In USAddress.java, below:

• The USAddress class is part of the primer.po package.

• Content in instantiations of this class bind to the XML schema element
named USAddress.

• USAddress is a public interface that provides the following methods:

• getState();

• setState(String value);

• getZip();

• setZip(java.math.BigDecimal value);

• getCountry();

• setCountry(String value);

• getCity();

• setCity(String value);

• getStreet();

• setStreet(String value);

• getName();

• setName(String value);

The USAddress.java code looks like this:

package primer.po;

public interface USAddress {
 String getState();
 void setState(String value);
 java.math.BigDecimal getZip();
 void setZip(java.math.BigDecimal value);
 String getCountry();
 void setCountry(String value);
 String getCity();
 void setCity(String value);
 String getStreet();
 void setStreet(String value);
 String getName();
 void setName(String value);
}

BASIC SAMPLE APPLICATIONS 409
Basic Sample Applications
This section describes five basic sample applications that demonstrate how to:

• Unmarshal an XML document into a Java content tree and access the data
contained within it

• Modify a Java content tree

• Use the ObjectFactory class to create a Java content tree from scratch and
then marshal it to XML data

• Perform validation during unmarshalling

• Validate a Java content tree at runtime

Sample Application 1
The purpose of Sample Application 1 is to demonstrate how to unmarshal an
XML document into a Java content tree and access the data contained within it.

1. The <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp1/Main.java class declares imports for four standard
Java classes plus three JAXB binding framework classes and the
primer.po package:

import java.io.FileInputStream
import java.io.IOException
import java.util.Iterator
import java.util.List
import javax.xml.bind.JAXBContext
import javax.xml.bind.JAXBException
import javax.xml.bind.Unmarshaller
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.

Unmarshaller u = jc.createUnmarshaller();

410 USING JAXB
4. po.xml is unmarshalled into a Java content tree comprising objects gener-
ated by the JAXB binding compiler into the primer.po package.

PurchaseOrder po =
 (PurchaseOrder)u.unmarshal(
 new FileInputStream("po.xml"));

5. A simple string is printed to system.out to provide a heading for the pur-
chase order invoice.

System.out.println("Ship the following items to: ");

6. get and display methods are used to parse XML content in preparation
for output.

USAddress address = po.getShipTo();
 displayAddress(address);
 Items items = po.getItems();
 displayItems(items);

7. Basic error handling is implemented.

} catch(JAXBException je) {
 je.printStackTrace();
} catch(IOException ioe) {
 ioe.printStackTrace();

8. The USAddress branch of the Java tree is walked, and address information
is printed to system.out.

public static void displayAddress(USAddress address) {
 // display the address
 System.out.println("\t" + address.getName());
 System.out.println("\t" + address.getStreet());
 System.out.println("\t" + address.getCity() +
 ", " + address.getState() +
 " " + address.getZip());
 System.out.println("\t" + address.getCountry() +
 "\n");
}

SAMPLE APPLICATION 2 411
9. The Items list branch is walked, and item information is printed to sys-

tem.out.

public static void displayItems(Items items) {
 // the items object contains a List of
 //primer.po.ItemType objects
 List itemTypeList = items.getItem();

10.Walking of the Items branch is iterated until all items have been printed.

for(Iterator iter = itemTypeList.iterator(); iter.hasNext();)
{

Items.ItemType item = (Items.ItemType)iter.next();
System.out.println("\t" + item.getQuantity() +

" copies of \"" + item.getProductName() +
"\"");

}

Sample Output
Running java Main for this sample application produces the following output:

Ship the following items to:
 Alice Smith
 123 Maple Street
 Cambridge, MA 12345
 US

 5 copies of "Nosferatu - Special Edition (1929)"
 3 copies of "The Mummy (1959)"
 3 copies of "Godzilla and Mothra: Battle for Earth/Godzilla
 vs. King Ghidora"

Sample Application 2
The purpose of Sample Application 2 is to demonstrate how to modify a Java
content tree.

1. The <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp2/Main.java class declares imports for three standard

412 USING JAXB
Java classes plus four JAXB binding framework classes and primer.po

package:

import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and po.xml is unmarshalled.

Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =
 (PurchaseOrder)u.unmarshal(
 new FileInputStream("po.xml"));

4. set methods are used to modify information in the address branch of the
content tree.

USAddress address = po.getBillTo();
address.setName("John Bob");
address.setStreet("242 Main Street");
address.setCity("Beverly Hills");
address.setState("CA");
address.setZip(new BigDecimal("90210"));

5. A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE
);
m.marshal(po, System.out);

SAMPLE APPLICATION 2 413
Sample Output
Running java Main for this sample application produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="1999-10-20-05:00">
<shipTo country="US">
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo country="US">
<name>John Bob</name>
<street>242 Main Street</street>
<city>Beverly Hills</city>
<state>CA</state>
<zip>90210</zip>
</billTo>
<items>
<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity>
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>Godzilla and Mothra: Battle for Earth/Godzilla vs.
 King Ghidora</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

414 USING JAXB
Sample Application 3
The purpose of Sample Application 3 is to demonstrate how to use the
ObjectFactory class to create a Java content tree from scratch and then marshal
it to XML data.

1. The <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp3/Main.java class declares imports for four standard
Java classes plus three JAXB binding framework classes and the
primer.po package:

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Calendar;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. The ObjectFactory class is used to instantiate a new empty PurchaseOr-

der object.

// creating the ObjectFactory
ObjectFactory objFactory = new ObjectFactory();

// create an empty PurchaseOrder
PurchaseOrder po = objFactory.createPurchaseOrder();

4. Per the constraints in the po.xsd schema, the PurchaseOrder object
requires a value for the orderDate attribute. To satisfy this constraint, the
orderDate is set using the standard Calendar.getInstance() method
from java.util.Calendar.

po.setOrderDate(Calendar.getInstance());

SAMPLE APPLICATION 3 415
5. The ObjectFactory is used to instantiate new empty USAddress objects,
and the required attributes are set.

USAddress shipTo = createUSAddress("Alice Smith",
"123 Maple Street",
"Cambridge",
"MA",
"12345");

po.setShipTo(shipTo);

USAddress billTo = createUSAddress("Robert Smith",
"8 Oak Avenue",
"Cambridge",
"MA",
"12345");

po.setBillTo(billTo);

6. The ObjectFactory class is used to instantiate a new empty Items object.

Items items = objFactory.createItems();

7. A get method is used to get a reference to the ItemType list.

List itemList = items.getItem();

8. ItemType objects are created and added to the Items list.

itemList.add(createItemType(
 "Nosferatu - Special Edition (1929)",
 new BigInteger("5"),
 new BigDecimal("19.99"),
 null,
 null,
 "242-NO"));
itemList.add(createItemType("The Mummy (1959)",
 new BigInteger("3"),
 new BigDecimal("19.98"),
 null,
 null,
 "242-MU"));
itemList.add(createItemType(
 "Godzilla and Mothra: Battle for Earth/Godzilla vs. King
Ghidora",
 new BigInteger("3"),

416 USING JAXB
 new BigDecimal("27.95"),
 null,
 null,
 "242-GZ"));

9. The items object now contains a list of ItemType objects and can be added
to the po object.

po.setItems(items);

10.A Marshaller instance is created, and the updated XML content is mar-
shalled to system.out. The setProperty API is used to specify output
encoding; in this case formatted (human readable) XML format.

Marshaller m = jc.createMarshaller();
m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
m.marshal(po, System.out);

11.An empty USAddress object is created and its properties set to comply
with the schema constraints.

public static USAddress createUSAddress(
 ObjectFactory objFactory,
 String name, String street,
 String city,
 String state,
 String zip)
 throws JAXBException {

 // create an empty USAddress objects
 USAddress address = objFactory.createUSAddress();

 // set properties on it
 address.setName(name);
 address.setStreet(street);
 address.setCity(city);
 address.setState(state);
 address.setZip(new BigDecimal(zip));

 // return it
 return address;
 }

SAMPLE APPLICATION 3 417
12.Similar to the previous step, an empty ItemType object is created and its
properties set to comply with the schema constraints.

public static Items.ItemType createItemType(ObjectFactory
objFactory,
 String productName,
 BigInteger quantity,
 BigDecimal price,
 String comment,
 Calendar shipDate,
 String partNum)
 throws JAXBException {

 // create an empty ItemType object
 Items.ItemType itemType =
 objFactory.createItemsItemType();

 // set properties on it
 itemType.setProductName(productName);
 itemType.setQuantity(quantity);
 itemType.setUSPrice(price);
 itemType.setComment(comment);
 itemType.setShipDate(shipDate);
 itemType.setPartNum(partNum);

 // return it
 return itemType;
 }

Sample Output
Running java Main for this sample application produces the following output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<purchaseOrder orderDate="2002-09-24-05:00">
<shipTo>
<name>Alice Smith</name>
<street>123 Maple Street</street>
<city>Cambridge</city>
<state>MA</state>
<zip>12345</zip>
</shipTo>
<billTo>
<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Cambridge</city>
<state>MA</state>

418 USING JAXB
<zip>12345</zip>
</billTo>
<items>
<item partNum="242-NO">
<productName>Nosferatu - Special Edition (1929)</productName>
<quantity>5</quantity
<USPrice>19.99</USPrice>
</item>
<item partNum="242-MU">
<productName>The Mummy (1959)</productName>
<quantity>3</quantity>
<USPrice>19.98</USPrice>
</item>
<item partNum="242-GZ">
<productName>Godzilla and Mothra: Battle for Earth/Godzilla vs.
King Ghidora</productName>
<quantity>3</quantity>
<USPrice>27.95</USPrice>
</item>
</items>
</purchaseOrder>

Sample Application 4
The purpose of Sample Application 4 is to demonstrate how to enable validation
during unmarshalling (Unmarshal-Time Validation). Note that JAXB provides
functions for validation during unmarshalling but not during marshalling. Vali-
dation is explained in more detail in More About Validation (page 374).

1. The <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp4/Main.java class declares imports for three standard
Java classes plus seven JAXB binding framework classes and the
primer.po package:

import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

SAMPLE APPLICATION 4 419
2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created.

Unmarshaller u = jc.createUnmarshaller();

4. The default JAXB Unmarshaller ValidationEventHandler is enabled to
send to validation warnings and errors to system.out. The default config-
uration causes the unmarshal operation to fail upon encountering the first
validation error.

u.setValidating(true);

5. An attempt is made to unmarshal po.xml into a Java content tree. For the
purposes of this example, the po.xml contains a deliberate error.

PurchaseOrder po =
(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml"

));

6. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(UnmarshalException ue) {
System.out.println("Caught UnmarshalException");
 } catch(JAXBException je) {
 je.printStackTrace();
 } catch(IOException ioe) {
 ioe.printStackTrace();

Sample Output
Running java Main for this sample application produces the following output:

DefaultValidationEventHandler: [ERROR]: "-1" does not satisfy
the "positiveInteger" type
Caught UnmarshalException

420 USING JAXB
Sample Application 5
The purpose of Sample Application 5 is to demonstrate how to validate a Java
content tree at runtime (On-Demand Validation). At any point, client applica-
tions can call the Validator.validate method on the Java content tree (or any
subtree of it). All JAXB Providers are required to support this operation. Valida-
tion is explained in more detail in More About Validation (page 374).

1. The <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp5/Main.java class declares imports for five standard
Java classes plus nine JAXB Java classes and the primer.po package:

import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.UnmarshalException;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.ValidationEvent;
import javax.xml.bind.ValidationException;
import javax.xml.bind.Validator;
import javax.xml.bind.util.ValidationEventCollector;
import primer.po.*;

2. A JAXBContext instance is created for handling classes generated in
primer.po.

JAXBContext jc = JAXBContext.newInstance("primer.po");

3. An Unmarshaller instance is created, and a valid po.xml document is
unmarshalled into a Java content tree. Note that po.xml is valid at this
point; invalid data will be added later in this example.

Unmarshaller u = jc.createUnmarshaller();
PurchaseOrder po =

(PurchaseOrder)u.unmarshal(new FileInputStream("po.xml")
);

SAMPLE APPLICATION 5 421
4. A reference is obtained for the first item in the purchase order.

Items items = po.getItems();
List itemTypeList = items.getItem();
Items.ItemType item = (Items.ItemType)itemTypeList.get(0);

5. Next, the item quantity is set to an invalid number. When validation is
enabled later in this example, this invalid quantity will throw an exception.

item.setQuantity(new BigInteger("-5"));

Note: If @enableFailFastCheck was "true" and the optional FailFast validation
method was supported by an implementation, a TypeConstraintException would
be thrown here. Note that the JAXB implementation does not support the FailFast

feature. Refer to the JAXB Specification for more information about FailFast val-
idation.

6. A Validator instance is created, and the content tree is validated. Note
that the Validator class is responsible for managing On-Demand valida-
tion, whereas the Unmarshaller class is responsible for managing Unmar-
shal-Time validation during unmarshal operations.

Validator v = jc.createValidator();
boolean valid = v.validateRoot(po);
System.out.println(valid);

7. The default validation event handler processes a validation error, generates
output to system.out, and then an exception is thrown.

} catch(ValidationException ue) {
 System.out.println("Caught ValidationException");
} catch(JAXBException je) {
 je.printStackTrace();
} catch(IOException ioe) {
 ioe.printStackTrace();
}

http://java.sun.com/xml/downloads/jaxb.html

422 USING JAXB
Sample Output
Running java Main for this sample application produces the following output:

DefaultValidationEventHandler: [ERROR]: "-5" does not satisfy
the "positiveInteger" type
Caught ValidationException

Customizing JAXB Bindings
The remainder of this chapter describes several sample applications that build on
the concepts demonstrated in Sample Applications 1, 2, 3, 4, and 5, above.

The goal of this section is to illustrate how to customize JAXB bindings by
means of custom binding declarations made in either of two ways:

• As annotations made inline in an XML schema

• As statements in an external file passed to the JAXB binding compiler

Unlike the examples in Basic Sample Applications (page 409), which focus on
the Java code in the respective Main.java class files, the sample applications
here focus on customizations made to the XML schema before generating the
schema-derived Java binding classes.

Note: Although JAXB binding customizations must currently be made by hand, it
is envisioned that a tool/wizard may eventually be written by Sun or a third party to
make this process more automatic and easier in general. One of the goals of the
JAXB technology is to standardize the format of binding declarations, thereby mak-
ing it possible to create customization tools and to provide a standard interchange
format between JAXB implementations.

This section just begins to scratch the surface of customizations you can make to
JAXB bindings and validation methods. For more information, please refer to
the JAXB Specification (http://java.sun.com/xml/downloads/jaxb.html).

http://java.sun.com/xml/downloads/jaxb.html

WHY CUSTOMIZE? 423
Why Customize?
In most cases, the default bindings generated by the JAXB binding compiler will
be sufficient to meet your needs. There are cases, however, in which you may
want to modify the default bindings. Some of these include:

• Creating API documentation for the schema-derived JAXB packages,
classes, methods and constants; by adding custom Javadoc tool annota-
tions to your schemas, you can explain concepts, guidelines, and rules spe-
cific to your implementation.

• Providing semantically meaningful customized names for cases that the
default XML name-to-Java identifier mapping cannot handle automati-
cally; for example:

• To resolve name collisions (as described in Appendix C.2.1 of the JAXB
Specification). Note that the JAXB binding compiler detects and reports
all name conflicts.

• To provide names for typesafe enumeration constants that are not legal
Java identifiers; for example, enumeration over integer values.

• To provide better names for the Java representation of unnamed model
groups when they are bound to a Java property or class.

• To provide more meaningful package names than can be derived by
default from the target namespace URI.

• Overriding default bindings; for example:

• Specify that a model group should be bound to a class rather than a list.

• Specify that a fixed attribute can be bound to a Java constant.

• Override the specified default binding of XML Schema built-in
datatypes to Java datatypes. In some cases, you might want to introduce
an alternative Java class that can represent additional characteristics of
the built-in XML Schema datatype.

Customization Overview
This section explains some core JAXB customization concepts:

• Inline and External Customizations

• Scope, Inheritance, and Precedence

• Customization Syntax

• Customization Namespace Prefix

424 USING JAXB
Inline and External Customizations
Customizations to the default JAXB bindings are made in the form of binding
declarations passed to the JAXB binding compiler. These binding declarations
can be made in either of two ways:

• As inline annotations in a source XML schema

• As declarations in an external binding customizations file

For some people, using inline customizations is easier because you can see your
customizations in the context of the schema to which they apply. Conversely,
using an external binding customization file enables you to customize JAXB
bindings without having to modify the source schema, and enables you to easily
apply customizations to several schema files at once.

Note: You can combine the two types of customizations—for example, you could
include a reference to an external binding customizations file in an inline annota-
tion—but you cannot declare both an inline and external customization on the same
schema element.

Each of these types of customization is described in more detail below.

Inline Customizations
Customizations to JAXB bindings made by means of inline binding declarations
in an XML schema file take the form of <xsd:appinfo> elements embedded in
schema <xsd:annotation> elements (xsd: is the XML schema namespace pre-
fix, as defined in W3C XML Schema Part 1: Structures). The general form for
inline customizations is shown below.

<xs:annotation>
 <xs:appinfo>
 .
 .

binding declarations
 .
 .
 </xs:appinfo>
</xs:annotation>

Customizations are applied at the location at which they are declared in the
schema. For example, a declaration at the level of a particular element would
apply to that element only. Note that the XMLSchema namespace prefix must be

CUSTOMIZATION OVERVIEW 425
used with the <annotation> and <appinfo> declaration tags. In the example
above, xs: is used as the namespace prefix, so the declarations are tagged
<xs:annotation> and <xs:appinfo>.

External Binding Customization Files
Customizations to JAXB bindings made by means of an external file containing
binding declarations take the general form shown below.

<jxb:bindings schemaLocation = "xs:anyURI">
 <jxb:bindings node = "xs:string">*
 <binding declaration>
 <jxb:bindings>
</jxb:bindings>

• schemaLocation is a URI reference to the remote schema

• node is an XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated.

For example, the first schemaLocation/node declaration in a JAXB binding dec-
larations file specifies the schema name and the root schema node:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

A subsequent schemaLocation/node declaration, say for a simpleType element
named ZipCodeType in the above schema, would take the form:

<jxb:bindings node=”//xs:simpleType[@name=’ZipCodeType’]”>

Binding Customization File Format
Binding customization files should be straight ASCII text. The name or exten-
sion does not matter, although a typical extension, used in this chapter, is.xjb.

Passing Customization Files to the JAXB Binding
Compiler
Customization files containing binding declarations are passed to the JAXB
Binding compiler, xjc, using the following syntax:

xjc -b <file> <schema>

where <file> is the name of binding customization file, and <schema> is the
name of the schema(s) you want to pass to the binding compiler.

426 USING JAXB
You can have a single binding file that contains customizations for multiple sche-
mas, or you can break the customizations into multiple bindings files; for exam-
ple:

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings123.xjb

xjc schema1.xsd schema2.xsd schema3.xsd -b bindings1.xjb -b
bindings2.xjb -b bindings3.xjb

Note that the ordering of schema files and binding files on the command line
does not matter, although each binding customization file must be preceded by
its own -b switch on the command line.

For more information about xjc compiler options in general, see JAXB Com-
piler Options (page 396).

Restrictions for External Binding Customizations
There are several rules that apply to binding declarations made in an external
binding customization file that do not apply to similar declarations made inline
in a source schema:

• The binding customization file must begin with the jxb:bindings

version attribute, plus attributes for the JAXB and XMLSchema
namespaces:

<jxb:bindings version="1.0"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

• The remote schema to which the binding declaration applies must be iden-
tified explicitly in XPath notation by means of a jxb:bindings declaration
specifying schemaLocation and node attributes:

• schemaLocation – URI reference to the remote schema

• node – XPath 1.0 expression that identifies the schema node within
schemaLocation to which the given binding declaration is associated;
in the case of the initial jxb:bindings declaration in the binding cus-
tomization file, this node is typically "/xs:schema"

CUSTOMIZATION OVERVIEW 427
For information about XPath syntax, see XML Path Language, James
Clark and Steve DeRose, eds., W3C, 16 November 1999. Available at
http://www.w3.org/TR/1999/REC-xpath-19991116.

• Similarly, individual nodes within the schema to which customizations are
to be applied must be specified using XPath notation; for example:

<jxb:bindings node="//xs:complexType[@name='USAddress']">

In such cases, the customization is applied to the node by the binding
compiler as if the declaration was embedded inline in the node’s
<xs:appinfo> element.

To summarize these rules, the external binding element <jxb:bindings> is only
recognized for processing by a JAXB binding compiler in three cases:

• When its parent is an <xs:appinfo> element

• When it is an ancestor of another <jxb:bindings> element

• When it is root element of a document—an XML document that has a
<jxb:bindings> element as its root is referred to as an external binding
declaration file

Scope, Inheritance, and Precedence
Default JAXB bindings can be customized or overridden at four different levels,
or scopes, as described in Table 9–4.

Figure 10–1 illustrates the inheritance and precedence of customization declara-
tions. Specifically, declarations towards the top of the pyramid inherit and super-
sede declarations below them. For example, Component declarations inherit
from and supersede Definition declarations; Definition declarations inherit and
supersede Schema declarations; and Schema declarations inherit and supersede
Global declarations.

http://www.w3.org/TR/1999/REC-xpath-19991116

428 USING JAXB
Figure 10–1 Customization Scope Inheritance and Precedence

Customization Syntax
The syntax for the four types of JAXB binding declarations, as well as the syntax
for the XML-to-Java datatype binding declarations and the customization
namespace prefix are described below.

• Global Binding Declarations
• Schema Binding Declarations
• Class Binding Declarations
• Property Binding Declarations
• <javaType> Binding Declarations
• Typesafe Enumeration Binding Declarations
• <javadoc> Binding Declarations
• Customization Namespace Prefix

CUSTOMIZATION OVERVIEW 429
Global Binding Declarations
Global scope customizations are declared with <globalBindings>. The syntax
for global scope customizations is as follows:

<globalBindings>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIsSetMethod= "true" | "false" | "1" | "0"]
[enableFailFastCheck = "true" | "false" | "1" | "0"]
[choiceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharInWord"]
[typesafeEnumBase = "typesafeEnumBase"]
[typesafeEnumMemberName = "generateName" | "generateError"]
[enableJavaNamingConventions = "true" | "false" | "1" | "0"]
[bindingStyle = "elementBinding" | "modelGroupBinding"]
[<javaType> ... </javaType>]*

</globalBindings>

• collectionType can be either indexed or any fully qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty can be either true, false, 1, or 0.
The default value is false.

• generateIsSetMethod can be either true, false, 1, or 0. The default
value is false.

• enableFailFastCheck can be either true, false, 1, or 0. If enableFail-
FastCheck is true or 1 and the JAXB implementation supports this
optional checking, type constraint checking is performed when setting a
property. The default value is false. Please note that the JAXB implemen-
tation does not support failfast validation.

• choiceContentProperty can be either true, false, 1, or 0. The default
value is false. choiceContentProperty is not relevant when the bind-

ingStyle is elementBinding. Therefore, if bindingStyle is specified as
elementBinding, then the choiceContentProperty must result in an
invalid customization.

• underscoreBinding can be either asWordSeparator or asCharInWord.
The default value is asWordSeparator.

• enableJavaNamingConventions can be either true, false, 1, or 0. The
default value is true.

• typesafeEnumBase can be a list of QNames, each of which must resolve
to a simple type definition. The default value is xs:NCName. See Typesafe
Enumeration Binding Declarations (page 434) for information about

430 USING JAXB
localized mapping of simpleType definitions to Java typesafe enum

classes.

• typesafeEnumMemberName can be either generateError or generate-

Name. The default value is generateError.

• bindingStyle can be either elementBinding, or modelGroupBinding.
The default value is elementBinding.

• <javaType> can be zero or more javaType binding declarations. See <jav-
aType> Binding Declarations (page 432) for more information.

<globalBindings> declarations are only valid in the annotation element of the
top-level schema element. There can only be a single instance of a <globalBi-

ndings> declaration in any given schema or binding declarations file. If one
source schema includes or imports a second source schema, the <globalBind-

ings> declaration must be declared in the first source schema.

Schema Binding Declarations
Schema scope customizations are declared with <schemaBindings>. The syntax
for schema scope customizations is:

<schemaBindings>
[<package> package </package>]
[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]
[<javadoc> ... </javadoc>]

</package>

<nameXmlTransform>
[<typeName [suffix="suffix"]
 [prefix="prefix"] />]
[<elementName [suffix="suffix"]
 [prefix="prefix"] />]
[<modelGroupName [suffix="suffix"]
 [prefix="prefix"] />]
[<anonymousTypeName [suffix="suffix"]
 [prefix="prefix"] />]

</nameXmlTransform>

As shown above, <schemaBinding> declarations include two subcomponents:

• <package>...</package> specifies the name of the package and, if
desired, the location of the API documentation for the schema-derived
classes.

CUSTOMIZATION OVERVIEW 431
• <nameXmlTransform>...</nameXmlTransform> specifies customiza-
tions to be applied.

Class Binding Declarations
The <class> binding declaration enables you to customize the binding of a
schema element to a Java content interface or a Java Element interface. <class>
declarations can be used to customize:

• A name for a schema-derived Java interface

• An implementation class for a schema-derived Java content interface.

The syntax for <class> customizations is:

<class [name = "className"]
 [implClass= "implClass"] >
 [<javadoc> ... </javadoc>]
</class>

• name is the name of the derived Java interface. It must be a legal Java inter-
face name and must not contain a package prefix. The package prefix is
inherited from the current value of package.

• implClass is the name of the implementation class for className and
must include the complete package name.

• The <javadoc> element specifies the Javadoc tool annotations for the
schema-derived Java interface. The string entered here must use CDATA or
< to escape embedded HTML tags.

Property Binding Declarations
The <property> binding declaration enables you to customize the binding of an
XML schema element to its Java representation as a property. The scope of cus-
tomization can either be at the definition level or component level depending
upon where the <property> binding declaration is specified.

The syntax for <property> customizations is:

<property[name = "propertyName"]
[collectionType = "propertyCollectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"]
[generateIsSetMethod= "true" | "false" | "1" | "0"]
[enableFailFastCheck="true" | "false" | "1" | "0"]
[<baseType> ... </baseType>]
[<javadoc> ... </javadoc>]

</property>

432 USING JAXB
<baseType>
<javaType> ... </javaType>

</baseType>

• name defines the customization value propertyName; it must be a legal
Java identifier.

• collectionType defines the customization value propertyCollection-

Type, which is the collection type for the property. propertyCollection-
Type if specified, can be either indexed or any fully-qualified class name
that implements java.util.List.

• fixedAttributeAsConstantProperty defines the customization value
fixedAttributeAsConstantProperty. The value can be either true,
false, 1, or 0.

• generateIsSetMethod defines the customization value of generateIs-
SetMethod. The value can be either true, false, 1, or 0.

• enableFailFastCheck defines the customization value enableFail-

FastCheck. The value can be either true, false, 1, or 0. Please note that
the JAXB implementation does not support failfast validation.

• <javadoc> customizes the Javadoc tool annotations for the property’s get-
ter method.

<javaType> Binding Declarations
The <javaType> declaration provides a way to customize the translation of
XML datatypes to and from Java datatypes. XML provides more datatypes than
Java, and so the <javaType> declaration lets you specify custom datatype bind-
ings when the default JAXB binding cannot sufficiently represent your schema.

The target Java datatype can be a Java built-in datatype or an application-specific
Java datatype. If an application-specific datatype is used as the target, your
implementation must also provide parse and print methods for unmarshalling
and marshalling data. To this end, the JAXB specification supports a
parseMethod and printMethod:

• The parseMethod is called during unmarshalling to convert a string from
the input document into a value of the target Java datatype.

• The printMethod is called during marshalling to convert a value of the tar-
get type into a lexical representation.

CUSTOMIZATION OVERVIEW 433
If you prefer to define your own datatype conversions, JAXB defines a static
class, DatatypeConverter, to assist in the parsing and printing of valid lexical
representations of the XML Schema built-in datatypes.

The syntax for the <javaType> customization is:

<javaType name=" javaType"
 [xmlType=" xmlType"]
 [hasNsContext = “true” | “false”]
 [parseMethod=" parseMethod"]
 [printMethod=" printMethod"]>

• name is the Java datatype to which xmlType is to be bound.

• xmlType is the name of the XML Schema datatype to which javaType is
to bound; this attribute is required when the parent of the <javaType> dec-
laration is <globalBindings>.

• parseMethod is the name of the parse method to be called during unmar-
shalling.

• printMethod is the name of the print method to be called during marshal-
ling.

• hasNsContext allows a namespace context to be specified as a second
parameter to a print or a parse method; can be either true, false, 1, or 0.
By default, this attribute is false, and in most cases you will not need to
change it.

The <javaType> declaration can be used in:

• A <globalBindings> declaration

• An annotation element for simple type definitions, GlobalBindings, and
<basetype> declarations.

• A <property> declaration.

See MyDatatypeConverter Class (page 441) for an example of how <javaType>

declarations and the DatatypeConverterInterface interface are implemented
in a custom datatype converter class.

434 USING JAXB
Typesafe Enumeration Binding Declarations
The typesafe enumeration declarations provide a localized way to map XML
simpleType elements to Java typesafe enum classes. There are two types of
typesafe enumeration declarations you can make:

• <typesafeEnumClass> lets you map an entire simpleType class to type-

safe enum classes.

• <typesafeEnumMember> lets you map just selected members of a simple-
Type class to typesafe enum classes.

In both cases, there are two primary limitations on this type of customization:

• Only simpleType definitions with enumeration facets can be customized
using this binding declaration.

• This customization only applies to a single simpleType definition at a
time. To map sets of similar simpleType definitions on a global level, use
the typesafeEnumBase attribute in a <globalBindings> declaration, as
described Global Binding Declarations (page 429).

The syntax for the <typesafeEnumClass> customization is:

<typesafeEnumClass[name = "enumClassName"]
[<typesafeEnumMember> ... </typesafeEnumMember>]*
[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

• name must be a legal Java Identifier, and must not have a package prefix.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
class.

• You can have zero or more <typesafeEnumMember> declarations embed-
ded in a <typesafeEnumClass> declaration.

The syntax for the <typesafeEnumMember> customization is:

<typesafeEnumMember name = "enumMemberName">
[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]
</typesafeEnumMember>

• name must always be specified and must be a legal Java identifier.

• value must be the enumeration value specified in the source schema.

• <javadoc> customizes the Javadoc tool annotations for the enumeration
constant.

CUSTOMIZATION OVERVIEW 435
For inline annotations, the <typesafeEnumClass> declaration must be specified
in the annotation element of the <simpleType> element. The <typesafeEnum-

Member> must be specified in the annotation element of the enumeration mem-
ber. This allows the enumeration member to be customized independently from
the enumeration class.

For information about typesafe enum design patterns, see the sample chapter of
Joshua Bloch’s Effective Java Programming on the Java Developer Connection.

<javadoc> Binding Declarations
The <javadoc> declaration lets you add custom Javadoc tool annotations to
schema-derived JAXB packages, classes, interfaces, methods, and fields. Note
that <javadoc> declarations cannot be applied globally—that is, they are only
valid as a sub-elements of other binding customizations.

The syntax for the <javadoc> customization is:

<javadoc>
Contents in Javadoc<\b> format.

</javadoc>

or

<javadoc>
<<![CDATA[
Contents in Javadoc<\b> format
]]>

</javadoc>

Note that documentation strings in <javadoc> declarations applied at the pack-
age level must contain <body> open and close tags; for example:

<jxb:package name="primer.myPo">
<jxb:javadoc><![CDATA[<body>Package level documentation

for generated package primer.myPo.</body>]]>
</jxb:javadoc>
 </jxb:package>

Customization Namespace Prefix
All standard JAXB binding declarations must be preceded by a namespace prefix
that maps to the JAXB namespace URI (http://java.sun.com/xml/ns/jaxb).
For example, in this sample, jxb: is used. To this end, any schema you want to

436 USING JAXB
customize with standard JAXB binding declarations must include the JAXB
namespace declaration and JAXB version number at the top of the schema file.
For example, in po.xsd for Sample Application 6, the namespace declaration is
as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

A binding declaration with the jxb namespace prefix would then take the form:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings binding declarations />
 <jxb:schemaBindings>
 .
 .

binding declarations
 .
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Note that in this example, the globalBindings and schemaBindings declara-
tions are used to specify, respectively, global scope and schema scope customi-
zations. These customization scopes are described in more detail in Scope,
Inheritance, and Precedence (page 427).

Sample Application 6
Sample Application 6 illustrates some basic customizations made by means of
inline annotations to an XML schema named po.xsd. In addition, this sample
implements a custom datatype converter class, MyDatatypeConverter.java,
which illustrates print and parse methods in the <javaType> customization for
handling custom datatype conversions.

To summarize this example:

1. po.xsd is an XML schema containing inline binding customizations.

2. MyDatatypeConverter.java is a Java class file that implements print and
parse methods specified by <javaType> customizations in po.xsd.

SAMPLE APPLICATION 6 437
3. Main.java is the primary class file in Sample Application 6, which uses
the schema-derived classes generated by the JAXB compiler.

Key customizations in this sample, and the custom MyDatatypeConverter.java

class, are described in more detail below.

• Customized Schema

• Global Binding Declarations

• Global Binding Declarations

• Schema Binding Declarations

• Class Binding Declarations

• Property Binding Declarations

• MyDatatypeConverter Class

Customized Schema
The customized schema used in SampleApp6 is in the file <JWSDP_HOME>/jaxb-

1.0/examples/users-guide/SampleApp6/po.xsd. The customizations are in
the <xsd:annotation> tags.

Global Binding Declarations
The code below shows the globalBindings declarations in po.xsd:

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xsd:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>

In this example, all values are set to the defaults except for collectionType.

• Setting collectionType to java.util.Vector specifies that all lists in
the generated implementation classes should be represented internally as
vectors. Note that the class name you specify for collectionType must
implement java.util.List and be callable by newInstance.

438 USING JAXB
• Setting fixedAttributeAsConstantProperty to true indicates that all
fixed attributes should be bound to Java constants. By default, fixed
attributes are just mapped to either simple or collection property, which
ever is more appropriate.

• Please note that the JAXB implementation does not support the enable-

FailFastCheck attribute.

• If typesafeEnumBase to xsd:string it would be a global way to specify
that all simple type definitions deriving directly or indirectly from
xsd:string and having enumeration facets should be bound by default to
a typesafe enum. If typesafeEnumBase is set to an empty string, "", no
simple type definitions would ever be bound to a typesafe enum class by
default. The value of typesafeEnumBase can be any atomic simple type
definition except xsd:boolean and both binary types.

Note: Using typesafe enums enables you to map schema enumeration values to Java
constants, which in turn makes it possible to do compares on Java constants rather
than string values.

Schema Binding Declarations
The following code shows the schema binding declarations in po.xsd:

<jxb:schemaBindings>
 <jxb:package name="primer.myPo">
 <jxb:javadoc>
 <![CDATA[<body> Package level documentation for generated
package primer.myPo.
 </body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
 </jxb:schemaBindings>

• <jxb:package name="primer.myPo"/> specifies the primer.myPo as the
package in which the schema-derived classes should be generated.

• <jxb:nameXmlTransform> specifies that all generated Java element inter-
faces should have Element appended to the generated names by default.
For example, when the JAXB compiler is run against this schema, the ele-

SAMPLE APPLICATION 6 439
ment interfaces CommentElement and PurchaseOrderElement will be
generated. By contrast, without this customization, the default binding
would instead generate Comment and PurchaseOrder.

This customization is useful if a schema uses the same name in different
symbol spaces; for example, in global element and type definitions. In
such cases, this customization enables you to resolve the collision with
one declaration rather than having to individually resolve each collision
with a separate binding declaration.

• <jxb:javadoc> specifies customized Javadoc tool annotations for the
primer.myPo package. Note that, unlike the <javadoc> declarations at the
class level, below, the opening and closing <body> tags must be included
when the <javadoc> declaration is made at the package level.

Class Binding Declarations
The following code shows the class binding declarations in po.xsd:

<xsd:complexType name="PurchaseOrderType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:class name="POType">
 <jxb:javadoc>

A Purchase Order consists of addresses
and items.
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .
 .
</xsd:complexType>

The Javadoc tool annotations for the schema-derived POType class will contain
the description "A Purchase Order consists of addresses

and items." The < is used to escape the opening bracket on the HTML
tags.

Note: When a <class> customization is specified in the appinfo element of a com-

plexType definition, as it is here, the complexType definition is bound to a Java con-
tent interface.

440 USING JAXB
Later in po.xsd, another <javadoc> customization is declared at this class level,
but this time the HTML string is escaped with CDATA:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:class>
 <jxb:javadoc>
 <![CDATA[First line of documentation for a
USAddress.]]>
 </jxb:javadoc>
 </jxb:class>
 </xsd:appinfo>
 </xsd:annotation>

Note: If you want to include HTML markup tags in a <jaxb:javadoc> customiza-
tion, you must enclose the data within a CDATA section or escape all left angle brack-
ets using <. See XML 1.0 2nd Edition for more information
(http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect).

Property Binding Declarations
Of particular interest here is the generateIsSetMethod customization, which
causes two additional property methods, isSetQuantity and unsetQuantity, to
be generated. These methods enable a client application to distinguish between
schema default values and values occurring explicitly within an instance docu-
ment.

For example, in po.xsd:

<xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity" default="10">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:property generateIsSetMethod="true"/>
 </xsd:appinfo>
 </xsd:annotation>
 .
 .

http://www.w3.org/TR/2000/REC-xml-20001006#sec-cdata-sect

SAMPLE APPLICATION 6 441
 .
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>

The @generateIsSetMethod applies to the quantity element, which is bound
to a property within the Items.ItemType interface. unsetQuantity and
isSetQuantity methods are generated in the Items.ItemType interface.

MyDatatypeConverter Class
The purpose of the <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp6/MyDatatypeConverter class, shown below, is to provide a
way to customize the translation of XML datatypes to and from Java datatypes
by means of a <javaType> customization.

package primer;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

 public static short parseIntegerToShort(String value) {
BigInteger result = DatatypeConverter.parseInteger(value);
return (short)(result.intValue());

 }

 public static String printShortToInteger(short value) {
 BigInteger result = BigInteger.valueOf(value);
 return DatatypeConverter.printInteger(result);
 }

 public static int parseIntegerToInt(String value) {
BigInteger result = DatatypeConverter.parseInteger(value);
return result.intValue();

 }

 public static String printIntToInteger(int value) {
 BigInteger result = BigInteger.valueOf(value);
 return DatatypeConverter.printInteger(result);
 }
};

442 USING JAXB
The following code shows how the MyDatatypeConverter class is referenced in
a <javaType> declaration in po.xsd:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
parseMethod="primer.MyDatatypeConverter.parseIntegerToInt"
printMethod="primer.MyDatatypeConverter.printIntTo Integer" />
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

In this example, the jxb:javaType binding declaration overrides the default
JAXB binding of this type to java.math.BigInteger. For the purposes of Sam-
ple Application 6, the restrictions on ZipCodeType—specifically that legal US
ZIP codes are limited to five digits—make it so all valid values can easily fit
within the Java primitive datatype int. Note also that, because <jxb:javaType

name="int"/> is declared within ZipCodeType, the customization applies to all
JAXB properties that reference this simpleType definition, including the getZip
and setZip methods.

Sample Application 7
Sample Application is very similar to Sample Application 6. As with Sample
Application 6, the customizations in Sample Application 7 are made by means
inline binding declarations in the XML schema for the application, po.xsd.

The global, schema, and package, and most of the class customizations for Sam-
ple Applications 6 and 7 are identical. Where Sample Application 7 differs from
Sample Application 6 is in the parseMethod and printMethod used for convert-
ing XML data to the Java int datatype.

SAMPLE APPLICATION 8 443
Specifically, rather than using methods in the custom MyDataTypeConverter

class to perform these datatype conversions, Sample Application 7 uses the built-
in methods provided by javax.xml.bind.DatatypeConverter:

<xsd:simpleType name="ZipCodeType">
 <xsd:annotation>
 <xsd:appinfo>
 <jxb:javaType name="int"
 parseMethod="javax.xml.bind.DatatypeConverter.parseInt"
 printMethod="javax.xml.bind.DatatypeConverter.printInt"/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="10000"/>
 <xsd:maxInclusive value="99999"/>
 </xsd:restriction>
</xsd:simpleType>

Sample Application 8
Sample Application 8 is identical to Sample Application 7, except that the bind-
ing declarations in Sample Application 8 are made by means of an external bind-
ing declarations file rather than inline in the source XML schema.

The binding customization file used in Sample Application 8 is
<JWSDP_HOME>/jaxb-1.0/examples/users-guide/SampleApp8/bind-

ing.xjb.

This section compares the customization declarations in bindings.xjb with the
analogous declarations used in the XML schema, po.xsd, in Sample Application
7. The two sets of declarations achieve precisely the same results.

• JAXB Version, Namespace, and Schema Attributes

• Global and Schema Binding Declarations

• Class Declarations

444 USING JAXB
JAXB Version, Namespace, and Schema
Attributes
All JAXB binding declarations files must begin with:

• JAXB version number

• Namespace declarations

• Schema name and node

The version, namespace, and schema declarations in bindings.xjb are as fol-
lows:

<jxb:bindings version="1.0"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <jxb:bindings schemaLocation="po.xsd" node="/xs:schema">
 .

<binding_declarations>
 .
 </jxb:bindings>
<!-- schemaLocation="po.xsd" node="/xs:schema" -->
</jxb:bindings>

JAXB Version Number
An XML file with a root element of <jaxb:bindings> is considered an external
binding file. The root element must specify the JAXB version attribute with
which its binding declarations must comply; specifically the root <jxb:bind-
ings> element must contain either a <jxb:version> declaration or a version

attribute. By contrast, when making binding declarations inline, the JAXB ver-
sion number is made as attribute of the <xsd:schema> declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 jxb:version="1.0">

Namespace Declarations
As shown in JAXB Version, Namespace, and Schema Attributes (page 444), the
namespace declarations in the external binding declarations file include both the
JAXB namespace and the XMLSchema namespace. Note that the prefixes used
in this example could in fact be anything you want; the important thing is to con-
sistently use whatever prefixes you define here in subsequent declarations in the
file.

SAMPLE APPLICATION 8 445
Schema Name and Schema Node
The fourth line of the code in JAXB Version, Namespace, and Schema
Attributes (page 444) specifies the name of the schema to which this binding
declarations file will apply, and the schema node at which the customizations
will first take effect. Subsequent binding declarations in this file will reference
specific nodes within the schema, but this first declaration should encompass the
schema as a whole; for example, in bindings.xjb:

<jxb:bindings schemaLocation="po.xsd" node="/xs:schema">

Global and Schema Binding Declarations
The global schema binding declarations in bindings.xjb are the same as those
in po.xsd for Sample Application 7. The only difference is that because the dec-
larations in po.xsd are made inline, you need to embed them in <xs:appinfo>

elements, which are in turn embedded in <xs:annotation> elements. Embed-
ding declarations in this way is unnecessary in the external bindings file.

<jxb:globalBindings
 fixedAttributeAsConstantProperty="true"
 collectionType="java.util.Vector"
 typesafeEnumBase="xs:NCName"
 choiceContentProperty="false"
 typesafeEnumMemberName="generateError"
 bindingStyle="elementBinding"
 enableFailFastCheck="false"
 generateIsSetMethod="false"
 underscoreBinding="asCharInWord"/>
<jxb:schemaBindings>
 <jxb:package name="primer.myPo">

<jxb:javadoc><![CDATA[<body>Package level documentation
for generated package primer.myPo.</body>]]>
 </jxb:javadoc>
 </jxb:package>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

446 USING JAXB
By comparison, the syntax used in po.xsd for Sample Application 7 is:

<xsd:annotation>
 <xsd:appinfo>
 <jxb:globalBindings
 .

<binding_declarations>
 .
 <jxb:schemaBindings>
 .

<binding_declarations>
 .
 </jxb:schemaBindings>
 </xsd:appinfo>
</xsd:annotation>

Class Declarations
The class-level binding declarations in bindings.xjb differ from the analogous
declarations in po.xsd for Sample Application 7 in two ways:

• As with all other binding declarations in bindings.xjb, you do not need to
embed your customizations in schema <xsd:appinfo> elements.

• You must specify the schema node to which the customization will be
applied. The general syntax for this type of declaration is:

<jxb:bindings node="//<node_type>[@name='<node_name>']">

For example, the following code shows binding declarations for the complex-

Type named USAddress.

<jxb:bindings node="//xs:complexType[@name='USAddress']">
 <jxb:class>
 <jxb:javadoc><![CDATA[First line of documentation for a
USAddress.]]></jxb:javadoc>
 </jxb:class>

 <jxb:bindings node=".//xs:element[@name='name']">
 <jxb:property name="toName"/>
 </jxb:bindings>

 <jxb:bindings node=".//xs:element[@name='zip']">
 <jxb:property name="zipCode"/>
 </jxb:bindings>
</jxb:bindings>
<!-- node="//xs:complexType[@name='USAddress']" -->

SAMPLE APPLICATION 9 447
Note in this example that USAddress is the parent of the child elements name and
zip, and therefore a </jxb:bindings> tag encloses the bindings declarations
for the child elements as well as the class-level javadoc declaration.

Sample Application 9
Sample Application 9 illustrates how to resolve name conflicts—that is, places
in which a declaration in a source schema uses the same name as another decla-
ration in that schema (namespace collisions), or places in which a declaration
uses a name that does translate by default to a legal Java name.

Note: Many name collisions can occur because XSD Part 1 introduces six unique
symbol spaces based on type, while Java only has only one. There is a symbols
space for type definitions, elements, attributes, and group definitions. As a result, a
valid XML schema can use the exact same name for both a type definition and a glo-
bal element declaration.

For the purposes of this sample application, it is recommended that you run the
ant fail command in the Sample Application 9 directory to display the error
output generated by the xjc compiler. The XML schema for Sample Application
9, example.xsd, contains deliberate name conflicts.

In addition to illustrating name conflicts, Sample Application 9 shows how to:

• Bind a choice model group to its own interface

• Add elements to a List property using java.util.List.add

Like Sample Application 8, Sample Application 9 uses an external binding dec-
larations file, binding.xjb, to define the JAXB binding customizations.

• The example.xsd Schema

• Looking at the Conflicts

• Output From ant fail

• The binding.xjb Declarations File

• Resolving the Conflicts in example.xsd

• Customizing a choice Model Group

• Adding Elements to a List Property

448 USING JAXB
The example.xsd Schema
The XML schema, <JWSDP_HOME>/jaxb-1.0/examples/users-

guide/SampleApp9/example.xsd, used in Sample Application 9 illustrates
common name conflicts encountered when attempting to bind XML names to
unique Java identifiers in a Java package. The schema declarations that result in
name conflicts are highlighted in bold below.

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”
 xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
 jxb:version=”1.0”>

 <xs:element name=”Class” type=”xs:int”/>
 <xs:element name=”FooBar” type=”FooBar”/>
 <xs:complexType name=”FooBar”>
 <xs:sequence>
 <xs:element name=”foo” type=”xs:int”/>
 <xs:element ref=”Class”/>
 <xs:choice>
 <xs:element name=”phoneNumber” type=”xs:string”/>
 <xs:element name=”speedDial” type=”xs:int”/>
 </xs:choice>
 <xs:element name=”listOfChoices” type=”ListOfChoices”/>

 <xs:element name=”zip” type=”xs:integer”/>
 </xs:sequence>

<xs:attribute name=”zip” type=”xs:string”/>
 </xs:complexType>

 <xs:complexType name=”ListOfChoices”>
 <xs:choice maxOccurs=”unbounded”>
 <xs:element name=”bool” type=”xs:boolean”/>
 <xs:element name=”comment” type=”xs:string”/>
 <xs:element name=”value” type=”xs:int”/>
 </xs:choice>
 </xs:complexType>
</xs:schema>

Looking at the Conflicts
The first conflict in example.xsd is the declaration of the element name Class:

<xs:element name=”Class” type=”xs:int”/>

SAMPLE APPLICATION 9 449
Class is a reserved word in Java, and while it is legal in the XML schema lan-
guage, it cannot be used as a name for a schema-derived class generated by
JAXB.

When this schema is run against the JAXB binding compiler with the ant fail

command, the following error message is returned:

[xjc] [ERROR] Attempt to create a property having the same name
as the reserved word "Class". [xjc] line 6 of example.xsd

The second conflict is that there are an element and a complexType that both use
the name Foobar:

<xs:element name=”FooBar” type=”FooBar”/>
<xs:complexType name=”FooBar”>

In this case, the error messages returned are:

[xjc] [ERROR] A property with the same name "Zip" is generated
from more than one schema component. [xjc] line 22 of
example.xsd
[xjc] [ERROR] (Relevant to above error) another one is generated
from this schema component. [xjc] line 20 of example.xsd

The third conflict is that there are an element and an attribute both named
zip:

<xs:element name=”zip” type=”xs:integer”/>
<xs:attribute name=”zip” type=”xs:string”/>

The error messages returned here are:

[xjc] [ERROR] A property with the same name "Zip" is generated
from more than one schema component. [xjc] line 22 of
example.xsd
[xjc] [ERROR] (Relevant to above error) another one is generated
from this schema component. [xjc] line 20 of example.xsd

450 USING JAXB
Output From ant fail
Here is the complete output returned by running ant fail in the Sample Appli-
cation 9 directory:

[echo] Compiling the schema w/o external binding file (name
collision errors expected)...
[xjc] Compiling file:/C:/Documents and Settings/mama/
jwsdp-1.1/jaxb-1.0/examples/users-guide/SampleApp9/example.xsd
[xjc] [ERROR] Attempt to create a property having the same name
as the reserved word "Class".
[xjc] line 6 of example.xsd
[xjc] [ERROR] A property with the same name "Zip" is generated
from more than one schema component.
[xjc] line 22 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is generated
from this schema component.
[xjc] line 20 of example.xsd

[xjc] [ERROR] A class/interface with the same name
"generated.FooBar" is already in use.
[xjc] line 9 of example.xsd
[xjc] [ERROR] (Relevant to above error) another one is generated
from here.
[xjc] line 23 of example.xsd

The binding.xjb Declarations File
The <JWSDP_HOME>/jaxb-1.0/examples/users-guide/SampleApp9/bind-

ing.xjb binding declarations file resolves the conflicts in examples.xsd by
means of several customizations.

Resolving the Conflicts in example.xsd
The first conflict in example.xsd, using the Java reserved name Class for an
element name, is resolved in binding.xjb with the <class> and <property>

declarations on the schema element node Class:

<jxb:bindings node="//xs:element[@name='Class']">
 <jxb:class name="Clazz"/>
 <jxb:property name="Clazz"/>
</jxb:bindings>

SAMPLE APPLICATION 9 451
The second conflict in example.xsd, the namespace collision between the ele-

ment FooBar and the complexType FooBar, is resolved in binding.xjb by
using a <nameXmlTransform> declaration at the <schemaBindings> level to
append the suffix Element to all element definitions.

This customization handles the case where there are many name conflicts due to
systemic collisions between two symbol spaces, usually named type definitions
and global element declarations. By appending a suffix or prefix to every Java
identifier representing a specific XML symbol space, this single customization
resolves all name collisions:

<jxb:schemaBindings>
 <jxb:package name="example"/>
 <jxb:nameXmlTransform>
 <jxb:elementName suffix="Element"/>
 </jxb:nameXmlTransform>
</jxb:schemaBindings>

The third conflict in example.xsd, the namespace collision between the ele-

ment zip and the attribute zip, is resolved in binding.xjb by mapping the
attribute zip to property named zipAttribute:

<jxb:bindings node=".//xs:attribute[@name='zip']">
 <jxb:property name="zipAttribute"/>
</jxb:bindings>

Running ant in the SampleApp9 directory will pass the customizations in bind-

ing.xjb to the xjc binding compiler, which will then resolve the conflicts in
example.xsd in the schema-derived Java classes.

Customizing a choice Model Group
The binding.xjb binding declarations file also demonstrates a way to override
the default derived names for choice model groups in example.xsd by means of
<jxb:class> and <jxb:property> declarations:

<jxb:bindings node="./xs:sequence/xs:choice">
 <jxb:class name="MyChoices"/>
 <jxb:property name="choices"/>
</jxb:bindings>

<jxb:bindings

452 USING JAXB
node="//xs:complexType[@name='ListOfChoices']/xs:choice">
 <jxb:class name="MultipleChoice"/>
 <jxb:property name="ChoiceList"/>
</jxb:bindings>

This customization results in the choice model group being bound to its own
content interface. For example, given the following choice model group:

<xs:choice>
 <xs:element name="bool" type="xs:boolean"/>
 <xs:element name="comment" type="xs:string"/>
 <xs:element name="value" type="xs:int’/>
</xs:choice>

the customization shown above causes JAXB to generate the following Java
class:

/**
 * Java content class for model group.
 */
 public interface MultipleChoice {
 int getValue();
 void setValue(int value);

 java.lang.String getComment();
 void setComment(java.lang.String value);

 boolean isBool();
 void setBool(boolean value);

 Object getContent();
 }

Calling getContent returns the current value of the Choice content. The setters
of this choice are just like radio buttons; setting one unsets the previously set
one. This class represents the data representing the choice.

SAMPLE APPLICATION 9 453
Adding Elements to a List Property
Sample Application 9 demonstrates how to use methods in java.util.List to
add elements to an XML schema choice list. This is a three-step model:

1. The choice list is defined in an XML schema; for example, in exam-

ple.xsd, a complexType named ListOfChoices is defined:

<xs:complexType name="ListOfChoices">
 <xs:choice maxOccurs="unbounded">
 <xs:element name="bool" type="xs:boolean"/>
 <xs:element name="comment" type="xs:string"/>
 <xs:element name="value" type="xs:int"/>
 </xs:choice>
</xs:complexType>

2. Next, binding declarations are used to customize the binding of the choice
list to a Java class and property; for example in binding.xjb:

<jxb:bindings
node="//xs:complexType[@name='ListOfChoices']/xs:choice">
 <jxb:class name="MultipleChoice"/>
 <jxb:property name="ChoiceList"/>
 </jxb:bindings>

3. Finally, the schema-derived method for a JAXB list property results in the
getter being generated. Modifications to this list are made using the stan-
dard java.util.List API; in this example java.util.List.add method
is being called. For example, in Main.java, the main Java class file for
Sample Application 9:

ListOfChoices loc= fb.getListOfChoices();
List lst = loc.getChoiceList();

ObjectFactory of = new example.ObjectFactory();
ListOfChoices.MultipleChoice choice =
of.createListOfChoicesMultipleChoice();

choice.setComment("This is a program added comment");
lst.add(choice);

choice = of.createListOfChoicesMultipleChoice();
choice.setBool(true);
lst.add(choice);

454 USING JAXB
choice = of.createListOfChoicesMultipleChoice();
choice.setValue(100);
lst.add(choice);

11
455
Building Web Services
With JAX-RPC

Dale Green

JAX-RPC stands for Java API for XML-based RPC. It’s an API for building
Web services and clients that used remote procedure calls (RPC) and XML.
Often used in a distributed client/server model, an RPC mechanism enables cli-
ents to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based protocol
such as SOAP. The SOAP specification defines envelope structure, encoding
rules, and a convention for representing remote procedure calls and responses.
These calls and responses are transmitted as SOAP messages over HTTP. In this
release, JAX-RPC relies on SOAP 1.1 and HTTP 1.1.

Although JAX-RPC relies on complex protocols, the API hides this complexity
from the application developer. On the server side, the developer specifies the
remote procedures by defining methods in an interface written in the Java pro-
gramming language. The developer also codes one or more classes that imple-
ment those methods. Client programs are also easy to code. A client creates a
proxy, a local object representing the service, and then simply invokes methods
on the proxy.

With JAX-RPC, clients and Web services have a big advantage—the platform
independence of the Java programming language. In addition, JAX-RPC is not
restrictive: a JAX-RPC client can access a Web service that is not running on the
Java platform and vice versa. This flexibility is possible because JAX-RPC uses
technologies defined by the World Wide Web Consortium (W3C): HTTP, SOAP,

456 BUILDING WEB SERVICES WITH JAX-RPC
and the Web Service Description Language (WSDL). WSDL specifies an XML
format for describing a service as a set of endpoints operating on messages.

If you’re new to the Java API for XML-based RPC (JAX-RPC), this chapter is
the place to start. After briefly describing JAX-RPC, the chapter shows you how
to build a simple Web service and client. For advanced users, the chapter contin-
ues to focus on examples by presenting code listings and step-by-step instruc-
tions for creating dynamic clients.

A Simple Example: HelloWorld
This example shows you how to use JAX-RPC to create a Web service named
HelloWorld. A remote client of the HelloWorld service can invoke the say-

Hello method, which accepts a string parameter and then returns a string.

HelloWorld at Runtime
Figure 11–1 shows a simplified view of the HelloWorld service after it’s been
deployed. Here’s a more detailed description of what happens at runtime:

1. To call a remote procedure, the HelloClient program invokes a method
on a stub, a local object that represents the remote service.

2. The stub invokes routines in the JAX-RPC runtime system.

3. The runtime system converts the remote method call into a SOAP message
and then transmits the message as an HTTP request.

4. When the server receives the HTTP request, the JAX-RPC runtime system
extracts the SOAP message from the request and translates it into a method
call.

5. The JAX-RPC runtime system invokes the method on the tie object.

6. The tie object invokes the method on the implementation of the Hel-

loWorld service.

7. The runtime system on the server converts the method’s response into a
SOAP message and then transmits the message back to the client as an
HTTP response.

8. On the client, the JAX-RPC runtime system extracts the SOAP message
from the HTTP response and then translates it into a method response for
the HelloClient program.

HELLOWORLD AT RUNTIME 457
Figure 11–1 The HelloWorld Example at Runtime

The application developer only provides the top layers in the stacks depicted by
Figure 11–1. Table 11–1 shows where the layers originate.

Table 11–1 Who (or What) Provides the Layers

Layer Source

HelloClient Program
HelloWorld Service (definition interface
and implementation class)

Provided by the application developer

Stubs
Generated by the wscompile tool, which is
run by the application developer

Ties
Generated by the wsdeploy tool, which is run
by the application developer

JAX-RPC Runtime
System

Included with the Java WSDP

458 BUILDING WEB SERVICES WITH JAX-RPC
HelloWorld Files
To create a service with JAX-RPC, an application developer needs to provide a
few files. For the HelloWorld example, these files are in the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello directory:

• HelloIF.java - the service definition interface

• HelloImpl.java - the service definition implementation class, it imple-
ments the HelloIF interface

• HelloClient.java - the remote client that contacts the service and then
invokes the sayHello method

• config.xml - a configuration file read by the wscompile tool

• jaxrpc-ri.xml - a configuration file read by the wsdeploy tool

• web.xml - a deployment descriptor for the Web component (a servlet) that
dispatches to the service

Setting Up
First, you must set the PATH environment variable so that it includes these direc-
tories:

<JWSDP_HOME>/bin
<JWSDP_HOME>/jwsdp-shared/bin
<JWSDP_HOME>/jaxrpc-1.0.3/bin
<JWSDP_HOME>/jakarta-ant-1.5.1/bin

Next, if you haven’t already done so, follow these instructions in the chapter
Getting Started With Tomcat:

• Creating the Build Properties File (page 71)

• Starting Tomcat (page 80)

Building and Deploying the Service
The basic steps for developing a JAX-RPC Web service are as follows.

1. Code the service definition interface and implementation class.

2. Compile the service definition code of step 1.

3. Package the code in a WAR file.

../examples/jaxrpc/hello/HelloIF.java
../examples/jaxrpc/hello/HelloImpl.java
../examples/jaxrpc/hello/HelloClient.java

BUILDING AND DEPLOYING THE SERVICE 459
4. Generate the ties and the WSDL file.

5. Deploy the service.

The sections that follow describe each of these steps in more detail.

Coding the Service Definition Interface and
Implementation Class
A service definition interface declares the methods that a remote client may
invoke on the service. The interface must conform to a few rules:

• It extends the java.rmi.Remote interface.

• It must not have constant declarations, such as public final static.

• The methods must throw the java.rmi.RemoteException or one of its
subclasses. (The methods may also throw service-specific exceptions.)

• Method parameters and return types must be supported JAX-RPC types.
See the section Types Supported By JAX-RPC (page 467).

In this example, the service definition interface is HelloIF.java:

package hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extends Remote {
 public String sayHello(String s) throws RemoteException;
}

In addition to the interface, you’ll need to code the class that implements the
interface. In this example, the implementation class is called HelloImpl:

package hello;

public class HelloImpl implements HelloIF {

 public String message =“Hello“;

 public String sayHello(String s) {
 return message + s;
 }
}

460 BUILDING WEB SERVICES WITH JAX-RPC
Compiling the Service Definition Code
To compile HelloIF.java and HelloImpl.java, go to the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello directory and type
the following:

ant compile-server

This command places the resulting class files in the build/shared subdirectory.

Packaging the WAR File
To create the WAR file that contains the service code, type these commands:

ant setup-web-inf
ant package

The setup-web-inf target copies the class and XML files to the build/WEB-INF
subdirectory. The package target runs the jar command and bundles the files
into a WAR file named dist/hello-portable.war. This WAR file is not ready
for deployment because it does not contain the tie classes. You’ll learn how to
create a deployable WAR file in the next section. The hello-portable.war con-
tains the following files:

WEB-INF/classes/hello/HelloIF.class
WEB-INF/classes/hello/HelloImpl.class
WEB-INF/jaxrpc-ri.xml
WEB-INF/web.xml

The class files were created by the compile-server target shown in the previous
section. The web.xml file is the deployment descriptor for the Web application
that implements the service. Unlike the web.xml file, the jaxrpc-ri.xml file is
not part of the specifications and is implementation-specific. The jaxrpc-

ri.xml file for this example follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<webServices
 xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/dd”
 version=”1.0”
 targetNamespaceBase=”http://com.test/wsdl”
 typeNamespaceBase=”http://com.test/types”
 urlPatternBase=”/ws”>

BUILDING AND DEPLOYING THE SERVICE 461
 <endpoint
 name=”MyHello”
 displayName=”HelloWorld Service”
 description=”A simple web service”
 interface=”hello.HelloIF”
 implementation=”hello.HelloImpl”/>

 <endpointMapping
 endpointName=”MyHello”
 urlPattern=”/hello”/>

</webServices>

Several of the webServices attributes, such as targetNamespaceBase, are used
in the WSDL file, which you’ll create in the next section. (WSDL files can be
complex and are not discussed in this tutorial. See Further
Information, page 481.) Note that the urlPattern value (/hello) is part of the
service’s URL, which is described in the section Verifying the
Deployment, page 462).

For more information about the the jaxrpc-ri.xml file, see the section, The
jaxrpc-ri.xml File (page 478). If you are an advanced user, you may want to
examine the XML Schema file: <JWSDP_HOME>/docs/tuto-

rial/examples/jaxrpc/common/jax-rpc-ri-dd.xsd.

Generating the Ties and the WSDL File
To generate the ties and the WSDL file, type the following:

ant process-war

This command runs the wsdeploy tool as follows:

wsdeploy -tmpdir build/wsdeploy-generated
-o dist/hello-deployable.war dist/hello-portable.war

This command runs the wsdeploy tool, which performs these tasks:

• Reads the dist/hello-portable.war file as input

• Gets information from the jaxrpc-ri.xml file that’s inside the hello-

portable.war file

• Generates the tie classes for the service

• Generates a WSDL file named MyHello.wsdl

462 BUILDING WEB SERVICES WITH JAX-RPC
• Packages the tie classes, the Hello.wsdl file, and the contents of hello-
portable.war file into a deployable WAR file named dist/hello-

jaxrpc.war

The -tmpdir option specifies the directory where wsdeploy stores the files that it
generates, including the WSDL file, tie classes, and intermediate source code
files. If you specify the -keep option, these files are not deleted.

There are several ways to access the WSDL file generated by wsdeploy:

• Run wsdeploy with the -keep option and locate the WSDL file in the direc-
tory specified by the -tmpdir option.

• Unpack (jar -x) the WAR file output by wsdeploy and locate the WSDL
file in the WEB-INF directory.

• Deploy and verify the service as described in the following sections. A link
to the WSDL file is on the HTML page of the URL shown in Verifying the
Deployment (page 462).

Note that the wsdeploy tool does not deploy the service; instead, it creates a
WAR file that is ready for deployment. In the next section, you will deploy the
service in the hello-jaxrpc.war file that was created by wsdeploy.

For more information about wsdeploy, see the section, The wsdeploy
Tool (page 477).

Deploying the Service
To deploy the service, type the following:

ant deploy

For subsequent deployments , run ant redeploy as described in the section Iter-
ative Development (page 466).

Verifying the Deployment
To verify that the service has been successfully deployed, open a browser win-
dow and specify the service endpoint’s URL:

http://localhost:8080/hello-jaxrpc/hello

BUILDING AND RUNNING THE CLIENT 463
The browser should display a page titled Web Services, which lists the port name
MyHello with a status of ACTIVE. This page also has a URL to the service’s
WSDL file.

The hello-jaxrpc portion of the URL is the context path of the servlet that
implements the HelloWorld service. This portion corresponds to the prefix of
the hello-jaxrpc.war file. The /hello string of the URL matches the value of
the urlPattern attribute of the jaxrpc-ri.xml file. Note that the forward slash
in the /hello value of urlPattern is required. For a full listing of the jaxrpc-

ri.xml file, see Packaging the WAR File (page 460).

Undeploying the Service
At this point in the tutorial, do not undeploy the service. When you are finished
with this example, you can undeploy the service by typing this command:

ant undeploy

Building and Running the Client
To develop a JAX-RPC client, you follow these steps:

1. Generate the stubs.

2. Code the client.

3. Compile the client code.

4. Package the client classes into a JAR file.

5. Run the client.

The following sections describe each of these steps.

Generating the Stubs
Before generating the stubs, be sure to install the Hello.wsdl file according to
the instructions in Deploying the Service (page 462). To create the stubs, go to
the <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello directory and
type the following:

ant generate-stubs

464 BUILDING WEB SERVICES WITH JAX-RPC
This command runs the wscompile tool as follows:

wscompile -gen:client -d build/client
-classpath build/shared config.xml

The -gen:client option instructs wscompile to generate client-side classes
such as stubs. The -d option specifies the destination directory of the generated
files. For more information, see the section, The wscompile Tool (page 474).

The wscompile tool generates files based on the information it reads from the
Hello.wsdl and config.xml files. The Hello.wsdl file was intalled on Tomcat
when the service was deployed. The location of Hello.wsdl is specified by the
<wsdl> element of the config.xml file, which follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<configuration
 xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/config”>
 <wsdl location=
 ”http://localhost:8080/hello-jaxrpc/hello?WSDL”
 packageName=”hello”/>
</configuration>

The tasks performed by the wscompile tool depend on the contents of the con-

fig.xml file. For more information about the config.xml file, see the section,
Configuration File (page 476). Advanced users may want to examine the XML
Schema file: <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/common/jax-

rpc-ri-config.xsd.

Coding the Client
HelloClient is a stand-alone program that calls the sayHello method of the
HelloWorld service. It makes this call through a stub, a local object which acts
as a proxy for the remote service. Because the stubs is created before runtime (by
wscompile), it is usually called a static stub.

To create the stub, HelloClient invokes a private method named createProxy.
Note that the code in this method is implementation-specific and might not be
portable because it relies on the MyHello_Impl object. (The MyHello_Impl class
was generated by wscompile in the preceding section.) After it creates the stub,
the client program casts the stub to the type HelloIF, the service definition inter-
face.

BUILDING AND RUNNING THE CLIENT 465
The source code for HelloClient follows:

package hello;

import javax.xml.rpc.Stub;

public class HelloClient {
 public static void main(String[] args) {
 try {

Stub stub = createProxy();
 HelloIF hello = (HelloIF)stub;
 System.out.println(hello.sayHello(“Duke!”));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
 // Note: MyHello_Impl is implementation-specific.
 return (Stub)(new MyHello_Impl().getHelloIFPort());
 }
}

Compiling the Client Code
Because the client code refers to the stub classes, be sure to follow the instruc-
tions in Generating the Stubs (page 463) before compiling the client. To compile
the client, go to the <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello

directory and type the following:

ant compile-client

Packaging the Client
To package the client into a JAR file, type the following command:

ant jar-client

This command creates the dist/hello-client.jar file.

466 BUILDING WEB SERVICES WITH JAX-RPC
Running the Client
To run the HelloClient program, type the following:

ant run

The program should display this line:

Hello Duke!

The ant run target executes this command:

java -classpath <cpath> hello.HelloClient

The classpath includes the hello-client.jar file that you created in the pre-
ceding section, as well as several JAR files that belong to the Java WSDP. In
order to run the client remotely, all of these JAR files must reside on the remote
client’s computer.

Iterative Development
In order to show you each step of development, the previous sections instructed
you to type several ant commands. However, it would be inconvenient to type
all of those commands during iterative development. To save time, after you’ve
initially deployed the service, you can iterate through these steps:

1. Test the application.

2. Edit the source files.

3. Execute ant build to create the deployable WAR file.

4. Execute ant redeploy to undeploy and deploy the service.

5. Execute ant build-static to create the JAR file for a client with static
stubs.

6. Execute ant run.

Implementation-Specific Features
To implement the JAX-RPC Specification, the Java WSDP requires some fea-
tures that are not described in the specification. These features are specific to the
Java WSDP and might not be compatible with implementations from other ven-

TYPES SUPPORTED BY JAX-RPC 467
dors. For JAX-RPC, the implementation-specific features of the Java WSDP fol-
low:

• config.xml - See Generating the Stubs (page 463) for an example.

• jaxrpc-ri.xml - See Packaging the WAR File (page 460) for an example.

• ties - In the preceding example, the ties are in the hello-jaxrpc.war file,
which is implementation-specific. (The hello-portable.war file, how-
ever, is not implementation-specific.)

• stubs - The stubs are in the hello-client.jar file. Note that the Hello-

Client program instantiates MyHelloImpl, a static stub class that is imple-
mentation-specific. Because they do not contain static stubs, dynamic
clients do not have this limitation. For more information about dynamic
clients, see the sections A Dynamic Proxy Client Example (page 470) and
A Dynamic Invocation Interface (DII) Client Example (page 471) .

• tools - wsdeploy and wscompile.

• support for collections - See Table 11–1.

Types Supported By JAX-RPC
Behind the scenes, JAX-RPC maps types of the Java programming language to
XML/WSDL definitions. For example, JAX-RPC maps the java.lang.String

class to the xsd:string XML data type. Application developers don’t need to
know the details of these mappings, but they should be aware that not every class
in the Java 2 Platform, Standard Edition (J2SE™ platform) can be used as a
method parameter or return type in JAX-RPC.

J2SE SDK Classes
JAX-RPC supports the following J2SE SDK classes:

java.lang.Boolean
java.lang.Byte
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String

468 BUILDING WEB SERVICES WITH JAX-RPC
java.math.BigDecimal
java.math.BigInteger

java.util.Calendar
java.util.Date

This release of JAX-RPC also supports several implementation classes of the
java.util.Collection interface. See Table 11–2.

Primitives
JAX-RPC supports the following primitive types of the Java programming lan-
guage:

boolean
byte
double
float
int
long
short

Table 11–2 Supported Classes of the Java Collections Framework

java.util.Collection

Subinterface Implementation Classes

List

ArrayList
LinkedList
Stack
Vector

Map

HashMap
Hashtable
Properties
TreeMap

Set
HashSet
TreeSet

ARRAYS 469
Arrays
JAX-RPC also supports arrays with members of supported JAX-RPC types.
Examples of supported arrays are int[] and String[]. Multidimensional
arrays, such as BigDecimal[][], are also supported.

Application Classes
JAX-RPC also supports classes that you’ve written for your applications. In an
order processing application, for example, you might provide classes named
Order, LineItem, and Product. The JAX-RPC Specification refers to such
classes as value types, because their values (or states) may be passed between
clients and remote services as method parameters or return values.

To be supported by JAX-RPC, an application class must conform to the follow-
ing rules:

• It must have a public default constructor.

• It must not implement (either directly or indirectly) the java.rmi.Remote
interface.

• Its fields must be supported JAX-RPC types.

The class may contain public, private, or protected fields. For its value to be
passed (or returned) during a remote call, a field must meet these requirements:

• A public field cannot be final or transient.

• A non-public field must have corresponding getter and setter methods.

JavaBeans Components
JAX-RPC also supports JavaBeans components, which must conform to the
same set of rules as application classes. In addition, a JavaBeans component
must have a getter and setter method for each bean property. The type of the
bean property must be a supported JAX-RPC type. For an example of a Java-
Beans component, see the section JAX-RPC Distributor Service (page 749).

470 BUILDING WEB SERVICES WITH JAX-RPC
A Dynamic Proxy Client Example
The client in the section, A Simple Example: HelloWorld (page 456), used a
static stub for the proxy. In contrast, the client example in this section calls a
remote procedure through a dynamic proxy, a class that is created during runt-
ime. Before creating the proxy class, the client gets information about the ser-
vice by looking up its WSDL document.

Dynamic Proxy HelloClient Listing
Here is the full listing for the HelloClient.java file of the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/proxy directory.

package proxy;

import java.net.URL;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;

public class HelloClient {

 public static void main(String[] args) {
 try {

 String UrlString =
 “http://localhost:8080/ProxyHelloWorld.wsdl”;
 String nameSpaceUri = “http://proxy.org/wsdl”;
 String serviceName = “HelloWorld”;
 String portName = “HelloIFPort”;

 URL helloWsdlUrl = new URL(UrlString);

 ServiceFactory serviceFactory =
 ServiceFactory.newInstance();

 Service helloService =
 serviceFactory.createService(helloWsdlUrl,
 new QName(nameSpaceUri, serviceName));

 HelloIF myProxy = (HelloIF) helloService.getPort(
 new QName(nameSpaceUri, portName),
 proxy.HelloIF.class);

../examples/jaxrpc/proxy/HelloClient.java

BUILDING AND RUNNING THE DYNAMIC PROXY EXAMPLE 471
 System.out.println(myProxy.sayHello(“Buzz”));

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Building and Running the Dynamic Proxy
Example
Perform the following steps:

1. If you haven’t already done so, follow the instructions in Setting
Up (page 458).

2. Go to the <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/proxy

directory.

3. Type the following commands:

ant build
 ant deploy

ant build-dynamic
ant run

The client should display the following line:

A dynamic proxy hello to Buzz!

A Dynamic Invocation Interface (DII)
Client Example

With the dynamic invocation interface (DII), a client can call a remote procedure
even if the signature of the remote procedure or the name of the service are
unknown until runtime.

Because of its flexibility, a DII client can be used in a service broker that dynam-
ically discovers services, configures the remote calls, and executes the calls. For
example, an application for an online clothing store might access a service bro-
ker that specializes in shipping. This broker would use the Java API for XML

472 BUILDING WEB SERVICES WITH JAX-RPC
Registries (JAXR) to locate the services of the shipping companies that meet cer-
tain criteria, such as low cost or fast delivery time. At runtime, the broker uses
DII to call remote procedures on the Web services of the shipping companies. As
an intermediary between the clothing store and the shipping companies, the bro-
ker offers benefits to all parties. For the clothing store, it simplifies the shipping
process, and for the shipping companies, it finds customers.

DII HelloClient Listing
Here is the full listing for the HelloClient.java file of the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/dynamic directory.

package dynamic;

import javax.xml.rpc.Call;
import javax.xml.rpc.Service;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.ParameterMode;

public class HelloClient {

 private static String endpoint =
 "http://localhost:8080/dynamic-jaxrpc/dynamic";
 private static String qnameService = “Hello”;
 private static String qnamePort = “HelloIF”;

 private static String BODY_NAMESPACE_VALUE =
 “http://dynamic.org/wsdl”;
 private static String ENCODING_STYLE_PROPERTY =
 “javax.xml.rpc.encodingstyle.namespace.uri”;
 private static String NS_XSD =
 “http://www.w3.org/2001/XMLSchema”;
 private static String URI_ENCODING =
 “http://schemas.xmlsoap.org/soap/encoding/”;

 public static void main(String[] args) {
 try {

 ServiceFactory factory =
 ServiceFactory.newInstance();
 Service service =

factory.createService(new QName(qnameService));

../examples/jaxrpc/dynamic/HelloClient.java

BUILDING AND RUNNING THE DII EXAMPLE 473
 QName port = new QName(qnamePort);

 Call call = service.createCall(port);
 call.setTargetEndpointAddress(endpoint);

 call.setProperty(Call.SOAPACTION_USE_PROPERTY,
 new Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY,““);
 call.setProperty(ENCODING_STYLE_PROPERTY,
 URI_ENCODING);
 QName QNAME_TYPE_STRING =
 new QName(NS_XSD, “string”);
 call.setReturnType(QNAME_TYPE_STRING);

 call.setOperationName(
 new QName(BODY_NAMESPACE_VALUE “sayHello”));
 call.addParameter(“String_1”, QNAME_TYPE_STRING,
 ParameterMode.IN);
 String[] params = { “Duke!” };

 String result = (String)call.invoke(params);
 System.out.println(result);

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Building and Running the DII Example
Perform the following steps:

1. If you haven’t already done so, follow the instructions in Setting
Up (page 458).

2. Go to the <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/dynamic

directory.

3. Type the following commands:

ant build
ant deploy
ant build-dynamic
ant run

474 BUILDING WEB SERVICES WITH JAX-RPC
The client should display the following line:

A dynamic hello to Duke!

The wscompile Tool
The wscompile tool generates stubs, ties, serializers, and WSDL files used in
JAX-RPC clients and services. The tool reads as input a configuration file and
either a WSDL file or an RMI interface that defines the service.

Syntax
wscompile [options] <configuration-file>

By convention, the configuration file is named config.xml, but this is not a
requirement. The following table lists the wscompile options. Note that exactly
one of the -import, -define, or -gen options must be specified.

Table 11–3 wscompile Options

Option Description

 -classpath <path>
specify where to find input class files; on Windows, the
pathnames should be enclosed in quotes, for example:
-classpath “\test;\foo;\acct”

 -cp <path> same as -classpath <path>

 -d <directory> specify where to place generated output files

 -define read the service's RMI interface, define a service

 -f:<features>
enable the given features (See the below below table for a
list of features. When specifying multiple features, separate
them with commas.)

 -features:<features> same as -f:<features>

 -g generate debugging info

 -gen same as -gen:client

SYNTAX 475
The following table lists the features (delimited by commas) that may follow the
-f option.

 -gen:client generate client artifacts (stubs, etc.)

 -gen:server
generate server artifacts (ties, etc.) and the WSDL file (If
you are using wsdeploy you do not specify this option.)

 -gen:both generate both client and server artifacts

 -http-
proxy:<host>:<port>

specify a HTTP proxy server (port defaults to 8080)

 -import
read a WSDL file, generate the service's RMI interface and
a template of the class that implements the interface

 -keep keep generated files

 -model <file> write the internal model to the given file

 -nd <directory> specify where to place non-class generated files

 -O optimize generated code

 -s <directory> specify where to place generated source files

 -verbose output messages about what the compiler is doing

 -version print version information

Table 11–4 wscompile -f Features

Feature Description

 datahandleronly always map attachments to the DataHandler type

 explicitcontext turn on explicit service context mapping

 infix=<name> specify an infix to use for generated serializers

 nodatabinding turn off data binding for literal encoding

Table 11–3 wscompile Options

Option Description

476 BUILDING WEB SERVICES WITH JAX-RPC
Configuration File
The wscompile tool reads the configuration file (config.xml), which contains
information that describes the web service. The basic structure of config.xml
follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <service> or <wsdl> or <modelfile>
</configuration>

The <configuration> element may contain exactly one <service>, <wsdl>, or
<modelfile> element.

The <service> Element
If you specify this element, wscompile reads the RMI interface that describes
the service and generates a WSDL file. In the <interface> subelement, the name
attribute specifies the service’s RMI interface, and the servantName attribute
specifies the class that implements the interface. For example:

<service name=”CollectionIF_Service”

targetNamespace=”http://echoservice.org/wsdl”
 typeNamespace=”http://echoservice.org/types”

 noencodedtypes turn off encoding type information

 nomultirefs turn off support for multiple references

 novalidation turn off full validation of imported WSDL documents

 searchschema search schema aggressively for subtypes

 serializeinterfaces turn on direct serialization of interface types

Table 11–4 wscompile -f Features

Feature Description

THE WSDEPLOY TOOL 477
 packageName=”stub_tie_generator_test”>
 <interface name=”stub_tie_generator_test.CollectionIF”

servantName=”stub_tie_generator_test.CollectionImpl”/>
</service>

The <wsdl> Element
If you specify this element, wscompile reads the service’s WSDL file and gener-
ates the service’s RMI interface. The location attribute specifies the URL of the
WSDL file, and the packageName attribute specifies the package of the classes
generated by wscompile. For example:

<wsdl
 location="http://tempuri.org/sample.wsdl"
 packageName="org.tempuri.sample" />

The <modelfile> Element
This element is for advanced users.

If config.xml contains a <service> or <wsdl> element, wscompile generates a
model file that contains the internal data structures that describe the service. If
you’ve already generated a model file in this manner, then you can reuse it the
next time you run wscompile. For example:

<modelfile location=”mymodel.xml.gz”/>

The wsdeploy Tool
The wsdeploy tool reads a WAR file and the jaxrpc-ri.xml file and then gener-
ates another WAR file that is ready for deployment. Behind the scenes, wsdeploy
runs wscompile with the -gen:server option. The wscompile command gener-
ates classes and a WSDL file which wsdeploy includes in the generated WAR
file.

Syntax
The syntax for wsdeploy follows:

wsdeploy <options> <input-war-file>

478 BUILDING WEB SERVICES WITH JAX-RPC
The following table lists the tool’s options. Note that the -o option is required.

The Input WAR File
Typically, you create the input WAR file with a GUI development tool or with
the ant war task. Here are the contents of a simple input WAR file:

META-INF/MANIFEST.MF
WEB-INF/classes/hello/HelloIF.class
WEB-INF/classes/hello/HelloImpl.class
WEB-INF/jaxrpc-ri.xml
WEB-INF/web.xml

In this example, HelloIF is the service’s RMI interface and HelloImpl is the class
that implements the interface. The web.xml file is the deployment descriptor of
a web component. The jaxrpc-ri.xml file is described in the next section.

The jaxrpc-ri.xml File
The listing that follows shows a jaxrpc-ri.xml file for a simple HelloWorld
service.

The <webServices> element must contain one or more <endpoint> elements. In
this example, note that the interface and implementation attributes of <endpoint>
specify the service’s interface and implementation class. The <endpointMap-

Table 11–5 wsdeploy Options

 -classpath <path> specify an optional classpath

 -keep keep temporary files

 -o <output-war-
file>

specify where to place the generated war file

 -tmpdir <directory> specify the temporary directory to use

 -verbose output messages about what the compiler is doing

 -version print version information

SYNTAX 479
ping> element associates the service port with the part of the endpoint URL path
that follows the urlPatternBase.

<?xml version=”1.0” encoding=”UTF-8”?>
<webServices
 xmlns=”http://java.sun.com/xml/ns/jax-rpc/ri/dd”
 version=”1.0”
 targetNamespaceBase=”http://com.test/wsdl”
 typeNamespaceBase=”http://com.test/types”
 urlPatternBase=”/ws”>
 <endpoint
 name=”MyHello”
 displayName=”HelloWorld Service”
 description=”A simple web service”
 interface=”hello.HelloIF”
 implementation="hello.HelloImpl"/>
 <endpointMapping
 endpointName="MyHello"
 urlPattern="/hello"/>
</webServices>

If the service has multiple endpoints, you should specify the port and WSDL for
each endpoint. The following jaxrpc-ri.xml snippet has multiple endpoints:

<endpoint
 name=”vendor”
 displayName=”)”
 description=”Vendor example endpoint”
 interface=”com.buzzmurph.vendor.VendorPortType”

implementation=”com.buzzmurph.act.vendor.VendorPortTypeImpl”

port=”http://buzzmurph.com/preferred/Vendor.wsdl}VendorPort”
 model=”/WEB-INF/vendor.xml.gz”
 wsdl=”/WEB-INF/VendorImpl.wsdl”/>

<endpoint
 name=”supplier”
 displayName=”)”
 description=”Supplier example endpoint”
 interface=”com.buzzmurph.supplier.SupplierPortType”

implementation=”com.buzzmurph.supplier.SupplierPortTypeImpl”
 port=”http://buzzmurph.com/ord/Supplier.wsdl}SupplierPort”
 model=”/WEB-INF/supplier.xml.gz”
 wsdl=”/WEB-INF/SupplierImpl.wsdl”/>

480 BUILDING WEB SERVICES WITH JAX-RPC
<endpointMapping
 endpointName=”vendor”
 urlPattern=”/act/vendor”/>

<endpointMapping
 endpointName=”supplier”
 urlPattern=”/ord/supplier”/>

Advanced Topics for wscompile and
wsdeploy

This section is for developers who are familiar with WSDL, SOAP, and the JAX-
RPC specifications.

Namespace Mappings
Here is a schema type name example:

schemaType="ns1:SampleType"

xmlns:ns1="http://echoservice.org/types"

When generating a Java type from a schema type, wscompile gets the class name
from the local part of the schema type name. To specify the package name of the
generated Java classes, you define a mapping between the schema type
namespace and the package name. You define this mapping by adding a
<namespaceMappingRegistry> element to the config.xml file. For example:

<service>
 ...
 <namespaceMappingRegistry>
 <namespaceMapping
 namespace="http://echoservice.org/types"
 packageName="echoservice.org.types"/>
 </namespaceMappingRegistry>
 ...
</service>

HANDLERS 481
Handlers
A handler accesses a SOAP message that represents an RPC request or response.
A handler class must implement the javax.xml.rpc.handler interface. Because it
accesses a SOAP message, a handler can manipulate the message with the APIs
of the javax.xml.soap package.

• Examples of handler tasks:

• Encryption and decryption

• Logging and auditing

• Caching

• Application-specific SOAP header processing

A handler chain is a list of handlers. You may specify one handler chain for the
client and one for the server. On the client, you include the <handlerChains>
element in the jaxrpc-ri.xml file. On the server, you include this element in the
config.xml file. Here is an example of the <handlerChains> element in con-

fig.xml:

<handlerChains>
 <chain runAt="server"
 roles=
 "http://acme.org/auditing
 http://acme.org/morphing"
 xmlns:ns1="http://foo/foo-1">
 <handler className="acme.MyHandler"
 headers ="ns1:foo ns1:bar"/>
 <property
 name="property" value="xyz"/>
 </handler>
 </chain>
</handlerChains>

For more information on handlers, see the SOAP Message Handlers chapter of
the JAX-RPC specifications.

Further Information
For more information about JAX-RPC and related technologies, refer to the fol-
lowing:

• Java API for XML-based RPC 1.0 Specification

482 BUILDING WEB SERVICES WITH JAX-RPC
http://java.sun.com/xml/downloads/jaxrpc.html

• JAX-RPC Home
http://java.sun.com/xml/jaxrpc/index.html

• Simple Object Access Protocol (SOAP) 1.1 W3C Note
http://www.w3.org/TR/SOAP/

• Web Services Description Language (WSDL) 1.1 W3C Note
http://www.w3.org/TR/wsdl

http://java.sun.com/xml/downloads/jaxrpc.html
http://java.sun.com/xml/jaxrpc/index.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl

12
483
Web Services
Messaging with JAXM

Maydene Fisher

THE Java API for XML Messaging (JAXM) makes it possible for developers
to do XML messaging using the Java platform. By simply making method calls
using the JAXM API, you can create and send XML messages over the Internet.
This chapter will help you learn how to use the JAXM API.

In addition to stepping you through how to use the JAXM API, this chapter gives
instructions for running the sample JAXM applications included with the Java
WSDP as a way to help you get started. You may prefer to go through both the
overview and tutorial before running the samples to make it easier to understand
what the sample applications are doing, or you may prefer to explore the samples
first. The overview gives some of the conceptual background behind the JAXM
API to help you understand why certain things are done the way they are. The
tutorial shows you how to use the basic JAXM API, giving examples and expla-
nations of the more commonly used features. Finally, the code examples in the
last part of the tutorial show how to build an application.

484 WEB SERVICES MESSAGING WITH JAXM
The Structure of the JAXM API
The JAXM API conforms to the Simple Object Access Protocol (SOAP) 1.1
specification and the SOAP with Attachments specification. The complete
JAXM API is presented in two packages:

• javax.xml.soap — the package defined in the SOAP with Attachments
API for Java (SAAJ) 1.1 specification. This is the basic package for SOAP
messaging, which contains the API for creating and populating a SOAP
message. This package has all the API necessary for sending request-
response messages. (Request-response messages are explained in
SOAPConnection, page 489.)

The current version is SAAJ 1.1.1.

• javax.xml.messaging — the package defined in the JAXM 1.1 specifica-
tion. This package contains the API needed for using a messaging provider
and thus for being able to send one-way messages. (One-way messages are
explained in ProviderConnection, page 490.)

The current version is JAXM 1.1.1.

Originally, both packages were defined in the JAXM 1.0 specification. The
javax.xml.soap package was separated out and expanded into the SAAJ 1.1
specification so that now it has no dependencies on the javax.xml.messaging

package and thus can be used independently. The SAAJ API also makes it easier
to create XML fragments, which is especially helpful for developing JAX-RPC
implementations.

The javax.xml.messaging package, defined in the JAXM 1.1 specification,
maintains its dependency on the java.xml.soap package because the soap

package contains the API used for creating and manipulating SOAP messages.
In other words, a client sending request-response messages can use just the
javax.xml.soap API. A Web service or client that uses one-way messaging will
need to use API from both the javax.xml.soap and javax.xml.messaging

packages.

Note: In this document, "JAXM 1.1.1 API" refers to the API in the
javax.xml.messaging package; “SAAJ API” refers to the API in the
javax.xml.soap package. “JAXM API” is a more generic term, referring to all
of the API used for SOAP messaging, that is, the API in both packages.

OVERVIEW OF JAXM 485
Overview of JAXM
This overview presents a high-level view of how JAXM messaging works and
explains concepts in general terms. Its goal is to give you some terminology and
a framework for the explanations and code examples that are presented in the
tutorial section.

The overview looks at JAXM from three perspectives:

• Messages

• Connections

• Messaging providers

Messages
JAXM messages follow SOAP standards, which prescribe the format for mes-
sages and also specify some things that are required, optional, or not allowed.
With the JAXM API, you can create XML messages that conform to the SOAP
specifications simply by making Java API calls.

The Structure of an XML Document

Note: For more complete information on XML documents, see Understanding
XML (page 41) and Java API for XML Processing (page 115).

An XML document has a hierarchical structure with elements, subelements, sub-
subelements, and so on. You will notice that many of the SAAJ classes and inter-
faces represent XML elements in a SOAP message and have the word element or
SOAP or both in their names.

An element is also referred to as a node. Accordingly, the SAAJ API has the
interface Node, which is the base class for all the classes and interfaces that rep-
resent XML elements in a SOAP message. There are also methods such as
SOAPElement.addTextNode, Node.detachNode, and Node.getValue, which
you will see how to use in the tutorial section.

486 WEB SERVICES MESSAGING WITH JAXM
What Is in a Message?
The two main types of SOAP messages are those that have attachments and
those that do not.

Messages with No Attachments
The following outline shows the very high-level structure of a SOAP message
with no attachments. Except for the SOAP header, all the parts listed are
required.

I. SOAP message

A. SOAP part

1. SOAP envelope

a. SOAP header (optional)

b. SOAP body

The SAAJ API provides the SOAPMessage class to represent a SOAP message,
SOAPPart to represent the SOAP part, SOAPEnvelope to represent the SOAP
envelope, and so on.

When you create a new SOAPMessage object, it will automatically have the parts
that are required to be in a SOAP message. In other words, a new SOAPMessage

object has a SOAPPart object that contains a SOAPEnvelope object. The SOAPEn-

velope object in turn automatically contains an empty SOAPHeader object fol-
lowed by an empty SOAPBody object. If you do not need the SOAPHeader object,
which is optional, you can delete it. The rationale for having it automatically
included is that more often than not you will need it, so it is more convenient to
have it provided.

The SOAPHeader object may contain one or more headers with information about
the sending and receiving parties and about intermediate destinations for the
message. Headers may also do things such as correlate a message to previous
messages, specify a level of service, and contain routing and delivery informa-
tion. The SOAPBody object, which always follows the SOAPHeader object if there
is one, provides a simple way to send mandatory information intended for the
ultimate recipient. If there is a SOAPFault object (see SOAP Faults, page 516), it
must be in the SOAPBody object.

MESSAGES 487
Figure 12–1 SOAPMessage Object with No Attachments

Messages with Attachments
A SOAP message may include one or more attachment parts in addition to the
SOAP part. The SOAP part may contain only XML content; as a result, if any of
the content of a message is not in XML format, it must occur in an attachment
part. So, if for example, you want your message to contain an image file or plain
text, your message must have an attachment part for it. Note than an attachment
part can contain any kind of content, so it can contain data in XML format as
well. Figure 12–2 shows the high-level structure of a SOAP message that has
two attachments.

488 WEB SERVICES MESSAGING WITH JAXM
Figure 12–2 SOAPMessage Object with Two AttachmentPart Objects

The SAAJ API provides the AttachmentPart class to represent the attachment
part of a SOAP message. A SOAPMessage object automatically has a SOAPPart

object and its required subelements, but because AttachmentPart objects are
optional, you have to create and add them yourself. The tutorial section will walk
you through creating and populating messages with and without attachment
parts.

A SOAPMessage object may have one or more attachments. Each Attachment-

Part object has a MIME header to indicate the type of data it contains. It may
also have additional MIME headers to identify it or to give its location, which

CONNECTIONS 489
can be useful when there are multiple attachments. When a SOAPMessage object
has one or more AttachmentPart objects, its SOAPPart object may or may not
contain message content.

Another way to look at SOAP messaging is from the perspective of whether or
not a messaging provider is used, which is discussed at the end of the section
Messaging Providers (page 492).

Connections
All SOAP messages are sent and received over a connection. The connection can
go directly to a particular destination or to a messaging provider. (A messaging
provider is a service that handles the transmission and routing of messages and
provides features not available when you use a connection that goes directly to
its ultimate destination. Messaging providers are explained in more detail later.)

The JAXM API supplies the following class and interface to represent these two
kinds of connections:

1. javax.xml.soap.SOAPConnection — a connection from the sender
directly to the receiver (a point-to-point connection)

2. javax.xml.messaging.ProviderConnection — a connection to a mes-
saging provider

SOAPConnection
A SOAPConnection object, which represents a point-to-point connection, is sim-
ple to create and use. One reason is that you do not have to do any configuration
to use a SOAPConnection object because it does not need to run in a servlet con-
tainer (like Tomcat) or in a J2EE container. It is the only kind of connection
available to a client that does not use a messaging provider.

The following code fragment creates a SOAPConnection object and then, after
creating and populating the message, uses the connection to send the message.

490 WEB SERVICES MESSAGING WITH JAXM
The parameter request is the message being sent; endpoint represents where it is
being sent.

SOAPConnectionFactory factory =
SOAPConnectionFactory.newInstance();

SOAPConnection con = factory.createConnection();

. . .// create a request message and give it content

SOAPMessage response = con.call(request, endpoint);

When a SOAPConnection object is used, the only way to send a message is with
the method call, which transmits its message and then blocks until it receives a
reply. Because the method call requires that a response be returned to it, this
type of messaging is referred to as request-response messaging.

A Web service implemented for request-response messaging must return a
response to any message it receives. When the message is an update, the
response is an acknowledgement that the update was received. Such an acknowl-
edgement implies that the update was successful. Some messages may not
require any response at all. The service that gets such a message is still required
to send back a response because one is needed to unblock the call method. In
this case, the response is not related to the content of the message; it is simply a
message to unblock the call method.

Because the signature for the javax.xml.soap.SOAPConnection.call method
changed in the SAAJ 1.1 specification, a JAXM implementation may elect not to
implement the call method. To allow for this, there is a new exception on the
SOAPConnectionFactory class stating that SOAPConnection is not imple-
mented, which allows for a graceful failure.

Unlike a client with no messaging provider, which is limited to using only a
SOAPConnection object, a client that uses a messaging provider is free to use a
SOAPConnection object or a ProviderConnection object. It is expected that
ProviderConnection objects will be used most of the time.

ProviderConnection
A ProviderConnection object represents a connection to a messaging provider.
(The next section explains more about messaging providers.) When you send a
message via a ProviderConnection object, the message goes to the messaging
provider. The messaging provider forwards the message, following the mes-

CONNECTIONS 491
sage’s routing instructions, until the message gets to the ultimate recipient’s mes-
saging provider, which in turn forwards the message to the ultimate recipient.

When an application is using a ProviderConnection object, it must use the
method ProviderConnection.send to send a message. This method transmits
the message one way and returns immediately, without having to block until it
gets a response. The messaging provider that receives the message will forward
it to the intended destination and return the response, if any, at a later time. The
interval between sending a request and getting the response may be very short,
or it may be measured in days. In this style of messaging, the original message is
sent as a one-way message, and any response is sent subsequently as a one-way
message. Not surprisingly, this style of messaging is referred to as one-way mes-
saging.

Figure 12–3 Request-response and One-way Messaging

492 WEB SERVICES MESSAGING WITH JAXM
Messaging Providers
A messaging provider is a service that handles the transmission and routing of
messages. It works behind the scenes to keep track of messages and see that they
are sent to the proper destination or destinations.

Transparency
One of the great features of a messaging provider is that you are not even aware
of it. You just write your JAXM application, and the right things happen. For
example, when you are using a messaging provider and send a message by call-
ing the ProviderConnection.send method, the messaging provider receives the
message and works with other parts of the communications infrastructure to per-
form various tasks, depending on what the message’s header contains and how
the messaging provider itself has been implemented. The message arrives at its
final destination without your even knowing about the details involved in accom-
plishing the delivery.

Profiles
JAXM offers the ability to plug in additional protocols that are built on top of
SOAP. A JAXM provider implementation is not required to implement features
beyond what the SOAP 1.1 and SOAP with Attachments specifications require,
but it is free to incorporate other standard protocols, called profiles, that are
implemented on top of SOAP. For example, the “ebXML Message Service Spec-
ification (available at http://www.oasis-open.org/committees/ebxml-msg/)
defines levels of service that are not included in the two SOAP specifications. A
messaging provider that is implemented to include ebXML capabilities on top of
SOAP capabilities is said to support an ebXML profile. A messaging provider
may support multiple profiles, but an application can use only one at a time and
must have a prior agreement with each of the parties to whom it sends messages
about what profile is being used.

Profiles affect a message’s headers. For example, depending on the profile, a new
SOAPMessage object will come with certain headers already set. Also a profile
implementation may provide API that makes it easier to create a header and set
its content. The JAXM implementation includes APIs for both the ebXML and
SOAP-RP profiles. The API documentation for these profiles is at
<JWSDP_HOME>/jaxm-1.1.1/docs/profiles/index.html. You will find links

MESSAGING PROVIDERS 493
to the API documentation for the JAXM API (the javax.xml.soap and
javax.xml.messaging packages) at <JWSDP_HOME>/docs/api/index.html.

Continuously Active
A messaging provider works continuously. A JAXM client may make a connec-
tion with its provider, send one or more messages, and then close the connection.
The provider will store the message and then send it. Depending on how the pro-
vider has been configured, it will resend a message that was not successfully
delivered until it is successfully delivered or until the limit for the number of
resends is reached. Also, the provider will stay in a waiting state, ready to
receive any messages that are intended for the client. The provider will store
incoming messages so that when the client connects with the provider again, the
provider will be able to forward the messages. In addition, the provider generates
error messages as needed and maintains a log where messages and their related
error messages are stored.

Intermediate Destinations
When a messaging provider is used, a message can be sent to one or more inter-
mediate destinations before going to the final recipient. These intermediate desti-
nations, called actors, are specified in the message’s SOAPHeader object. For
example, assume that a message is an incoming Purchase Order. The header
might route the message to the order input desk, the order confirmation desk, the
shipping desk, and the billing department. Each of these destinations is an actor
that will take the appropriate action, remove the header information relevant to
it, and send the message to the next actor. The default actor is the final destina-
tion, so if no actors are specified, the message is routed to the final recipient.

The attribute actor is used to specify an intermediate recipient. A related
attribute is mustUnderstand, which, when its value is true, means that an actor
must understand what it is supposed to do and carry it out successfully. A SOAP-

Header object uses the method addAttribute to add these attributes, and the
SOAPHeaderElement interface provides methods for setting and getting the val-
ues of these attributes.

494 WEB SERVICES MESSAGING WITH JAXM
Figure 12–4 One-way Message with Intermediate Destinations

When to Use a Messaging Provider
A JAXM client may or may not use a messaging provider. Generally speaking, if
you just want to be a consumer of Web services, you do not need a messaging
provider. The following list shows some of the advantages of not using a mes-
saging provider:

• The application can be written using the J2SE platform

• The application is not required to be deployed in a servlet container or a
J2EE container

• No configuration is required

The limitations of not using a messaging provider are the following:

• The client can send only request-response messages

• The client can act in the client role only

It follows that if you want to provide a Web service that is able to get and save
requests that are sent to you at any time, you must use a messaging provider. You
will also need to run in a container, which provides the messaging infrastructure
used by the provider. A messaging provider gives you the flexibility to assume
both the client and service roles, and it also lets you send one-way messages. In
addition, if your messaging provider supports a protocol such as ebXML or

RUNNING THE SAMPLES 495
SOAP-RP on top of SOAP, you can take advantage of the additional quality of
service features that it provides.

Messaging with and without a Provider
JAXM clients can be categorized according to whether or not they use a messag-
ing provider. Those that do not use a messaging provider can be further divided
into those that run in a container and those that do not. A JAXM client that does
not use a messaging provider and also does not run in a container is called a
standalone client.

Running the Samples
The Java WSDP includes several JAXM sample applications. It also includes
various implementations that make it possible for you to run the sample applica-
tions. These implementations, which constitute the JAXM implementation, are
the following:

• An implementation of the JAXM API

• An implementation of a messaging provider

• Basic implementations of ebXML and SOAP-RP profiles, which run on
top of SOAP

All of the sample applications use the JAXM API, of course, and some use other
implementations as well. For example, the sample application Remote uses the
implementations of the messaging provider and the ebXML profile; the SOAP-
RP sample uses the implementations for the messaging provider and the SOAP-
RP profile. The next section (The Sample Programs, page 496) gives more infor-
mation about the sample applications and what they do.

Most of the samples run in a container, so before running them, you need to start
Tomcat (see Starting Tomcat, page 80).

Once Tomcat is running, you can run the JAXM samples by following these
steps:

1. Open a browser window and set it to

http://localhost:8080/index.html

496 WEB SERVICES MESSAGING WITH JAXM
2. On the page that comes up, click on one of the sample programs listed.
Then follow the instructions in the new window that comes up.

The Sample Programs
The sample programs illustrate various kinds of applications you can write with
the JAXM API. Note that the Simple, Translator, and SAAJ Simple examples
log messages sent and received to the directory in your Java WSDP installation
where you started Tomcat. So if, for example, you start Tomcat from the
<JWSDP_HOME>/bin directory, that is where the messages will be logged. These
messages are the XML that is sent over the wire, which you might find easier to
understand after you have gone through the tutorial.

• Simple — A simple example of sending and receiving a message using the
local provider. Note that a local provider should not be confused with a
messaging provider. The local provider is simply a mechanism for return-
ing the reply to a message that was sent using the method SOAPConnec-

tion.call. Note that a message sent by this method will always be a
request-response message. Running this example generates the files
sent.msg and reply.msg, which you will find in the directory where you
started Tomcat.

• SAAJ Simple — An application similar to the Simple example except that
it is written using only the SAAJ API. In SAAJ Simple, the call method
takes a Java Object rather than a URLEndpoint object to designate the
recipient, and thus uses only the javax.xml.soap package. Running this
example generates the files sent.msg and reply.msg, which you will find
in the directory where you started Tomcat.

• Translator — An application that uses a simple translation service to trans-
late a given word into different languages. If you have given the correct
proxy host and proxy port, the word you supply will be translated into
French, German, and Italian. Running this example generates the files
request.msg and reply.msg in the directory where you started Tomcat.
Check reply.msg after getting the reply in the SOAP body and again after

THE SAMPLE PROGRAMS 497
getting the reply as an attachment to see the difference in what is sent as a
reply.

• JAXM Tags — An example that uses JavaServer Pages tags to generate
and consume a SOAP message

• Remote — An example of a round trip message that uses a JAXM messag-
ing provider that supports the basic ebXML profile to send and receive a
message

• SOAP-RP — An example of a round trip message that uses a JAXM mes-
saging provider that supports the basic SOAP-RP profile to send and
receive a message

There are two other sample programs, jaxm-uddiping and jaxm-standalone,
that do not run in Tomcat. To run them, go to the <JWSDP_HOME>/jaxm-

1.1.1/samples directory, where you will find the directories uddiping and
standalone. Each directory contains a README file that explains what to do.

In the Examples section of the JAXM tutorial (UddiPing.java and
MyUddiPing.java, page 523), you will find an application that modifies the code
in UddiPing.java and also explains in detail how to run it. You might find it
more convenient to wait until you have reached that section before trying to run
the jaxm-uddiping and jaxm-standalone samples.

The preceding list presented the sample applications according to what they do.
You can also look at the sample applications as examples of the three possible
types of JAXM client:

• Those that do not use a messaging provider and also do not run in a
container

These are called standalone applications. The samples jaxm-standalone
and jaxm-uddiping are examples of standalone clients.

• Those that do not use a messaging provider and run in a container

The samples Simple, SAAJ Simple, Translator, and JAXM Tags are
examples of this type.

• Those that use a messaging provider and run in a container

The samples Remote and SOAP-RP are examples of this type.

498 WEB SERVICES MESSAGING WITH JAXM
Source Code for the Samples
Source code for the sample applications is in the directory

<JWSDP_HOME>/docs/tutorial/examples/jaxm/samples/

You will find six directories, one for each of the samples that runs in Tomcat.
The jaxmtags directory contain a number of .jsp files. The other directories all
have two files, SendingServlet.java and ReceivingServlet.java. In addi-
tion to those two files, the translator directory contains the file Translation-

Service.java.

If you want to see all of the files that make up a Web application, you can go to
the directory <JWSDP_HOME>/jaxm-1.1.1/webapps and unpack the .war files.
For example, for the Simple sample, you would do the following:

cd <JWSDP_HOME>/jaxm-1.1.1/webapps
jar -xvf jaxm-simple.war

In addition to the source files and class files for the Simple sample, you will find
the files web.xml and build.xml. .

The web.xml file, referred to as a deployment descriptor, associates the endpoint
passed to the method SOAPConnection.call or ProviderConnection.send

with a particular servlet class. When the container encounters an endpoint,
which is generally a URI, it uses the web.xml file to determine the appropriate
servlet class and runs it. See the end of the section Sending the
Request (page 759) for an example and explanation.

The build.xml file is the Ant file to use to run the application.

TUTORIAL 499
Tutorial
This section will walk you through the basics of sending a SOAP message using
the JAXM API. At the end of this chapter, you will know how to do the follow-
ing:

• Get a connection

• Create a message

• Add content to a message

• Send a message

• Retrieve the content from a response message

• Create and retrieve a SOAP fault element

First, we’ll walk through the steps in sending a request-response message for a
client that does not use a messaging provider. Then we’ll do a walkthrough of a
client that uses a messaging provider sending a one-way message. Both types of
client may add attachments to a message, so adding attachments is covered as a
separate topic. Finally, we’ll see what SOAP faults are and how they work.

The section Code Examples (page 521) puts the code fragments you will pro-
duce into runnable applications, which you can test yourself. The JAXM part of
the case study (JAXM Distributor Service, page 758) demonstrates how JAXM
code can be used in a Web service, showing both the client and server code.

Client without a Messaging Provider
An application that does not use a messaging provider is limited to operating in a
client role and can send only request-response messages. Though limited, it can
make use of Web services that are implemented to do request-response messag-
ing.

Getting a SOAPConnection Object
The first thing any JAXM client needs to do is get a connection, either a SOAP-

Connection object or a ProviderConnection object. The overview section
(Connections, page 489) discusses these two types of connections and how they
are used.

A client that does not use a messaging provider has only one choice for creating
a connection, which is to create a SOAPConnection object. This kind of connec-

500 WEB SERVICES MESSAGING WITH JAXM
tion is a point-to-point connection, meaning that it goes directly from the sender
to the destination (usually a URL) that the sender specifies.

The first step is to obtain a SOAPConnectionFactory object that you can use to
create your connection. The SAAJ API makes this easy by providing the SOAP-

ConnectionFactory class with a default implementation. You can get an
instance of this implementation with the following line of code.

SOAPConnectionFactory scFactory =
SOAPConnectionFactory.newInstance();

Notice that because newInstance is a static method, you will always use the
class name SOAPConnectionFactory when you invoke its newInstance

method.

Now you can use scFactory to create a SOAPConnection object.

SOAPConnection con = scFactory.createConnection();

You will use con later to send the message that is created in the next part.

Creating a Message
The next step is to create a message, which you do using a MessageFactory

object. If you are a standalone client, you can use the default implementation of
the MessageFactory class that the SAAJ API provides. The following code
fragment illustrates getting an instance of this default message factory and then
using it to create a message.

MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();

As is true of the newInstance method for SOAPConnectionFactory, the newIn-

stance method for MessageFactory is static, so you invoke it by calling Mes-

sageFactory.newInstance. Note that it is possible to write your own
implementation of a message factory and plug it in via system properties, but the
default message factory is the one that will generally be used.

The other way to get a MessageFactory object is to retrieve it from a naming
service where it has been registered. This way is available only to applications
that use a messaging provider, and it will be covered later (in Creating a
Message, page 508).

CLIENT WITHOUT A MESSAGING PROVIDER 501
Parts of a Message
A SOAPMessage object is required to have certain elements, and the SAAJ API
simplifies things for you by returning a new SOAPMessage object that already
contains these elements. So message, which was created in the preceding line of
code, automatically has the following:

I. A SOAPPart object that contains

A. A SOAPEnvelope object that contains

 1. An empty SOAPHeader object

 2. An empty SOAPBody object

The SOAPHeader object, though optional, is included for convenience because
most messages will use it. The SOAPBody object can hold the content of the mes-
sage and can also contain fault messages that contain status information or
details about a problem with the message. The section SOAP Faults (page 516)
walks you through how to use SOAPFault objects.

Accessing Elements of a Message
The next step in creating a message is to access its parts so that content can be
added. The SOAPMessage object message, created in the previous code fragment,
is where to start. It contains a SOAPPart object, so you use message to retrieve it.

SOAPPart soapPart = message.getSOAPPart();

Next you can use soapPart to retrieve the SOAPEnvelope object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use envelope to retrieve its empty SOAPHeader and SOAPBody

objects.

SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();

Our example of a standalone client does not use a SOAP header, so you can
delete it. Because all SOAPElement objects, including SOAPHeader objects, are
derived from the Node interface, you use the method Node.detachNode to delete
header.

header.detachNode();

502 WEB SERVICES MESSAGING WITH JAXM
Adding Content to the Body
To add content to the body, you need to create a SOAPBodyElement object to hold
the content. When you create any new element, you also need to create an asso-
ciated Name object to identify it. One way to create Name objects is by using
SOAPEnvelope methods, so you can use envelope from the previous code frag-
ment to create the Name object for your new element.

Note: The SAAJ API augments the javax.xml.soap package by adding the
SOAPFactory class, which lets you create Name objects without using a SOAPEn-
velope object. This capability is useful for creating XML elements when you are
not creating an entire message. For example, JAX-RPC implementations find this
ability useful. When you are not working with a SOAPMessage object, you do not
have access to a SOAPEnvelope object and thus need an alternate means of creat-
ing Name objects. In addition to a method for creating Name objects, the SOAPFac-
tory class provides methods for creating Detail objects and SOAP fragments.
You will find an explanation of Detail objects in the SOAP Fault sections
Overview (page 516) and Creating and Populating a SOAPFault Object (page 518).

Name objects associated with SOAPBody and SOAPHeader objects must be fully
qualified; that is, they must be created with a local name, a prefix for the
namespace being used, and a URI for the namespace. Specifying a namespace
for an element makes clear which one is meant if there is more than one element
with the same local name.

The code fragment that follows retrieves the SOAPBody object body from
envelope, creates a Name object for the element to be added, and adds a new
SOAPBodyElement object to body.

SOAPBody body = envelope.getBody();
Name bodyName = envelope.createName("GetLastTradePrice”,

"m", "http://wombat.ztrade.com”);
SOAPBodyElement gltp = body.addBodyElement(bodyName);

At this point, body contains a SOAPBodyElement object identified by the Name

object bodyName, but there is still no content in gltp. Assuming that you want to
get a quote for the stock of Sun Microsystems, Inc., you need to create a child
element for the symbol using the method addChildElement. Then you need to
give it the stock symbol using the method addTextNode. The Name object for the

CLIENT WITHOUT A MESSAGING PROVIDER 503
new SOAPElement object symbol is initialized with only a local name, which is
allowed for child elements.

Name name = envelope.createName("symbol");
SOAPElement symbol = gltp.addChildElement(name);
symbol.addTextNode("SUNW");

You might recall that the headers and content in a SOAPPart object must be in
XML format. The JAXM API takes care of this for you, building the appropriate
XML constructs automatically when you call methods such as addBodyElement,
addChildElement, and addTextNode. Note that you can call the method
addTextNode only on an element such as bodyElement or any child elements
that are added to it. You cannot call addTextNode on a SOAPHeader or SOAPBody
object because they contain elements, not text.

The content that you have just added to your SOAPBody object will look like the
following when it is sent over the wire:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m=
"http://wombat.ztrade.com">

<symbol>SUNW</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Let’s examine this XML excerpt line by line to see how it relates to your JAXM
code. Note that an XML parser does not care about indentations, but they are
generally used to indicate element levels and thereby make it easier for a human
reader to understand.

JAXM code:

SOAPPart soapPart = message.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();

XML it produces:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
. (intervening elements omitted)

</SOAP-ENV:Envelope>

504 WEB SERVICES MESSAGING WITH JAXM
The outermost element in this XML example is the SOAP envelope element,
indicated by SOAP-ENV:Envelope. Envelope is the name of the element, and
SOAP-ENV is the namespace prefix. The interface SOAPEnvelope represents a
SOAP envelope.

The first line signals the beginning of the SOAP envelope element, and the last
line signals the end of it; everything in between is part of the SOAP envelope.
The second line has an attribute for the SOAP envelope element. xmlns stands
for “XML namespace,” and its value is the URI of the namespace associated
with Envelope. This attribute is automatically included for you.

JAXM code:

SOAPBody body = envelope.getBody();

XML it produces:

<SOAP-ENV:Body>
.

</SOAP-ENV:Body>

These two lines mark the beginning and end of the SOAP body, represented in
JAXM by a SOAPBody object.

JAXM code:

Name bodyName = envelope.createName("GetLastTradePrice",
"m", "http://wombat.ztrade.com");

SOAPBodyElement gltp = body.addBodyElement(bodyName);

XML it produces:

<m:GetLastTradePrice xmlns:m=
"http://wombat.ztrade.com">

. . . .
</m:GetLastTradePrice>

These lines are what the SOAPBodyElement gltp in your code represents. "Get-
LastTradePrice" is its local name, "m" is its namespace prefix, and
"http://wombat.ztrade.com" is its namespace URI.

CLIENT WITHOUT A MESSAGING PROVIDER 505
JAXM code:

Name name = envelope.createName("symbol");
SOAPElement symbol = gltp.addChildElement(name);
symbol.addTextNode("SUNW");

XML it produces:

<symbol>SUNW</symbol>

The String "SUNW" is the message content that your recipient, the stock quote
service, receives.

Sending a Message
A standalone client uses a SOAPConnection object and must therefore use the
SOAPConnection method call to send a message. This method takes two argu-
ments, the message being sent and the destination to which the message should
go. This message is going to the stock quote service indicated by the URL object
endpoint.

java.net.URL endpoint = new URL(
"http://wombat.ztrade.com/quotes”;

SOAPMessage response = con.call(message, endpoint);

Your message sent the stock symbol SUNW; the SOAPMessage object response
should contain the last stock price for Sun Microsystems, which you will retrieve
in the next section.

A connection uses a fair amount of resources, so it is a good idea to close a con-
nection as soon as you are through using it.

con.close();

Getting the Content of a Message
The initial steps for retrieving a message’s content are the same as those for giv-
ing content to a message: You first access the SOAPBody object, using the mes-
sage to get the envelope and the envelope to get the body. Then you access its
SOAPBodyElement object because that is the element to which content was added
in the example. (In a later section you will see how to add content directly to the

506 WEB SERVICES MESSAGING WITH JAXM
SOAPBody object, in which case you would not need to access the SOAPBodyEle-

ment object for adding content or for retrieving it.) To get the content, which was
added with the method SOAPElement.addTextNode, you call the method
Node.getValue. Note that getValue returns the value of the immediate child of
the element that calls the method. Therefore, in the following code fragment, the
method getValue is called on bodyElement, the element on which the method
addTextNode was called.

In order to access bodyElement, you need to call the method getChildElement

on body. Passing bodyName to getChildElement returns a java.util.Itera-

tor object that contains all of the child elements identified by the Name object
bodyName. You already know that there is only one, so just calling the method
next on it will return the SOAPBodyElement you want. Note that the method
Iterator.next returns a Java Object, so it is necessary to cast the Object it
returns to a SOAPBodyElement object before assigning it to the variable
bodyElement.

SOAPPart sp = response.getSOAPPart();
SOAPEnvelope env = sp.getEnvelope();
SOAPBody sb = env.getBody();
java.util.Iterator it = sb.getChildElements(bodyName);
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

If there were more than one element with the name bodyName, you would have
had to use a while loop using the method Iterator.hasNext to make sure that
you got all of them.

while (it.hasNext()) {
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String lastPrice = bodyElement.getValue();
System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

}

At this point, you have seen how to send a request-response message as a standa-
lone client. You have also seen how to get the content from the response. The
next part shows you how to send a message using a messaging provider.

CLIENT WITH A MESSAGING PROVIDER 507
Client with a Messaging Provider
Using a messaging provider gives you more flexibility than a standalone client
has because it can take advantage of the additional functionality that a messaging
provider can offer.

Getting a ProviderConnection Object
Whereas a SOAPConnection object is a point-to-point connection directly to a
particular URL, a ProviderConnection object is a connection to a messaging
provider. With this kind of connection, all messages that you send or receive go
through the messaging provider.

As with getting a SOAPConnection object, the first step is to get a connection
factory, but in this case, it is a ProviderConnectionFactory object. You can
obtain a ProviderConnectionFactory object by retrieving it from a naming
service. This is possible when your application is using a messaging provider
and is deployed in a servlet or J2EE container. With a ProviderConnection-

Factory object, you can create a connection to a particular messaging provider
and thus be able to use the capabilities of a profile that the messaging provider
supports.

To get a ProviderConnectionFactory object, you first supply the logical name
of your messaging provider to the container at deployment time. This is the
name associated with your messaging provider that has been registered with a
naming service based on the Java Naming and Directory Interface™ (JNDI)
API. You can then do a lookup using this name to obtain a ProviderConnec-

tionFactory object that will create connections to your messaging provider. For
example, if the name registered for your messaging provider is “ProviderABC”,
you can do a lookup on “ProviderABC” to get a ProviderConnectionFactory

object and use it to create a connection to your messaging provider. This is what
is done in the following code fragment. The first two lines use methods from the
JNDI API to retrieve the ProviderConnectionFactory object, and the last line
uses a method from the JAXM API to create the connection to the messaging
provider. Note that because the JNDI method lookup returns a Java Object, you

508 WEB SERVICES MESSAGING WITH JAXM
must convert it to a ProviderConnectionFactory object before assigning it to
the variable pcFactory.

Context ctx = new InitialContext();
ProviderConnectionFactory pcFactory =

(ProviderConnectionFactory)ctx.lookup("ProviderABC");

ProviderConnection pcCon = pcFactory.createConnection();

You will use pcCon, which represents a connection to your messaging provider,
to get information about your messaging provider and to send the message you
will create in the next section.

Creating a Message
You create all JAXM messages by getting a MessageFactory object and using it
to create the SOAPMessage object. For the standalone client example, you simply
used the default MessageFactory object obtained via the method MessageFac-

tory.newInstance. However, when you are using a messaging provider, you
obtain the MessageFactory object in a different way.

Getting a MessageFactory
If you are using a messaging provider, you create a MessageFactory object by
using the method ProviderConnection.createMessageFactory. In addition,
you pass it a String indicating the profile you want to use. To find out which
profiles your messaging provider supports, you need to get a ProviderMetaData

object with information about your provider. This is done by calling the method
getMetaData on the connection to your provider. Then you need to call the
method getSupportedProfiles to get an array of the profiles your messaging
provider supports. Supposing that you want to use the ebXML profile, you need
to see if any of the profiles in the array matches "ebxml". If there is a match, that
profile is assigned to the variable profile, which can then be passed to the
method createMessageFactory.

ProviderMetaData metaData = pcCon.getMetaData();
String[] supportedProfiles = metaData.getSupportedProfiles();
String profile = null;

for (int i=0; i < supportedProfiles.length; i++) {
if (supportedProfiles[i].equals("ebxml")) {

profile = supportedProfiles[i];
break;

CLIENT WITH A MESSAGING PROVIDER 509
}
}

MessageFactory factory = pcCon.createMessageFactory(profile);

You can now use factory to create a SOAPMessage object that conforms to the
ebXML profile. This example uses the minimal ebXML profile implementation
included in the Java WSDP. Note that the following line of code uses the class
EbXMLMessageImpl, which is defined in the ebXML profile implementation and
is not part of the JAXM API.

EbXMLMessageImpl message = (EbXMLMessageImpl)factory.
createMessage();

For this profile, instead of using Endpoint objects, you indicate Party objects
for the sender and the receiver. This information will appear in the message’s
header, and the messaging provider will use it to determine where to send the
message. The following lines of code use the methods setSender and setRe-

ceiver, which are defined in the EbXMLMessageImpl implementation. These
methods not only create a SOAPHeader object but also give it content. You can
use these methods because your SOAPMessage object is an EbXMLMessageImpl

object, giving you access to the methods defined in EbXMLMessageImpl.

message.setSender(new Party("http://grand.products.com"));
message.setReceiver(new Party("http://whiz.gizmos.com"));

You can view the API documentation for the ebXML and SOAP-RP profile
implementations provided in this Java WSDP at the following location:

<JWSDP_HOME>/jaxm-1.1.1/docs/profiles/index.html

If you are not using a profile or you want to set content for a header not covered
by your profile’s implementation, you need to follow the steps shown in the next
section.

Adding Content to the Header
To add content to the header, you need to create a SOAPHeaderElement object.
As with all new elements, it must have an associated Name object, which you cre-
ate using the message’s SOAPEnvelope object.

510 WEB SERVICES MESSAGING WITH JAXM
The following code fragment retrieves the SOAPHeader object from envelope

and adds a new SOAPHeaderElement object to it.

SOAPHeader header = envelope.getHeader();
Name headerName = envelope.createName("Purchase Order",

"PO", "http://www.sonata.com/order");
SOAPHeaderElement headerElement =

header.addHeaderElement(headerName);

At this point, header contains the SOAPHeaderElement object headerElement
identified by the Name object headerName. Note that the addHeaderElement

method both creates headerElement and adds it to header.

Now that you have identified headerElement with headerName and added it to
header, the next step is to add content to headerElement, which the next line of
code does with the method addTextNode.

headerElement.addTextNode("order");

Now you have the SOAPHeader object header that contains a SOAPHeaderEle-

ment object whose content is "order".

Adding Content to the SOAP Body
The process for adding content to the SOAPBody object is the same for clients
using a messaging provider as it is for standalone clients. This is also the same as
the process for adding content to the SOAPHeader object. You access the SOAP-

Body object, add a SOAPBodyElement object to it, and add text to the SOAP-

BodyElement object. It is possible to add additional SOAPBodyElement objects,
and it is possible to add subelements to the SOAPBodyElement objects with the
method addChildElement. For each element or child element, you add content
with the method addTextNode.

The section on the standalone client demonstrated adding one SOAPBodyElement

object, adding a child element, and giving it some text. The following example
shows adding more than one SOAPBodyElement and adding text to each of them.

The code first creates the SOAPBodyElement object purchaseLineItems, which
has a fully-qualified namespace associated with it. That is, the Name object for it
has a local name, a namespace prefix, and a namespace URI. As you saw earlier,

CLIENT WITH A MESSAGING PROVIDER 511
a SOAPBodyElement object is required to have a fully-qualified namespace, but
child elements added to it may have Name objects with only the local name.

SOAPBody body = envelope.getBody();
Name bodyName = envelope.createName("PurchaseLineItems", "PO",

"http://sonata.fruitsgalore.com");
SOAPBodyElement purchaseLineItems =

body.addBodyElement(bodyName);

Name childName = envelope.createName("Order");
SOAPElement order =

purchaseLineItems.addChildElement(childName);

childName = envelope.createName("Product");
SOAPElement product = order.addChildElement(childName);
product.addTextNode("Apple");

childName = envelope.createName("Price");
SOAPElement price = order.addChildElement(childName);
price.addTextNode("1.56");

childName = envelope.createName("Order");
SOAPElement order2 =

purchaseLineItems.addChildElement(childName);

childName = envelope.createName("Product");
SOAPElement product2 = order2.addChildElement(childName);
product2.addTextNode("Peach");

childName = envelope.createName("Price");
SOAPElement price2 = order2.addChildElement(childName);
price2.addTextNode("1.48");

The JAXM code in the preceding example produces the following XML in the
SOAP body:

<PO:PurchaseLineItems
xmlns:PO="http://www.sonata.fruitsgalore/order">
<Order>

<Product>Apple</Product>
<Price>1.56</Price>

</Order>

<Order>

512 WEB SERVICES MESSAGING WITH JAXM
<Product>Peach</Product>
<Price>1.48</Price>

</Order>
</PO:PurchaseLineItems>

Adding Content to the SOAPPart Object
If the content you want to send is in a file, JAXM provides an easy way to add it
directly to the SOAPPart object. This means that you do not access the SOAPBody

object and build the XML content yourself, as you did in the previous section.

To add a file directly to the SOAPPart object, you use a javax.xml.trans-

form.Source object from JAXP (the Java API for XML Processing). There are
three types of Source objects: SAXSource, DOMSource, and StreamSource. A
StreamSource object holds content as an XML document. SAXSource and DOM-

Source objects hold content along with the instructions for transforming the
content into an XML document.

The following code fragment uses JAXP API to build a DOMSource object that is
passed to the SOAPPart.setContent method. The first two lines of code get a
DocumentBuilderFactory object and use it to create the DocumentBuilder

object builder. Then builder parses the content file to produce a Document

object, which is used to initialize a new DOMSource object.

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.
newInstance();

DocumentBuilder builder = dbFactory.newDocumentBuilder();
Document doc = builder.parse("file:///music/order/soap.xml");
DOMSource domSource = new DOMSource(doc);

The following two lines of code access the SOAPPart object (using the SOAPMes-

sage object message) and set the new DOMSource object as its content. The
method SOAPPart.setContent not only sets content for the SOAPBody object but
also sets the appropriate header for the SOAPHeader object.

SOAPPart soapPart = message.getSOAPPart();
soapPart.setContent(domSource);

You will see other ways to add content to a message in the section on Attach-

mentPart objects. One big difference to keep in mind is that a SOAPPart object
must contain only XML data, whereas an AttachmentPart object may contain
any type of content.

ADDING ATTACHMENTS 513
Sending the Message
When the connection is a ProviderConnection object, messages have to be sent
using the method ProviderConnection.send. This method sends the message
passed to it and returns immediately. Unlike the SOAPConnection method call,
it does not have to block until it receives a response, which leaves the application
free to do other things.

The send method takes only one argument, the message to be sent. It does not
need to be given the destination because the messaging provider can use infor-
mation in the header to figure out where the message needs to go.

pcCon.send(message);
pcCon.close();

Adding Attachments
Adding AttachmentPart objects to a message is the same for all clients,
whether they use a messaging provider or not. As noted in earlier sections, you
can put any type of content, including XML, in an AttachmentPart object. And
because the SOAP part can contain only XML content, you must use an Attach-

mentPart object for any content that is not in XML format.

Creating an AttachmentPart Object and
Adding Content
The SOAPMessage object creates an AttachmentPart object, and the message
also has to add the attachment to itself after content has been added. The SOAP-

Message class has three methods for creating an AttachmentPart object.

The first method creates an attachment with no content. In this case, an Attach-

mentPart method is used later to add content to the attachment.

AttachmentPart attachment = message.createAttachmentPart();

You add content to attachment with the AttachmentPart method setContent.
This method takes two parameters, a Java Object for the content, and a String

object that gives the content type. Content in the SOAPBody part of a message
automatically has a Content-Type header with the value "text/xml" because the
content has to be in XML. In contrast, the type of content in an AttachmentPart

object has to be specified because it can be any type.

514 WEB SERVICES MESSAGING WITH JAXM
Each AttachmentPart object has one or more headers associated with it. When
you specify a type to the method setContent, that type is used for the header
Content-Type. Content-Type is the only header that is required. You may set
other optional headers, such as Content-Id and Content-Location. For conve-
nience, JAXM provides get and set methods for the headers Content-Type,
Content-Id, and Content-Location. These headers can be helpful in accessing
a particular attachment when a message has multiple attachments. For example,
to access the attachments that have particular headers, you call the SOAPMessage

method getAttachments and pass it the header or headers you are interested in.

The following code fragment shows one of the ways to use the method setCon-

tent. The Java Object being added is a String, which is plain text, so the sec-
ond argument has to be “text/plain”. The code also sets a content identifier,
which can be used to identify this AttachmentPart object. After you have added
content to attachment, you need to add attachment to the SOAPMessage object,
which is done in the last line.

String stringContent = "Update address for Sunny Skies " +
"Inc., to 10 Upbeat Street, Pleasant Grove, CA 95439";

attachment.setContent(stringContent, "text/plain");
attachment.setContentId("update_address");

message.addAttachmentPart(attachment);

The variable attachment now represents an AttachmentPart object that con-
tains the String stringContent and has a header that contains the String

“text/plain”. It also has a Content-Id header with “update_address” as its value.
And now attachment is part of message.

Let’s say you also want to attach a jpeg image showing how beautiful the new
location is. In this case, the second argument passed to setContent must be
“image/jpeg” to match the content being added. The code for adding an image
might look like the following. For the first attachment, the Object passed to the
method setContent was a String. In this case, it is a stream.

AttachmentPart attachment2 = message.createAttachmentPart();

byte[] jpegData = . . .;
ByteArrayInputStream stream = new ByteArrayInputStream(

jpegData);

ADDING ATTACHMENTS 515
attachment2.setContent(stream, "image/jpeg");

message.addAttachmentPart(attachment);

The other two SOAPMessage.createAttachment methods create an Attach-

mentPart object complete with content. One is very similar to the Attachment-

Part.setContent method in that it takes the same parameters and does
essentially the same thing. It takes a Java Object containing the content and a
String giving the content type. As with AttachmentPart.setContent, the
Object may be a String, a stream, a javax.xml.transform.Source object, or
a javax.activation.DataHandler object. You have already seen an example
of using a Source object as content. The next example will show how to use a
DataHandler object for content.

The other method for creating an AttachmentPart object with content takes a
DataHandler object, which is part of the JavaBeans™ Activation Framework
(JAF). Using a DataHandler object is fairly straightforward. First you create a
java.net.URL object for the file you want to add as content. Then you create a
DataHandler object initialized with the URL object and pass it to the method
createAttachmentPart.

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dh = new DataHandler(url);
AttachmentPart attachment = message.createAttachmentPart(dh);
attachment.setContentId("gyro_image");

message.addAttachmentPart(attachment);

You might note two things about the previous code fragment. First, it sets a
header for Content-ID with the method setContentId. This method takes a
String that can be whatever you like to identify the attachment. Second, unlike
the other methods for setting content, this one does not take a String for Con-
tent-Type. This method takes care of setting the Content-Type header for you,
which is possible because one of the things a DataHandler object does is deter-
mine the data type of the file it contains.

Accessing an AttachmentPart Object
If you receive a message with attachments or want to change an attachment to a
message you are building, you will need to access the attachment. When it is
given no argument, the method SOAPMessage.getAttachments returns a
java.util.Iterator object over all the AttachmentPart objects in a message.

516 WEB SERVICES MESSAGING WITH JAXM
The following code prints out the content of each AttachmentPart object in the
SOAPMessage object message.

java.util.Iterator it = message.getAttachments();
while (it.hasNext()) {

AttachmentPart attachment = (AttachmentPart)it.next();
Object content = attachment.getContent();
String id = attachment.getContentId();
System.out.print("Attachment " + id + " contains: " +

content);
System.out.println("");

}

Summary
In this section, you have been introduced to the basic JAXM API. You have seen
how to create and send SOAP messages as a standalone client and as a client
using a messaging provider. You have walked through adding content to a SOAP
header and a SOAP body and also walked through creating attachments and giv-
ing them content. In addition, you have seen how to retrieve the content from the
SOAP part and from attachments. In other words, you have walked through
using the basic JAXM API.

SOAP Faults
This section expands on the basic JAXM API by showing you how to use the
API for creating and accessing a SOAP Fault element in an XML message.

Overview
If you send a message that was not successful for some reason, you may get back
a response containing a SOAP Fault element that gives you status information,
error information, or both. There can be only one SOAP Fault element in a mes-
sage, and it must be an entry in the SOAP Body. The SOAP 1.1 specification
defines only one Body entry, which is the SOAP Fault element. Of course, the
SOAP Body may contain other Body entries, but the SOAP Fault element is the
only one that has been defined.

A SOAPFault object, the representation of a SOAP Fault element in the JAXM
API, is similar to an Exception object in that it conveys information about a
problem. However, a SOAPFault object is quite different in that it is an element

SOAP FAULTS 517
in a message’s SOAPBody object rather than part of the try/catch mechanism
used for Exception objects. Also, as part of the SOAPBody object, which pro-
vides a simple means for sending mandatory information intended for the ulti-
mate recipient, a SOAPFault object only reports status or error information. It
does not halt the execution of an application the way an Exception object can.

Various parties may supply a SOAPFault object in a message. If you are a standa-
lone client using the SAAJ API, and thus sending point-to-point messages, the
recipient of your message may add a SOAPFault object to the response to alert
you to a problem. For example, if you sent an order with an incomplete address
for where to send the order, the service receiving the order might put a SOAP-

Fault object in the return message telling you that part of the address was miss-
ing.

In another scenario, if you use the JAXM 1.1.1 API in order to use a messaging
provider, the messaging provider may be the one to supply a SOAPFault object.
For example, if the provider has not been able to deliver a message because a
server is unavailable, the provider might send you a message with a SOAPFault

object containing that information. In this case, there was nothing wrong with
the message itself, so you can try sending it again later without any changes. In
the previous example, however, you would need to add the missing information
before sending the message again.

A SOAPFault object contains the following elements:

• a fault code — always required
The SOAP 1.1 specification defines a set of fault code values in section
4.4.1, which a developer may extend to cover other problems. The default
fault codes defined in the specification relate to the JAXM API as follows:

• VersionMismatch — the namespace for a SOAPEnvelope object was
invalid

• MustUnderstand — an immediate child element of a SOAPHeader

object had its mustUnderstand attribute set to "1", and the processing
party did not understand the element or did not obey it

• Client — the SOAPMessage object was not formed correctly or did not
contain the information needed to succeed

518 WEB SERVICES MESSAGING WITH JAXM
• Server — the SOAPMessage object could not be processed because of a
processing error, not because of a problem with the message itself

• a fault string — always required
a human readable explanation of the fault

• a fault actor — required if the SOAPHeader object contains one or more
actor attributes; optional if no actors are specified, meaning that the only
actor is the ultimate destination
The fault actor, which is specified as a URI, identifies who caused the fault.
For an explanation of what an actor is, see the section Intermediate
Destinations (page 493).

• a Detail object — required if the fault is an error related to the SOAPBody

object
If, for example, the fault code is "Client", indicating that the message could
not be processed because of a problem in the SOAPBody object, the SOAP-

Fault object must contain a Detail object that gives details about the
problem. If a SOAPFault object does not contain a Detail object, it can be
assumed that the SOAPBody object was processed successfully.

Creating and Populating a SOAPFault Object
You have already seen how to add content to a SOAPBody object; this section will
walk you through adding a SOAPFault object to a SOAPBody object and then add-
ing its constituent parts.

As with adding content, the first step is to access the SOAPBody object.

SOAPEnvelope envelope =
msg.getSOAPPart().getEnvelope();

SOAPBody body = envelope.getBody();

With the SOAPBody object body in hand, you can use it to create a SOAPFault

object with the following line of code.

SOAPFault fault = body.addFault();

The following code uses convenience methods to add elements and their values
to the SOAPFault object fault. For example, the method setFaultCode creates
an element, adds it to fault, and adds a Text node with the value "Server".

fault.setFaultCode("Server");
fault.setFaultActor("http://gizmos.com/orders");
fault.setFaultString("Server not responding");

SOAP FAULTS 519
The SOAPFault object fault created in the previous lines of code indicates that
the cause of the problem is an unavailable server and that the actor at
"http://gizmos.com/orders" is having the problem. If the message were
being routed only to its ultimate destination, there would have been no need for
setting a fault actor. Also note that fault does not have a Detail object because
it does not relate to the SOAPBody object.

The following code fragment creates a SOAPFault object that includes a Detail

object. Note that a SOAPFault object may have only one Detail object, which is
simply a container for DetailEntry objects, but the Detail object may have
multiple DetailEntry objects. The Detail object in the following lines of code
has two DetailEntry objects added to it.

SOAPFault fault = body.addFault();

fault.setFaultCode("Client");
fault.setFaultString("Message does not have necessary info");

Detail detail = fault.addDetail();

Name entryName = envelope.createName("order", "PO",
"http://gizmos.com/orders/");

DetailEntry entry = detail.addDetailEntry(entryName);
entry.addTextNode("quantity element does not have a value");

Name entryName2 = envelope.createName("confirmation", "PO",
"http://gizmos.com/confirm");

DetailEntry entry2 = detail.addDetailEntry(entryName2);
entry2.addTextNode("Incomplete address: no zip code");

Retrieving Fault Information
Just as the SOAPFault interface provides convenience methods for adding infor-
mation, it also provides convenience methods for retrieving that information.
The following code fragment shows what you might write to retrieve fault infor-
mation from a message you received. In the code fragment, newmsg is the SOAP-

Message object that has been sent to you. Because a SOAPFault object must be
part of the SOAPBody object, the first step is to access the SOAPBody object. Then
the code tests to see if the SOAPBody object contains a SOAPFault object. If so,
the code retrieves the SOAPFault object and uses it to retrieve its contents. The

520 WEB SERVICES MESSAGING WITH JAXM
convenience methods getFaultCode, getFaultString, and getFaultActor

make retrieving the values very easy.

SOAPBody body =
newmsg.getSOAPPart().getEnvelope().getBody();

if (body.hasFault()) {
SOAPFault newFault = body.getFault();
String code = newFault.getFaultCode();
String string = newFault.getFaultString();
String actor = newFault.getFaultActor();

Next the code prints out the values it just retrieved. Not all messages are required
to have a fault actor, so the code tests to see if there is one. Testing whether the
variable actor is null works because the method getFaultActor returns null

if a fault actor has not been set.

System.out.println("SOAP fault contains: ");
System.out.println(" fault code = " + code);
System.out.println(" fault string = " + string);

if (actor != null) {
System.out.println(" fault actor = " + actor);

}
}

The final task is to retrieve the Detail object and get its DetailEntry objects.
The code uses the SOAPFault object newFault to retrieve the Detail object
newDetail, and then it uses newDetail to call the method getDetailEntries.
This method returns the java.util.Iterator object it, which contains all of
the DetailEntry objects in newDetail. Not all SOAPFault objects are required
to have a Detail object, so the code tests to see whether newDetail is null. If it
is not, the code prints out the values of the DetailEntry object(s) as long as
there are any.

Detail newDetail = newFault.getDetail();
if (newDetail != null) {

Iterator it = newDetail.getDetailEntries();
while (it.hasNext()) {

DetailEntry entry = (DetailEntry)it.next();
String value = entry.getValue();
System.out.println(" Detail entry = " + value);

}
}

CODE EXAMPLES 521
In summary, you have seen how to add a SOAPFault object and its contents to a
message as well as how to retrieve the information in a SOAPFault object. A
SOAPFault object, which is optional, is added to the SOAPBody object to convey
status or error information. It must always have a fault code and a String expla-
nation of the fault. A SOAPFault object must indicate the actor that is the source
of the fault only when there are multiple actors; otherwise, it is optional. Simi-
larly, the SOAPFault object must contain a Detail object with one or more
DetailEntry objects only when the contents of the SOAPBody object could not
be processed successfully.

Code Examples
The first part of this tutorial used code fragments to walk you through the funda-
mentals of using the JAXM API. In this section, you will use some of those code
fragments to create applications. First, you will see the program Request.java.
Then you will see how to create and run the application MyUddiPing.java.
Finally, you will see how to create and run SOAPFaultTest.java.

Request.java
The class Request.java puts together the code fragments used in the section
Client without a Messaging Provider (page 499) and adds what is needed to
make it a complete example of a client sending a request-response message. In
addition to putting all the code together, it adds import statements, a main

method, and a try/catch block with exception handling. The file
Request.java, shown here in its entirety, is a standalone client application that

522 WEB SERVICES MESSAGING WITH JAXM
uses the SAAJ API (the javax.xml.soap package). It does not need to use the
javax.xml.messaging package because it does not use a messaging provider.

import javax.xml.soap.*;
import java.util.*;
import java.net.URL;

public class Request {
public static void main(String[] args){

try {
SOAPConnectionFactory scFactory =

SOAPConnectionFactory.newInstance();
SOAPConnection con = scFactory.createConnection();

MessageFactory factory =
MessageFactory.newInstance();

SOAPMessage message = factory.createMessage();

SOAPPart soapPart = message.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();
SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();
header.detachNode();

Name bodyName = envelope.createName(
"GetLastTradePrice", "m",
"http://wombats.ztrade.com");

SOAPBodyElement gltp =
body.addBodyElement(bodyName);

Name name = envelope.createName("symbol");
SOAPElement symbol = gltp.addChildElement(name);
symbol.addTextNode("SUNW");

URL endpoint = new URL
("http://wombat.ztrade.com/quotes";

SOAPMessage response = con.call(message, endpoint);

con.close();

SOAPPart sp = response.getSOAPPart();
SOAPEnvelope se = sp.getEnvelope();
SOAPBody sb = se.getBody();

Iterator it = sb.getChildElements(bodyName);
SOAPBodyElement bodyElement =

(SOAPBodyElement)it.next();

UDDIPING.JAVA AND MYUDDIPING.JAVA 523
String lastPrice = bodyElement.getValue();

System.out.print("The last price for SUNW is ");
System.out.println(lastPrice);

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

In order for Request.java to be runnable, the second argument supplied to the
method call has to be a valid existing URI, which is not true in this case. See
the JAXM code in the case study for similar code that you can run (JAXM
Client, page 759). Also, the application in the next section is one that you can
run.

UddiPing.java and MyUddiPing.java
The sample program UddiPing.java is another example of a standalone appli-
cation. A Universal Description, Discovery and Integration (UDDI) service is a
business registry and repository from which you can get information about busi-
nesses that have registered themselves with the registry service. For this exam-
ple, the UddiPing application is not actually accessing a UDDI service registry
but rather a test (demo) version. Because of this, the number of businesses you
can get information about is limited. Nevertheless, UddiPing demonstrates a
request being sent and a response being received. The application prints out the
complete message that is returned, that is, the complete XML document as it
looks when it comes over the wire. Later in this section you will see how to
rewrite UddiPing.java so that in addition to printing out the entire XML docu-
ment, it also prints out just the text content of the response, making it much eas-
ier to see the information you want.

In order to get a better idea of how to run the UddiPing example, take a look at
the directory <JWSDP_HOME>/jaxm-1.1.1/samples/uddiping. This directory
contains the subdirectory src and the files run.sh (or run.bat), uddi.proper-
ties, UddiPing.class, and README. The README file tells you what you need to
do to run the application, which is explained more fully here.

The README file directs you to modify the file uddi.properties, which contains
the URL of the destination (the UDDI test registry) and the proxy host and proxy
port of the sender. If you are in the uddiping directory when you call the run.sh

524 WEB SERVICES MESSAGING WITH JAXM
(or run.bat) script, the information in uddi.properties should be correct
already. If you are outside Sun Microsystem’s firewall, however, you need to
supply your proxy host and proxy port. If you are not sure what the values for
these are, you need to consult your system administrator or other person with
that information.

The main job of the run script is to execute UddiPing. Once the file uddi.prop-

erties has the correct proxy host and proxy port, you can call the appropriate
run script as shown here. Note that you must supply two arguments, uddi.prop-
erties and the name of the business you want to look up.

Unix:

cd <JWSDP_HOME>/jaxm-1.1.1/samples/uddiping
run.sh uddi.properties Microsoft

Windows:

cd <JWSDP_HOME>\jaxm-1.1.1\samples\uddiping
run.bat uddi.properties Microsoft

What appears on your screen will look something like this (but much longer):

Received reply from:
http://www3.ibm.com/services/uddi/inquiryapi<?xml
version="1.0" encoding="UTF-8" ?><Envelope
xmlns="http://schemas.xmlsoap.org/soap/envelope/"><Body><busin
essList generic="1.0" xmlns="urn:uddi-org:api"
operator="www.ibm.com/services/uddi"
truncated="false"><businessInfos><businessInfo
businessKey="D7475060-BF58-11D5-A432-
0004AC49CC1E"><name>Microsoft Corporation</name><description
xml:lang="en">Computer Software and Hardware
Manufacturer</description><serviceInfos></serviceInfos></busin
essInfo></businessInfos></businessList></Body></Envelope>

If the business name you specified is in the test registry, the output is an XML
document with the name and description of that business. However, these are
embedded in the XML document, which makes them difficult to see. The next
section adds code to UddiPing.java that extracts the content so that it is readily
visible.

UDDIPING.JAVA AND MYUDDIPING.JAVA 525
Creating MyUddiPing.java
To make the response to UddiPing.java easier to read, you will create a new file
called MyUddiPing.java, which extracts the content and prints it out. You will
see how to write the new file later in this section after setting up a new directory
with the necessary subdirectories and files.

Setting Up
Because the name of the new file is MyUddiPing.java, create the directory
myuddiping under the <JWSDP_HOME>/jaxm-1.1.1/samples directory.

cd <JWSDP_HOME>/jaxm-1.1.1/samples
mkdir myuddiping

This new myuddiping directory will be the base directory for all future com-
mands relating to MyUddiPing.java.

In place of the run.sh or run.bat script used for running UddiPing, you will be
using an Ant file, build.xml, for setting up directories and files and for running
MyUddiPing. The advantage of using an Ant file is that it is cross-platform and
can thus be used for both Unix and Windows platforms. Accordingly, you need
to copy the build.xml file in the examples/jaxm directory of the tutorial to your
new myuddiping directory. (The command for copying should be all on one line.
Note that there is no space between "myuddiping/" "and "build", and there is a
"." at the end of the command line.)

Unix:

cd myuddiping
cp <JWSDP_HOME>/docs/tutorial/examples/jaxm/myuddiping/

build.xml .

Windows:

cd myuddiping
copy <JWSDP_HOME>\docs\tutorial\examples\jaxm\myuddiping\

build.xml .

Once you have the file build.xml in your myuddiping directory, you can call it
to do the rest of the setup and also to run MyUddiPing. An Ant build file is an
XML file that is sectioned into targets, with each target being an element that
contains attributes and one or more tasks. For example, the target element whose
name attribute is prepare creates the directories build and src and copies the

526 WEB SERVICES MESSAGING WITH JAXM
file MyUddiPing.java from the <JWSDP_HOME>/docs/tuto-

rial/examples/jaxm/myuddiping/src directory to the new src directory.
Then it copies the file uddi.properties from the uddiping directory to the
myuddiping directory that you created.

To accomplish these tasks, you type the following at the command line:

ant prepare

The target named build compiles the source file MyUddiPing.java and puts the
resulting .class file in the build directory. So to do these tasks, you type the
following at the command line:

ant build

Now that you are set up for running MyUddiPing, let’s take a closer look at the
code.

Examining MyUddiPing
We will go through the file MyUddiPing.java a few lines at a time. Note that
most of the class MyUddiPing.java is based on UddiPing.java. We will be
adding a section at the end of MyUddiPing.java that accesses only the content
you want from the response that is returned by the method call.

The first four lines of code import the packages used in the application.

import javax.xml.soap.*;
import javax.xml.messaging.*;
import java.util.*;
import java.io.*;

The next few lines begin the definition of the class MyUddiPing, which starts
with the definition of its main method. The first thing it does is check to see if
two arguments were supplied. If not, it prints a usage message and exits.

public class MyUddiPing {
public static void main(String[] args) {

try {
if (args.length != 2) {

System.err.println("Usage: MyUddiPing " +
"properties-file business-name");

System.exit(1);
}

UDDIPING.JAVA AND MYUDDIPING.JAVA 527
The following lines create a java.util.Properties file that contains the sys-
tem properties and the properties from the file uddi.properties that is in the
myuddiping directory.

Properties myprops = new Properties();
myprops.load(new FileInputStream(args[0]));
Properties props = System.getProperties();
Enumeration it = myprops.propertyNames();
while (it.hasMoreElements()) {

String s = (String) it.nextElement();
props.put(s, myprops.getProperty(s));

}

The next four lines create a SOAPMessage object. First, the code gets an instance
of SOAPConnectionFactory and uses it to create a connection. Then it gets an
instance of MessageFactory and uses it to create a message.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();

SOAPConnection connection =
scf.createConnection();

MessageFactory msgFactory =
MessageFactory.newInstance();

SOAPMessage msg = msgFactory.createMessage();

The new SOAPMessage object msg automatically contains a SOAPPart object that
contains a SOAPEnvelope object. The SOAPEnvelope object contains a SOAPBody

object, which is the element you want to access in order to add content to it. The
next lines of code get the SOAPPart object, the SOAPEnvelope object, and the
SOAPBody object.

SOAPEnvelope envelope =
msg.getSOAPPart().getEnvelope();

SOAPBody body = envelope.getBody();

The following lines of code add an element with a fully-qualified name and then
add two attributes to the new element. The first attribute has the name
"generic" and the value "2.0". The second attribute has the name "maxRows"

and the value "100". Then the code adds a child element with the name name and

528 WEB SERVICES MESSAGING WITH JAXM
adds some text to it with the method addTextNode. The text added is the busi-
ness name you will supply when you run the application.

SOAPBodyElement findBusiness =
body.addBodyElement(
envelope.createName("find_business",
"", "urn:uddi-org:api_v2"));

findBusiness.addAttribute(
envelope.createName("generic", "2.0");

findBusiness.addAttribute(
envelope.createName("maxRows", "100");

SOAPElement businessName =
findBusiness.addChildElement(
envelope.createName("name"));

businessName.addTextNode(args[1]);

The next line of code creates the Java Object that represents the destination for
this message. It gets the value of the property named "URL" from the system
property file.

Object endpoint =
System.getProperties().getProperty("URL");

The following line of code saves the changes that have been made to the mes-
sage. This method will be called automatically when the message is sent, but it
does not hurt to call it explicitly.

msg.saveChanges();

Next the message msg is sent to the destination that endpoint represents, which
is the test UDDI registry. The method call will block until it gets a SOAPMes-

sage object back, at which point it returns the reply.

SOAPMessage reply = connection.call(msg, endpoint);

In the next two lines, the first prints out a line giving the URL of the sender (the
test registry), and the second prints out the returned message as an XML docu-
ment.

System.out.println("Received reply from: " +endpoint);
reply.writeTo(System.out);

The code thus far has been based on UddiPing.java. The next section adds code
to create MyUddiPing.java.

UDDIPING.JAVA AND MYUDDIPING.JAVA 529
Adding New Code
The code we are going to add to UddiPing will make the reply more user-
friendly. It will get the content from certain elements rather than printing out the
whole XML document as it was sent over the wire. Because the content is in the
SOAPBody object, the first thing you need to do is access it, as shown in the fol-
lowing line of code. You can access each element in separate method calls, as
was done in earlier examples, or you can access the SOAPBody object using this
shorthand version.

SOAPBody replyBody =
reply.getSOAPPart().getEnvelope().getBody();

Next you might print out two blank lines to separate your results from the raw
XML message and a third line that describes the text that follows.

System.out.println("");
System.out.println("");
System.out.print(
"Content extracted from the reply message: ");

Now you can begin the process of getting all of the child elements from an ele-
ment, getting the child elements from each of those, and so on, until you arrive at
a text element that you can print out. Unfortunately, the registry used for this
example code, being just a test registry, is not always consistent. The number of
subelements sometimes varies, making it difficult to know how many levels
down the code needs to go. And in some cases, there are multiple entries for the
same company name. Note that by contrast, the entries in a standard valid regis-
try will be consistent.

The code you will be adding drills down through the subelements within the
SOAP body and retrieves the name and description of the business. The method
you use to retrieve child elements is the SOAPElement method getChildEle-

ments. When you give this method no arguments, it retrieves all of the child ele-
ments of the element on which it is called. If you know the Name object used to
name an element, you can supply that to getChildElements and retrieve only
the children with that name. In this example, however, you need to retrieve all
elements and keep drilling down until you get to the elements that contain text
content.

530 WEB SERVICES MESSAGING WITH JAXM
Here is the basic pattern that is repeated for drilling down:

Iterator iter1 = replyBody.getChildElements();
while (iter1.hasNext()) {

SOAPBodyElement bodyElement =
(SOAPBodyElement)iter1.next();

Iterator iter2 =
bodyElement.getChildElements();

while (iter2.hasNext()) {

The method getChildElements returns the elements in the form of a
java.util.Iterator object. You access the child elements by calling the
method next on the Iterator object. The method Iterator.hasNext can be
used in a while loop because it returns true as long as the next call to the
method next will return a child element. The loop ends when there are no more
child elements to retrieve.

An immediate child of a SOAPBody object is a SOAPBodyElement object, which is
why calling iter1.next returns a SOAPBodyElement object. Children of SOAP-
BodyElement objects and all child elements from there down are SOAPElement

objects. For example, the call iter2.next returns the SOAPElement object
child2. Note that the method Iterator.next returns an Object, which has to
be narrowed (cast) to the specific kind of object you are retrieving. Thus, the
result of calling iter1.next is cast to a SOAPBodyElement object, whereas the
results of calling iter2.next, iter3.next, and so on, are all cast to a
SOAPElement object.

Here is the code you add to access and print out the business name and descrip-
tion:

Iterator iter1 = replyBody.getChildElements();
while (iter1.hasNext()) {

SOAPBodyElement bodyElement =
(SOAPBodyElement)iter1.next();

Iterator iter2 =
bodyElement.getChildElements();

while (iter2.hasNext()) {
SOAPElement child2 =

(SOAPElement)iter2.next();
Iterator iter3 =

child2.getChildElements();
String content = child2.getValue();
System.out.println(content);
while (iter3.hasNext()) {

SOAPElement child3 =
(SOAPElement)iter3.next();

UDDIPING.JAVA AND MYUDDIPING.JAVA 531
Iterator iter4 =
child3.getChildElements();

content = child3.getValue();
System.out.println(content);
while (iter4.hasNext()) {

SOAPElement child4 =
(SOAPElement)iter4.next();

content = child4.getValue();
System.out.println(content);

}
}

}
}
connection.close();

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

You have already compiled MyUddiPing.java by calling the following at the
command line:

ant build

With the code compiled, you are ready to run MyUddiPing. The following com-
mand will call java on the .class file for MyUddiPing, which takes two argu-
ments. The first argument is the file uddi.properties, which is supplied by a
property set in build.xml. The second argument is the name of the business for
which you want to get a description, and you need to supply this argument on the
command line. Note that any property set on the command line overrides the
value set for that property in the build.xml file. The last argument supplied to
Ant is always the target, which in this case is run.

cd <JWSDP_HOME>/jaxm-1.1.1/samples/myuddiping
ant -Dbusiness-name=”Oracle” run

Here is the output that will appear after the full XML message. It is produced by
the code added in MyUddiPing.java.

Content extracted from the reply message:

Oracle Corporation
Oracle Corporation provides the software and services for e-
business.

532 WEB SERVICES MESSAGING WITH JAXM
Oracle JDeveloper Web Services
Oracle9i JDeveloper provides end-to-end support for web
services and UDDI

Oracle Sample Web services
Business Account established to showcase Oracle’s Web services.

There may be some occurrences of “null” in the output.

SOAPFaultTest.java
The code SOAPFaultTest.java, based on the code fragments in a preceding
section (SOAP Faults, page 516) creates a message with a SOAPFault object. It
then retrieves the contents of the SOAPFault object and prints them out. You will
find the code for SOAPFaultTest in the following directory:

<JWSDP_HOME>/docs/tutorial/examples/jaxm/fault/src

Here is the file SOAPFaultTest.java.

import javax.xml.soap.*;
import java.util.*;

public class SOAPFaultTest {

public static void main(String[] args) {
try {

MessageFactory msgFactory =
MessageFactory.newInstance();

SOAPMessage msg = msgFactory.createMessage();
SOAPEnvelope envelope =

msg.getSOAPPart().getEnvelope();
SOAPBody body = envelope.getBody();
SOAPFault fault = body.addFault();

fault.setFaultCode("Client");
fault.setFaultString(

"Message does not have necessary info");
fault.setFaultActor("http://gizmos.com/order");

Detail detail = fault.addDetail();

Name entryName = envelope.createName("order", "PO",
"http://gizmos.com/orders/");

DetailEntry entry = detail.addDetailEntry(entryName);

SOAPFAULTTEST.JAVA 533
entry.addTextNode(
"quantity element does not have a value");

Name entryName2 = envelope.createName("confirmation",
"PO", "http://gizmos.com/confirm");

DetailEntry entry2 = detail.addDetailEntry(entryName2);
entry2.addTextNode("Incomplete address: no zip code");

msg.saveChanges();

// Now retrieve the SOAPFault object and its contents
//after checking to see that there is one

if (body.hasFault()) {
fault = body.getFault();
String code = fault.getFaultCode();
String string = fault.getFaultString();
String actor = fault.getFaultActor();

System.out.println("SOAP fault contains: ");
System.out.println(" fault code = " + code);
System.out.println(" fault string = " + string);
if (actor != null) {

System.out.println(" fault actor = " + actor);
}

detail = fault.getDetail();
if (detail != null) {

Iterator it = detail.getDetailEntries();
while (it.hasNext()) {

entry = (DetailEntry)it.next();
String value = entry.getValue();
System.out.println(

" Detail entry = " + value);
}

}
}

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

Running SOAPFaultTest
To run SOAPFaultTest, you use the Ant file build.xml that is in the directory
<JWSDP_HOME>/docs/tutorial/examples/jaxm/fault.

534 WEB SERVICES MESSAGING WITH JAXM
This Ant file does many things for you, including creating a build directory
where class files will go, creating the classpath needed to run SOAPFaultTest,
compiling SOAPFaulTest.java, putting the resulting .class file in the build

directory, and running SOAPFaultTest.

To run SOAPFaultTest, do the following:

1. Go to the directory where the appropriate build.xml file is located.

cd <JWSDP_HOME>/docs/tutorial/examples/jaxm/fault

2. At the command line, type the following:

ant prepare

This will create the build directory, the directory where class files will be
put.

3. At the command line, type

ant build

This will run javac on SOAPFaultTest.java using the classpath that has
been set up in the build.xml file. The resulting .class file will be put in
the build directory created by the prepare target.

4. At the command line, type

ant run

This will execute the command java SOAPFaultTest.

Note that as a shortcut, you can simply type ant run. The necessary targets will
be executed in the proper order because if a target indicates that it depends on
one or more other targets, those will be executed before the specified target is
executed. In this case, the run target depends on the build target, which in turn
depends on the prepare target, so the prepare, build, and run targets will be
executed in that order. As an even faster shortcut, you can type just ant. The
default target for this build.xml file is run, so it has the same effect as typing
ant run.

If you want to run SOAPFaultTest again, it is a good idea to start over by delet-
ing the build directory and the .class file it contains. You can do this by typing
the following at the command line:

ant clean

CONCLUSION 535
After running SOAPFaultTest, you will see something like this:

Here is what the XML message looks like:

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://schemas.xmlsoap.org/
soap/envelope/"><soap-env:Header/><soap-env:Body><soap-env:
Fault><soap-env:faultcode>Client</soap-env:faultcode><soap-
env:faultstring>Message does not have necessary info</soap-
env:faultstring><soap-env:faultactor>http://gizmos.com/order
</soap-env:faultactor><soap-env:Detail><PO:order xmlns:PO=
"http://gizmos.com/orders/">quantity element does not have a
value</PO:order><PO:confirmation xmlns:PO="http://gizmos.com/
confirm">Incomplete address: no zip code</PO:confirmation>
</soap-env:Detail></soap-env:Fault></soap-env:Body></soap-env:
Envelope>

Here is what the SOAP fault contains:
fault code = Client
fault string = Message does not have necessary info
fault actor = http://gizmos.com/order
Detail entry = quantity element does not have a value
Detail entry = Incomplete address: no zip code

Conclusion
JAXM provides a Java API that simplifies writing and sending XML messages.
You have seen how to use this API to write client code for JAXM request-
response messages and one-way messages. You have also seen how to get the
content from a reply message. This knowledge was applied in writing and run-
ning the MyUddiPing and SOAPFaultTest examples. In addition, the case study
(The Coffee Break Application, page 747) provides detailed examples of JAXM
code for both the client and server.

You now have first-hand experience of how JAXM makes it easier to do XML
messaging.

Further Information
You can find additional information about JAXM from the following:

• Documents bundled with the JAXM implementation at

536 WEB SERVICES MESSAGING WITH JAXM
<JWSDP_HOME>/jaxm-1.1.1/docs

• SAAJ 1.1 specification, available from

http://java.sun.com/xml/downloads/saaj.html

• JAXM 1.1 specification, available from

http://java.sun.com/xml/downloads/jaxm.html

• JAXM website at

http://java.sun.com/xml/jaxm/

• JAXM sample applications (see Running the Samples, page 495)

http://java.sun.com/xml/downloads/jaxm.html
http://java.sun.com/xml/downloads/saaj.html
http://java.sun.com/xml/jaxm/

13
537
Publishing and
Discovering Web

Services with JAXR
Kim Haase

THE Java API for XML Registries (JAXR) provides a uniform and standard
Java API for accessing different kinds of XML registries.

The implementation of JAXR that is part of the Java Web Services Developer
Pack (Java WSDP) includes several sample programs as well as a Registry
Browser tool that also illustrates how to write a JAXR client program. See Regis-
try Browser (page 839) for information about this tool.

After providing a brief overview of JAXR, this chapter describes how to imple-
ment a JAXR client to publish an organization and its web services to a registry
and to query a registry to find organizations and services. Finally, it explains how
to run the examples provided with this tutorial and offers links to more informa-
tion on JAXR.

538 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Overview of JAXR
This section covers the following topics:

• What is a registry?

• What is JAXR?

• JAXR architecture

What Is a Registry?
An XML registry is an infrastructure that enables the building, deployment, and
discovery of Web services. It is a neutral third party that facilitates dynamic and
loosely coupled business-to-business (B2B) interactions. A registry is available
to organizations as a shared resource, often in the form of a Web-based service.

Currently there are a variety of specifications for XML registries. These include

• The ebXML Registry and Repository standard, which is sponsored by the
Organization for the Advancement of Structured Information Standards
(OASIS) and the United Nations Centre for the Facilitation of Procedures
and Practices in Administration, Commerce and Transport
(U.N./CEFACT)

• The Universal Description, Discovery, and Integration (UDDI) project,
which is being developed by a vendor consortium

A registry provider is an implementation of a business registry that conforms to a
specification for XML registries.

What Is JAXR?
JAXR enables Java software programmers to use a single, easy-to-use abstrac-
tion API to access a variety of XML registries. A unified JAXR information
model describes content and metadata within XML registries.

JAXR gives developers the ability to write registry client programs that are por-
table across different target registries. JAXR also enables value-added capabili-
ties beyond those of the underlying registries.

The current version of the JAXR specification includes detailed bindings
between the JAXR information model and both the ebXML Registry and the

JAXR ARCHITECTURE 539
UDDI version 2 specifications. You can find the latest version of the specifica-
tion at

http://java.sun.com/xml/downloads/jaxr.html

At this release of the Java WSDP, JAXR implements the level 0 capability profile
defined by the JAXR specification. This level allows access to both UDDI and
ebXML registries at a basic level. At this release, JAXR supports access only to
UDDI version 2 registries.

Currently several UDDI version 2 registries exist. The Java WSDP Registry
Server provides a UDDI version 2 registry that you can use to test your JAXR
applications in a private environment. See The Java WSDP Registry
Server (page 829) for details.

Several ebXML registries are under development, and one is available at the
Center for E-Commerce Infrastructure Development (CECID), Department of
Computer Science Information Systems, The University of Hong Kong (HKU).
For information, see
http://www.cecid.hku.hk/Release/PR09APR2002.html.

A JAXR provider for ebXML registries is available in open source at
http://ebxmlrr.sourceforge.net.

JAXR Architecture
The high-level architecture of JAXR consists of the following parts:

• A JAXR client: a client program that uses the JAXR API to access a busi-
ness registry via a JAXR provider.

• A JAXR provider: an implementation of the JAXR API that provides
access to a specific registry provider or to a class of registry providers that
are based on a common specification.

A JAXR provider implements two main packages:

• javax.xml.registry, which consists of the API interfaces and classes
that define the registry access interface.

• javax.xml.registry.infomodel, which consists of interfaces that define
the information model for JAXR. These interfaces define the types of
objects that reside in a registry and how they relate to each other. The basic
interface in this package is the RegistryObject interface. Its subinter-
faces include Organization, Service, and ServiceBinding.

http://www.cecid.hku.hk/Release/PR09APR2002.html
http://ebxmlrr.sourceforge.net
http://java.sun.com/xml/downloads/jaxr.html

540 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
The most basic interfaces in the javax.xml.registry package are

• Connection. The Connection interface represents a client session with a
registry provider. The client must create a connection with the JAXR pro-
vider in order to use a registry.

• RegistryService. The client obtains a RegistryService object from its
connection. The RegistryService object in turn enables the client to
obtain the interfaces it uses to access the registry.

The primary interfaces, also part of the javax.xml.registry package, are

• BusinessQueryManager, which allows the client to search a registry for
information in accordance with the javax.xml.registry.infomodel

interfaces. An optional interface, DeclarativeQueryManager, allows the
client to use SQL syntax for queries. (The implementation of JAXR in the
Java WSDP does not implement DeclarativeQueryManager.)

• BusinessLifeCycleManager, which allows the client to modify the infor-
mation in a registry by either saving it (updating it) or deleting it.

When an error occurs, JAXR API methods throw a JAXRException or one of its
subclasses.

Many methods in the JAXR API use a Collection object as an argument or a
returned value. Using a Collection object allows operations on several registry
objects at a time.

Figure 13–1 illustrates the architecture of JAXR. In the Java WSDP, a JAXR cli-
ent uses the capability level 0 interfaces of the JAXR API to access the JAXR
provider. The JAXR provider in turn accesses a registry. The Java WSDP sup-
plies a JAXR provider for UDDI registries.

IMPLEMENTING A JAXR CLIENT 541
Figure 13–1 JAXR Architecture

Implementing a JAXR Client
This section describes the basic steps to follow in order to implement a JAXR
client that can perform queries and updates to a UDDI registry. A JAXR client is
a client program that can access registries using the JAXR API.

This tutorial does not describe how to implement a JAXR provider. A JAXR pro-
vider provides an implementation of the JAXR specification that allows access to
an existing registry provider, such as a UDDI or ebXML registry. The implemen-
tation of JAXR in the Java WSDP itself is an example of a JAXR provider.

This tutorial includes several client examples, which are described in Running
the Client Examples (page 562).

The JAXR release also includes several sample JAXR clients, the most complete
of which is a Registry Browser that includes a graphical user interface (GUI).
For details on using this browser, see Registry Browser (page 839).

542 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Establishing a Connection
The first task a JAXR client must complete is to establish a connection to a regis-
try.

Preliminaries: Getting Access to a Registry
Any user of a JAXR client may perform queries on a registry. In order to add
data to the registry or to update registry data, however, a user must obtain per-
mission from the registry to access it. To register with one of the public UDDI
version 2 registries, go to one of the following Web sites and follow the instruc-
tions:

• http://uddi.microsoft.com/ (Microsoft)

• http://uddi.ibm.com/testregistry/registry.html (IBM)

• http://udditest.sap.com/ (SAP)

These UDDI version 2 registries are intended for testing purposes. When you
register, you will obtain a user name and password. You will specify this user
name and password for some of the JAXR client example programs.

Note: The JAXR API has been tested with the Microsoft and IBM registries, but not
with the SAP registry.

Creating or Looking Up a Connection Factory
A client creates a connection from a connection factory. A JAXR provider may
supply one or more preconfigured connection factories that clients can obtain by
looking them up using the Java Naming and Directory Interface™ (JNDI) API.

At this release of the Java WSDP, JAXR does not supply preconfigured connec-
tion factories. Instead, a client creates an instance of the abstract class Connec-

tionFactory:

import javax.xml.registry.*;
...
ConnectionFactory connFactory =
 ConnectionFactory.newInstance();

http://uddi.microsoft.com/
http://www-3.ibm.com/services/uddi/
http://uddi.microsoft.com/

ESTABLISHING A CONNECTION 543
Creating a Connection
To create a connection, a client first creates a set of properties that specify the
URL or URLs of the registry or registries being accessed. For example, the fol-
lowing code provides the URLs of the query service and publishing service for
the IBM test registry. (There should be no line break in the strings.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",
 "http://uddi.ibm.com/testregistry/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",
 "https://uddi.ibm.com/testregistry/protect/publishapi");

With the Java WSDP implementation of JAXR, if the client is accessing a regis-
try that is outside a firewall, it must also specify proxy host and port information
for the network on which it is running. For queries it may need to specify only
the HTTP proxy host and port; for updates it must specify the HTTPS proxy host
and port.

props.setProperty("com.sun.xml.registry.http.proxyHost",
 "myhost.mydomain");
props.setProperty("com.sun.xml.registry.http.proxyPort",
 "8080");
props.setProperty("com.sun.xml.registry.https.proxyHost",
 "myhost.mydomain");
props.setProperty("com.sun.xml.registry.https.proxyPort",
 "8080");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in the sample programs shows the steps used to
create a JAXR connection.

Setting Connection Properties
The implementation of JAXR in the Java WSDP allows you to set a number of
properties on a JAXR connection. Some of these are standard properties defined
in the JAXR specification. Other properties are specific to the implementation of

544 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
JAXR in the Java WSDP. Table 13–1 and Table 13–2 list and describe these
properties.

Table 13–1 Standard JAXR Connection Properties

Property Name and Description
Data
Type Default Value

javax.xml.registry.queryManagerURL

Specifies the URL of the query manager service within the tar-
get registry provider

String None

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life cycle manager service within the
target registry provider (for registry updates)

String
Same as the speci-
fied queryMan-
agerURL value

javax.xml.registry.semanticEquivalences

Specifies semantic equivalences of concepts as one or more
tuples of the ID values of two equivalent concepts separated
by a comma; the tuples are separated by vertical bars:
id1,id2|id3,id4

String None

javax.xml.registry.security.authentication-
Method

Provides a hint to the JAXR provider on the authentication
method to be used for authenticating with the registry provider

String

None;
UDDI_GET_AUTH-
TOKEN is the only
supported value

javax.xml.registry.uddi.maxRows

The maximum number of rows to be returned by find opera-
tions. Specific to UDDI providers

Integer None

javax.xml.registry.postalAddressScheme

The ID of a ClassificationScheme to be used as the
default postal address scheme. See Specifying Postal
Addresses (page 560) for an example

String None

ESTABLISHING A CONNECTION 545
Table 13–2 Implementation-Specific JAXR Connection Properties

Property Name and Description
Data
Type Default Value

com.sun.xml.registry.http.proxyHost

Specifies the HTTP proxy host to be used for access-
ing external registries. If you specified a proxy host
and port when you installed the Java WSDP, the val-
ues you specified are in the file
<JWSDP_HOME>/conf/jwsdp.properties.

String

Proxy host value speci-
fied in
<JWSDP_HOME>/conf/
jwsdp.properties

com.sun.xml.registry.http.proxyPort

Specifies the HTTP proxy port to be used for access-
ing external registries; usually 8080

String

Proxy port value speci-
fied in
<JWSDP_HOME>/conf/
jwsdp.properties

com.sun.xml.registry.https.proxyHost

Specifies the HTTPS proxy host to be used for
accessing external registries

String
Same as HTTP proxy
host value

com.sun.xml.registry.https.proxyPort

Specifies the HTTPS proxy port to be used for
accessing external registries; usually 8080

String
Same as HTTP proxy
port value

com.sun.xml.registry.http.proxyUserName

Specifies the user name for the proxy host for HTTP
proxy authentication, if one is required

String None

com.sun.xml.registry.http.proxyPassword

Specifies the password for the proxy host for HTTP
proxy authentication, if one is required

String None

com.sun.xml.registry.useCache

Tells the JAXR implementation to look for registry
objects in the cache first and then to look in the regis-
try if not found

Boolean,
passed in
as String

True

546 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
You can set these properties as follows:

• Most of these properties must be set in a JAXR client program. For exam-
ple:

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",
 "http://uddi.ibm.com/testregistry/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL",
 "https://uddi.ibm.com/testregistry/protect/publishapi");
ConnectionFactory factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

• The postalAddressScheme, useCache, and useSOAP properties may be
set in a <sysproperty> tag in a build.xml file for the Ant tool. For exam-
ple:

<sysproperty key="useSOAP" value="true"/>

These properties may also be set with the -D option on the java command
line.

An additional system property specific to the implementation of JAXR in the
Java WSDP is com.sun.xml.registry.userTaxonomyFilenames. For details
on using this property, see Defining a Taxonomy (page 557).

com.sun.xml.registry.useSOAP

Tells the JAXR implementation to use Apache SOAP
rather than the Java API for XML Messaging; may
be useful for debugging

Boolean,
passed in
as String

False

Table 13–2 Implementation-Specific JAXR Connection Properties

Property Name and Description
Data
Type Default Value

QUERYING A REGISTRY 547
Obtaining and Using a RegistryService Object
After creating the connection, the client uses the connection to obtain a Regis-

tryService object and then the interface or interfaces it will use:

RegistryService rs = connection.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();
BusinessLifeCycleManager blcm =
 rs.getBusinessLifeCycleManager();

Typically, a client obtains both a BusinessQueryManager object and a Busi-

nessLifeCycleManager object from the RegistryService object. If it is using
the registry for simple queries only, it may need to obtain only a BusinessQue-

ryManager object.

Querying a Registry
The simplest way for a client to use a registry is to query it for information about
the organizations that have submitted data to it. The BusinessQueryManager

interface supports a number of find methods that allow clients to search for data
using the JAXR information model. Many of these methods return a BulkRe-

sponse (a collection of objects) that meets a set of criteria specified in the
method arguments. The most useful of these methods are:

• findOrganizations, which returns a list of organizations that meet the
specified criteria—often a name pattern or a classification within a classi-
fication scheme

• findServices, which returns a set of services offered by a specified orga-
nization

• findServiceBindings, which returns the service bindings (information
about how to access the service) that are supported by a specified service

The JAXRQuery program illustrates how to query a registry by organization name
and display the data returned. The JAXRQueryByNAICSClassification and
JAXRQueryByWSDLClassification programs illustrate how to query a registry
using classifications. All JAXR providers support at least the following taxono-
mies for classifications:

• The North American Industry Classification System (NAICS). See
http://www.census.gov/epcd/www/naics.html for details.

• The Universal Standard Products and Services Classification (UNSPSC).
See http://www.eccma.org/unspsc/ for details.

http://www.census.gov/epcd/www/naics.html
http://www.eccma.org/unspsc/

548 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
• The ISO 3166 country codes classification system maintained by the Inter-
national Organization for Standardization (ISO). See
http://www.iso.org/iso/en/prods-ser-

vices/iso3166ma/index.html for details.

The following sections describe how to perform some common queries.

Finding Organizations by Name
To search for organizations by name, you normally use a combination of find
qualifiers (which affect sorting and pattern matching) and name patterns (which
specify the strings to be searched). The findOrganizations method takes a col-
lection of findQualifier objects as its first argument and a collection of name-
Pattern objects as its second argument. The following fragment shows how to
find all the organizations in the registry whose names begin with a specified
string, qString, and to sort them in alphabetical order.

// Define find qualifiers and name patterns
Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);
Collection namePatterns = new ArrayList();
namePatterns.add(qString);

// Find using the name
BulkResponse response =
 bqm.findOrganizations(findQualifiers,
 namePatterns, null, null, null, null);
Collection orgs = response.getCollection();

A client can use percent signs (%) to specify that the query string can occur any-
where within the organization name. For example, the following code fragment
performs a case-sensitive search for organizations whose names contain
qString:

Collection findQualifiers = new ArrayList();
findQualifiers.add(FindQualifier.CASE_SENSITIVE_MATCH);
Collection namePatterns = new ArrayList();
namePatterns.add("%" + qString + "%");

// Find orgs with name containing qString
BulkResponse response =
 bqm.findOrganizations(findQualifiers, namePatterns, null,
 null, null, null);
Collection orgs = response.getCollection();

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
http://www.iso.org/iso/en/prods-services/iso3166ma/index.html

QUERYING A REGISTRY 549
Finding Organizations by Classification
To find organizations by classification, you need to establish the classification
within a particular classification scheme and then specify the classification as an
argument to the findOrganizations method.

The following code fragment finds all organizations that correspond to a particu-
lar classification within the NAICS taxonomy. (You can find the NAICS codes at
http://www.census.gov/epcd/naics/naicscod.txt and also in the file
<JWSDP_HOME>/docs/jaxr/taxonomies/naics.xml.)

ClassificationScheme cScheme =
 bqm.findClassificationSchemeByName(null,
 "ntis-gov:naics");
Classification classification =
 blcm.createClassification(cScheme,
 "Snack and Nonalcoholic Beverage Bars", "722213");
Collection classifications = new ArrayList();
classifications.add(classification);
// make JAXR request
BulkResponse response = bqm.findOrganizations(null,
 null, classifications, null, null, null);
Collection orgs = response.getCollection();

You can also use classifications to find organizations that offer services based on
technical specifications that take the form of WSDL (Web Services Description
Language) documents. In JAXR, a concept is used as a proxy to hold the infor-
mation about a specification. The steps are a little more complicated than in the
previous example, because the client must find the specification concepts first,
then the organizations that use those concepts.

The following code fragment finds all the WSDL specification instances used
within a given registry. You can see that the code is similar to the NAICS query
code except that it ends with a call to findConcepts instead of findOrganiza-
tions.

String schemeName = "uddi-org:types";
ClassificationScheme uddiOrgTypes =
 bqm.findClassificationSchemeByName(null, schemeName);

/*
 * Create a classification, specifying the scheme
 * and the taxonomy name and value defined for WSDL
 * documents by the UDDI specification.
 */

http://www.census.gov/epcd/naics/naicscod.txt

550 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Classification wsdlSpecClassification =
blcm.createClassification(uddiOrgTypes,
 "wsdlSpec", "wsdlSpec");

Collection classifications = new ArrayList();
classifications.add(wsdlSpecClassification);

// Find concepts
BulkResponse br = bqm.findConcepts(null, null,
 classifications, null, null);

To narrow the search, you could use other arguments of the findConcepts

method (search qualifiers, names, external identifiers, or external links).

The next step is to go through the concepts, find the WSDL documents they cor-
respond to, and display the organizations that use each document:

// Display information about the concepts found
Collection specConcepts = br.getCollection();
Iterator iter = specConcepts.iterator();
if (!iter.hasNext()) {

System.out.println("No WSDL specification concepts found");
} else {
 while (iter.hasNext()) {
 Concept concept = (Concept) iter.next();

 String name = getName(concept);

 Collection links = concept.getExternalLinks();
 System.out.println("\nSpecification Concept:\n\tName: " +
 name + "\n\tKey: " +
 concept.getKey().getId() +
 "\n\tDescription: " +
 getDescription(concept));
 if (links.size() > 0) {
 ExternalLink link =
 (ExternalLink) links.iterator().next();
 System.out.println("\tURL of WSDL document: '" +
 link.getExternalURI() + "'");
 }

 // Find organizations that use this concept
 Collection specConcepts1 = new ArrayList();
 specConcepts1.add(concept);
 br = bqm.findOrganizations(null, null, null,
 specConcepts1, null, null);

MANAGING REGISTRY DATA 551
 // Display information about organizations
 ...
}

If you find an organization that offers a service you wish to use, you can invoke
the service using the JAX-RPC API.

Finding Services and ServiceBindings
After a client has located an organization, it can find that organization’s services
and the service bindings associated with those services.

Iterator orgIter = orgs.iterator();
while (orgIter.hasNext()) {
 Organization org = (Organization) orgIter.next();
 Collection services = org.getServices();
 Iterator svcIter = services.iterator();
 while (svcIter.hasNext()) {
 Service svc = (Service) svcIter.next();
 Collection serviceBindings =
 svc.getServiceBindings();
 Iterator sbIter = serviceBindings.iterator();
 while (sbIter.hasNext()) {
 ServiceBinding sb =
 (ServiceBinding) sbIter.next();
 }
 }
}

Managing Registry Data
If a client has authorization to do so, it can submit data to a registry, modify it,
and remove it. It uses the BusinessLifeCycleManager interface to perform
these tasks.

Registries usually allow a client to modify or remove data only if the data is
being modified or removed by the same user who first submitted the data.

552 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Getting Authorization from the Registry
Before it can submit data, the client must send its user name and password to the
registry in a set of credentials. The following code fragment shows how to do
this.

String username = "myUserName";
String password = "myPassword";

// Get authorization from the registry
PasswordAuthentication passwdAuth =
 new PasswordAuthentication(username,
 password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

Creating an Organization
The client creates the organization and populates it with data before saving it.

An Organization object is one of the more complex data items in the JAXR
API. It normally includes the following:

• A Name object

• A Description object

• A Key object, representing the ID by which the organization is known to
the registry. This key is created by the registry, not by the user, and is
returned after the organization is submitted to the registry.

• A PrimaryContact object, which is a User object that refers to an autho-
rized user of the registry. A User object normally includes a PersonName

object and collections of TelephoneNumber, EmailAddress, and/or Post-
alAddress objects.

• A collection of Classification objects

• Service objects and their associated ServiceBinding objects

For example, the following code fragment creates an organization and specifies
its name, description, and primary contact. When a client creates an organiza-
tion, it does not include a key; the registry returns the new key when it accepts
the newly created organization. The blcm object in this code fragment is the
BusinessLifeCycleManager object returned in Obtaining and Using a Registry-

MANAGING REGISTRY DATA 553
Service Object (page 547). An InternationalString object is used for string
values that may need to be localized.

// Create organization name and description
Organization org =
 blcm.createOrganization("The Coffee Break");
InternationalString s =
 blcm.createInternationalString("Purveyor of " +
 "the finest coffees. Established 1895");
org.setDescription(s);

// Create primary contact, set name
User primaryContact = blcm.createUser();
PersonName pName = blcm.createPersonName("Jane Doe");
primaryContact.setPersonName(pName);

// Set primary contact phone number
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber("(800) 555-1212");
Collection phoneNums = new ArrayList();
phoneNums.add(tNum);
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address
EmailAddress emailAddress =
 blcm.createEmailAddress("jane.doe@TheCoffeeBreak.com");
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);

Adding Classifications
Organizations commonly belong to one or more classifications based on one or
more classification schemes (taxonomies). To establish a classification for an
organization using a taxonomy, the client first locates the taxonomy it wants to
use. It uses the BusinessQueryManager to find the taxonomy. The
findClassificationSchemeByName method takes a set of FindQualifier

objects as its first argument, but this argument can be null.

// Set classification scheme to NAICS
ClassificationScheme cScheme =

bqm.findClassificationSchemeByName(null, "ntis-gov:naics");

554 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
The client then creates a classification using the classification scheme and a con-
cept (a taxonomy element) within the classification scheme. For example, the
following code sets up a classification for the organization within the NAICS
taxonomy. The second and third arguments of the createClassification

method are the name and value of the concept.

// Create and add classification
Classification classification =
 blcm.createClassification(cScheme,
 "Snack and Nonalcoholic Beverage Bars", "722213");
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Services also use classifications, so you can use similar code to add a classifica-
tion to a Service object.

Adding Services and Service Bindings to an
Organization
Most organizations add themselves to a registry in order to offer services, so the
JAXR API has facilities to add services and service bindings to an organization.

Like an Organization object, a Service object has a name and a description.
Also like an Organization object, it has a unique key that is generated by the
registry when the service is registered. It may also have classifications associated
with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description,
an access URI, and a specification link, which provides the linkage between a
service binding and a technical specification that describes how to use the ser-
vice using the service binding.

The following code fragment shows how to create a collection of services, add
service bindings to a service, then add the services to the organization. It speci-
fies an access URI but not a specification link. Because the access URI is not real

MANAGING REGISTRY DATA 555
and because JAXR by default checks for the validity of any published URI, the
binding sets its validateURI property to false.

// Create services and service
Collection services = new ArrayList();
Service service = blcm.createService("My Service Name");
InternationalString is =
 blcm.createInternationalString("My Service Description");
service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createInternationalString("My Service Binding " +
 "Description");
binding.setDescription(is);
// allow us to publish a bogus URL without an error
binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Saving an Organization
The primary method a client uses to add or modify organization data is the
saveOrganizations method, which creates one or more new organizations in a
registry if they did not exist previously. If one of the organizations exists but
some of the data have changed, the saveOrganizations method updates and
replaces the data.

After a client populates an organization with the information it wants to make
public, it saves the organization. The registry returns the key in its response, and
the client retrieves it.

// Add organization and submit to registry
// Retrieve key if successful
Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getException();

556 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
if (exceptions == null) {
 System.out.println("Organization saved");

 Collection keys = response.getCollection();
 Iterator keyIter = keys.iterator();
 if (keyIter.hasNext()) {
 javax.xml.registry.infomodel.Key orgKey =
 (javax.xml.registry.infomodel.Key) keyIter.next();
 String id = orgKey.getId();
 System.out.println("Organization key is " + id);
 org.setKey(orgKey);
 }
}

Removing Data from the Registry
A registry allows you to remove from the registry any data that you have submit-
ted to it. You use the key returned by the registry as an argument to one of the
BusinessLifeCycleManager delete methods: deleteOrganizations, delete-
Services, deleteServiceBindings, and others.

The JAXRDelete sample program deletes the organization created by the JAXR-

Publish program. It deletes the organization that corresponds to a specified key
string and then displays the key again so that the user can confirm that it has
deleted the correct one.

String id = key.getId();
System.out.println("Deleting organization with id " + id);
Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteOrganizations(keys);
Collection exceptions = response.getException();
if (exceptions == null) {
 System.out.println("Organization deleted");
 Collection retKeys = response.getCollection();
 Iterator keyIter = retKeys.iterator();
 javax.xml.registry.infomodel.Key orgKey = null;
 if (keyIter.hasNext()) {
 orgKey =
 (javax.xml.registry.infomodel.Key) keyIter.next();
 id = orgKey.getId();
 System.out.println("Organization key was " + id);
 }
}

A client can use a similar mechanism to delete services and service bindings.

USING TAXONOMIES IN JAXR CLIENTS 557
Using Taxonomies in JAXR Clients
In the JAXR API, a taxonomy is represented by a ClassificationScheme

object.

This section describes how to use the implementation of JAXR in the Java
WSDP:

• To define your own taxonomies

• To specify postal addresses for an organization

Defining a Taxonomy
The JAXR specification requires a JAXR provider to be able to add user-defined
taxonomies for use by JAXR clients. The mechanisms clients use to add and
administer these taxonomies are implementation-specific.

The implementation of JAXR in the Java WSDP uses a simple file-based
approach to provide taxonomies to the JAXR client. These files are read at run
time, when the JAXR provider starts up.

The taxonomy structure for the Java WSDP is defined by the JAXR Predefined
Concepts DTD, which is declared both in the file jaxrconcepts.dtd and, in
XML schema form, in the file jaxrconcepts.xsd. The file jaxrconcepts.xml

contains the taxonomies for the implementation of JAXR in the Java WSDP. All
these files are contained in the <JWSDP_HOME>/common/lib/jaxr-ri.jar file,
but you can find copies of them in the directory
<JWSDP_HOME>/docs/jaxr/taxonomies. This directory also contains copies of
the XML files that the implementation of JAXR in the Java WSDP uses to define
the well-known taxonomies that it uses: naics.xml, iso3166.xml, and
unspsc.xml. You may use all of these as examples of how to construct a taxon-
omy XML file.

The entries in the jaxrconcepts.xml file look like this:

<PredefinedConcepts>
<JAXRClassificationScheme id="schId" name="schName">
<JAXRConcept id="schId/conCode" name="conName"
parent="parentId" code="conCode"></JAXRConcept>
...
</JAXRClassificationScheme>
</PredefinedConcepts>

558 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
The taxonomy structure is a containment-based structure. The element Pre-

definedConcepts is the root of the structure and must be present. The JAXR-

ClassificationScheme element is the parent of the structure, and the
JAXRConcept elements are children and grandchildren. A JAXRConcept element
may have children, but it is not required to do so.

In all element definitions, attribute order and case are significant.

To add a user-defined taxonomy, follow these steps.

1. Publish the JAXRClassificationScheme element for the taxonomy as a
ClassificationScheme object in the registry that you will be accessing.
For example, you can publish the ClassificationScheme object to the
Java WSDP Registry Server. In order to publish a ClassificationScheme
object, you must set its name. You also give the scheme a classification
within a known classification scheme such as uddi-org:types. In the fol-
lowing code fragment, the name is the first argument of the LifeCycle-

Manager.createClassificationScheme method call.

ClassificationScheme cScheme =

blcm.createClassificationScheme("MyScheme",

"A Classification Scheme");

ClassificationScheme uddiOrgTypes =

bqm.findClassificationSchemeByName(null,

"uddi-org:types");

if (uddiOrgTypes != null) {

Classification classification =

blcm.createClassification(uddiOrgTypes,

"postalAddress", "categorization");

postalScheme.addClassification(classification);

ExternalLink externalLink =

blcm.createExternalLink(

"http://www.mycom.com/myscheme.html",

"My Scheme");

postalScheme.addExternalLink(externalLink);

Collection schemes = new ArrayList();

schemes.add(cScheme);

BulkResponse br =

blcm.saveClassificationSchemes(schemes);

}

The BulkResponse object returned by the saveClassificationSchemes

method contains the key for the classification scheme, which you need to
retrieve:

USING TAXONOMIES IN JAXR CLIENTS 559
if (br.getStatus() == JAXRResponse.STATUS_SUCCESS) {

System.out.println("Saved ClassificationScheme");

Collection schemeKeys = br.getCollection();

Iterator keysIter = schemeKeys.iterator();

while (keysIter.hasNext()) {

javax.xml.registry.infomodel.Key key =

(javax.xml.registry.infomodel.Key)

keysIter.next();

System.out.println("The postalScheme key is " +

key.getId());

System.out.println("Use this key as the scheme“ +

“ uuid in the taxonomy file");

 }

}

2. In an XML file, define a taxonomy structure that is compliant with the
JAXR Predefined Concepts DTD. Enter the ClassificationScheme ele-
ment in your taxonomy XML file by specifying the returned key ID value
as the id attribute and the name as the name attribute. For the code frag-
ment above, for example, the opening tag for the JAXRClassification-

Scheme element looks something like this (all on one line):

<JAXRClassificationScheme

id="uuid:nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn"

name="MyScheme">

The ClassificationScheme id must be a UUID.

3. Enter each JAXRConcept element in your taxonomy XML file by specify-
ing the following four attributes, in this order:

a. id is the JAXRClassificationScheme id value, followed by a / sepa-
rator, followed by the code of the JAXRConcept element

b. name is the name of the JAXRConcept element

c. parent is the immediate parent id (either the ClassificationScheme

id or that of the parent JAXRConcept)

d. code is the JAXRConcept element code value

The first JAXRConcept element in the naics.xml file looks like this (all
on one line):

<JAXRConcept

id="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2/11"

name="Agriculture, Forestry, Fishing and Hunting"

560 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
parent="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"

code="11"></JAXRConcept>

4. To add the user-defined taxonomy structure to the JAXR provider, specify
the system property com.sun.xml.registry.userTaxonomyFilenames

when you run your client program. The command line (all on one line)
would look like this. A vertical bar (|) is the file separator.

java myProgram -DuserTaxonomyFilenames=

c:\myfile\xxx.xml|c:\myfile\xxx2.xml

You can use a <sysproperty> tag to set this property in a build.xml file.
Or, in your program, you can set the property as follows:

System.setProperty

("com.sun.xml.registry.userTaxonomyFilenames",

"c:\myfile\xxx.xml|c:\myfile\xxx2.xml");

Specifying Postal Addresses
The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the
other hand, defines a postal address as a free-form collection of address lines,
each of which may also be assigned a meaning. To map the JAXR PostalAd-

dress format to a known UDDI address format, you specify the UDDI format as
a ClassificationScheme object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the com-
ments in the JAXR PostalAddress classification scheme. The JAXR PostalAd-

dress classification scheme is provided by the implementation of JAXR in the
Java WSDP.

In the JAXR API, a PostalAddress object has the fields streetNumber, street,
city, state, postalCode and country. In the implementation of JAXR in the
Java WSDP, these are predefined concepts in the jaxrconcepts.xml file, within
the ClassificationScheme named PostalAddressAttributes.

To specify the mapping between the JAXR postal address format and another
format, you need to set two connection properties:

• The javax.xml.registry.postalAddressScheme property, which spec-
ifies a postal address classification scheme for the connection

• The javax.xml.registry.semanticEquivalences property, which
specifies the semantic equivalences between the JAXR format and the
other format

USING TAXONOMIES IN JAXR CLIENTS 561
For example, suppose you want to use a scheme that has been published to the
IBM registry with the known UUID uuid:6eaf4b50-4196-11d6-9e2b-

000629dc0a2b. This scheme already exists in the jaxrconcepts.xml file under
the name IBMDefaultPostalAddressAttributes.

<JAXRClassificationScheme
id="uuid:6EAF4B50-4196-11D6-9E2B-000629DC0A2B"
name="IBMDefaultPostalAddressAttributes">

First, you specify the postal address scheme using the id value from the JAXR-

ClassificationScheme element (the UUID). Case does not matter:

props.setProperty("javax.xml.registry.postalAddressScheme",
 "uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b");

Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the IBM
scheme:

props.setProperty("javax.xml.registry.semanticEquivalences",
 "urn:uuid:PostalAddressAttributes/StreetNumber," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-
000629dc0a2b/StreetAddressNumber|" +
 "urn:uuid:PostalAddressAttributes/Street," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-
000629dc0a2b/StreetAddress|" +
 "urn:uuid:PostalAddressAttributes/City," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/City|" +
 "urn:uuid:PostalAddressAttributes/State," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/State|" +
 "urn:uuid:PostalAddressAttributes/PostalCode," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/ZipCode|" +
 "urn:uuid:PostalAddressAttributes/Country," +
 "urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/Country");

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you pub-
lish the organization:

String streetNumber = "99";
String street = "Imaginary Ave. Suite 33";
String city = "Imaginary City";
String state = "NY";
String country = "USA";
String postalCode = "00000";

562 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
String type = "";
PostalAddress postAddr =
 blcm.createPostalAddress(streetNumber, street, city, state,
 country, postalCode, type);
Collection postalAddresses = new ArrayList();
postalAddresses.add(postAddr);
primaryContact.setPostalAddresses(postalAddresses);

A JAXR query can then retrieve the postal address using PostalAddress meth-
ods, if the postal address scheme and semantic equivalences for the query are the
same as those specified for the publication. To retrieve postal addresses when
you do not know what postal address scheme was used to publish them, you can
retrieve them as a collection of Slot objects. The JAXRQueryPostal.java sam-
ple program shows how to do this.

In general, you can create a user-defined postal address taxonomy for any post-

alAddress tModels that use the well-known categorization in the uddi-

org:types taxonomy, which has the tModel UUID uuid:c1acf26d-9672-
4404-9d70-39b756e62ab4 with a value of postalAddress. You can retrieve the
tModel overviewDoc, which points to the technical detail for the specification of
the scheme, where the taxonomy structure definition can be found. (The JAXR
equivalent of an overviewDoc is an ExternalLink.)

Running the Client Examples
The simple client programs provided with this tutorial can be run from the com-
mand line. You can modify them to suit your needs. They allow you to specify
the IBM registry, the Microsoft registry, or the Registry Server for queries and
updates; you can specify any other UDDI version 2 registry.

BEFORE YOU COMPILE THE EXAMPLES 563
The client examples, in the <JWSDP_HOME>/docs/tutorial/examples/jaxr

directory, are as follows:

• JAXRQuery.java shows how to search a registry for organizations

• JAXRQueryByNAICSClassification.java shows how to search a registry
using a common classification scheme

• JAXRQueryByWSDLClassification.java shows how to search a registry
for Web services that describe themselves by means of a WSDL document

• JAXRPublish.java shows how to publish an organization to a registry

• JAXRDelete.java shows how to remove an organization from a registry

• JAXRSaveClassificationScheme.java shows how to publish a classifi-
cation scheme (specifically, a postal address scheme) to a registry

• JAXRPublishPostal.java shows how to publish an organization with a
postal address for its primary contact

• JAXRQueryPostal.java shows how to retrieve postal address data from an
organization

• JAXRDeleteScheme.java shows how to delete a classification scheme
from a registry

• JAXRGetMyObjects.java lists all the objects that you own in a registry

The <JWSDP_HOME>/docs/tutorial/examples/jaxr directory also contains:

• A build.xml file for the examples

• A JAXRExamples.properties file that supplies string values used by the
sample programs

• A file called postalconcepts.xml that you use with the postal address
examples

Before You Compile the Examples
Before you compile the examples, edit the file JAXRExamples.properties as
follows. (See Using JAXR to Access the Registry Server, page 830 for details
on editing this file to access the Registry Server.)

1. Edit the following lines in the JAXRExamples.properties file to specify
the registry you wish to access. For both the queryURL and the publishURL
assignments, comment out all but the registry you wish to access. The
default is the Registry Server, so if you will be using the Registry Server
you do not need to change this section.

../examples/jaxr/JAXRQuery.java
../examples/jaxr/JAXRQueryByNAICSClassification.java
../examples/jaxr/JAXRQueryByWSDLClassification.java
../examples/jaxr/JAXRPublish.java
../examples/jaxr/JAXRDelete.java
../examples/jaxr/JAXRPublishPostal.java
../examples/jaxr/JAXRQueryPostal.java
../examples/jaxr/JAXRSaveClassificationScheme.java
../examples/jaxr/JAXRDeleteScheme.java
../examples/jaxr/JAXRGetMyObjects.java

564 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Uncomment one pair of query and publish URLs.

IBM:

#query.url=http://uddi.ibm.com/testregistry/inquiryapi

#publish.url=https://uddi.ibm.com/testregistry/protect/

publishapi

Microsoft:

#query.url=http://uddi.microsoft.com/inquire

#publish.url=https://uddi.microsoft.com/publish

Registry Server:

query.url=http://localhost:8080/registry-server/

RegistryServerServlet

publish.url=http://localhost:8080/registry-server/

RegistryServerServlet

The IBM and Microsoft registries both have a considerable amount of
data in them that you can perform queries on. Moreover, you do not have
to register if you are only going to perform queries.

We have not included the URL of the SAP registry; feel free to add it.

If you want to publish to any of the public registries, the registration pro-
cess for obtaining access to them is not difficult (see Preliminaries: Get-
ting Access to a Registry, page 542). Each of them, however, allows you
to have only one organization registered at a time. If you publish an orga-
nization to one of them, you must delete it before you can publish another.
Since the organization that the JAXRPublish example publishes is ficti-
tious, you will want to delete it immediately anyway. (It is particularly
important to delete such organizations promptly, because the public regis-
tries replicate each other’s data, and your fictitious organization may
appear in a registry that is not the one you published it to and from which
you therefore cannot delete it.)

The Registry Server gives you more freedom to experiment with JAXR.
You can publish as many organizations to it as you wish. However, this
registry comes with an empty database, so you must publish organizations
to it yourself before you can perform queries on the data.

2. Edit the following lines in the JAXRExamples.properties file to specify
the user name and password you obtained when you registered with the
registry. The default is the Registry Server default password.

Specify username and password if needed

testuser/testuser are defaults for Registry Server

COMPILING THE EXAMPLES 565
registry.username=testuser

registry.password=testuser

3. If you will be using a public registry, edit the following lines in the JAXR-

Examples.properties file, which contain empty strings for the proxy
hosts, to specify your own proxy settings. The proxy host is the system on
your network through which you access the Internet; you usually specify
it in your Internet browser settings. You can leave this value empty to use
the Registry Server.

HTTP and HTTPS proxy host and port;

ignored by Registry Server

http.proxyHost=

http.proxyPort=8080

https.proxyHost=

https.proxyPort=8080

The proxy ports have the value 8080, which is the usual one; change this
string if your proxy uses a different port.

For a public registry, your entries usually follow this pattern:

http.proxyHost=proxyhost.mydomain

http.proxyPort=8080

https.proxyHost=proxyhost.mydomain

https.proxyPort=8080

4. Feel free to change any of the organization data in the remainder of the file.
This data is used by the publishing and postal address examples.

You can edit the JAXRExamples.properties file at any time. When you run the
client examples, they use the latest version of the file.

Compiling the Examples
To compile the programs, go to the <JWSDP_HOME>/docs/tuto-

rial/examples/jaxr directory. A build.xml file allows you to use the com-
mand

ant build

to compile all the examples. The Ant tool creates a subdirectory called build

and places the class files there.

566 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
You will notice that the classpath setting in the build.xml file includes the con-
tents of several directories. All JAXR client examples require this classpath set-
ting.

Running the Examples
Some of the build.xml targets for running the examples contain commented-out
<sysproperty> tags that set the JAXR logging level to debug and set other con-
nection properties. These tags are provided to illustrate how to specify connec-
tion properties. Feel free to modify or delete these tags.

If you are running the examples with the Registry Server, start Tomcat. See
Starting the Registry Server (page 830) for details. You do not need to start Tom-
cat in order to run the examples against public registries.

Running the JAXRPublish Example
To run the JAXRPublish program, use the run-publish target with no command
line arguments:

ant run-publish

The program output displays the string value of the key of the new organization,
which is named “The Coffee Break.”

After you run the JAXRPublish program but before you run JAXRDelete, you
can run JAXRQuery to look up the organization you published. You can also use
the Registry Browser to search for it.

Running the JAXRQuery Example
To run the JAXRQuery example, use the Ant target run-query. Specify a query-

string argument on the command line to search the registry for organizations
whose names contain that string. For example, the following command line
searches for organizations whose names contain the string “coff” (searching is
not case-sensitive):

ant run-query -Dquery-string=coff

RUNNING THE EXAMPLES 567
Running the JAXRQueryByNAICSClassification
Example
After you run the JAXRPublish program, you can also run the JAXRQueryByNA-

ICSClassification example, which looks for organizations that use the “Snack
and Nonalcoholic Beverage Bars” classification, the same one used for the orga-
nization created by JAXRPublish. To do so, use the Ant target run-query-

naics:

ant run-query-naics

Running the JAXRDelete Example
To run the JAXRDelete program, specify the key string returned by the JAXRPub-
lish program as input to the run-delete target:

ant run-delete -Dkey-string=keyString

Running the JAXRQueryByWSDLClassification
Example
You can run the JAXRQueryByWSDLClassification example at any time. Use
the Ant target run-query-wsdl:

ant run-query-wsdl

This example returns many results from the public registries and is likely to run
for several minutes.

Publishing a Classification Scheme
In order to publish organizations with postal addresses to public registries, you
must publish a classification scheme for the postal address first.

To run the JAXRSaveClassificationScheme program, use the target run-save-
scheme:

ant run-save-scheme

The program returns a UUID string, which you will use in the next section.

568 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
You do not have to run this program if you are using the Registry Server, because
it does not validate these objects.

The public registries allow you to own more than one classification scheme at a
time (the limit is usually a total of about 10 classification schemes and concepts
put together).

Running the Postal Address Examples
Before you run the postal address examples, open the file postalconcepts.xml

in an editor. Wherever you see the string uuid-from-save, replace it with the
UUID string returned by the run-save-scheme target. For the registry server,
you may use any string that is formatted as a UUID.

For a given registry, you only need to save the classification scheme and edit
postalconcepts.xml once. After you perform those two steps, you can run the
JAXRPublishPostal and JAXRQueryPostal programs multiple times.

1. Run the JAXRPublishPostal program. Notice that in the build.xml file,
the run-publish-postal target contains a <sysproperty> tag that sets
the userTaxonomyFilenames property to the location of the postalcon-

cepts.xml file in the current directory:

<sysproperty

key="com.sun.xml.registry.userTaxonomyFilenames"

value="postalconcepts.xml"/>

Specify the string you entered in the postalconcepts.xml file as input to
the run-publish-postal target:

ant run-publish-postal -Duuid-string=uuidstring

The program output displays the string value of the key of the new organi-
zation.

2. Run the JAXRQueryPostal program. The run-query-postal target con-
tains the same <sysproperty> tag as the run-publish-postal target.

As input to the run-query-postal target, specify both a query-string

argument and a uuid-string argument on the command line to search
the registry for the organization published by the run-publish-postal

target:

ant run-query-postal -Dquery-string=coffee

-Duuid-string=uuidstring

RUNNING THE EXAMPLES 569
The postal address for the primary contact will appear correctly with the
JAXR PostalAddress methods. Any postal addresses found that use
other postal address schemes will appear as Slot lines.

3. If you are using a public registry, make sure to follow the instructions in
Running the JAXRDelete Example (page 567) to delete the organization
you published.

Deleting a Classification Scheme
To delete the classification scheme you published after you have finished using
it, run the JAXRDeleteScheme program using the run-delete-scheme target:

ant run-delete-scheme -Duuid-string=uuidstring

For a UDDI registry, deleting a classification scheme removes it from the regis-
try logically but not physically. You can no longer use the classification scheme,
but it will still be visible if, for example, you call the method QueryMan-

ager.getRegisteredObjects. Since the public registries allow you to own up
to 10 of these objects, this is not likely to be a problem.

Getting a List of Your Registry Objects
To get a list of the objects you own in the registry, both organizations and classi-
fication schemes, run the JAXRGetMyObjects program by using the run-get-

objects target:

ant run-get-objects

Other Targets
To remove the build directory and class files, use the command

ant clean

To obtain a syntax reminder for the targets, use the command

ant -projecthelp

570 PUBLISHING AND DISCOVERING WEB SERVICES WITH JAXR
Further Information
For more information about JAXR, registries, and Web services, see the follow-
ing:

• Java Specification Request (JSR) 93: JAXR 1.0:

 http://jcp.org/jsr/detail/093.jsp

• JAXR home page:

http://java.sun.com/xml/jaxr/index.html

• Universal Description, Discovery, and Integration (UDDI) project:

http://www.uddi.org/

• ebXML:

 http://www.ebxml.org/

• Open Source JAXR Provider for ebXML Registries:

https://sourceforge.net/forum/forum.php?forum_id=197238

• Java Web Services Developer Pack (Java WSDP):

http://java.sun.com/webservices/webservicespack.html

• Java Technology and XML:

http://java.sun.com/xml/

• Java Technology & Web Services:

http://java.sun.com/webservices/index.html

http://jcp.org/jsr/detail/093.jsp
http://java.sun.com/xml/jaxr/index.html
http://www.uddi.org/
http://www.ebxml.org/
http://java.sun.com/webservices/webservicespack.html
http://java.sun.com/xml/
http://java.sun.com/webservices/index.html
https://sourceforge.net/forum/forum.php?forum_id=197238

14
571
Java Servlet
Technology

Stephanie Bodoff

AS soon as the Web began to be used for delivering services, service providers
recognized the need for dynamic content. Applets, one of the earliest attempts
toward this goal, focused on using the client platform to deliver dynamic user
experiences. At the same time, developers also investigated using the server plat-
form for this purpose. Initially, Common Gateway Interface (CGI) scripts were
the main technology used to generate dynamic content. Though widely used,
CGI scripting technology has a number of shortcomings, including platform
dependence and lack of scalability. To address these limitations, Java Servlet
technology was created as a portable way to provide dynamic, user-oriented con-
tent.

What is a Servlet?
A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed via a request-response programming
model. Although servlets can respond to any type of request, they are commonly
used to extend the applications hosted by Web servers. For such applications,
Java Servlet technology defines HTTP-specific servlet classes.

572 JAVA SERVLET TECHNOLOGY
The javax.servlet and javax.servlet.http packages provide interfaces and
classes for writing servlets. All servlets must implement the Servlet interface,
which defines life-cycle methods.

When implementing a generic service, you can use or extend the GenericServ-

let class provided with the Java Servlet API. The HttpServlet class provides
methods, such as doGet and doPost, for handling HTTP-specific services.

This chapter focuses on writing servlets that generate responses to HTTP
requests. Some knowledge of the HTTP protocol is assumed; if you are unfamil-
iar with this protocol, you can get a brief introduction to HTTP in HTTP
Overview (page 849).

The Example Servlets
This chapter uses the Duke’s Bookstore application to illustrate the tasks
involved in programming servlets. Table 14–1 lists the servlets that handle each
bookstore function. Each programming task is illustrated by one or more serv-
lets. For example, BookDetailsServlet illustrates how to handle HTTP GET

requests, BookDetailsServlet and CatalogServlet show how to construct
responses, and CatalogServlet illustrates how to track session information.

Table 14–1 Duke’s Bookstore Example Servlets

Function Servlet

Enter the bookstore BookStoreServlet

Create the bookstore banner BannerServlet

Browse the bookstore catalog CatalogServlet

Put a book in a shopping cart CatalogServlet,
BookDetailsServlet

Get detailed information on a specific book BookDetailsServlet

Display the shopping cart ShowCartServlet

Remove one or more books from the shopping cart ShowCartServlet

Buy the books in the shopping cart CashierServlet

../../api/javax/servlet/package-summary.html
../../api/javax/servlet/http/package-summary.html
../../api/javax/servlet/Servlet.html
../../api/javax/servlet/GenericServlet.html
../../api/javax/servlet/GenericServlet.html
../../api/javax/servlet/http/HttpServlet.html

THE EXAMPLE SERVLETS 573
The data for the bookstore application is maintained in a database and accessed
through the helper class database.BookDB. The database package also contains
the class BookDetails, which represents a book. The shopping cart and shop-
ping cart items are represented by the classes cart.ShoppingCart and
cart.ShoppingCartItem, respectively.

The source code for the bookstore application is located in the
<JWSDP_HOME>/docs/tutorial/examples/web/bookstore1 directory created
when you unzip the tutorial bundle (see Running the Examples, page xiii).

To build, install, and run the example:

1. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore1.

2. Run build. The build target will spawn any necessary compilations and
copy files to the <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore1/build directory.

3. Make sure Tomcat is started.

4. Run ant install. The install target notifies Tomcat that the new context
is available.

5. Start the PointBase database server and populate the database if you have
not done so already (see Accessing Databases from Web
Applications, page 109).

6. To run the application, open the bookstore URL http://local-

host:8080/bookstore1/enter.

To deploy the application:

1. Run ant package. The package task creates a WAR file containing the
application classes in WEB-INF/classes and the context.xml file in
META-INF.

2. Make sure Tomcat is started.

3. Run ant deploy. The deploy target copies the WAR to Tomcat and noti-
fies Tomcat that the new context is available.

Receive an acknowledgement for the purchase ReceiptServlet

Table 14–1 Duke’s Bookstore Example Servlets (Continued)

Function Servlet

574 JAVA SERVLET TECHNOLOGY
Troubleshooting
Common Problems and Their Solutions (page 87) lists some reasons why a Web
client can fail. In addition, Duke’s Bookstore returns the following exceptions:

• BookNotFoundException—Returned if a book can’t be located in the
bookstore database. This will occur if you haven’t loaded the bookstore
database with data by running ant create-book-db or if the database
server hasn’t been started or it has crashed.

• BooksNotFoundException—Returned if the bookstore data can’t be
retrieved. This will occur if you haven’t loaded the bookstore database
with data by running ant create-book-db or if the database server hasn’t
been started or it has crashed.

• UnavailableException—Returned if a servlet can’t retrieve the Web
context attribute representing the bookstore. This will occur if you haven’t
copied the PointBase client library <PB_HOME>/lib/pbclient45.jar to
<JWSDP_HOME>/common/lib, if the PointBase server hasn’t been started,
or if you have not defined a data source in Tomcat that references the Point-
Base database (see Defining a Data Source in Tomcat, page 112).

Because we have specified an error page, you will see the message The appli-

cation is unavailable. Please try later. If you don’t specify an error
page, the Web container generates a default page containing the message A

Servlet Exception Has Occurred and a stack trace that can help diagnose the
cause of the exception. If you use the errorpage.html, you will have to look in
the Web container’s log to determine the cause of the exception. Web log files
reside in the directory <JWSDP_HOME>/logs and are named
jwsdp_log.<date>.txt.

Servlet Life Cycle
The life cycle of a servlet is controlled by the container in which the servlet has
been deployed. When a request is mapped to a servlet, the container performs
the following steps.

1. If an instance of the servlet does not exist, the Web container

a. Loads the servlet class.

b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method. Initialization
is covered in Initializing a Servlet (page 581).

HANDLING SERVLET LIFE CYCLE EVENTS 575
2. Invokes the service method, passing a request and response object. Ser-
vice methods are discussed in Writing Service Methods (page 582).

If the container needs to remove the servlet, it finalizes the servlet by calling the
servlet’s destroy method. Finalization is discussed in Finalizing a
Servlet (page 602).

Handling Servlet Life Cycle Events
You can monitor and react to events in a servlet’s life cycle by defining listener
objects whose methods get invoked when life cycle events occur. To use these
listener objects you must define the listener class and specify the listener class.

Defining The Listener Class
You define a listener class as an implementation of a listener interface. Servlet
Life Cycle Events (page 575) lists the events that can be monitored and the cor-
responding interface that must be implemented. When a listener method is
invoked, it is passed an event that contains information appropriate to the event.
For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession.

Table 14–2 Servlet Life Cycle Events

Object Event Listener Interface and Event Class

Web context
(See Accessing the
Web
Context, page 598)

Initialization
and destruction

javax.servlet.
ServletContextListener and
ServletContextEvent

Attribute added,
removed, or
replaced

javax.servlet.
ServletContextAttributeListener and
ServletContextAttributeEvent

Session
(See Maintaining Cli-
ent State, page 599)

Creation,
invalidation, and
timeout

javax.servlet.http.
HttpSessionListener and
HttpSessionEvent

Attribute added,
removed, or
replaced

javax.servlet.http.
HttpSessionAttributeListener and
HttpSessionBindingEvent

../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextListener.html
../../api/javax/servlet/ServletContextEvent.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeListener.html
../../api/javax/servlet/ServletContextAttributeEvent.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionListener.html
../../api/javax/servlet/http/HttpSessionEvent.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionAttributeListener.html
../../api/javax/servlet/http/HttpSessionBindingEvent.html

576 JAVA SERVLET TECHNOLOGY
The listeners.ContextListener class creates and removes the database
helper and counter objects used in the Duke’s Bookstore application. The meth-
ods retrieve the Web context object from ServletContextEvent and then store
(and remove) the objects as servlet context attributes.

import database.BookDB;
import javax.servlet.*;
import util.Counter;

public final class ContextListener
implements ServletContextListener {
private ServletContext context = null;
public void contextInitialized(ServletContextEvent event) {

context = event.getServletContext();
try {

BookDB bookDB = new BookDB();
context.setAttribute("bookDB", bookDB);

} catch (Exception ex) {
System.out.println(

"Couldn't create database: "
+ ex.getMessage());

}
Counter counter = new Counter();
context.setAttribute("hitCounter", counter);
context.log("Created hitCounter"

+ counter.getCounter());
counter = new Counter();
context.setAttribute("orderCounter", counter);
context.log("Created orderCounter"

+ counter.getCounter());
}

public void contextDestroyed(ServletContextEvent event) {
context = event.getServletContext();
BookDB bookDB = context.getAttribute(

"bookDB");
bookDB.remove();
context.removeAttribute("bookDB");
context.removeAttribute("hitCounter");
context.removeAttribute("orderCounter");

}
}

../examples/web/bookstore1/src/listeners/ContextListener.java

HANDLING ERRORS 577
Specifying Event Listener Classes
To specify an event listener class, you add a listener element to the Web appli-
cation deployment descriptor. Here is the listener element for the Duke’s
Bookstore application:

<listener>
<listener-class>listeners.ContextListener</listener-class>

</listener>

Handling Errors
Any number of exceptions can occur when a servlet is executed. The Web con-
tainer will generate a default page containing the message A Servlet Excep-

tion Has Occurred when an exception occurs, but you can also specify that the
container should return a specific error page for a given exception. To specify
such a page, you add an error-page element to the Web application deployment
descriptor. These elements map the exceptions returned by the Duke’s Bookstore
application to errorpage.html:

<error-page>
<exception-type>

exception.BookNotFoundException
</exception-type>
<location>/errorpage.html</location>

</error-page>
<error-page>

<exception-type>
exception.BooksNotFoundException

</exception-type>
<location>/errorpage.html</location>

</error-page>
<error-page>

<exception-type>exception.OrderException</exception-type>
<location>/errorpage.html</location>

</error-page>

Sharing Information
Web components, like most objects, usually work with other objects to accom-
plish their tasks. There are several ways they can do this. They can use private
helper objects (for example, JavaBeans components), they can share objects that

578 JAVA SERVLET TECHNOLOGY
are attributes of a public scope, they can use a database, and they can invoke
other Web resources. The Java Servlet technology mechanisms that allow a Web
component to invoke other Web resources are described in Invoking Other Web
Resources (page 594).

Using Scope Objects
Collaborating Web components share information via objects maintained as
attributes of four scope objects. These attributes are accessed with the
[get|set]Attribute methods of the class representing the scope. Table 14–3
lists the scope objects.

Table 14–3 Scope Objects

Scope
Object Class Accessible From

Web context
javax.servlet.
ServletContext

Web components within a Web context. See
Accessing the Web Context (page 598).

session
javax.servlet.
http.HttpSession

Web components handling a request that belongs to
the session. See Maintaining Client
State (page 599).

request
subtype of
javax.servlet.
ServletRequest

Web components handling the request.

page
javax.servlet.
jsp.PageContext

The JSP page that creates the object. See Implicit
Objects (page 616).

../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/http/HttpSession.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/jsp/PageContext.html

CONTROLLING CONCURRENT ACCESS TO SHARED RESOURCES 579
Figure 14–1 shows the scoped attributes maintained by the Duke’s Bookstore
application.

Figure 14–1 Duke’s Bookstore Scoped Attributes

Controlling Concurrent Access to
Shared Resources
In a multithreaded server, it is possible for shared resources to be accessed con-
currently. Besides scope object attributes, shared resources include in-memory
data such as instance or class variables, and external objects such as files, data-
base connections, and network connections. Concurrent access can arise in sev-
eral situations:

• Multiple Web components accessing objects stored in the Web context

• Multiple Web components accessing objects stored in a session

• Multiple threads within a Web component accessing instance variables. A
Web container will typically create a thread to handle each request. If you
want to ensure that a servlet instance handles only one request at a time, a
servlet can implement the SingleThreadModel interface. If a servlet
implements this interface, you are guaranteed that no two threads will exe-
cute concurrently in the servlet’s service method. A Web container can

../../api/javax/servlet/SingleThreadModel.html

580 JAVA SERVLET TECHNOLOGY
implement this guarantee by synchronizing access to a single instance of
the servlet, or by maintaining a pool of Web component instances and dis-
patching each new request to a free instance. This interface does not pre-
vent synchronization problems that result from Web components
accessing shared resources such as static class variables or external
objects.

When resources can be accessed concurrently, they can be used in an inconsis-
tent fashion. To prevent this, you must control the access using the synchroniza-
tion techniques described in the Threads lesson in The Java Tutorial.

In the previous section we showed five scoped attributes shared by more than
one servlet: bookDB, cart, currency, hitCounter, and orderCounter. The
bookDB attribute is discussed in the next section. The cart, currency, and counters
can be set and read by multiple multithreaded servlets. To prevent these objects
from being used inconsistently, access is controlled by synchronized methods.
For example, here is the util.Counter class:

public class Counter {
private int counter;
public Counter() {

counter = 0;
}
public synchronized int getCounter() {

return counter;
}
public synchronized int setCounter(int c) {

counter = c;
return counter;

}
public synchronized int incCounter() {

return(++counter);
}

}

Accessing Databases
Data that is shared between Web components and is persistent between invoca-
tions of a Web application is usually maintained by a database. Web components
use the JDBC 2.0 API to access relational databases. The data for the bookstore
application is maintained in a database and accessed through the helper class
database.BookDB. For example, ReceiptServlet invokes the BookDB.buy-

Books method to update the book inventory when a user makes a purchase. The

http://java.sun.com/docs/books/tutorial/essential/threads/index.html
http://java.sun.com/docs/books/tutorial
../examples/web/bookstore1/src/util/Counter.java
../examples/web/bookstore1/src/database/BookDB.java
../examples/web/bookstore1/src/ReceiptServlet.java

INITIALIZING A SERVLET 581
buyBooks method invokes buyBook for each book contained in the shopping
cart. To ensure the order is processed in its entirety, the calls to buyBook are
wrapped in a single JDBC transaction. The use of the shared database connec-
tion is synchronized via the [get|release]Connection methods.

public void buyBooks(ShoppingCart cart) throws OrderException {
Collection items = cart.getItems();
Iterator i = items.iterator();
try {

getConnection();
con.setAutoCommit(false);
while (i.hasNext()) {

ShoppingCartItem sci = (ShoppingCartItem)i.next();
BookDetails bd = (BookDetails)sci.getItem();
String id = bd.getBookId();
int quantity = sci.getQuantity();
buyBook(id, quantity);

}
con.commit();
con.setAutoCommit(true);
releaseConnection();

} catch (Exception ex) {
try {
con.rollback();
releaseConnection();
throw new OrderException("Transaction failed: " +

ex.getMessage());
} catch (SQLException sqx) {

releaseConnection();
throw new OrderException("Rollback failed: " +

sqx.getMessage());
}

}
}

Initializing a Servlet
After the Web container loads and instantiates the servlet class and before it
delivers requests from clients, the Web container initializes the servlet. You can
customize this process to allow the servlet to read persistent configuration data,
initialize resources, and perform any other one-time activities by overriding the
init method of the Servlet interface. A servlet that cannot complete its initial-
ization process should throw UnavailableException.

../../api/javax/servlet/Servlet.html

582 JAVA SERVLET TECHNOLOGY
All the servlets that access the bookstore database (BookStoreServlet, Cata-
logServlet, BookDetailsServlet, and ShowCartServlet) initialize a variable
in their init method that points to the database helper object created by the Web
context listener:

public class CatalogServlet extends HttpServlet {
private BookDB bookDB;
public void init() throws ServletException {

bookDB = (BookDB)getServletContext().
getAttribute("bookDB");

if (bookDB == null) throw new
UnavailableException("Couldn't get database.");

}
}

Writing Service Methods
The service provided by a servlet is implemented in the service method of a
GenericServlet, the doMethod methods (where Method can take the value Get,
Delete, Options, Post, Put, Trace) of an HttpServlet, or any other protocol-
specific methods defined by a class that implements the Servlet interface. In the
rest of this chapter, the term service method will be used for any method in a
servlet class that provides a service to a client.

The general pattern for a service method is to extract information from the
request, access external resources, and then populate the response based on that
information.

For HTTP servlets, the correct procedure for populating the response is to first
fill in the response headers, then retrieve an output stream from the response, and
finally write any body content to the output stream. Response headers must
always be set before a PrintWriter or ServletOutputStream is retrieved
because the HTTP protocol expects to receive all headers before body content.
The next two sections describe how to get information from requests and gener-
ate responses.

../examples/web/bookstore1/src/BookStoreServlet.java
../examples/web/bookstore1/src/CatalogServlet.java
../examples/web/bookstore1/src/CatalogServlet.java
../examples/web/bookstore1/src/BookDetailsServlet.java
../examples/web/bookstore1/src/ShowCartServlet.java

GETTING INFORMATION FROM REQUESTS 583
Getting Information from Requests
A request contains data passed between a client and the servlet. All requests
implement the ServletRequest interface. This interface defines methods for
accessing the following information:

• Parameters, which are typically used to convey information between cli-
ents and servlets

• Object-valued attributes, which are typically used to pass information
between the servlet container and a servlet or between collaborating serv-
lets

• Information about the protocol used to communicate the request and the
client and server involved in the request

• Information relevant to localization

For example, in CatalogServlet the identifier of the book that a customer
wishes to purchase is included as a parameter to the request. The following code
fragment illustrates how to use the getParameter method to extract the identi-
fier:

String bookId = request.getParameter("Add");
if (bookId != null) {

BookDetails book = bookDB.getBookDetails(bookId);

You can also retrieve an input stream from the request and manually parse the
data. To read character data, use the BufferedReader object returned by the
request’s getReader method. To read binary data, use the ServletInputStream

returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which
contains the request URL, HTTP headers, query string, and so on.

An HTTP request URL contains the following parts:

http://[host]:[port][request path]?[query string]

The request path is further composed of the following elements:

• Context path: A concatenation of a forward slash / with the context root
of the servlet’s Web application.

• Servlet path: The path section that corresponds to the component alias
that activated this request. This path starts with a forward slash /.

../../api/javax/servlet/ServletRequest.html
../examples/web/bookstore1/src/CatalogServlet.java
http://java.sun.com/j2se/1.3/docs/api/java/io/BufferedReader.html
../../api/javax/servlet/ServletInputStream.html
../../api/javax/servlet/http/HttpServletRequest.html

584 JAVA SERVLET TECHNOLOGY
• Path info: The part of the request path that is not part of the context path
or the servlet path.

If the context path is /catalog and for the aliases listed in Table 14–4, Table 14–
5 gives some examples of how the URL will be broken down.

Query strings are composed of a set of parameters and values. Individual param-
eters are retrieved from a request with the getParameter method. There are two
ways to generate query strings:

• A query string can explicitly appear in a Web page. For example, an
HTML page generated by the CatalogServlet could contain the link Add To Cart. Cata-

logServlet extracts the parameter named Add as follows:

String bookId = request.getParameter("Add");

• A query string is appended to a URL when a form with a GET HTTP
method is submitted. In the Duke’s Bookstore application, CashierServ-
let generates a form, then a user name input to the form is appended to the
URL that maps to ReceiptServlet, and finally ReceiptServlet extracts
the user name using the getParameter method.

Table 14–4 Aliases

Pattern Servlet

/lawn/* LawnServlet

/*.jsp JSPServlet

Table 14–5 Request Path Elements

Request Path Servlet Path Path Info

/catalog/lawn/index.html /lawn /index.html

/catalog/help/feedback.jsp /help/feedback.jsp null

../examples/web/bookstore1/src/CatalogServlet.java
../examples/web/bookstore1/src/CashierServlet.java
../examples/web/bookstore1/src/CashierServlet.java
../examples/web/bookstore1/src/ReceiptServlet.java

CONSTRUCTING RESPONSES 585
Constructing Responses
A response contains data passed between a server and the client. All responses
implement the ServletResponse interface. This interface defines methods that
allow you to do the following:

• Retrieve an output stream to use to send data to the client. To send charac-
ter data, use the PrintWriter returned by the response’s getWriter

method. To send binary data in a MIME body response, use the Serv-

letOutputStream returned by getOutputStream. To mix binary and text
data, for example, to create a multipart response, use a ServletOutput-

Stream and manage the character sections manually.

• Indicate the content type (for example, text/html), being returned by the
response. A registry of content type names is kept by the Internet Assigned
Numbers Authority (IANA) at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

• Indicate whether to buffer output. By default, any content written to the
output stream is immediately sent to the client. Buffering allows content to
be written before anything is actually sent back to the client, thus providing
the servlet with more time to set appropriate status codes and headers or
forward to another Web resource.

• Set localization information.

HTTP response objects, HttpServletResponse, have fields representing HTTP
headers such as

• Status codes, which are used to indicate the reason a request is not satis-
fied.

• Cookies, which are used to store application-specific information at the cli-
ent. Sometimes cookies are used to maintain an identifier for tracking a
user’s session (see Session Tracking (page 601)).

In Duke’s Bookstore, BookDetailsServlet generates an HTML page that dis-
plays information about a book that the servlet retrieves from a database. The
servlet first sets response headers: the content type of the response and the buffer
size. The servlet buffers the page content because the database access can gener-
ate an exception that would cause forwarding to an error page. By buffering the
response, the client will not see a concatenation of part of a Duke’s Bookstore
page with the error page should an error occur. The doGet method then retrieves
a PrintWriter from the response.

../../api/javax/servlet/ServletResponse.html
http://java.sun.com/j2se/1.3/docs/api/java/io/PrintWriter.html
../../api/javax/servlet/ServletOutputStream.html
../../api/javax/servlet/ServletOutputStream.html
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
../../api/javax/servlet/http/HttpServletResponse.html
../examples/web/bookstore1/src/BookDetailsServlet.java

586 JAVA SERVLET TECHNOLOGY
For filling in the response, the servlet first dispatches the request to BannerServ-

let, which generates a common banner for all the servlets in the application.
This process is discussed in Including Other Resources in the
Response (page 595). Then the servlet retrieves the book identifier from a
request parameter and uses the identifier to retrieve information about the book
from the bookstore database. Finally, the servlet generates HTML markup that
describes the book information and commits the response to the client by calling
the close method on the PrintWriter.

public class BookDetailsServlet extends HttpServlet {
 public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// set headers before accessing the Writer
response.setContentType("text/html");
response.setBufferSize(8192);
PrintWriter out = response.getWriter();

// then write the response
out.println("<html>" +

"<head><title>+
messages.getString("TitleBookDescription")
+</title></head>");

// Get the dispatcher; it gets the banner to the user
RequestDispatcher dispatcher =

getServletContext().
getRequestDispatcher("/banner");

if (dispatcher != null)
dispatcher.include(request, response);

//Get the identifier of the book to display
String bookId = request.getParameter("bookId");
if (bookId != null) {

// and the information about the book
try {

BookDetails bd =
bookDB.getBookDetails(bookId);

...
//Print out the information obtained
out.println("<h2>" + bd.getTitle() + "</h2>" +
...

} catch (BookNotFoundException ex) {
response.resetBuffer();
throw new ServletException(ex);

}
}

FILTERING REQUESTS AND RESPONSES 587
out.println("</body></html>");
out.close();

}
}

BookDetailsServlet generates a page that looks like:

Figure 14–2 Book Details

Filtering Requests and Responses
A filter is an object that can transform the header and content (or both) of a
request or response. Filters differ from Web components in that they usually do
not themselves create a response. Instead, a filter provides functionality that can
be “attached” to any kind of Web resource. As a consequence, a filter should not
have any dependencies on a Web resource for which it is acting as a filter, so that

588 JAVA SERVLET TECHNOLOGY
it can be composable with more than one type of Web resource. The main tasks
that a filter can perform are as follows:

• Query the request and act accordingly.

• Block the request and response pair from passing any further.

• Modify the request headers and data. You do this by providing a custom-
ized version of the request.

• Modify the response headers and data. You do this by providing a custom-
ized version of the response.

• Interact with external resources.

Applications of filters include authentication, logging, image conversion, data
compression, encryption, tokenizing streams, and XML transformations, and so
on.

You can configure a Web resource to be filtered by a chain of zero, one, or more
filters in a specific order. This chain is specified when the Web application con-
taining the component is deployed and is instantiated when a Web container
loads the component.

In summary, the tasks involved in using filters include

• Programming the filter

• Programming customized requests and responses

• Specifying the filter chain for each Web resource

Programming Filters
The filtering API is defined by the Filter, FilterChain, and FilterConfig

interfaces in the javax.servlet package. You define a filter by implementing
the Filter interface. The most important method in this interface is the doFil-

ter method, which is passed request, response, and filter chain objects. This
method can perform the following actions:

• Examine the request headers.

• Customize the request object if it wishes to modify request headers or data.

• Customize the response object if it wishes to modify response headers or
data.

• Invoke the next entity in the filter chain. If the current filter is the last filter
in the chain that ends with the target Web component or static resource, the
next entity is the resource at the end of the chain; otherwise, it is the next

../../api/javax/servlet/Filter.html

PROGRAMMING FILTERS 589
filter that was configured in the WAR. It invokes the next entity by calling
the doFilter method on the chain object (passing in the request and
response it was called with, or the wrapped versions it may have created).
Alternatively, it can choose to block the request by not making the call to
invoke the next entity. In the latter case, the filter is responsible for filling
out the response.

• Examine response headers after it has invoked the next filter in the chain

• Throw an exception to indicate an error in processing

In addition to doFilter, you must implement the init and destroy methods.
The init method is called by the container when the filter is instantiated. If you
wish to pass initialization parameters to the filter, you retrieve them from the
FilterConfig object passed to init.

The Duke’s Bookstore application uses the filters HitCounterFilter and
OrderFilter to increment and log the value of a counter when the entry and
receipt servlets are accessed.

In the doFilter method, both filters retrieve the servlet context from the filter
configuration object so that they can access the counters stored as context
attributes. After the filters have completed application-specific processing, they
invoke doFilter on the filter chain object passed into the original doFilter
method. The elided code is discussed in the next section.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;

public void init(FilterConfig filterConfig)
throws ServletException {
this.filterConfig = filterConfig;

}
public void destroy() {

this.filterConfig = null;
}
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {
if (filterConfig == null)

return;
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
Counter counter = (Counter)filterConfig.

getServletContext().
getAttribute("hitCounter");

writer.println();

../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/OrderFilter.java

590 JAVA SERVLET TECHNOLOGY
writer.println("===============");
writer.println("The number of hits is: " +

counter.incCounter());
writer.println("===============");
// Log the resulting string
writer.flush();
filterConfig.getServletContext().

log(sw.getBuffer().toString());
...
chain.doFilter(request, wrapper);
...

}
}

Programming Customized Requests and
Responses
There are many ways for a filter to modify a request or response. For example, a
filter could add an attribute to the request or insert data in the response. In the
Duke’s Bookstore example, HitCounterFilter inserts the value of the counter
into the response.

A filter that modifies a response must usually capture the response before it is
returned to the client. The way to do this is to pass a stand-in stream to the
servlet that generates the response. The stand-in stream prevents the servlet from
closing the original response stream when it completes and allows the filter to
modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper
that overrides the getWriter or getOutputStream method to return this stand-in
stream. The wrapper is passed to the doFilter method of the filter chain. Wrap-
per methods default to calling through to the wrapped request or response object.
This approach follows the well-known Wrapper or Decorator pattern described
in Design Patterns, Elements of Reusable Object-Oriented Software (Addison-
Wesley, 1995). The following sections describe how the hit counter filter
described earlier and other types of filters use wrappers.

To override request methods, you wrap the request in an object that extends
ServletRequestWrapper or HttpServletRequestWrapper. To override
response methods, you wrap the response in an object that extends ServletRe-
sponseWrapper or HttpServletResponseWrapper.

../../api/javax/servlet/ServletRequestWrapper.html
../../api/javax/servlet/http/HttpServletRequestWrapper.html
../../api/javax/servlet/ServletResponseWrapper.html
../../api/javax/servlet/ServletResponseWrapper.html
../../api/javax/servlet/http/HttpServletResponseWrapper.html

PROGRAMMING CUSTOMIZED REQUESTS AND RESPONSES 591
HitCounterFilter wraps the response in a CharResponseWrapper. The
wrapped response is passed to the next object in the filter chain, which is Book-
StoreServlet. BookStoreServlet writes its response into the stream created
by CharResponseWrapper. When chain.doFilter returns, HitCounterFilter
retrieves the servlet’s response from PrintWriter and writes it to a buffer. The
filter inserts the value of the counter into the buffer, resets the content length
header of the response, and finally writes the contents of the buffer to the
response stream.

PrintWriter out = response.getWriter();
CharResponseWrapper wrapper = new CharResponseWrapper(

(HttpServletResponse)response);
chain.doFilter(request, wrapper);
CharArrayWriter caw = new CharArrayWriter();
caw.write(wrapper.toString().substring(0,

wrapper.toString().indexOf("</body>")-1));
caw.write("<p>\n<center>" +

messages.getString("Visitor") + "" +
counter.getCounter() + "</center>");

caw.write("\n</body></html>");
response.setContentLength(caw.toString().length());
out.write(caw.toString());
out.close();

public class CharResponseWrapper extends
HttpServletResponseWrapper {
private CharArrayWriter output;
public String toString() {

return output.toString();
}
public CharResponseWrapper(HttpServletResponse response){

super(response);
output = new CharArrayWriter();

}
public PrintWriter getWriter(){

return new PrintWriter(output);
}

}

../examples/web/bookstore1/src/filters/CharResponseWrapper.java

592 JAVA SERVLET TECHNOLOGY
Figure 14–3 shows the entry page for Duke’s Bookstore with the hit counter.

Figure 14–3 Duke’s Bookstore

Specifying Filter Mappings
A Web container uses filter mappings to decide how to apply filters to Web
resources. A filter mapping matches a filter to a Web component by name or to
Web resources by URL pattern. The filters are invoked in the order in which fil-
ter mappings appear in the filter mapping list of a WAR. You specify a filter
mapping list for a WAR by coding them directly in the Web application deploy-
ment descriptor:

• Declare the filter using the <filter> element. This element creates a name
for the filter and declares the filter’s implementation class and initialization
parameters.

• Map the filter to a Web resource by defining a <filter-mapping> element.
This element maps a filter name to a Web resource by name or by URL pat-
tern.

SPECIFYING FILTER MAPPINGS 593
The following elements show how to specify the hit counter and order filters. To
define a filter you provide a name for the filter, the class that implements the
filter, and optionally some initialization parameters.

<filter>
<filter-name>OrderFilter</filter-name>
<filter-class>filters.OrderFilter</filter-class>

</filter>
<filter>

<filter-name>HitCounterFilter</filter-name>
<filter-class>filters.HitCounterFilter</filter-class>

</filter>

The filter-mapping element maps the order filter to the /receipt URL. The
mapping could also have specified the servlet ReceiptServlet. Note that the
filter, filter-mapping, servlet, and servlet-mapping elements must
appear in the Web application deployment descriptor in that order.

<filter-mapping>
 <filter-name>OrderFilter</filter-name>
 <url-pattern>/receipt</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>HitCounterFilter</filter-name>
 <url-pattern>/enter</url-pattern>
</filter-mapping>

If you want to log every request to a Web application, you would map the hit
counter filter to the URL pattern /*. Table 14–6 summarizes the filter mapping
list for the Duke’s Bookstore application. The filters are matched by URL pattern
and each filter chain contains only one filter.

You can map a filter to one or more Web resources and you can map more than
one filter to a Web resource. This is illustrated in Figure 14–4, where filter F1 is

Table 14–6 Duke’s Bookstore Filter Mapping List

URL Filter

/enter HitCounterFilter

/receipt OrderFilter

594 JAVA SERVLET TECHNOLOGY
mapped to servlets S1, S2, and S3, filter F2 is mapped to servlet S2, and filter F3
is mapped to servlets S1 and S2.

Figure 14–4 Filter to Servlet Mapping

Recall that a filter chain is one of the objects passed to the doFilter method of a
filter. This chain is formed indirectly via filter mappings. The order of the filters
in the chain is the same as the order in which filter mappings appear in the Web
application deployment descriptor.

When a filter is mapped to servlet S1, the Web container invokes the doFilter

method of F1. The doFilter method of each filter in S1’s filter chain is invoked
by the preceding filter in the chain via the chain.doFilter method. Since S1’s
filter chain contains filters F1 and F3, F1’s call to chain.doFilter invokes the
doFilter method of filter F3. When F3’s doFilter method completes, control
returns to F1’s doFilter method.

Invoking Other Web Resources
Web components can invoke other Web resources in two ways: indirect and
direct. A Web component indirectly invokes another Web resource when it
embeds in content returned to a client a URL that points to another Web compo-
nent. In the Duke’s Bookstore application, most Web components contain
embedded URLs that point to other Web components. For example, ShowCart-

INCLUDING OTHER RESOURCES IN THE RESPONSE 595
Servlet indirectly invokes the CatalogServlet through the embedded URL
/bookstore1/catalog.

A Web component can also directly invoke another resource while it is execut-
ing. There are two possibilities: it can include the content of another resource, or
it can forward a request to another resource.

To invoke a resource available on the server that is running a Web component,
you must first obtain a RequestDispatcher object using the getRequestDis-

patcher("URL") method.

You can get a RequestDispatcher object from either a request or the Web con-
text, however, the two methods have slightly different behavior. The method
takes the path to the requested resource as an argument. A request can take a rel-
ative path (that is, one that does not begin with a /), but the Web context requires
an absolute path. If the resource is not available, or if the server has not imple-
mented a RequestDispatcher object for that type of resource, getRequestDis-
patcher will return null. Your servlet should be prepared to deal with this
condition.

Including Other Resources in the
Response
It is often useful to include another Web resource, for example, banner content or
copyright information, in the response returned from a Web component. To
include another resource, invoke the include method of a RequestDispatcher

object:

include(request, response);

If the resource is static, the include method enables programmatic server-side
includes. If the resource is a Web component, the effect of the method is to send
the request to the included Web component, execute the Web component, and
then include the result of the execution in the response from the containing serv-
let. An included Web component has access to the request object, but it is limited
in what it can do with the response object:

• It can write to the body of the response and commit a response.

• It cannot set headers or call any method (for example, setCookie) that
affects the headers of the response.

../../api/javax/servlet/RequestDispatcher.html

596 JAVA SERVLET TECHNOLOGY
The banner for the Duke’s Bookstore application is generated by BannerServ-

let. Note that both the doGet and doPost methods are implemented because
BannerServlet can be dispatched from either method in a calling servlet.

public class BannerServlet extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<h1>" +
"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +
"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}
public void doPost (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
out.println("<body bgcolor=\"#ffffff\">" +
"<center>" + "<hr>
 " + "<h1>" +
"Duke's " +
<img src=\"" + request.getContextPath() +
"/duke.books.gif\">" +
"Bookstore" +
"</h1>" + "</center>" + "
 <hr>
 ");

}
}

Each servlet in the Duke’s Bookstore application includes the result from Ban-

nerServlet with the following code:

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/banner");

if (dispatcher != null)
dispatcher.include(request, response);

}

../examples/web/bookstore1/src/BannerServlet.java
../examples/web/bookstore1/src/BannerServlet.java

TRANSFERRING CONTROL TO ANOTHER WEB COMPONENT 597
Transferring Control to Another Web
Component
In some applications, you might want to have one Web component do prelimi-
nary processing of a request and have another component generate the response.
For example, you might want to partially process a request and then transfer to
another component depending on the nature of the request.

To transfer control to another Web component, you invoke the forward method
of a RequestDispatcher. When a request is forwarded, the request URL is set to
the path of the forwarded page. If the original URL is required for any process-
ing, you can save it as a request attribute. The Dispatcher servlet, used by a ver-
sion of the Duke’s Bookstore application described in The Example JSP
Pages (page 638), saves the path information from the original URL, retrieves a
RequestDispatcher from the request, and then forwards to the JSP page tem-

plate.jsp.

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
request.setAttribute("selectedScreen",

request.getServletPath());
RequestDispatcher dispatcher = request.

getRequestDispatcher("/template.jsp");
if (dispatcher != null)

dispatcher.forward(request, response);
}
public void doPost(HttpServletRequest request,
...

}

The forward method should be used to give another resource responsibility for
replying to the user. If you have already accessed a ServletOutputStream or
PrintWriter object within the servlet, you cannot use this method; it throws an
IllegalStateException.

../examples/web/bookstore3/src/Dispatcher.java
../examples/web/bookstore3/web/template.txt
../examples/web/bookstore3/web/template.txt

598 JAVA SERVLET TECHNOLOGY
Accessing the Web Context
The context in which Web components execute is an object that implements the
ServletContext interface. You retrieve the Web context with the getServlet-

Context method. The Web context provides methods for accessing:

• Initialization parameters

• Resources associated with the Web context

• Object-valued attributes

• Logging capabilities

The Web context is used by the Duke’s Bookstore filters filters.HitCounter-
Filter and OrderFilter, which were discussed in Filtering Requests and
Responses (page 587). The filters store a counter as a context attribute. Recall
from Controlling Concurrent Access to Shared Resources (page 579) that the
counter’s access methods are synchronized to prevent incompatible operations
by servlets that are running concurrently. A filter retrieves the counter object
with the context’s getAttribute method. The incremented value of the counter
is recorded with the context’s log method.

public final class HitCounterFilter implements Filter {
private FilterConfig filterConfig = null;
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException {
...
StringWriter sw = new StringWriter();
PrintWriter writer = new PrintWriter(sw);
ServletContext context = filterConfig.

getServletContext();
Counter counter = (Counter)context.

getAttribute("hitCounter");
...
writer.println("The number of hits is: " +

counter.incCounter());
...
context.log(sw.getBuffer().toString());
...

}
}

../../api/javax/servlet/ServletContext.html
../examples/web/bookstore1/src/filters/HitCounterFilter.java
../examples/web/bookstore1/src/filters/HitCounterFilter.java

MAINTAINING CLIENT STATE 599
Maintaining Client State
Many applications require a series of requests from a client to be associated with
one another. For example, the Duke’s Bookstore application saves the state of a
user’s shopping cart across requests. Web-based applications are responsible for
maintaining such state, called a session, because the HTTP protocol is stateless.
To support applications that need to maintain state, Java Servlet technology pro-
vides an API for managing sessions and allows several mechanisms for imple-
menting sessions.

Accessing a Session
Sessions are represented by an HttpSession object. You access a session by
calling the getSession method of a request object. This method returns the cur-
rent session associated with this request, or, if the request does not have a ses-
sion, it creates one. Since getSession may modify the response header (if
cookies are the session tracking mechanism), it needs to be called before you
retrieve a PrintWriter or ServletOutputStream.

Associating Attributes with a Session
You can associate object-valued attributes with a session by name. Such
attributes are accessible by any Web component that belongs to the same Web
context and is handling a request that is part of the same session.

The Duke’s Bookstore application stores a customer’s shopping cart as a session
attribute. This allows the shopping cart to be saved between requests and also
allows cooperating servlets to access the cart. CatalogServlet adds items to the
cart; ShowCartServlet displays, deletes items from, and clears the cart; and
CashierServlet retrieves the total cost of the books in the cart.

public class CashierServlet extends HttpServlet {
public void doGet (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
ShoppingCart cart =

(ShoppingCart)session.

../../api/javax/servlet/http/HttpSession.html
../examples/web/bookstore1/src/CatalogServlet.java
../examples/web/bookstore1/src/ShowCartServlet.java
../examples/web/bookstore1/src/CashierServlet.java

600 JAVA SERVLET TECHNOLOGY
getAttribute("cart");
...
// Determine the total price of the user's books
double total = cart.getTotal();

Notifying Objects That Are Associated with a
Session
Recall that your application can notify Web context and session listener objects
of servlet life cycle events (Handling Servlet Life Cycle Events (page 575)). You
can also notify objects of certain events related to their association with a session
such as the following:

• When the object is added to or removed from a session. To receive this
notification, your object must implement the javax.http.HttpSession-

BindingListener interface.

• When the session to which the object is attached will be passivated or acti-
vated. A session will be passivated or activated when it is moved between
virtual machines or saved to and restored from persistent storage. To
receive this notification, your object must implement the
javax.http.HttpSessionActivationListener interface.

Session Management
Since there is no way for an HTTP client to signal that it no longer needs a ses-
sion, each session has an associated timeout so that its resources can be
reclaimed. The timeout period can be accessed with a session’s [get|set]MaxI-
nactiveInterval methods. You can also set the time-out period in the deploy-
ment descriptor:

<web-app>
<display-name>Hello World Application</display-name>
<description>A web application</description>
<session-config>

<session-timeout>60</session-timeout>
</session-config>

</web-app>

To ensure that an active session is not timed out, you should periodically access
the session via service methods because this resets the session’s time-to-live
counter.

../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionBindingListener.html
../../api/javax/servlet/http/HttpSessionActivationListener.html

SESSION TRACKING 601
When a particular client interaction is finished, you use the session’s invali-

date method to invalidate a session on the server side and remove any session
data.

The bookstore application’s ReceiptServlet is the last servlet to access a cli-
ent’s session, so it has responsibility for invalidating the session:

public class ReceiptServlet extends HttpServlet {
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// Get the user's session and shopping cart
HttpSession session = request.getSession();
// Payment received -- invalidate the session
session.invalidate();
...

Session Tracking
A Web container can use several methods to associate a session with a user, all of
which involve passing an identifier between the client and server. The identifier
can be maintained on the client as a cookie or the Web component can include
the identifier in every URL that is returned to the client.

If your application makes use of session objects, you must ensure that session
tracking is enabled by having the application rewrite URLs whenever the client
turns off cookies. You do this by calling the response’s encodeURL(URL) method
on all URLs returned by a servlet. This method includes the session ID in the
URL only if cookies are disabled; otherwise, it returns the URL unchanged.

The doGet method of ShowCartServlet encodes the three URLs at the bottom
of the shopping cart display page as follows:

out.println("<p> <p><a href=\"" +
response.encodeURL(request.getContextPath() + "/catalog") +

"\">" + messages.getString("ContinueShopping") +
" " +
"<a href=\"" +

response.encodeURL(request.getContextPath() + "/cashier") +
"\">" + messages.getString("Checkout") +
" " +
"<a href=\"" +

../examples/web/bookstore1/src/ReceiptServlet.java
../examples/web/bookstore1/src/ShowCartServlet.java

602 JAVA SERVLET TECHNOLOGY
response.encodeURL(request.getContextPath() +
"/showcart?Clear=clear") +
"\">" + messages.getString("ClearCart") +
"");

If cookies are turned off, the session is encoded in the Check Out URL as fol-
lows:

http://localhost:8080/bookstore1/cashier;
jsessionid=c0o7fszeb1

If cookies are turned on, the URL is simply

http://localhost:8080/bookstore1/cashier

Finalizing a Servlet
When a servlet container determines that a servlet should be removed from ser-
vice (for example, when a container wants to reclaim memory resources, or
when it is being shut down), it calls the destroy method of the Servlet inter-
face. In this method, you release any resources the servlet is using and save any
persistent state. The following destroy method releases the database object cre-
ated in the init method described in Initializing a Servlet (page 581):

public void destroy() {
bookDB = null;

}

All of a servlet’s service methods should be complete when a servlet is removed.
The server tries to ensure this by calling the destroy method only after all ser-
vice requests have returned, or after a server-specific grace period, whichever
comes first. If your servlet has operations that take a long time to run (that is,
operations that may run longer than the server’s grace period), the operations
could still be running when destroy is called. You must make sure that any
threads still handling client requests complete; the remainder of this section
describes how to:

• Keep track of how many threads are currently running the service method

• Provide a clean shutdown by having the destroy method notify long-run-
ning threads of the shutdown and wait for them to complete

• Have the long-running methods poll periodically to check for shutdown
and, if necessary, stop working, clean up, and return

TRACKING SERVICE REQUESTS 603
Tracking Service Requests
To track service requests, include in your servlet class a field that counts the
number of service methods that are running. The field should have synchronized
access methods to increment, decrement, and return its value.

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;
...
//Access methods for serviceCounter
protected synchronized void enteringServiceMethod() {

serviceCounter++;
}
protected synchronized void leavingServiceMethod() {

serviceCounter--;
}
protected synchronized int numServices() {

return serviceCounter;
}

}

The service method should increment the service counter each time the method
is entered and should decrement the counter each time the method returns. This
is one of the few times that your HttpServlet subclass should override the ser-

vice method. The new method should call super.service to preserve all of the
original service method’s functionality:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {

enteringServiceMethod();
try {

super.service(req, resp);
} finally {

leavingServiceMethod();
}

}

Notifying Methods to Shut Down
To ensure a clean shutdown, your destroy method should not release any shared
resources until all of the service requests have completed. One part of doing this
is to check the service counter. Another part is to notify the long-running meth-

604 JAVA SERVLET TECHNOLOGY
ods that it is time to shut down. For this notification another field is required. The
field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;
...
//Access methods for shuttingDown
protected synchronized void setShuttingDown(boolean flag) {

shuttingDown = flag;
}
protected synchronized boolean isShuttingDown() {

return shuttingDown;
}

}

An example of the destroy method using these fields to provide a clean shut-
down follows:

public void destroy() {
/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {

setShuttingDown(true);
}

/* Wait for the service methods to stop. */
while(numServices() > 0) {

try {
Thread.sleep(interval);

} catch (InterruptedException e) {
}

}
}

Creating Polite Long-Running Methods
The final step in providing a clean shutdown is to make any long-running meth-
ods behave politely. Methods that might run for a long time should check the
value of the field that notifies them of shutdowns and should interrupt their work,
if necessary.

public void doPost(...) {
...
for(i = 0; ((i < lotsOfStuffToDo) &&

!isShuttingDown()); i++) {

FURTHER INFORMATION 605
try {
partOfLongRunningOperation(i);

} catch (InterruptedException e) {
...

}
}

}

Further Information
For further information on Java Servlet technology see:

• Resources listed on the Web site http://java.sun.com/prod-

ucts/servlet.

• The Java Servlet 2.3 Specification.

http://java.sun.com/products/servlet
http://java.sun.com/products/servlet
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/index.html

606 JAVA SERVLET TECHNOLOGY

15
607
JavaServer Pages
Technology

Stephanie Bodoff

JAVASERVER Pages (JSP) technology allows you to easily create Web content
that has both static and dynamic components. JSP technology projects all the
dynamic capabilities of Java Servlet technology but provides a more natural
approach to creating static content. The main features of JSP technology are

• A language for developing JSP pages, which are text-based documents that
describe how to process a request and construct a response

• Constructs for accessing server-side objects

• Mechanisms for defining extensions to the JSP language

JSP technology also contains an API that is used by developers of Web contain-
ers, but this API is not covered in this chapter.

What Is a JSP Page?
A JSP page is a text-based document that contains two types of text: static tem-
plate data, which can be expressed in any text-based format, such as HTML,
SVG, WML, and XML; and JSP elements, which construct dynamic content. A
syntax card and reference for the JSP elements are available at

http://java.sun.com/products/jsp/technical.html#syntax

http://www.w3.org/MarkUp
http://www.w3.org/TR/SVG
http://www.oasis-open.org/cover/wap-wml.html
http://www.w3.org/TR/REC-xml
http://java.sun.com/products/jsp/technical.html#syntax

608 JAVASERVER PAGES TECHNOLOGY
The Web page in Figure 15–1 is a form that allows you to select a locale and dis-
plays the date in a manner appropriate to the locale.

Figure 15–1 Localized Date Form

The source code for this example is in the docs/tutorial/examples/web/date

directory created when you unzip the tutorial bundle. The JSP page index.jsp

used to create the form appears below; it is a typical mixture of static HTML
markup and JSP elements. If you have developed Web pages, you are probably
familiar with the HTML document structure statements (<head>, <body>, and so
on) and the HTML statements that create a form <form> and a menu <select>.
The lines in bold in the example code contains the following types of JSP con-
structs:

• Directives (<%@page ... %>) import classes in the java.util package
and the MyLocales class, and set the content type returned by the page.

• The jsp:useBean element creates an object containing a collection of
locales and initializes a variable that points to that object.

• Scriptlets (<% ... %>) retrieve the value of the locale request parameter,
iterate over a collection of locale names, and conditionally insert HTML
text into the output.

• Expressions (<%= ... %>) insert the value of the locale name into the
response.

../examples/web/date/web/index.txt

WHAT IS A JSP PAGE? 609
• The jsp:include element sends a request to another page (date.jsp) and
includes the response in the response from the calling page.

<%@ page import="java.util.*,MyLocales" %>
<%@ page contentType="text/html; charset=ISO-8859-5" %>
<html>
<head><title>Localized Dates</title></head>
<body bgcolor="white">
<jsp:useBean id="locales" scope="application"

class="MyLocales"/>
<form name="localeForm" action="index.jsp" method="post">
Locale:
<select name=locale>
<%

String selectedLocale = request.getParameter("locale");
Iterator i = locales.getLocaleNames().iterator();
while (i.hasNext()) {

String locale = (String)i.next();
if (selectedLocale != null &&

selectedLocale.equals(locale)) {
%>

<option selected><%=locale%></option>
<%

} else {
%>

<option><%=locale%></option>
<%

}
}

%>
</select>
<input type="submit" name="Submit" value="Get Date">
</form>
<jsp:include page="date.jsp"/>
</body>
</html>

To build, deploy, and execute this JSP page:

1. In a terminal window, go to docs/tutorial/examples/web/date.

2. Run ant build. The build target will spawn any necessary compilations
and copy files to the docs/tutorial/examples/web/date/build direc-
tory.

3. Run ant install. The install target notifies Tomcat that the new context
is available.

4. Open the date URL http://localhost:8080/date.

610 JAVASERVER PAGES TECHNOLOGY
You will see a combo box whose entries are locales. Select a locale and click Get
Date. You will see the date expressed in a manner appropriate for that locale.

The Example JSP Pages
To illustrate JSP technology, this chapter rewrites each servlet in the Duke’s
Bookstore application introduced in Chapter 14 as a JSP page:

The data for the bookstore application is still maintained in a database. However,
two changes are made to the database helper object database.BookDB:

• The database helper object is rewritten to conform to JavaBeans compo-
nent design patterns as described in JavaBeans Component Design
Conventions (page 627). This change is made so that JSP pages can access
the helper object using JSP language elements specific to JavaBeans com-
ponents.

• Instead of accessing the bookstore database directly, the helper object goes
through a data access object database.BookDAO.

Table 15–1 Duke’s Bookstore Example JSP Pages

Function JSP Pages

Enter the bookstore bookstore.jsp

Create the bookstore banner banner.jsp

Browse the books offered for sale catalog.jsp

Put a book in a shopping cart catalog.jsp and bookdetails.jsp

Get detailed information on a specific book bookdetails.jsp

Display the shopping cart showcart.jsp

Remove one or more books from the shopping cart showcart.jsp

Buy the books in the shopping cart cashier.jsp

Receive an acknowledgement for the purchase receipt.jsp

../examples/web/bookstore2/src/database/BookDB.java

THE EXAMPLE JSP PAGES 611
The implementation of the database helper object follows. The bean has two
instance variables: the current book and a reference to the database enterprise
bean.

public class BookDB {
private String bookId = "0";
private BookDBEJB database = null;

public BookDB () throws Exception {
}
public void setBookId(String bookId) {

this.bookId = bookId;
}
public void setDatabase(BookDBEJB database) {

this.database = database;
}
public BookDetails getBookDetails()

throws Exception {
try {

return (BookDetails)database.
getBookDetails(bookId);

} catch (BookNotFoundException ex) {
throw ex;

}
}
...

}

Finally, this version of the example contains an applet to generate a dynamic dig-
ital clock in the banner. See Including an Applet (page 624) for a description of
the JSP element that generates HTML for downloading the applet.

The source code for the application is located in the docs/tuto-

rial/examples/web/bookstore2 directory created when you unzip the tutorial
bundle (see Running the Examples, page xiii). To build, deploy, and run the
example:

1. In a terminal window, go to docs/tuto-

rial/examples/web/bookstore2.

2. Run ant build. The build target will spawn any necessary compilations
and copy files to the docs/tutorial/examples/web/bookstore2/build

directory.

3. Make sure Tomcat is started.

4. Run ant install. The install target notifies Tomcat that the new context
is available.

612 JAVASERVER PAGES TECHNOLOGY
5. Start the PointBase database server and populate the database if you have
not done so already (see Accessing Databases from Web
Applications, page 109).

6. Open the bookstore URL http://localhost:8080/bookstore2/enter.

See Common Problems and Their Solutions (page 87) and
Troubleshooting (page 574) for help with diagnosing common problems.

The Life Cycle of a JSP Page
A JSP page services requests as a servlet. Thus, the life cycle and many of the
capabilities of JSP pages (in particular the dynamic aspects) are determined by
Java Servlet technology, and much of the discussion in this chapter refers to
functions described in Chapter 14.

When a request is mapped to a JSP page, it is handled by a special servlet that
first checks whether the JSP page’s servlet is older than the JSP page. If it is, it
translates the JSP page into a servlet class and compiles the class. During devel-
opment, one of the advantages of JSP pages over servlets is that the build process
is performed automatically.

Translation and Compilation
During the translation phase each type of data in a JSP page is treated differently.
Template data is transformed into code that will emit the data into the stream that
returns data to the client. JSP elements are treated as follows:

• Directives are used to control how the Web container translates and exe-
cutes the JSP page.

• Scripting elements are inserted into the JSP page’s servlet class. See JSP
Scripting Elements (page 619) for details.

• Elements of the form <jsp:XXX ... /> are converted into method calls to
JavaBeans components or invocations of the Java Servlet API.

For a JSP page named pageName, the source for a JSP page’s servlet is kept in
the file:

<JWSDP_HOME>/work/Standard Engine/
localhost/context_root/pageName$jsp.java

EXECUTION 613
For example, the source for the index page (named index.jsp) for the date

localization example discussed at the beginning of the chapter would be named:

<JWSDP_HOME>/work/Standard Engine/
localhost/date/index$jsp.java

Both the translation and compilation phases can yield errors that are only
observed when the page is requested for the first time. If an error occurs while
the page is being translated (for example, if the translator encounters a mal-
formed JSP element), the server will return a ParseException, and the servlet
class source file will be empty or incomplete. The last incomplete line will give a
pointer to the incorrect JSP element.

If an error occurs while the JSP page is being compiled (for example, there is a
syntax error in a scriptlet), the server will return a JasperException and a mes-
sage that includes the name of the JSP page’s servlet and the line where the error
occurred.

Once the page has been translated and compiled, the JSP page’s servlet for the
most part follows the servlet life cycle described in Servlet Life
Cycle (page 574):

1. If an instance of the JSP page’s servlet does not exist, the container

a. Loads the JSP page’s servlet class

b. Instantiates an instance of the servlet class

c. Initializes the servlet instance by calling the jspInit method

2. The container invokes the _jspService method, passing a request and
response object.

If the container needs to remove the JSP page’s servlet, it calls the jspDestroy

method.

Execution
You can control various JSP page execution parameters by using page directives.
The directives that pertain to buffering output and handling errors are discussed
here. Other directives are covered in the context of specific page authoring tasks
throughout the chapter.

614 JAVASERVER PAGES TECHNOLOGY
Buffering
When a JSP page is executed, output written to the response object is automati-
cally buffered. You can set the size of the buffer with the following page direc-
tive:

<%@ page buffer="none|xxxkb" %>

A larger buffer allows more content to be written before anything is actually sent
back to the client, thus providing the JSP page with more time to set appropriate
status codes and headers or to forward to another Web resource. A smaller buffer
decreases server memory load and allows the client to start receiving data more
quickly.

Handling Errors
Any number of exceptions can arise when a JSP page is executed. To specify that
the Web container should forward control to an error page if an exception occurs,
include the following page directive at the beginning of your JSP page:

<%@ page errorPage="file_name" %>

The Duke’s Bookstore application page initdestroy.jsp contains the directive

<%@ page errorPage="errorpage.jsp"%>

The beginning of errorpage.jsp indicates that it is serving as an error page
with the following page directive:

<%@ page isErrorPage="true|false" %>

This directive makes the exception object (of type javax.servlet.jsp.JspEx-

ception) available to the error page, so that you can retrieve, interpret, and pos-
sibly display information about the cause of the exception in the error page.

Note: You can also define error pages for the WAR that contains a JSP page. If error
pages are defined for both the WAR and a JSP page, the JSP page’s error page takes
precedence.

../examples/web/bookstore2/web/initdestroy.txt
../examples/web/bookstore2/web/errorpage.txt
../../api/javax/servlet/jsp/JspException.html
../../api/javax/servlet/jsp/JspException.html

INITIALIZING AND FINALIZING A JSP PAGE 615
Initializing and Finalizing a JSP Page
You can customize the initialization process to allow the JSP page to read persis-
tent configuration data, initialize resources, and perform any other one-time
activities by overriding the jspInit method of the JspPage interface. You
release resources using the jspDestroy method. The methods are defined using
JSP declarations, discussed in Declarations (page 619).

The bookstore example page initdestroy.jsp defines the jspInit method to
retrieve the object database.BookDBAO that accesses the bookstore database and
stores a reference to the bean in bookDBAO.

private BookDBAO bookDBAO;
public void jspInit() {
bookDBAO =

(BookDBAO)getServletContext().getAttribute("bookDB");
if (bookDBAO == null)

System.out.println("Couldn’t get database.");
}

When the JSP page is removed from service, the jspDestroy method releases
the BookDBAO variable.

public void jspDestroy() {
bookDBAO = null;

}

Since the enterprise bean is shared between all the JSP pages, it should be initial-
ized when the application is started, instead of in each JSP page. Java Servlet
technology provides application life-cycle events and listener classes for this
purpose. As an exercise, you can move the code that manages the creation of the
enterprise bean to a context listener class. See Handling Servlet Life Cycle
Events (page 575) for the context listener that initializes the Java Servlet version
of the bookstore application.

Creating Static Content
You create static content in a JSP page by simply writing it as if you were creat-
ing a page that consisted only of that content. Static content can be expressed in
any text-based format, such as HTML, WML, and XML. The default format is
HTML. If you want to use a format other than HTML, you include a page direc-

../examples/web/bookstore2/web/initdestroy.txt
../examples/web/bookstore2/src/database/BookDBAO.java

616 JAVASERVER PAGES TECHNOLOGY
tive with the contentType attribute set to the format type at the beginning of
your JSP page. For example, if you want a page to contain data expressed in the
wireless markup language (WML), you need to include the following directive:

<%@ page contentType="text/vnd.wap.wml"%>

A registry of content type names is kept by the IANA at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types

Creating Dynamic Content
You create dynamic content by accessing Java programming language objects
from within scripting elements.

Using Objects within JSP Pages
You can access a variety of objects, including enterprise beans and JavaBeans
components, within a JSP page. JSP technology automatically makes some
objects available, and you can also create and access application-specific objects.

Implicit Objects
Implicit objects are created by the Web container and contain information related
to a particular request, page, or application. Many of the objects are defined by
the Java Servlet technology underlying JSP technology and are discussed at
length in Chapter 14. Table 15–2 summarizes the implicit objects.

Table 15–2 Implicit Objects

Variable Class Description

application
javax.servlet.
ServletContext

The context for the JSP page’s servlet and any Web
components contained in the same application. See
Accessing the Web Context (page 598).

config
javax.servlet.
ServletConfig

Initialization information for the JSP page’s servlet.

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types
../../api/javax/servlet/ServletContext.html
../../api/javax/servlet/ServletConfig.html

USING OBJECTS WITHIN JSP PAGES 617
Application-Specific Objects
When possible, application behavior should be encapsulated in objects so that
page designers can focus on presentation issues. Objects can be created by devel-
opers who are proficient in the Java programming language and in accessing

exception
java.lang.
Throwable

Accessible only from an error page. See Handling
Errors (page 614).

out
javax.servlet.
jsp.JspWriter

The output stream.

page
java.lang.
Object

The instance of the JSP page’s servlet processing
the current request. Not typically used by JSP page
authors.

pageContext
javax.servlet.
jsp.PageContext

The context for the JSP page. Provides a single API
to manage the various scoped attributes described
in Using Scope Objects (page 578).
This API is used extensively when implementing
tag handlers (see Tag Handlers, page 645).

request
subtype of
javax.servlet.
ServletRequest

The request triggering the execution of the JSP
page. See Getting Information from
Requests (page 583).

response
subtype of
javax.servlet.
ServletResponse

The response to be returned to the client. Not typi-
cally used by JSP page authors.

session
javax.servlet.
http.HttpSession

The session object for the client. See Maintaining
Client State (page 599).

Table 15–2 Implicit Objects (Continued)

Variable Class Description

http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Throwable.html
../../api/javax/servlet/jsp/JspWriter.html
http://java.sun.com/products/jdk/1.3.1/docs/api/java/lang/Object.html
../../api/javax/servlet/jsp/PageContext.html
../../api/javax/servlet/ServletRequest.html
../../api/javax/servlet/ServletResponse.html
../../api/javax/servlet/http/HttpSession.html

618 JAVASERVER PAGES TECHNOLOGY
databases and other services. There are four ways to create and use objects
within a JSP page:

• Instance and class variables of the JSP page’s servlet class are created in
declarations and accessed in scriptlets and expressions.

• Local variables of the JSP page’s servlet class are created and used in
scriptlets and expressions.

• Attributes of scope objects (see Using Scope Objects, page 578) are cre-
ated and used in scriptlets and expressions.

• JavaBeans components can be created and accessed using streamlined JSP
elements. These elements are discussed in JavaBeans Components in JSP
Pages (page 627). You can also create a JavaBeans component in a decla-
ration or scriptlet and invoke the methods of a JavaBeans component in a
scriptlet or expression.

Declarations, scriptlets, and expressions are described in JSP Scripting
Elements (page 619).

Shared Objects
The conditions affecting concurrent access to shared objects described in Con-
trolling Concurrent Access to Shared Resources (page 579) apply to objects
accessed from JSP pages that run as multithreaded servlets. You can indicate
how a Web container should dispatch multiple client requests with the following
page directive:

<%@ page isThreadSafe="true|false" %>

When isThreadSafe is set to true, the Web container may choose to dispatch
multiple concurrent client requests to the JSP page. This is the default setting. If
using true, you must ensure that you properly synchronize access to any shared
objects defined at the page level. This includes objects created within declara-
tions, JavaBeans components with page scope, and attributes of the page scope
object.

If isThreadSafe is set to false, requests are dispatched one at a time, in the
order they were received, and access to page level objects does not have to be
controlled. However, you still must ensure that access to attributes of the appli-

cation or session scope objects and to JavaBeans components with application
or session scope is properly synchronized.

JSP SCRIPTING ELEMENTS 619
JSP Scripting Elements
JSP scripting elements are used to create and access objects, define methods, and
manage the flow of control. Since one of the goals of JSP technology is to sepa-
rate static template data from the code needed to dynamically generate content,
very sparing use of JSP scripting is recommended. Much of the work that
requires the use of scripts can be eliminated by using custom tags, described in
Custom Tags in JSP Pages (page 637).

JSP technology allows a container to support any scripting language that can call
Java objects. If you wish to use a scripting language other than the default, java,
you must specify it in a page directive at the beginning of a JSP page:

<%@ page language="scripting language" %>

Since scripting elements are converted to programming language statements in
the JSP page’s servlet class, you must import any classes and packages used by a
JSP page. If the page language is java, you import a class or package with the
page directive:

<%@ page import="packagename.*, fully_qualified_classname" %>

For example, the bookstore example page showcart.jsp imports the classes
needed to implement the shopping cart with the following directive:

<%@ page import="java.util.*, cart.*" %>

Declarations
A JSP declaration is used to declare variables and methods in a page’s scripting
language. The syntax for a declaration is as follows:

<%! scripting language declaration %>

When the scripting language is the Java programming language, variables and
methods in JSP declarations become declarations in the JSP page’s servlet class.

../examples/web/bookstore2/web/showcart.txt

620 JAVASERVER PAGES TECHNOLOGY
The bookstore example page initdestroy.jsp defines an instance variable
named bookDBAO and the initialization and finalization methods jspInit and
jspDestroy discussed earlier in a declaration:

<%!
private BookDBAO bookDBAO;

public void jspInit() {
...

}
public void jspDestroy() {

...
}

%>

Scriptlets
A JSP scriptlet is used to contain any code fragment that is valid for the scripting
language used in a page. The syntax for a scriptlet is as follows:

<%
scripting language statements

%>

When the scripting language is set to java, a scriptlet is transformed into a Java
programming language statement fragment and is inserted into the service
method of the JSP page’s servlet. A programming language variable created
within a scriptlet is accessible from anywhere within the JSP page.

The JSP page showcart.jsp contains a scriptlet that retrieves an iterator from
the collection of items maintained by a shopping cart and sets up a construct to
loop through all the items in the cart. Inside the loop, the JSP page extracts prop-
erties of the book objects and formats them using HTML markup. Since the
while loop opens a block, the HTML markup is followed by a scriptlet that
closes the block.

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {

ShoppingCartItem item =
(ShoppingCartItem)i.next();

BookDetails bd = (BookDetails)item.getItem();
%>

<tr>

../examples/web/bookstore2/web/initdestroy.txt
../examples/web/bookstore2/web/showcart.txt

JSP SCRIPTING ELEMENTS 621
<td align="right" bgcolor="#ffffff">
<%=item.getQuantity()%>
</td>
<td bgcolor="#ffffaa">
<a href="
<%=request.getContextPath()%>/bookdetails?bookId=
<%=bd.getBookId()%>"><%=bd.getTitle()%>
</td>
...

<%
// End of while
}

%>

The output appears in Figure 15–2.

Figure 15–2 Duke’s Bookstore Shopping Cart

Expressions
A JSP expression is used to insert the value of a scripting language expression,
converted into a string, into the data stream returned to the client. When the
scripting language is the Java programming language, an expression is trans-

622 JAVASERVER PAGES TECHNOLOGY
formed into a statement that converts the value of the expression into a String

object and inserts it into the implicit out object.

The syntax for an expression is as follows:

<%= scripting language expression %>

Note that a semicolon is not allowed within a JSP expression, even if the same
expression has a semicolon when you use it within a scriptlet.

The following scriptlet retrieves the number of items in a shopping cart:

<%
// Print a summary of the shopping cart
int num = cart.getNumberOfItems();
if (num > 0) {

%>

Expressions are then used to insert the value of num into the output stream and
determine the appropriate string to include after the number:

<%=messages.getString("CartContents")%> <%=num%>

<%=(num==1 ? <%=messages.getString("CartItem")%> :
<%=messages.getString("CartItems"))%>

Including Content in a JSP Page
There are two mechanisms for including another Web resource in a JSP page: the
include directive and the jsp:include element.

The include directive is processed when the JSP page is translated into a servlet
class. The effect of the directive is to insert the text contained in another file—
either static content or another JSP page—in the including JSP page. You would
probably use the include directive to include banner content, copyright infor-
mation, or any chunk of content that you might want to reuse in another page.
The syntax for the include directive is as follows:

<%@ include file="filename" %>

INCLUDING CONTENT IN A JSP PAGE 623
For example, all the bookstore application pages include the file banner.jsp

which contains the banner content, with the following directive:

<%@ include file="banner.jsp" %>

In addition, the pages bookstore.jsp, bookdetails.jsp, catalog.jsp, and
showcart.jsp include JSP elements that create and destroy a database bean
with the following directive:

<%@ include file="initdestroy.jsp" %>

Because you must statically put an include directive in each file that reuses the
resource referenced by the directive, this approach has its limitations. For a more
flexible approach to building pages out of content chunks, see A Template Tag
Library (page 665).

The jsp:include element is processed when a JSP page is executed. The
include action allows you to include either a static or dynamic resource in a JSP
file. The results of including static and dynamic resources are quite different. If
the resource is static, its content is inserted into the calling JSP file. If the
resource is dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response from the calling
JSP page. The syntax for the jsp:include element is:

<jsp:include page="includedPage" />

Note: Tomcat will not reload a statically included page that has been modified
unless the including page is also modified.

The date application introduced at the beginning of this chapter includes the
page that generates the display of the localized date with the following state-
ment:

<jsp:include page="date.jsp"/>

../examples/web/bookstore2/web/banner.txt
../examples/web/bookstore2/web/bookstore.txt
../examples/web/bookstore2/web/bookdetails.txt
../examples/web/bookstore2/web/catalog.txt
../examples/web/bookstore2/web/showcart.txt

624 JAVASERVER PAGES TECHNOLOGY
Transferring Control to Another Web
Component

The mechanism for transferring control to another Web component from a JSP
page uses the functionality provided by the Java Servlet API as described in
Transferring Control to Another Web Component (page 597). You access this
functionality from a JSP page with the jsp:forward element:

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the jsp:forward ele-
ment will fail with an IllegalStateException.

jsp:param Element
When an include or forward element is invoked, the original request object is
provided to the target page. If you wish to provide additional data to that page,
you can append parameters to the request object with the jsp:param element:

<jsp:include page="..." >
<jsp:param name=”param1” value="value1"/>

</jsp:include>

Including an Applet
You can include an applet or JavaBeans component in a JSP page by using the
jsp:plugin element. This element generates HTML that contains the appropri-
ate client-browser-dependent constructs (<object> or <embed>) that will result
in the download of the Java Plug-in software (if required) and client-side compo-
nent and subsequent execution of any client-side component. The syntax for the
jsp:plugin element is as follows:

<jsp:plugin
type="bean|applet"
code="objectCode"
codebase="objectCodebase"
{ align="alignment" }
{ archive="archiveList" }
{ height="height" }
{ hspace="hspace" }

INCLUDING AN APPLET 625
{ jreversion="jreversion" }
{ name="componentName" }
{ vspace="vspace" }
{ width="width" }
{ nspluginurl="url" }
{ iepluginurl="url" } >
{ <jsp:params>

{ <jsp:param name="paramName" value= paramValue" /> }+
</jsp:params> }
{ <jsp:fallback> arbitrary_text </jsp:fallback> }

</jsp:plugin>

The jsp:plugin tag is replaced by either an <object> or <embed> tag as appro-
priate for the requesting client. The attributes of the jsp:plugin tag provide
configuration data for the presentation of the element as well as the version of
the plug-in required. The nspluginurl and iepluginurl attributes specify the
URL where the plug-in can be downloaded.

The jsp:param elements specify parameters to the applet or JavaBeans compo-
nent. The jsp:fallback element indicates the content to be used by the client
browser if the plug-in cannot be started (either because <object> or <embed> is
not supported by the client or because of some other problem).

If the plug-in can start but the applet or JavaBeans component cannot be found
or started, a plug-in-specific message will be presented to the user, most likely a
pop-up window reporting a ClassNotFoundException.

626 JAVASERVER PAGES TECHNOLOGY
The Duke’s Bookstore page banner.jsp that creates the banner displays a
dynamic digital clock generated by DigitalClock:

Figure 15–3 Duke’s Bookstore with Applet

The jsp:plugin element used to download the applet follows:

<jsp:plugin
type="applet"
code="DigitalClock.class"
codebase="/bookstore2"
jreversion="1.3"
align="center" height="25" width="300"
nspluginurl="http://java.sun.com/products/plugin/1.3.0_01

/plugin-install.html"
iepluginurl="http://java.sun.com/products/plugin/1.3.0_01

/jinstall-130_01-win32.cab#Version=1,3,0,1" >
<jsp:params>

<jsp:param name="language"

../examples/web/bookstore2/web/banner.txt

JAVABEANS COMPONENTS IN JSP PAGES 627
value="<%=request.getLocale().getLanguage()%>" />
<jsp:param name="country"

value="<%=request.getLocale().getCountry()%>" />
<jsp:param name="bgcolor" value="FFFFFF" />
<jsp:param name="fgcolor" value="CC0066" />

</jsp:params>
<jsp:fallback>
<p>Unable to start plugin.</p>

</jsp:fallback>
</jsp:plugin>

JavaBeans Components in JSP Pages
JavaBeans components are Java classes that can be easily reused and composed
together into applications. Any Java class that follows certain design conventions
can be a JavaBeans component.

JavaServer Pages technology directly supports using JavaBeans components
with JSP language elements. You can easily create and initialize beans and get
and set the values of their properties. This chapter provides basic information
about JavaBeans components and the JSP language elements for accessing Java-
Beans components in your JSP pages. For further information about the Java-
Beans component model see http://java.sun.com/products/javabeans.

JavaBeans Component Design
Conventions
JavaBeans component design conventions govern the properties of the class and
govern the public methods that give access to the properties.

A JavaBeans component property can be

• Read/write, read-only, or write-only

• Simple, which means it contains a single value, or indexed, which means
it represents an array of values

http://java.sun.com/products/javabeans

628 JAVASERVER PAGES TECHNOLOGY
There is no requirement that a property be implemented by an instance variable;
the property must simply be accessible using public methods that conform to
certain conventions:

• For each readable property, the bean must have a method of the form

PropertyClass getProperty() { ... }

• For each writable property, the bean must have a method of the form

setProperty(PropertyClass pc) { ... }

In addition to the property methods, a JavaBeans component must define a con-
structor that takes no parameters.

The Duke’s Bookstore application JSP pages enter.jsp, bookdetails.jsp,
catalog.jsp, and showcart.jsp use the database.BookDB and data-

base.BookDetails JavaBeans components. BookDB provides a JavaBeans com-
ponent front end to the access object BookDBAO. Both beans are used extensively
by bean-oriented custom tags (see Custom Tags in JSP Pages, page 637). The
JSP pages showcart.jsp and cashier.jsp use cart.ShoppingCart to repre-
sent a user’s shopping cart.

The JSP pages catalog.jsp, showcart.jsp, and cashier.jsp use the
util.Currency JavaBeans component to format currency in a locale-sensitive
manner. The bean has two writable properties, locale and amount, and one read-
able property, format. The format property does not correspond to any instance
variable, but returns a function of the locale and amount properties.

public class Currency {
private Locale locale;
private double amount;
public Currency() {

locale = null;
amount = 0.0;

}
public void setLocale(Locale l) {

locale = l;
}
public void setAmount(double a) {

amount = a;
}
public String getFormat() {

NumberFormat nf =

../examples/web/bookstore2/src/database/BookDB.java
../examples/web/bookstore2/src/database/BookDetails.java
../examples/web/bookstore2/src/database/BookDetails.java
../examples/web/bookstore2/src/cart/ShoppingCart.java
../examples/web/bookstore2/src/util/Currency.java

WHY USE A JAVABEANS COMPONENT? 629
NumberFormat.getCurrencyInstance(locale);
return nf.format(amount);

}
}

Why Use a JavaBeans Component?
A JSP page can create and use any type of Java programming language object
within a declaration or scriptlet. The following scriptlet creates the bookstore
shopping cart and stores it as a session attribute:

<%
ShoppingCart cart = (ShoppingCart)session.

getAttribute("cart");
// If the user has no cart, create a new one
if (cart == null) {

cart = new ShoppingCart();
session.setAttribute("cart", cart);

}
%>

If the shopping cart object conforms to JavaBeans conventions, JSP pages can
use JSP elements to create and access the object. For example, the Duke’s Book-
store pages bookdetails.jsp, catalog.jsp, and showcart.jsp replace the
scriptlet with the much more concise JSP useBean element:

<jsp:useBean id="cart" class="cart.ShoppingCart"
scope="session"/>

Creating and Using a JavaBeans
Component

You declare that your JSP page will use a JavaBeans component using either one
of the following formats:

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope"/>

630 JAVASERVER PAGES TECHNOLOGY
or

<jsp:useBean id="beanName"
class="fully_qualified_classname" scope="scope">
<jsp:setProperty .../>

</jsp:useBean>

The second format is used when you want to include jsp:setProperty state-
ments, described in the next section, for initializing bean properties.

The jsp:useBean element declares that the page will use a bean that is stored
within and accessible from the specified scope, which can be application,
session, request, or page. If no such bean exists, the statement creates the
bean and stores it as an attribute of the scope object (see Using Scope
Objects, page 578). The value of the id attribute determines the name of the
bean in the scope and the identifier used to reference the bean in other JSP ele-
ments and scriptlets.

Note: In JSP Scripting Elements (page 619), we mentioned that you must import any
classes and packages used by a JSP page. This rule is slightly altered if the class is
only referenced by useBean elements. In these cases, you must only import the class
if the class is in the unnamed package. For example, in What Is a JSP Page? (page 607),
the page index.jsp imports the MyLocales class. However, in the Duke’s Book-
store example, all classes are contained in packages and thus are not explicitly
imported.

The following element creates an instance of Currency if none exists, stores it as
an attribute of the session object, and makes the bean available throughout the
session by the identifier currency:

<jsp:useBean id="currency" class="util.Currency"
scope="session"/>

Setting JavaBeans Component
Properties

There are two ways to set JavaBeans component properties in a JSP page: with
the jsp:setProperty element or with a scriptlet

<% beanName.setPropName(value); %>

SETTING JAVABEANS COMPONENT PROPERTIES 631
The syntax of the jsp:setProperty element depends on the source of the prop-
erty value. Table 15–3 summarizes the various ways to set a property of a Java-
Beans component using the jsp:setProperty element.

A property set from a constant string or request parameter must have a type
listed in Table 15–4. Since both a constant and request parameter are strings, the
Web container automatically converts the value to the property’s type; the con-
version applied is shown in the table. String values can be used to assign values
to a property that has a PropertyEditor class. When that is the case, the setAs-
Text(String) method is used. A conversion failure arises if the method throws

Table 15–3 Setting JavaBeans Component Properties

Value Source Element Syntax

String constant
<jsp:setProperty name="beanName"

property="propName" value="string constant"/>

Request parameter
<jsp:setProperty name="beanName"

property="propName" param="paramName"/>

Request parameter name
matches bean property

<jsp:setProperty name="beanName"
property="propName"/>

<jsp:setProperty name="beanName"
property="*"/>

Expression
<jsp:setProperty name="beanName"

property="propName"
value="<%= expression %>"/>

1. beanName must be the same as that specified for the id
attribute in a useBean element.
2. There must be a setPropName method in the JavaBeans com-
ponent.
3. paramName must be a request parameter name.

632 JAVASERVER PAGES TECHNOLOGY
an IllegalArgumentException. The value assigned to an indexed property
must be an array, and the rules just described apply to the elements.

You would use a runtime expression to set the value of a property whose type is
a compound Java programming language type. Recall from
Expressions (page 621) that a JSP expression is used to insert the value of a
scripting language expression, converted into a String, into the stream returned
to the client. When used within a setProperty element, an expression simply
returns its value; no automatic conversion is performed. As a consequence, the
type returned from an expression must match or be castable to the type of the
property.

The Duke’s Bookstore application demonstrates how to use the setProperty

element and a scriptlet to set the current book for the database helper bean. For
example, bookstore3/web/bookdetails.jsp uses the form:

<jsp:setProperty name="bookDB" property="bookId"/>

Table 15–4 Valid Value Assignments

Property Type Conversion on String Value

Bean Property Uses setAsText(string-literal)

boolean or Boolean As indicated in java.lang.Boolean.valueOf(String)

byte or Byte As indicated in java.lang.Byte.valueOf(String)

char or Character As indicated in java.lang.String.charAt(0)

double or Double As indicated in java.lang.Double.valueOf(String)

int or Integer As indicated in java.lang.Integer.valueOf(String)

float or Float As indicated in java.lang.Float.valueOf(String)

long or Long As indicated in java.lang.Long.valueOf(String)

short or Short As indicated in java.lang.Short.valueOf(String)

Object new String(string-literal)

../examples/web/bookstore3/web/bookdetails.txt

RETRIEVING JAVABEANS COMPONENT PROPERTIES 633
whereas bookstore2/web/bookdetails.jsp uses the form:

<% bookDB.setBookId(bookId); %>

The following fragments from the page bookstore3/web/showcart.jsp illus-
trate how to initialize a currency bean with a Locale object and amount deter-
mined by evaluating request-time expressions. Because the first initialization is
nested in a useBean element, it is only executed when the bean is created.

<jsp:useBean id="currency" class="util.Currency"
scope="session">
<jsp:setProperty name="currency" property="locale"

value="<%= request.getLocale() %>"/>
</jsp:useBean>

<jsp:setProperty name="currency" property="amount"
value="<%=cart.getTotal()%>"/>

Retrieving JavaBeans Component
Properties

There are several ways to retrieve JavaBeans component properties. Two of the
methods (the jsp:getProperty element and an expression) convert the value of
the property into a String and insert the value into the current implicit out

object:

• <jsp:getProperty name="beanName" property="propName"/>

• <%= beanName.getPropName() %>

For both methods, beanName must be the same as that specified for the id

attribute in a useBean element, and there must be a getPropName method in the
JavaBeans component.

If you need to retrieve the value of a property without converting it and inserting
it into the out object, you must use a scriptlet:

<% Object o = beanName.getPropName(); %>

Note the differences between the expression and the scriptlet; the expression has
an = after the opening % and does not terminate with a semicolon, as does the
scriptlet.

../examples/web/bookstore2/web/bookdetails.txt
../examples/web/bookstore3/web/showcart.txt

634 JAVASERVER PAGES TECHNOLOGY
The Duke’s Bookstore application demonstrates how to use both forms to
retrieve the formatted currency from the currency bean and insert it into the
page. For example, bookstore3/web/showcart.jsp uses the form

<jsp:getProperty name="currency" property="format"/>

whereas bookstore2/web/showcart.jsp uses the form:

<%= currency.getFormat() %>

The Duke’s Bookstore application page bookstore2/web/showcart.jsp uses
the following scriptlet to retrieve the number of books from the shopping cart
bean and open a conditional insertion of text into the output stream:

<%
// Print a summary of the shopping cart
int num = cart.getNumberOfItems();
if (num > 0) {

%>

Although scriptlets are very useful for dynamic processing, using custom tags
(see Custom Tags in JSP Pages, page 637) to access object properties and per-
form flow control is considered to be a better approach. For example,
bookstore3/web/showcart.jsp replaces the scriptlet with the following cus-
tom tags:

<bean:define id="num" name="cart" property="numberOfItems" />
<logic:greaterThan name="num" value="0" >

Figure 15–4 summarizes where various types of objects are stored and how those
objects can be accessed from a JSP page. Objects created by the jsp:useBean

tag are stored as attributes of the scope objects and can be accessed by
jsp:[get|set]Property tags and in scriptlets and expressions. Objects created

../examples/web/bookstore3/web/showcart.txt
../examples/web/bookstore2/web/showcart.txt

EXTENDING THE JSP LANGUAGE 635
in declarations and scriptlets are stored as variables of the JSP page’s servlet
class and can be accessed in scriptlets and expressions.

Figure 15–4 Accessing Objects From a JSP Page

Extending the JSP Language
You can perform a wide variety of dynamic processing tasks, including access-
ing databases, using enterprise services such as e-mail and directories, and flow
control, with JavaBeans components in conjunction with scriptlets. One of the
drawbacks of scriptlets, however, is that they tend to make JSP pages more diffi-
cult to maintain. Alternatively, JSP technology provides a mechanism, called
custom tags, that allows you to encapsulate dynamic functionality in objects that
are accessed through extensions to the JSP language. Custom tags bring the ben-
efits of another level of componentization to JSP pages.

636 JAVASERVER PAGES TECHNOLOGY
For example, recall the scriptlet used to loop through and display the contents of
the Duke’s Bookstore shopping cart:

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {

ShoppingCartItem item =
(ShoppingCartItem)i.next();

...
%>

<tr>
<td align="right" bgcolor="#ffffff">
<%=item.getQuantity()%>
</td>
...

<%
}

%>

An iterate custom tag eliminates the code logic and manages the scripting
variable item that references elements in the shopping cart:

<logic:iterate id="item"
collection="<%=cart.getItems()%>">
<tr>
<td align="right" bgcolor="#ffffff">
<%=item.getQuantity()%>
</td>
...

</logic:iterate>

Custom tags are packaged and distributed in a unit called a tag library. The syn-
tax of custom tags is the same as that used for the JSP elements, namely <pre-

fix:tag>, for custom tags, however, prefix is defined by the user of the tag
library, and tag is defined by the tag developer. Custom Tags in JSP
Pages (page 637) explains how to use and develop custom tags.

Further Information
For further information on JavaServer Pages technology see:

• Resources listed on the Web site http://java.sun.com/products/jsp.

• The JavaServer Pages 1.2 Specification for a complete description of the
syntax and semantics of JSP technology.

http://java.sun.com/products/jsp
http://www.jcp.org/aboutJava/communityprocess/final/jsr053/index.html

16
637
Custom Tags in JSP
Pages
Stephanie Bodoff

THE standard JSP tags for invoking operations on JavaBeans components and
performing request dispatching simplify JSP page development and mainte-
nance. JSP technology also provides a mechanism for encapsulating other types
of dynamic functionality in custom tags, which are extensions to the JSP lan-
guage. Custom tags are usually distributed in the form of a tag library, which
defines a set of related custom tags and contains the objects that implement the
tags.

Some examples of tasks that can be performed by custom tags include operations
on implicit objects, processing forms, accessing databases and other enterprise
services such as e-mail and directories, and performing flow control. JSP tag
libraries are created by developers who are proficient at the Java programming
language and expert in accessing data and other services, and are used by Web
application designers who can focus on presentation issues rather than being
concerned with how to access enterprise services. As well as encouraging divi-
sion of labor between library developers and library users, custom tags increase
productivity by encapsulating recurring tasks so that they can be reused across
more than one application.

638 CUSTOM TAGS IN JSP PAGES
Tag libraries are receiving a great deal of attention in the JSP technology com-
munity. For more information about tag libraries and for pointers to some freely-
available libraries, see

http://java.sun.com/products/jsp/taglibraries.html

What Is a Custom Tag?
A custom tag is a user-defined JSP language element. When a JSP page contain-
ing a custom tag is translated into a servlet, the tag is converted to operations on
an object called a tag handler. The Web container then invokes those operations
when the JSP page’s servlet is executed.

Custom tags have a rich set of features. They can

• Be customized via attributes passed from the calling page.

• Access all the objects available to JSP pages.

• Modify the response generated by the calling page.

• Communicate with each other. You can create and initialize a JavaBeans
component, create a variable that refers to that bean in one tag, and then
use the bean in another tag.

• Be nested within one another, allowing for complex interactions within a
JSP page.

The Example JSP Pages
This chapter describes the tasks involved in using and defining tags. The chapter
illustrates the tasks with excerpts from the JSP version of the Duke’s Bookstore
application discussed in The Example JSP Pages (page 610) rewritten to take
advantage of two tag libraries: Struts and tutorial-template. The third section in
the chapter, Examples (page 661), describes two tags in detail: the iterate tag
from Struts and the set of tags in the tutorial-template tag library.

http://java.sun.com/products/jsp/taglibraries.html

THE EXAMPLE JSP PAGES 639
The Struts tag library provides a framework for building internationalized Web
applications that implement the Model-View-Controller design pattern. Struts
includes a comprehensive set of utility custom tags for handling:

• HTML forms

• Templates

• JavaBeans components

• Logic processing

The Duke’s Bookstore application uses tags from the Struts bean and logic

sublibraries.

The tutorial-template tag library defines a set of tags for creating an application
template. The template is a JSP page with placeholders for the parts that need to
change with each screen. Each of these placeholders is referred to as a parameter
of the template. For example, a simple template could include a title parameter
for the top of the generated screen and a body parameter to refer to a JSP page
for the custom content of the screen. The template is created with a set of nested
tags—definition, screen, and parameter—that are used to build a table of
screen definitions for Duke’s Bookstore and with an insert tag to insert param-
eters from the table into the screen.

Figure 16–1 shows the flow of a request through the following Duke’s Bookstore
Web components:

• template.jsp, which determines the structure of each screen. It uses the
insert tag to compose a screen from subcomponents.

• screendefinitions.jsp, which defines the subcomponents used by each
screen. All screens have the same banner, but different title and body con-
tent (specified by the JSP Pages column in Table 15–1).

• Dispatcher, a servlet, which processes requests and forwards to tem-

plate.jsp.

http://jakarta.apache.org/struts
../examples/web/bookstore3/web/template.txt
../examples/web/bookstore3/web/screendefinitions.txt
../examples/web/bookstore3/src/Dispatcher.java

640 CUSTOM TAGS IN JSP PAGES
Figure 16–1 Request Flow Through Duke’s Bookstore Components

The source code for the Duke’s Bookstore application is located in the
docs/tutorial/examples/web/bookstore3 directory created when you unzip
the tutorial bundle (see Running the Examples, page xiii). To build, deploy, and
run the example:

1. Download Struts version 1.0.2 from

http://jakarta.apache.org/builds/jakarta-struts/
release/v1.0.2/

2. Unpack Struts and copy struts-bean.tld, struts-logic.tld, and
struts.jar from jakarta-struts-1.0/lib to
<JWSDP_HOME>/docs/tutorial/examples/web/bookstore3.

3. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/bookstore3.

4. Run ant build. The build target will spawn any necessary compilations
and copy files to the <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore3/build directory.

http://jakarta.apache.org/builds/jakarta-struts/release/v1.0.2

USING TAGS 641
5. Make sure Tomcat is started.

6. Run ant install. The install target notifies Tomcat that the new context
is available.

7. Start the PointBase database server and populate the database if you have
not done so already (see Accessing Databases from Web
Applications, page 109).

8. Open the bookstore URL http://localhost:8080/bookstore3/enter.

See Common Problems and Their Solutions (page 87) and
Troubleshooting (page 574) for help with diagnosing common problems.

Using Tags
This section describes how a JSP page uses tags and introduces the different
types of tags.

To use a tag, a page author must do two things:

• Declare the tag library containing the tag

• Make the tag library implementation available to the Web application

Declaring Tag Libraries
You declare that a JSP page will use tags defined in a tag library by including a
taglib directive in the page before any custom tag is used:

<%@ taglib uri="/WEB-INF/tutorial-template.tld" prefix="tt" %>

The uri attribute refers to a URI that uniquely identifies the tag library descrip-
tor (TLD), described in Tag Library Descriptors (page 647). This URI can be
direct or indirect. The prefix attribute defines the prefix that distinguishes tags
defined by a given tag library from those provided by other tag libraries.

Tag library descriptor file names must have the extension .tld. TLD files are
stored in the WEB-INF directory of the WAR or in a subdirectory of WEB-INF. You
can reference a TLD directly and indirectly.

The following taglib directive directly references a TLD filename:

<%@ taglib uri="/WEB-INF/tutorial-template.tld" prefix="tt" %>

642 CUSTOM TAGS IN JSP PAGES
This taglib directive uses a short logical name to indirectly reference the TLD:

<%@ taglib uri="/tutorial-template" prefix="tt" %>

You map a logical name to an absolute location in the Web application deploy-
ment descriptor. To map the logical name /tutorial-template to the absolute
location /WEB-INF/tutorial-template.tld, you add a taglib element to
web.xml:

<taglib>
<taglib-uri>/tutorial-template</taglib-uri>
<taglib-location>

/WEB-INF/tutorial-template.tld
</taglib-location>

</taglib>

Making the Tag Library Implementation
Available
A tag library implementation can be made available to a Web application in two
basic ways. The classes implementing the tag handlers can be stored in an
unpacked form in the WEB-INF/classes subdirectory of the Web application.
Alternatively, if the library is distributed as a JAR, it is stored the WEB-INF/lib

directory of the Web application. A tag library shared between more than one
application is stored in the <JWSDP_HOME>/common/lib directory of the Java
WSDP.

Types of Tags
JSP custom tags are written using XML syntax. They have a start tag and end
tag, and possibly a body:

<tt:tag>
body

</tt:tag>

A custom tag with no body is expressed as follows:

<tt:tag />

TYPES OF TAGS 643
Simple Tags
A simple tag contains no body and no attributes:

<tt:simple />

Tags with Attributes
A custom tag can have attributes. Attributes are listed in the start tag and have
the syntax attr="value". Attribute values serve to customize the behavior of a
custom tag just as parameters are used to customize the behavior of a method.
You specify the types of a tag’s attributes in a tag library descriptor, (see Tags
with Attributes, page 650).

You can set an attribute value from a String constant or a runtime expression.
The conversion process between the constants and runtime expressions and
attribute types follows the rules described for JavaBeans component properties
in Setting JavaBeans Component Properties (page 630).

The attributes of the Struts logic:present tag determine whether the body of
the tag is evaluated. In the following example, an attribute specifies a request
parameter named Clear:

<logic:present parameter="Clear">

The Duke’s Bookstore application page catalog.jsp uses a runtime expression
to set the value of the attribute that determines the collection of books over
which the Struts logic:iterate tag iterates:

<logic:iterate collection="<%=bookDB.getBooks()%>"
id="book" type="database.BookDetails">

Tags with Bodies
A custom tag can contain custom and core tags, scripting elements, HTML text,
and tag-dependent body content between the start and end tag.

In the following example, the Duke’s Bookstore application page showcart.jsp

uses the Struts logic:present tag to clear the shopping cart and print a message
if the request contains a parameter named Clear:

../examples/web/bookstore3/web/catalog.txt
../examples/web/bookstore3/web/showcart.txt

644 CUSTOM TAGS IN JSP PAGES
<logic:present parameter="Clear">
<% cart.clear(); %>

You just cleared your shopping cart!

</logic:present>

Choosing between Passing Information as
Attributes or Body
As shown in the last two sections, it is possible to pass a given piece of data as an
attribute of the tag or as the tag’s body. Generally speaking, any data that is a
simple string or can be generated by evaluating a simple expression is best
passed as an attribute.

Tags That Define Scripting Variables
A custom tag can define a variable that can be used in scripts within a page. The
following example illustrates how to define and use a scripting variable that con-
tains an object returned from a JNDI lookup. Examples of such objects include
enterprise beans, transactions, databases, environment entries, and so on:

<tt:lookup id="tx" type="UserTransaction"
name="java:comp/UserTransaction" />

<% tx.begin(); %>

In the Duke’s Bookstore application, several pages use bean-oriented tags from
Struts to define scripting variables. For example, bookdetails.jsp uses the
bean:parameter tag to create the bookId scripting variable and set it to the
value of the bookId request parameter. The jsp:setProperty statement also
sets the bookId property of the bookDB object to the value of the bookId request
parameter. The bean:define tag retrieves the value of the bookstore database
property bookDetails and defines the result as the scripting variable book:

<bean:parameter id="bookId" name="bookId" />
<jsp:setProperty name="bookDB" property="bookId"/>
<bean:define id="book" name="bookDB" property="bookDetails"

type="database.BookDetails"/>
<h2><jsp:getProperty name="book" property="title"></h2>

../examples/web/bookstore3/web/bookdetails.txt

DEFINING TAGS 645
Cooperating Tags
Custom tags can cooperate with each other through shared objects.

In the following example, tag1 creates an object called obj1, which is then
reused by tag2.

<tt:tag1 attr1="obj1" value1="value" />
<tt:tag2 attr1="obj1" />

In the next example, an object created by the enclosing tag of a group of nested
tags is available to all inner tags. Since the object is not named, the potential for
naming conflicts is reduced. This example illustrates how a set of cooperating
nested tags would appear in a JSP page.

<tt:outerTag>
<tt:innerTag />

</tt:outerTag>

The Duke’s Bookstore page template.jsp uses a set of cooperating tags to
define the screens of the application. These tags are described in A Template Tag
Library (page 665).

Defining Tags
To define a tag, you need to:

• Develop a tag handler and helper classes for the tag

• Declare the tag in a tag library descriptor

This section describes the properties of tag handlers and TLDs and explains how
to develop tag handlers and library descriptor elements for each type of tag intro-
duced in the previous section.

Tag Handlers
A tag handler is an object invoked by a Web container to evaluate a custom tag
during the execution of the JSP page that references the tag. Tag handlers must
implement either the Tag or BodyTag interface. Interfaces can be used to take an
existing Java object and make it a tag handler. For newly created handlers, you
can use the TagSupport and BodyTagSupport classes as base classes. These

../../api/javax/servlet/jsp/tagext/Tag.html
../../api/javax/servlet/jsp/tagext/BodyTag.html
../../api/javax/servlet/jsp/tagext/TagSupport.html
../../api/javax/servlet/jsp/tagext/BodyTagSupport.html

646 CUSTOM TAGS IN JSP PAGES
classes and interfaces are contained in the javax.servlet.jsp.tagext pack-
age.

Tag handler methods defined by the Tag and BodyTag interfaces are called by the
JSP page’s servlet at various points during the evaluation of the tag. When the
start tag of a custom tag is encountered, the JSP page’s servlet calls methods to
initialize the appropriate handler and then invokes the handler’s doStartTag

method. When the end tag of a custom tag is encountered, the handler’s doEnd-
Tag method is invoked. Additional methods are invoked in between when a tag
handler needs to interact with the body of the tag. For further information, see
Tags with Bodies (page 653). In order to provide a tag handler implementation,
you must implement the methods, summarized in Table 16–1, that are invoked at
various stages of processing the tag.

A tag handler has access to an API that allows it to communicate with the JSP
page. The entry point to the API is the page context object (javax.serv-
let.jsp.PageContext), through which a tag handler can retrieve all the other
implicit objects (request, session, and application) accessible from a JSP page.

Implicit objects can have named attributes associated with them. Such attributes
are accessed using [set|get]Attribute methods.

If the tag is nested, a tag handler also has access to the handler (called the par-
ent) associated with the enclosing tag.

Table 16–1 Tag Handler Methods

Tag Handler Type Methods

Simple doStartTag, doEndTag, release

Attributes
doStartTag, doEndTag, set/getAttribute1...N,
release

Body, Evaluation and
No Interaction

doStartTag, doEndTag, release

Body, Iterative Evalua-
tion

doStartTag, doAfterBody, doEndTag, release

Body, Interaction
doStartTag, doEndTag, release, doInitBody,
doAfterBody, release

../../api/javax/servlet/jsp/tagext/package-summary.html
../../api/javax/servlet/jsp/PageContext.html
../../api/javax/servlet/jsp/PageContext.html

TAG LIBRARY DESCRIPTORS 647
A set of related tag handler classes (a tag library) is usually packaged and
deployed as a JAR archive.

Tag Library Descriptors
A tag library descriptor (TLD) is an XML document that describes a tag library.
A TLD contains information about a library as a whole and about each tag con-
tained in the library. TLDs are used by a Web container to validate the tags and
by JSP page development tools.

TLD file names must have the extension .tld. TLD files are stored in the WEB-

INF directory of the WAR file or in a subdirectory of WEB-INF.

A TLD must begin with an XML document prolog that specifies the version of
XML and the document type definition (DTD):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag
Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

Tomcat supports version 1.1 and 1.2 DTDs. However, this chapter documents the
1.2 version because you should use the newer version in any tag libraries that
you develop. The template library TLD, tutorial-template.tld, conforms to
the 1.2 version. The Struts library TLDs conform to the 1.1 version of the DTD,
which has fewer elements and uses slightly different names for some of the ele-
ments.

The root of a TLD is the taglib element. The subelements of taglib are listed
in Table 16–2:

Table 16–2 taglib Subelements

Element Description

tlib-version The tag library’s version

jsp-version The JSP specification version that the tag library requires

short-name Optional name that could be used by a JSP page authoring tool to create
names with a mnemonic value

uri A URI that uniquely identifies the tag library

../examples/web/bookstore3/web/WEB-INF/tutorial-template.tld

648 CUSTOM TAGS IN JSP PAGES
listener Element
A tag library can specify some classes that are event listeners (see Handling
Servlet Life Cycle Events, page 575). The listeners are listed in the TLD as lis-
tener elements, and the Web container will instantiate the listener classes and
register them in a way analogous to listeners defined at the WAR level. Unlike
WAR-level listeners, the order in which the tag library listeners are registered is
undefined. The only subelement of the listener element is the listener-

class element, which must contain the fully qualified name of the listener class.

tag Element
Each tag in the library is described by giving its name and the class of its tag
handler, information on the scripting variables created by the tag, and informa-
tion on the tag’s attributes. Scripting variable information can be given directly
in the TLD or through a tag extra info class (see Tags That Define Scripting
Variables, page 644). Each attribute declaration contains an indication of
whether the attribute is required, whether its value can be determined by request-
time expressions, and the type of the attribute (see Attribute Element, page 651).

display-name Optional name intended to be displayed by tools

small-icon Optional small-icon that can be used by tools

large-icon Optional large-icon that can be used by tools

description Optional tag-specific information

listener See listener Element (page 648)

tag See tag Element (page 648)

Table 16–2 taglib Subelements (Continued)

Element Description

SIMPLE TAGS 649
A tag is specified in a TLD in a tag element. The subelements of tag are listed
in Table 16–3:

The following sections describe the methods and TLD elements that you need to
develop for each type of tag introduced in Types of Tags (page 642).

Simple Tags

Tag Handlers
The handler for a simple tag must implement the doStartTag and doEndTag

methods of the Tag interface. The doStartTag method is invoked when the start
tag is encountered. This method returns SKIP_BODY because a simple tag has no
body. The doEndTag method is invoked when the end tag is encountered. The

Table 16–3 tag Subelements

Element Description

name The unique tag name

tag-class The fully-qualified name of the tag handler class

tei-class Optional subclass of javax.servlet.jsp.tagext.TagExtraInfo.
See Providing Information about the Scripting Variable (page 656).

body-content The body content type. See body-content Element (page 650) and body-
content Element (page 655).

display-name Optional name intended to be displayed by tools

small-icon Optional small-icon that can be used by tools

large-icon Optional large-icon that can be used by tools

description Optional tag-specific information

variable Optional scripting variable information. See Providing Information about
the Scripting Variable (page 656).

attribute Tag attribute information. See Attribute Element (page 651).

650 CUSTOM TAGS IN JSP PAGES
doEndTag method needs to return EVAL_PAGE if the rest of the page needs to be
evaluated; otherwise, it should return SKIP_PAGE.

The simple tag discussed in the first section,

<tt:simple />

would be implemented by the following tag handler:

public SimpleTag extends TagSupport {
public int doStartTag() throws JspException {

try {
pageContext.getOut().print("Hello.");

} catch (Exception ex) {
throw new JspTagException("SimpleTag: " +

ex.getMessage());
}
return SKIP_BODY;

}
public int doEndTag() {

return EVAL_PAGE;
}

}

body-content Element
Tags without bodies must declare that their body content is empty using the
body-content element:

<body-content>empty</body-content>

Tags with Attributes

Defining Attributes in a Tag Handler
For each tag attribute, you must define a property and get and set methods that
conform to the JavaBeans architecture conventions in the tag handler. For exam-
ple, the tag handler for the Struts logic:present tag,

<logic:present parameter="Clear">

TAGS WITH ATTRIBUTES 651
contains the following declaration and methods:

protected String parameter = null;
public String getParameter() {

return (this.parameter);
}
public void setParameter(String parameter) {

this.parameter = parameter;
}

Note that if your attribute is named id and your tag handler inherits from the
TagSupport class, you do not need to define the property and set and get meth-
ods because these are already defined by TagSupport.

A tag attribute whose value is a String can name an attribute of one of the
implicit objects available to tag handlers. An implicit object attribute would be
accessed by passing the tag attribute value to the [set|get]Attribute method
of the implicit object. This is a good way to pass scripting variable names to a
tag handler where they are associated with objects stored in the page context
(See Implicit Objects, page 616).

Attribute Element
For each tag attribute, you must specify whether the attribute is required,
whether the value can be determined by an expression, and, optionally, the type
of the attribute in an attribute element. For static values the type is always
java.lang.String. If the rtexprvalue element is true or yes, then the type

element defines the return type expected from any expression specified as the
value of the attribute.

<attribute>
<name>attr1</name>
<required>true|false|yes|no</required>
<rtexprvalue>true|false|yes|no</rtexprvalue>
<type>fully_qualified_type</type>

</attribute>

If a tag attribute is not required, a tag handler should provide a default value.

The tag element for the logic:present tag declares that the parameter

attribute is not required (because the tag can also test for the presence of other
entities such as bean properties) and that its value can be set by a runtime expres-
sion.

652 CUSTOM TAGS IN JSP PAGES
<tag>
<name>present</name>
<tag-class>org.apache.struts.taglib.

logic.PresentTag</tag-class>
<body-content>JSP</body-content>
...
<attribute>

<name>parameter</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
...

</tag>

Attribute Validation
The documentation for a tag library should describe valid values for tag
attributes. When a JSP page is translated, a Web container will enforce any con-
straints contained in the TLD element for each attribute.

The attributes passed to a tag can also be validated at translation time with the
isValid method of a class derived from TagExtraInfo. This class is also used
to provide information about scripting variables defined by the tag (see Provid-
ing Information about the Scripting Variable, page 656).

The isValid method is passed the attribute information in a TagData object,
which contains attribute-value tuples for each of the tag’s attributes. Since the
validation occurs at translation time, the value of an attribute that is computed at
request time will be set to TagData.REQUEST_TIME_VALUE.

The tag <tt:twa attr1="value1"/> has the following TLD attribute ele-
ment:

<attribute>
<name>attr1</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>

This declaration indicates that the value of attr1 can be determined at runtime.

The following isValid method checks that the value of attr1 is a valid Bool-
ean value. Note that since the value of attr1 can be computed at runtime,
isValid must check whether the tag user has chosen to provide a runtime value.

TAGS WITH BODIES 653
public class TwaTEI extends TagExtraInfo {
public boolean isValid(Tagdata data) {

Object o = data.getAttribute("attr1");
if (o != null && o != TagData.REQUEST_TIME_VALUE) {

if (((String)o).toLowerCase().equals("true") ||
((String)o).toLowerCase().equals("false"))
return true;

else
return false;

}
else

return true;
}

}

Tags with Bodies

Tag Handlers
A tag handler for a tag with a body is implemented differently depending on
whether the tag handler needs to interact with the body or not. By interact, we
mean that the tag handler reads or modifies the contents of the body.

Tag Handler Does Not Interact with the Body
If the tag handler does not need to interact with the body, the tag handler should
implement the Tag interface (or be derived from TagSupport). If the body of the
tag needs to be evaluated, the doStartTag method needs to return
EVAL_BODY_INCLUDE; otherwise it should return SKIP_BODY.

If a tag handler needs to iteratively evaluate the body, it should implement the
IterationTag interface or be derived from TagSupport. It should return
EVAL_BODY_AGAIN from the doStartTag and doAfterBody methods if it deter-
mines that the body needs to be evaluated again.

Tag Handler Interacts with the Body
If the tag handler needs to interact with the body, the tag handler must implement
BodyTag (or be derived from BodyTagSupport). Such handlers typically imple-
ment the doInitBody and the doAfterBody methods. These methods interact
with body content passed to the tag handler by the JSP page’s servlet.

654 CUSTOM TAGS IN JSP PAGES
Body content supports several methods to read and write its contents. A tag han-
dler can use the body content’s getString or getReader methods to extract
information from the body, and the writeOut(out) method to write the body
contents to an out stream. The writer supplied to the writeOut method is
obtained using the tag handler’s getPreviousOut method. This method is used
to ensure that a tag handler’s results are available to an enclosing tag handler.

If the body of the tag needs to be evaluated, the doStartTag method needs to
return EVAL_BODY_BUFFERED; otherwise, it should return SKIP_BODY.

doInitBody Method

The doInitBody method is called after the body content is set but before it is
evaluated. You generally use this method to perform any initialization that
depends on the body content.

doAfterBody Method

The doAfterBody method is called after the body content is evaluated.

Like the doStartTag method, doAfterBody must return an indication of
whether to continue evaluating the body. Thus, if the body should be evaluated
again, as would be the case if you were implementing an iteration tag, doAfter-
Body should return EVAL_BODY_BUFFERED; otherwise, doAfterBody should
return SKIP_BODY.

release Method

A tag handler should reset its state and release any private resources in the
release method.

The following example reads the content of the body (which contains a SQL
query) and passes it to an object that executes the query. Since the body does not
need to be reevaluated, doAfterBody returns SKIP_BODY.

public class QueryTag extends BodyTagSupport {
public int doAfterBody() throws JspTagException {

BodyContent bc = getBodyContent();
// get the bc as string
String query = bc.getString();
// clean up
bc.clearBody();
try {

Statement stmt = connection.createStatement();
result = stmt.executeQuery(query);

} catch (SQLException e) {
throw new JspTagException("QueryTag: " +

TAGS THAT DEFINE SCRIPTING VARIABLES 655
 e.getMessage());
}
return SKIP_BODY;

}
}

body-content Element
For tags that have a body, you must specify the type of the body content using
the body-content element:

<body-content>JSP|tagdependent</body-content>

Body content containing custom and core tags, scripting elements, and HTML
text is categorized as JSP. This is the value declared for the Struts
logic:present tag. All other types of body content—for example—SQL state-
ments passed to the query tag, would be labeled tagdependent.

Note that the value of the body-content element does not affect the interpreta-
tion of the body by the tag handler; the element is only intended to be used by an
authoring tool for rendering the body content.

Tags That Define Scripting Variables

Tag Handlers
A tag handler is responsible for creating and setting the object referred to by the
scripting variable into a context accessible from the page. It does this by using
the pageContext.setAttribute(name, value, scope) or pageCon-

text.setAttribute(name, value) methods. Typically an attribute passed to
the custom tag specifies the name of the scripting variable object; this name can
be retrieved by invoking the attribute’s get method described in Using Scope
Objects (page 578).

If the value of the scripting variable is dependent on an object present in the tag
handler’s context, it can retrieve the object using the pageContext.getAt-

tribute(name, scope) method.

The usual procedure is that the tag handler retrieves a scripting variable, per-
forms some processing on the object, and then sets the scripting variable’s value
using the pageContext.setAttribute(name, object) method.

656 CUSTOM TAGS IN JSP PAGES
The scope that an object can have is summarized in Table 16–4. The scope con-
strains the accessibility and lifetime of the object.

Providing Information about the Scripting
Variable
The example described in Tags That Define Scripting Variables (page 644)
defines a scripting variable book that is used for accessing book information:

<bean:define id="book" name="bookDB" property="bookDetails"
type="database.BookDetails"/>

<%=messages.getString("CartRemoved")%>
<jsp:getProperty name="book"

property="title"/>

When the JSP page containing this tag is translated, the Web container generates
code to synchronize the scripting variable with the object referenced by the vari-

Table 16–4 Scope of Objects

Name Accessible From Lifetime

page Current page
Until the response has been sent back
to the user or the request is passed to
a new page

request
Current page and any included or
forwarded pages

Until the response has been sent back
to the user

session
Current request and any subsequent
request from the same browser
(subject to session lifetime)

The life of the user’s session

application
Current and any future request from
the same Web application

The life of the application

TAGS THAT DEFINE SCRIPTING VARIABLES 657
able. To generate the code, the Web container requires certain information about
the scripting variable:

• Variable name

• Variable class

• Whether the variable refers to a new or existing object

• The availability of the variable.

There are two ways to provide this information: by specifying the variable

TLD subelement or by defining a tag extra info class and including the tei-

class element in the TLD. Using the variable element is simpler, but slightly
less flexible.

variable Element
The variable element has the following subelements:

• name-given—The variable name as a constant

• name-from-attribute—The name of an attribute whose translation-time
value will give the name of the variable

One of name-given or name-from-attribute is required. The following sub-
elements are optional:

• variable-class—The fully qualified name of the class of the variable.
java.lang.String is the default.

• declare—Whether the variable refers to a new object. True is the default.

• scope—The scope of the scripting variable defined. NESTED is the default.
Table 16–5 describes the availability of the scripting variable and the meth-
ods where the value of the variable must be set or reset.

Table 16–5 Scripting Variable Availability

Value Availability Methods

NESTED
Between the start
tag and the end tag

In doInitBody and doAfterBody for a tag handler
implementing BodyTag; otherwise, in doStartTag

AT_BEGIN
From the start tag
until the end of the
page

In doInitBody, doAfterBody, and doEndTag for a
tag handler implementing BodyTag; otherwise, in
doStartTag and doEndTag

658 CUSTOM TAGS IN JSP PAGES
The implementation of the Struts bean:define tag conforms to the JSP specifi-
cation version 1.1, which requires you to define a tag extra info class. The JSP
specification version 1.2 adds the variable element. You could define the fol-
lowing variable element for the bean:define tag:

<tag>
<variable>

<name-from-attribute>id</name-from-attribute>
<variable-class>database.BookDetails</variable-class>
<declare>true</declare>
<scope>AT_BEGIN</scope>

</variable>
</tag>

TagExtraInfo Class
You define a tag extra info class by extending the class javax.serv-

let.jsp.TagExtraInfo. A TagExtraInfo must implement the getVari-

ableInfo method to return an array of VariableInfo objects containing the
following information:

• Variable name

• Variable class

• Whether the variable refers to a new object

• The availability of the variable

The Web container passes a parameter called data to the getVariableInfo

method that contains attribute-value tuples for each of the tag’s attributes. These
attributes can be used to provide the VariableInfo object with a scripting vari-
able’s name and class.

The Struts tag library provides information about the scripting variable created
by the bean:define tag in the DefineTei tag extra info class. Since the name
(book) and class (database.BookDetails) of the scripting variable are passed
in as tag attributes, they can be retrieved with the data.getAttributeString

AT_END
After the end tag
until the end of the
page

In doEndTag

Table 16–5 Scripting Variable Availability (Continued)

Value Availability Methods

COOPERATING TAGS 659
method and used to fill in the VariableInfo constructor. To allow the scripting
variable book to be used in the rest of the page, the scope of book is set to be
AT_BEGIN.

public class DefineTei extends TagExtraInfo {
public VariableInfo[] getVariableInfo(TagData data) {
String type = data.getAttributeString("type");

if (type == null)
type = "java.lang.Object";

return new VariableInfo[] {
new VariableInfo(data.getAttributeString("id"),

type,
true,
VariableInfo.AT_BEGIN)

};
}

}

The fully qualified name of the tag extra info class defined for a scripting vari-
able must be declared in the TLD in the tei-class subelement of the tag ele-
ment. Thus, the tei-class element for DefineTei would be as follows:

<tei-class>
org.apache.struts.taglib.bean.DefineTagTei

</tei-class>

Cooperating Tags
Tags cooperate by sharing objects. JSP technology supports two styles of object
sharing.

The first style requires that a shared object be named and stored in the page con-
text (one of the implicit objects accessible to both JSP pages and tag handlers).
To access objects created and named by another tag, a tag handler uses the page-
Context.getAttribute(name, scope) method.

In the second style of object sharing, an object created by the enclosing tag han-
dler of a group of nested tags is available to all inner tag handlers. This form of
object sharing has the advantage that it uses a private namespace for the objects,
thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its
enclosing tag with the static method TagSupport.findAncestorWith-

Class(from, class) or the TagSupport.getParent method. The former

660 CUSTOM TAGS IN JSP PAGES
method should be used when a specific nesting of tag handlers cannot be guaran-
teed. Once the ancestor has been retrieved, a tag handler can access any statically
or dynamically created objects. Statically created objects are members of the
parent. Private objects can also be created dynamically. Such objects can be
stored in a tag handler with the setValue method and retrieved with the
getValue method.

The following example illustrates a tag handler that supports both the named and
private object approaches to sharing objects. In the example, the handler for a
query tag checks whether an attribute named connection has been set in the
doStartTag method. If the connection attribute has been set, the handler
retrieves the connection object from the page context. Otherwise, the tag handler
first retrieves the tag handler for the enclosing tag, and then retrieves the connec-
tion object from that handler.

public class QueryTag extends BodyTagSupport {
private String connectionId;
public int doStartTag() throws JspException {

String cid = getConnection();
if (cid != null) {
// there is a connection id, use it

connection =(Connection)pageContext.
getAttribute(cid);

} else {
ConnectionTag ancestorTag =

(ConnectionTag)findAncestorWithClass(this,
ConnectionTag.class);

if (ancestorTag == null) {
throw new JspTagException("A query without

a connection attribute must be nested
within a connection tag.");

}
connection = ancestorTag.getConnection();

}
}

}

The query tag implemented by this tag handler could be used in either of the fol-
lowing ways:

<tt:connection id="con01"> ... </tt:connection>
<tt:query id="balances" connection="con01">

SELECT account, balance FROM acct_table
where customer_number = <%= request.getCustno()%>

</tt:query>

EXAMPLES 661
<tt:connection ...>
<x:query id="balances">

SELECT account, balance FROM acct_table
where customer_number = <%= request.getCustno()%>

</x:query>
</tt:connection>

The TLD for the tag handler must indicate that the connection attribute is
optional with the following declaration:

<tag>
...
<attribute>

<name>connection</name>
<required>false</required>

</attribute>
</tag>

Examples
The custom tags described in this section demonstrate solutions to two recurring
problems in developing JSP applications: minimizing the amount of Java pro-
gramming in JSP pages and ensuring a common look and feel across applica-
tions. In doing so, they illustrate many of the styles of tags discussed in the first
part of the chapter.

An Iteration Tag
Constructing page content that is dependent on dynamically generated data often
requires the use of flow control scripting statements. By moving the flow control
logic to tag handlers, flow control tags reduce the amount of scripting needed in
JSP pages.

The Struts logic:iterate tag retrieves objects from a collection stored in a
JavaBeans component and assigns them to a scripting variable. The body of the
tag retrieves information from the scripting variable. While elements remain in
the collection, the iterate tag causes the body to be reevaluated.

662 CUSTOM TAGS IN JSP PAGES
JSP Page
Two Duke’s Bookstore application pages, catalog.jsp and showcart.jsp, use
the logic:iterate tag to iterate over collections of objects. An excerpt from
catalog.jsp is shown below. The JSP page initializes the iterate tag with a
collection (named by the property attribute) of the bookDB bean. The iterate

tag sets the book scripting variable on each iteration over the collection. The
bookId property of the book variable is exposed as another scripting variable.
Properties of both variables are used to dynamically generate a table containing
links to other pages and book catalog information.

<logic:iterate name="bookDB" property="books"
id="book" type="database.BookDetails">
<bean:define id="bookId" name="book" property="bookId"

type="java.lang.String"/>

<tr>
<td bgcolor="#ffffaa">
<a href="<%=request.getContextPath()%>

/bookdetails?bookId=<%=bookId%>">
<jsp:getProperty name="book"
property="title"/> </td>

<td bgcolor="#ffffaa" rowspan=2>
<jsp:setProperty name="currency" property="amount"

value="<%=book.getPrice()%>"/>
<jsp:getProperty name="currency" property="format"/>
 </td>

<td bgcolor="#ffffaa" rowspan=2>
<a href="<%=request.getContextPath()%>

/catalog?Add=<%=bookId%>">
 <%=messages.getString("CartAdd")%>
 </td></tr>

<tr>
<td bgcolor="#ffffff">
 <%=messages.getString("By")%>

<jsp:getProperty name="book"
property="firstName"/>

<jsp:getProperty name="book"
property="surname"/></td></tr>

</logic:iterate>

../examples/web/bookstore3/web/catalog.txt
../examples/web/bookstore3/web/showcart.txt

AN ITERATION TAG 663
Tag Handler
The implementation of the Struts logic:iterate tag conforms to the capabili-
ties of the JSP version 1.1 specification, which requires you to extend the
BodyTagSupport class. The JSP version 1.2 specification adds features
(described in Tag Handler Does Not Interact with the Body, page 653) that sim-
plify programming tags that iteratively evaluate their body. The following dis-
cussion is based on an implementation that uses these features.

The logic:iterate tag supports initializing the collection in several ways: from
a collection provided as a tag attribute or from a collection that is a bean or a
property of a bean. Our example uses the latter method. Most of the code in
doStartTag is concerned with constructing an iterator over the collection object.
The method first checks if the handler’s collection property is set and, if not, pro-
ceeds to checking the bean and property attributes. If the name and property

attributes are both set, doStartTag calls a utility method that uses JavaBeans
introspection methods to retrieve the collection. Once the collection object is
determined, the method constructs the iterator.

If the iterator contains more elements, doStartTag sets the value of the scripting
variable to the next element and then indicates that the body should be evaluated;
otherwise it ends the iteration by returning SKIP_BODY.

After the body has been evaluated, the doAfterBody method retrieves the body
content and writes it to the out stream. The body content object is then cleared in
preparation for another body evaluation. If the iterator contains more elements,
doAfterBody again sets the value of the scripting variable to the next element
and returns EVAL_BODY_AGAIN to indicate that the body should be evaluated
again. This causes the reexecution of doAfterBody. When there are no remain-
ing elements, doAfterBody terminates the process by returning SKIP_BODY.

public class IterateTag extends TagSupport {
protected Iterator iterator = null;
protected Object collection = null;
protected String id = null;
protected String name = null;
protected String property = null;
protected String type = null;
public int doStartTag() throws JspException {

Object collection = this.collection;
if (collection == null) {

try {
Object bean = pageContext.findAttribute(name);
if (bean == null) {

... throw an exception

664 CUSTOM TAGS IN JSP PAGES
}
if (property == null)

collection = bean;
else

collection =
PropertyUtils.

getProperty(bean, property);
if (collection == null) {

... throw an exception
}

} catch
... catch exceptions thrown

by PropertyUtils.getProperty
}

}
// Construct an iterator for this collection
if (collection instanceof Collection)

iterator = ((Collection) collection).iterator();
else if (collection instanceof Iterator)

iterator = (Iterator) collection;
...

}
// Store the first value and evaluate,
// or skip the body if none
if (iterator.hasNext()) {

Object element = iterator.next();
pageContext.setAttribute(id, element);
return (EVAL_BODY_AGAIN);

} else
return (SKIP_BODY);

}
public int doAfterBody() throws JspException {

if (bodyContent != null) {
try {

JspWriter out = getPreviousOut();
out.print(bodyContent.getString());
bodyContent.clearBody();

} catch (IOException e) {
...

}
}
if (iterator.hasNext()) {

Object element = iterator.next();
pageContext.setAttribute(id, element);
return (EVAL_BODY_AGAIN);

} else

A TEMPLATE TAG LIBRARY 665
return (SKIP_BODY);
}

}
}

Tag Extra Info Class
Information about the scripting variable is provided in the IterateTei tag extra
info class. The name and class of the scripting variable are passed in as tag
attributes and used to fill in the VariableInfo constructor.

public class IterateTei extends TagExtraInfo {
public VariableInfo[] getVariableInfo(TagData data) {
String type = data.getAttributeString("type");
if (type == null)

type = "java.lang.Object";

return new VariableInfo[] {
new VariableInfo(data.getAttributeString("id"),

type,
true,
VariableInfo.AT_BEGIN)

};
}

}

A Template Tag Library
A template provides a way to separate the common elements that are part of each
screen from the elements that change with each screen of an application. Putting
all the common elements together into one file makes it easier to maintain and
enforce a consistent look and feel in all the screens. It also makes development
of individual screens easier because the designer can focus on portions of a
screen that are specific to that screen while the template takes care of the com-
mon portions.

The template is a JSP page with placeholders for the parts that need to change
with each screen. Each of these placeholders is referred to as a parameter of the
template. For example, a simple template could include a title parameter for the
top of the generated screen and a body parameter to refer to a JSP page for the
custom content of the screen.

666 CUSTOM TAGS IN JSP PAGES
The template uses a set of nested tags—definition, screen, and parameter—
to define a table of screen definitions and uses an insert tag to insert parameters
from a screen definition into a specific application screen.

JSP Page
The template for the Duke’s Bookstore example, template.jsp, is shown
below. This page includes a JSP page that creates the screen definition and then
uses the insert tag to insert parameters from the definition into the application
screen.

<%@ taglib uri="/tutorial-template.tld" prefix="tt" %>
<%@ page errorPage="errorpage.jsp" %>
<%@ include file="screendefinitions.jsp" %><html>

<head>
<title>

<tt:insert definition="bookstore"
parameter="title"/>

</title>
</head>

<tt:insert definition="bookstore"
parameter="banner"/>

<tt:insert definition="bookstore"
parameter="body"/>

</body>
</html>

screendefinitions.jsp creates a screen definition based on a request attribute
selectedScreen:

<tt:definition name="bookstore"
screen="<%= (String)request.

getAttribute(\"selectedScreen\") %>">
<tt:screen id="/enter">

<tt:parameter name="title"
value="Duke’s Bookstore" direct="true"/>

<tt:parameter name="banner"
value="/banner.jsp" direct="false"/>

<tt:parameter name="body"
value="/bookstore.jsp" direct="false"/>

</tt:screen>
<tt:screen id="/catalog">

<tt:parameter name="title"

../examples/web/bookstore3/web/template.txt
../examples/web/bookstore3/web/screendefinitions.txt

A TEMPLATE TAG LIBRARY 667
value="<%=messages.getString("TitleBookCatalog")%>"
direct="true"/>
...

</tt:definition>

The template is instantiated by the Dispatcher servlet. Dispatcher first gets the
requested screen and stores it as an attribute of the request. This is necessary
because when the request is forwarded to template.jsp, the request URL
doesn’t contain the original request (for example, /bookstore3/catalog) but
instead reflects the path (/bookstore3/template.jsp) of the forwarded page.
Finally, the servlet dispatches the request to template.jsp:

public class Dispatcher extends HttpServlet {
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
request.setAttribute("selectedScreen",

request.getServletPath());
RequestDispatcher dispatcher =

request.getRequestDispatcher("/template.jsp");
if (dispatcher != null)

dispatcher.forward(request, response);
}
public void doPost(HttpServletRequest request,

HttpServletResponse response) {
request.setAttribute("selectedScreen",

request.getServletPath());
RequestDispatcher dispatcher =

request.getRequestDispatcher("/template.jsp");
if (dispatcher != null)

dispatcher.forward(request, response);
}

}

Tag Handlers
The template tag library contains four tag handlers—DefinitionTag,
ScreenTag, ParameterTag, and InsertTag—that demonstrate the use of coop-
erating tags. DefinitionTag, ScreenTag, and ParameterTag comprise a set of
nested tag handlers that share public and private objects. DefinitionTag creates
a public object named definition that is used by InsertTag.

In doStartTag, DefinitionTag creates a public object named screens that
contains a hash table of screen definitions. A screen definition consists of a
screen identifier and a set of parameters associated with the screen.

../examples/web/bookstore3/src/Dispatcher.java
../examples/web/taglib/src/DefinitionTag.java

668 CUSTOM TAGS IN JSP PAGES
public int doStartTag() {
HashMap screens = null;
screens = (HashMap) pageContext.getAttribute("screens",

pageContext.APPLICATION_SCOPE);
if (screens == null)

pageContext.setAttribute("screens", new HashMap(),
pageContext.APPLICATION_SCOPE);

return EVAL_BODY_INCLUDE;
}

The table of screen definitions is filled in by ScreenTag and ParameterTag from
text provided as attributes to these tags. Table 16–6 shows the contents of the
screen definitions hash table for the Duke’s Bookstore application.

In doEndTag, DefinitionTag creates a public object of class Definition,
selects a screen definition from the screens object based on the URL passed in
the request, and uses it to initialize the Definition object.

public int doEndTag()throws JspTagException {
try {

Definition definition = new Definition();
HashMap screens = null;
ArrayList params = null;
TagSupport screen = null;
screens = (HashMap)

pageContext.getAttribute("screens",
pageContext.APPLICATION_SCOPE);

if (screens != null)
params = (ArrayList) screens.get(screenId);

Table 16–6 Screen Definitions

Screen Id Title Banner Body

/enter Duke’s Bookstore /banner.jsp /bookstore.jsp

/catalog Book Catalog /banner.jsp /catalog.jsp

/bookdetails Book Description /banner.jsp /bookdetails.jsp

/showcart Shopping Cart /banner.jsp /showcart.jsp

/cashier Cashier /banner.jsp /cashier.jsp

/receipt Receipt /banner.jsp /receipt.jsp

../examples/web/taglib/src/Definition.java

A TEMPLATE TAG LIBRARY 669
else
...

if (params == null)
...

Iterator ir = null;
if (params != null)

ir = params.iterator();
while ((ir != null) && ir.hasNext())

definition.setParam((Parameter) ir.next());
// put the definition in the page context

pageContext.setAttribute(
definitionName, definition);

} catch (Exception ex) {
ex.printStackTrace();

}
return EVAL_PAGE;

}

If the URL passed in the request is /enter, the Definition contains the items
from the first row of Table 16–6:

The definition for the URL /enter is shown in Table 16–7. The definition speci-
fies that the value of the Title parameter, Duke’s Bookstore, should be inserted
directly into the output stream, but the values of Banner and Body should be
dynamically included.

Title Banner Body

Duke’s Bookstore /banner.jsp /bookstore.jsp

Table 16–7 Screen Definition for the URL /enter

Parameter
Name Parameter Value isDirect

title Duke’s Bookstore true

banner /banner.jsp false

body /bookstore.jsp false

670 CUSTOM TAGS IN JSP PAGES
InsertTag uses Definition to insert parameters of the screen definition into the
response. In the doStartTag method, it retrieves the definition object from the
page context.

public int doStartTag() {
// get the definition from the page context
definition = (Definition) pageContext.

getAttribute(definitionName);
// get the parameter
if (parameterName != null && definition != null)

parameter = (Parameter)definition.
getParam(parameterName);

if (parameter != null)
directInclude = parameter.isDirect();

return SKIP_BODY;
}

The doEndTag method inserts the parameter value. If the parameter is direct, it is
directly inserted into the response; otherwise, the request is sent to the parame-
ter, and the response is dynamically included into the overall response.

public int doEndTag()throws JspTagException {
try {

if (directInclude && parameter != null)
pageContext.getOut().print(parameter.getValue());

else {
if ((parameter != null) &&

(parameter.getValue() != null))
pageContext.include(parameter.getValue());

}
} catch (Exception ex) {

throw new JspTagException(ex.getMessage());
}
return EVAL_PAGE;

}

How Is a Tag Handler Invoked?
The Tag interface defines the basic protocol between a tag handler and a JSP
page’s servlet. It defines the life cycle and the methods to be invoked when the
start and end tags are encountered.

The JSP page’s servlet invokes the setPageContext, setParent, and attribute
setting methods before calling doStartTag. The JSP page’s servlet also guaran-
tees that release will be invoked on the tag handler before the end of the page.

../examples/web/taglib/src/InsertTag.java

HOW IS A TAG HANDLER INVOKED? 671
Here is a typical tag handler method invocation sequence:

ATag t = new ATag();
t.setPageContext(...);
t.setParent(...);
t.setAttribute1(value1);
t.setAttribute2(value2);
t.doStartTag();
t.doEndTag();
t.release();

The BodyTag interface extends Tag by defining additional methods that let a tag
handler access its body. The interface provides three new methods:

• setBodyContent—Creates body content and adds to the tag handler

• doInitBody—Called before evaluation of the tag body

• doAfterBody—Called after evaluation of the tag body

A typical invocation sequence is:

t.doStartTag();
out = pageContext.pushBody();
t.setBodyContent(out);
// perform any initialization needed after body content is set
t.doInitBody();
t.doAfterBody();
// while doAfterBody returns EVAL_BODY_BUFFERED we
// iterate body evaluation
...
t.doAfterBody();
t.doEndTag();
t.pageContext.popBody();
t.release();

672 CUSTOM TAGS IN JSP PAGES

17
673
JavaServer Pages
Standard Tag Library

Stephanie Bodoff

THE JavaServer Pages Standard Tag Library (JSTL) encapsulates core func-
tionality common to many JSP applications. For example, instead of iterating
over lists using a scriptlet or different iteration tags from numerous vendors,
JSTL defines a standard tag that works the same everywhere. This standardiza-
tion lets you learn a single tag and use it on multiple JSP containers. Also, when
tags are standard, containers can optimize their implementation.

JSTL has support for common, structural tasks such as iteration and condition-
als, tags for manipulating XML documents, internationalization tags, and tags
for accessing databases using SQL. It also introduces the concept of an expres-
sion language to simplify page development. JSTL also provides a framework
for integrating existing tag libraries with JSTL.

This chapter demonstrates the JSTL through excerpts from the JSP version of the
Duke’s Bookstore application discussed in previous chapters. It assumes that
you are familiar with the material in the Using Tags (page 641) section of Chap-
ter 16.

674 JAVASERVER PAGES STANDARD TAG LIBRARY
The Example JSP Pages
This chapter illustrates JSTL with excerpts from the JSP version of the Duke’s
Bookstore application discussed in Chapter 16 rewritten as follows:

• The Struts logic tags were replaced with JSTL core tags.

• The scriptlets accessing a message store were replaced with message for-
matting tags.

• The JavaBeans component database helper object was replaced with direct
calls to the database via the JSTL SQL tags. For most applications, it is bet-
ter to encapsulate calls to a database in a bean. JSTL includes SQL tags for
situations where a new application is being prototyped and the overhead of
creating a bean may not be warranted.

The source for the Duke’s Bookstore application is located in the
<JWSDP_HOME>/docs/tutorial/examples/web/bookstore4 directory created
when you unzip the tutorial bundle (see Running the Examples, page xiii).

To build, install, and run the example:

1. In a terminal window, go to <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore4.

2. Run ant build. The build target will spawn any necessary compilations
and copy files to the <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore4/build directory.

3. Make sure Tomcat is started.

4. Run ant install. The install target notifies Tomcat that the new context
is available.

5. Start the PointBase database server and populate the database if you have
not done so already (see Accessing Databases from Web
Applications, page 109).

6. Open the bookstore URL http://localhost:8080/bookstore4/enter.

See Common Problems and Their Solutions (page 87) and
Troubleshooting (page 574) for help with diagnosing common problems.

Using JSTL
JSTL includes a wide variety of tags that naturally fit into discrete functional
areas. Therefore, JSTL is exposed via multiple tag library descriptors (TLDs) to

USING JSTL 675
clearly show the functional areas it covers and give each area its own namespace.
Table 17–1 summarizes these functional areas along with the logical TLD names
and prefixes used in this chapter and Duke’s Bookstore application.

Table 17–1 JSTL Tags

Area Function Tags TLD Prefix

Core

Expression Language
Support

catch
out
remove
set

/jstl-c c
Flow Control

choose
when
otherwise

forEach
forTokens
if

URL Management

import
param

redirect
param

url
param

XML

Core
out
parse
set

/jstl-x x
Flow Control

choose
when
otherwise

forEach
if

Transformation
transform

param

676 JAVASERVER PAGES STANDARD TAG LIBRARY
For example, to use the JSTL core tags in a JSP page, you declare the library
using a taglib directive that references the TLD:

<%@ taglib uri="/jstl-core" prefix="c" %>

The JSTL tag libraries comes in two versions (see Twin Libraries, page 678).
The TLDs for the JSTL-EL library are named prefix.tld. The TLDs for the
JSTL-RT library are named prefix-rt.tld. Since the examples discussed in
this chapter use logical TLD names, we map the logical names to actual TLD
locations with taglib elements in the Web application deployment descriptor.
Here is the entry that maps the core library logical TLD name /jstl-c to its
location /WEB-INF/c.tld:

<taglib>
<taglib-uri>/jstl-c</taglib-uri>
<taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

I18n

Locale setLocale

/jstl-fmt fmt

Message formatting

bundle
message

param
setBundle

Number and date
formatting

formatNumber
formatDate
parseDate
parseNumber
setTimeZone
timeZone

Data-
base

setDataSource

/jstl-sql sql
SQL

query
dateParam
param

transaction
update

dateParam
param

Table 17–1 JSTL Tags (Continued)

Area Function Tags TLD Prefix

EXPRESSION LANGUAGE SUPPORT 677
In the Java WSDP, the JSTL TLDs are stored in <JWSDP_HOME>/jstl-

1.0.3/tld. When you build the Duke’s Bookstore application these TLDs are
automatically copied into <JWSDP_HOME>/docs/tuto-

rial/examples/web/bookstore4/build/WEB-INF.

You can also reference a TLD in a taglib directive with an absolute URI:

• Core: http://java.sun.com/jstl/core

• XML: http://java.sun.com/jstl/xml

• Internationalization: http://java.sun.com/jstl/fmt

• SQL: http://java.sun.com/jstl/sql

When you use an absolute URI, you do not have to add the taglib element to
web.xml; the JSP container automatically locates the TLD inside the JSTL
library implementation.

In addition to declaring the tag library, you also need to make the JSTL API and
implementation available to the Web application. These are distributed as the
archives jstl.jar in <JWSDP_HOME>/jstl-1.0.3 and standard.jar in
<JWSDP_HOME>/jstl-1.0.3/standard. When you build the Duke’s Bookstore
application these libraries are automatically copied into
<JWSDP_HOME>/docs/tutorial/examples/web/bookstore4/build/WEB-

INF/lib.

Expression Language Support
A primary feature of JSTL is its support for an expression language (EL). An
expression language, in concert with JSTL tags, makes it possible to easily
access application data and manipulate it in simple ways without having to use
scriptlets or request-time expressions. Currently, a page author has to use an
expression <%= aName %> to access the value of a system or user-defined Java-
Beans component. For example:

<x:aTag att="<%= pageContext.getAttribute("aName") %>">

Referring to nested bean properties is even more complex:

<%= aName.getFoo().getBar() %>

This makes page authoring more complicated than it need be.

678 JAVASERVER PAGES STANDARD TAG LIBRARY
An expression language allows a page author to access an object using a simpli-
fied syntax such as

<x:atag att="${aName}">

for a simple variable or

<x:aTag att="${aName.foo.bar}">

for a nested property.

The JSTL expression language promotes JSP scoped attributes as the standard
way to communicate information from business logic to JSP pages. For example,
the test attribute of the this conditional tag is supplied with an expression that
compares the number of items in the session-scoped attribute named cart with
0:

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...

</c:if>

The next version of the JSP specification will standardize on an expression lan-
guage for all custom tag libraries. This release of JSTL includes a snapshot of
that expression language.

Twin Libraries
The JSTL tag libraries come in two versions which differ only in the way they
support the use of runtime expressions for attribute values.

In the JSTL-RT tag library, expressions are specified in the page’s scripting lan-
guage. This is exactly how things currently work in current tag libraries.

In the JSTL-EL tag library, expressions are specified in the JSTL expression lan-
guage. An expression is a String literal in the syntax of the EL.

When using the EL tag library you cannot pass a scripting language expression
for the value of an attribute. This rule makes it possible to validate the syntax of
an expression at translation time.

JSTL EXPRESSION LANGUAGE 679
JSTL Expression Language
The JSTL expression language is responsible for handling both expressions and
literals. Expressions are enclosed by the ${ } characters. For example:

<c:if test="${bean1.a < 3}" />

Any value that does not begin with ${ is treated as a literal that is parsed to the
expected type using the PropertyEditor for the expected type:

<c:if test="true" />

Literal values that contain the ${ characters must be escaped as follows:

<mytags:example attr1="an expression is ${'${'}true}" />

Attributes
Attributes are accessed by name, with an optional scope. Properties of attributes
are accessed using the . operator, and may be nested arbitrarily.

The EL unifies the treatment of the . and [] operators. Thus, expr-a.expr-b is
equivalent to expr-a[expr-b]. To evaluate expr-a[expr-b], evaluate expr-a

into value-a and evaluate expr-b into value-b.

• If value-a is a Map return value-a.get(value-b).

• If value-a is a List or array coerce value-b to int and return value-

a.get(value-b) or Array.get(value-a, value-b), as appropriate.

• If value-a is a JavaBeans object, coerce value-b to String. If value-b
is a readable property of value-a the return result of getter call.

The EL evaluates an identifier by looking up its value as an attribute, according
to the behavior of PageContext.findAttribute(String). For example,
${product} will look for the attribute named product, searching the page,
request, session, and application scopes and will return its value. If the attribute
is not found, null is returned. Note that an identifier that matches one of the
implicit objects described in the next section will return that implicit object
instead of an attribute value.

680 JAVASERVER PAGES STANDARD TAG LIBRARY
Implicit Objects
The JSTL expression language defines a set of implicit objects:

• pageContext - the PageContext object

• pageScope - a Map that maps page-scoped attribute names to their values

• requestScope - a Map that maps request-scoped attribute names to their
values

• sessionScope - a Map that maps session-scoped attribute names to their
values

• applicationScope - a Map that maps application-scoped attribute names
to their values

• param - a Map that maps parameter names to a single String parameter
value (obtained by calling ServletRequest.getParameter(String))

• paramValues - a Map that maps parameter names to a String[] of all val-
ues for that parameter (obtained by calling ServletRequest.getParame-

terValues(String))

• header - a Map that maps header names to a single String header value
(obtained by calling ServletRequest.getheader(String))

• headerValues - a Map that maps header names to a String[] of all values
for that parameter (obtained by calling ServletRequest.getHead-

ers(String))

• cookie - a Map that maps cookie names to a single Cookie (obtained by
calling HttpServletRequest.getCookie(String))

• initParam - a Map that maps a parameter names to a single String param-
eter value (obtained by calling ServletRequest.getInitParame-

ter(String))

When an expression references one of these objects by name, the appropriate
object is returned instead of the corresponding attribute. For example: ${page-
Context} returns the PageContext object, even if there is an existing pageCon-

JSTL EXPRESSION LANGUAGE 681
text attribute containing some other value. Table 17–2 shows some examples of
using these implicit objects.

Literals
• Boolean: true and false

• Long: as in Java

• Floating point: as in Java

• String: with single and double quotes. " is escaped as \", ' is escaped as
\', and \ is escaped as \\.

• Null: null

Operators
The EL provides the following operators:

• Arithmetic: +, -, *, / and div, % and mod, -

• Logical: and, &&, or, ||, not, !

• Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons may be
made against other values, or against boolean, string, integer, or floating
point literals.

• Empty: The empty operator is a prefix operation that can be used to deter-
mine if a value is null or empty.

Consult the JSTL 1.0 Specification for the precedence and effects of these opera-
tors.

Table 17–2 Example JSTL Expressions

Expression Result

${pageContext.request.contextPath}
The context path (obtained from HttpServ-
letRequest)

${sessionScope.cart.numberOfItems}
The numberOfItems property of the ses-
sion-scoped attribute named cart

${param["mycom.productId"]}
The String value of the mycom.productId
parameter

http://www.jcp.org/aboutJava/communityprocess/first/jsr052/index.html

682 JAVASERVER PAGES STANDARD TAG LIBRARY
Tag Collaboration
Tags usually collaborate with their environment in implicit and explicit ways.
Implicit collaboration is done via a well defined interface that allows nested tags
to work seamlessly with the ancestor tag exposing that interface. The JSTL itera-
tor tags support this mode of collaboration.

Explicit collaboration happens when a tag exposes information to its environ-
ment. Traditionally, this has been done by exposing a scripting variable (with a
JSP scoped attribute providing the actual object). Because JSTL has an expres-
sion language, there is less need for scripting variables. So the JSTL tags (both
the EL and RT versions) expose information only as JSP scoped attributes; no
scripting variables are used. The convention JSTL follows is to use the name var

for any tag attribute that exports information about the tag. For example, the
forEach tag exposes the current item of the shopping cart it is iterating over in
the following way:

<c:forEach var="item" items="${sessionScope.cart.items}">
...

</c:forEach>

The name var was selected to highlight the fact that the scoped variable exposed
is not a scripting variable (which is normally the case for attributes named id).

In situations where a tag exposes more than one piece of information, the name
var is used for the primary piece of information being exported, and an appro-
priate name is selected for any other secondary piece of information exposed.
For example, iteration status information is exported by the forEach tag via the
attribute status.

CORE TAGS 683
Core Tags
The core tags include those related to expressions, flow control, and a generic
way to access URL-based resources whose content can then be included or pro-
cessed within the JSP page.

Expression Tags
The out tag evaluates an expression and outputs the result of the evaluation to
the current JspWriter object. It is the equivalent of the JSP syntax <%=

expression %>. For example, showcart.jsp displays the number of items in a
shopping cart as follows:

<c:out value="${sessionScope.cart.numberOfItems}"/>

The set tag sets the value of an attribute in any of the JSP scopes (page, request,
session, application). If the attribute does not already exist, it is created.

Table 17–3 Core Tags

Area Function Tags TLD Prefix

Core

Expression Language
Support

catch
out
remove
set

/jstl-c c
Flow Control

choose
when
otherwise

forEach
forTokens
if

URL Management

import
param

redirect
param

url
param

../examples/web/bookstore4/web/showcart.txt

684 JAVASERVER PAGES STANDARD TAG LIBRARY
The JSP scoped attribute can be set either from attribute value:

<c:set var="foo" scope="session" value="..."/>

or from the body of the tag:

<c:set var="foo">
...

</c:set>

For example, the following sets a page-scoped attribute named bookID with the
value of the request parameter named Remove:

<c:set var="bookId" value="${param.Remove}"/>

If you were using the RT version of the library, the statement would be:

<c_rt:set var="bookId"
value="<%= request.getParameter("Remove") %>" />

To remove a scoped attribute, you use the remove tag. When the bookstore JSP
page receipt.jsp is invoked, the shopping session is finished, so the cart ses-
sion attribute is removed as follows:

<c:remove var="cart" scope="session"/>

The JSTL expression language reduces the need for scripting. However, page
authors will still have to deal with situations where some attributes of non-JSTL
tags must be specified as expressions in the page’s scripting language. The stan-
dard JSP element jsp:useBean is used to declare a scripting variable that can be
used in a scripting language expression or scriptlet. For example, showcart.jsp
removes a book from a shopping cart using a scriptlet. The ID of the book to be
removed is passed as a request parameter. The value of the request parameter is
first set as a page attribute (to be used later by the JSTL sql:query tag) and then
declared as scripting variable and passed to the cart.remove method:

<c:set var="bookId" value="${param.Remove}"/>
<jsp:useBean id="bookId" type="java.lang.String" />
<% cart.remove(bookId); %>
<sql:query var="books"

dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bookId}" />

</sql:query>

../examples/web/bookstore4/web/showcart.txt
../examples/web/bookstore4/web/receipt.txt

FLOW CONTROL TAGS 685
The catch tag provides a complement to the JSP error page mechanism. It
allows page authors to recover gracefully from error conditions that they can
control. Actions that are of central importance to a page should not be encapsu-
lated in a catch, so their exceptions will propagate to an error page. Actions
with secondary importance to the page should be wrapped in a catch, so they
never cause the error page mechanism to be invoked.

The exception thrown is stored in the scoped variable identified by var, which
always has page scope. If no exception occurred, the scoped variable identified
by var is removed if it existed. If var is missing, the exception is simply caught
and not saved.

Flow Control Tags
To execute flow control logic, a page author must generally resort to using script-
lets. For example, the following scriptlet is used to iterate through a shopping
cart:

<%
Iterator i = cart.getItems().iterator();
while (i.hasNext()) {

ShoppingCartItem item =
(ShoppingCartItem)i.next();

...
%>

<tr>
<td align="right" bgcolor="#ffffff">
<%=item.getQuantity()%>
</td>
...

<%
}

%>

Flow control tags eliminate the need for scriptlets. The next two sections have
examples that demonstrate the conditional and iterator tags.

Conditional Tags
The if tag allows the conditional execution of its body according to value of a
test attribute. The following example from catalog.jsp tests whether the
request parameter Add is empty. If the test evaluates to true, the page queries the

../examples/web/bookstore4/web/catalog.txt

686 JAVASERVER PAGES STANDARD TAG LIBRARY
database for the book record identified by the request parameter and adds the
book to the shopping cart:

<c:if test="${!empty param.Add}">
<c:set var="bid" value="${param.Add}"/>
<jsp:useBean id="bid" type="java.lang.String" />
 <sql:query var="books"

dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>
<c:forEach var="bookRow" begin="0" items="${books.rows}">

<jsp:useBean id="bookRow" type="java.util.Map" />
<jsp:useBean id="addedBook"

class="database.BookDetails" scope="page" />
...
<% cart.add(bid, addedBook); %>

...
</c:if>

The choose tag performs conditional block execution by the embedded when sub
tags. It renders the body of the first when tag whose test condition evaluates to
true. If none of the test conditions of nested when tags evaluate to true, then the
body of an otherwise tag is evaluated, if present.

For example, the following sample code shows how to render text based on a
customer’s membership category.

<c:choose>
<c:when test="${customer.category == ’trial’}" >

...
</c:when>
<c:when test="${customer.category == ’member’}" >

...
</c:when>

<c:when test="${customer.category == ’preferred’}" >
...

</c:when>
<c:otherwise>

...
</c:otherwise>

</c:choose>

FLOW CONTROL TAGS 687
The choose, when, and otherwise tags can be used to construct an if-then-
else statement as follows:

<c:choose>
<c:when test="${count == 0} >

No records matched your selection.
</c:when>
<c:otherwise>

<c:out value="${count}"/> records matched your selection.
</c:otherwise>

</c:choose>

Iterator Tags
The forEach tag allows you to iterate over a collection of objects. You specify
the collection via the items attribute, and the current item is available through a
scope variable named by the item attribute.

A large number of collection types are supported by forEach, including all
implementations of java.util.Collection and java.util.Map. If the items

attribute is of type java.util.Map, then the current item will be of type
java.util.Map.Entry, which has the following properties:

• key - the key under which the item is stored in the underlying Map

• value - the value that corresponds to the key

Arrays of objects as well as arrays of primitive types (for example, int) are also
supported. For arrays of primitive types, the current item for the iteration is auto-
matically wrapped with its standard wrapper class (for example, Integer for
int, Float for float, and so on).

Implementations of java.util.Iterator and java.util.Enumeration are
supported but these must be used with caution. Iterator and Enumeration

objects are not resettable so they should not be used within more than one itera-
tion tag. Finally, java.lang.String objects can be iterated over if the string
contains a list of comma separated values (for example: Monday,Tues-
day,Wednesday,Thursday,Friday).

Here’s the shopping cart iteration from the previous section with the forEach

tag:

<c:forEach var="item" items="${sessionScope.cart.items}">
...
<tr>

<td align="right" bgcolor="#ffffff">

688 JAVASERVER PAGES STANDARD TAG LIBRARY
<c:out value="${item.quantity}"/>
</td>
...

</c:forEach>

The forTokens tag is used to iterate over a collection of tokens separated by a
delimiter.

URL Tags
The jsp:include element provides for the inclusion of static and dynamic
resources in the same context as the current page. However, jsp:include cannot
access resources that reside outside of the Web application and causes unneces-
sary buffering when the resource included is used by another element.

In the example below, the transform element uses the content of the included
resource as the input of its transformation. The jsp:include element reads the
content of the response, writes it to the body content of the enclosing transform
element, which then re-reads the exact same content. It would be more efficient
if the transform element could access the input source directly and avoid the
buffering involved in the body content of the transform tag.

<acme:transform>
<jsp:include page="/exec/employeesList"/>

<acme:transform/>

The import tag is therefore the simple, generic way to access URL-based
resources whose content can then be included and or processed within the JSP
page. For example, in XML Tags (page 689), import is used to read in the XML
document containing book information and assign the content to the scoped vari-
able xml:

<c:import url="/books.xml" var="xml" />
<x:parse xml="${xml}" var="booklist"

scope="application" />

The param tag, analogous to the jsp:param tag (see jsp:param
Element, page 624), can be used with import to specify request parameters.

In Session Tracking (page 601) we discussed how an application must rewrite
URLs to enable session tracking whenever the client turns off cookies. You can
use the url tag to rewrite URLs returned from a JSP page. The tag includes the
session ID in the URL only if cookies are disabled; otherwise, it returns the URL

XML TAGS 689
unchanged. Note that this feature requires the URL to be relative. The url tag
takes param subtags for including parameters in the returned URL. For example,
catalog.jsp rewrites the URL used to add a book to the shopping cart as fol-
lows:

<c:url var="url"
value="/catalog" >
<c:param name="Add" value="${bookId}" />

</c:url>
<p><a href="<c:out value='${url}'/>">

The redirect tag sends an HTTP redirect to the client. The redirect tag takes
param subtags for including parameters in the returned URL.

XML Tags
A key aspect of dealing with XML documents is to be able to easily access their
content. XPath, a W3C recommendation since 1999, provides an easy notation
for specifying and selecting parts of an XML document. The JSTL XML tag set,
listed in Table 17–4, is based on XPath (see How XPath Works, page 294).

The XML tags use XPath as a local expression language; XPath expressions are
always specified using attribute select. This means that only values specified
for select attributes are evaluated using the XPath expression language. All

Table 17–4 XML Tags

Area Function Tags TLD Prefix

XML

Core
out
parse
set

/jstl-x x
Flow Control

choose
when
otherwise

forEach
if

Transformation
transform

param

../examples/web/bookstore4/web/catalog.txt

690 JAVASERVER PAGES STANDARD TAG LIBRARY
other attributes are evaluated using the rules associated with the global expres-
sion language.

In addition to the standard XPath syntax, the JSTL XPath engine supports the
following scopes to access Web application data within an XPath expression:

• $foo

• $param:

• $header:

• $cookie:

• $initParam:

• $pageScope:

• $requestScope:

• $sessionScope:

• $applicationScope:

These scopes are defined in exactly the same way as their counterparts in the
JSTL expression language discussed in Implicit Objects (page 680). Table 17–5
shows some examples of using the scopes.

The XML tags are illustrated in another version (bookstore5) of the Duke’s
Bookstore application. This version replaces the database with an XML repre-
sentation (books.xml) of the bookstore database. To build and install this ver-
sion of the application, follow the directions in The Example JSP
Pages (page 674) replacing bookstore4 with bookstore5.

Since the XML tags require an XPath evaluator, the Java WSDP includes the
Jaxen XPath evaluator in two libraries, jaxen-full.jar and saxpath.jar, in
<JWSDP_HOME>/jstl-1.0.3/standard. When you build the Duke’s Bookstore
application these libraries are automatically copied into
<JWSDP_HOME>/docs/tutorial/examples/web/bookstore5/build/WEB-

INF/lib.

Table 17–5 Example XPath Expressions

XPath Expression Result

$sessionScope:profile The session-scoped attribute named profile

$initParam:mycom.productId
The String value of the mycom.productId
context parameter

CORE TAGS 691
Core Tags
The core XML tags provide basic functionality to easily parse and access XML
data.

The parse tag parses an XML document and saves the resulting object in the
scoped attribute specified by attribute var. In bookstore5, the XML document is
parsed and saved to a context attribute in parseBooks.jsp, which is included by
all JSP pages that need access to the document:

<c:if test="${applicationScope:booklist == null}" >
<c:import url="/books.xml" var="xml" />
<x:parse xml="${xml}" var="booklist" scope="application" />

</c:if>

The out and set tags parallel the behavior described in Expression
Tags (page 683) for the XPath local expression language. The out tag evaluates
an XPath expression on the current context node and outputs the result of the
evaluation to the current JspWriter object.

The set tag evaluates an XPath expression and sets the result into a JSP scoped
attribute specified by attribute var.

The JSP page bookdetails.jsp selects a book element whose id attribute
matches the request parameter bookId and sets the abook attribute. The out tag
then selects the book’s title element and outputs the result.

<x:set var="abook"
select="$applicationScope.booklist/

books/book[@id=$param:bookId]" />
<h2><x:out select="$abook/title"/></h2>

As you have just seen, x:set stores an internal XML representation of a node
retrieved using an XPath expression; it doesn’t convert the selected node into a
String and store it. Thus, x:set is primarily useful for storing parts of docu-
ments for later retrieval.

If you want to store a String, you need to use x:out within c:set. The x:out

tag converts the node to a String, and c:set> then stores the String as a

../examples/web/bookstore5/web/parseBooks.txt
../examples/web/bookstore5/web/parseBooks.txt

692 JAVASERVER PAGES STANDARD TAG LIBRARY
scoped attribute. For example, bookdetails.jsp stores a scoped attribute con-
taining a book price, which is later fed into a fmt tag, as follows:

<c:set var="price">
<x:out select="$abook/price"/>

</c:set>
<h4><fmt:message key="ItemPrice"/>:

<fmt:formatNumber value="${price}" type="currency"/>

The other option, which is more direct but requires that the user have more
knowledge of XPath, is to coerce the node to a String manually using XPath’s
string function.

<x:set var="price" select="string($abook/price)"/>

Flow Control Tags
The XML flow control tags parallel the behavior described in Flow Control
Tags (page 685) for the XPath expression language.

The JSP page catalog.jsp uses the forEach tag to display all the books con-
tained in booklist as follows:

<x:forEach var="book"
select="$applicationScope:booklist/books/*">
<tr>

<c:set var="bookId">
<x:out select="$book/@id"/>

</c:set>=
<td bgcolor="#ffffaa">

<c:url var="url"
value="/bookdetails" >

<c:param name="bookId" value="${bookId}" />
<c:param name="Clear" value="0" />

</c:url>
<a href="<c:out value='${url}'/>">
<x:out select="$book/title"/>
</td>

<td bgcolor="#ffffaa" rowspan=2>
<c:set var="price">

<x:out select="$book/price"/>
</c:set>
<fmt:formatNumber value="${price}" type="currency"/>

</td>

../examples/web/bookstore5/web/parseBooks.txt
../examples/web/bookstore5/web/parseBooks.txt

TRANSFORMATION TAGS 693
<td bgcolor="#ffffaa" rowspan=2>
<c:url var="url" value="/catalog" >

<c:param name="Add" value="${bookId}" />
</c:url>
<p><a href="<c:out value='${url}'/>">

<fmt:message key="CartAdd"/>
</td>

</tr>
<tr>

<td bgcolor="#ffffff">
 <fmt:message key="By"/>

<x:out select="$book/firstname"/>
<x:out select="$book/surname"/></td></tr>

</x:forEach>

Transformation Tags
The transform tag applies a transformation, specified by a XSLT stylesheet set
by the attribute xslt, to an XML document, specified by the attribute xml. If the
xml attribute is not specified, the input XML document is read from the tag’s
body content.

The param subtag can be used along with transform to set transformation
parameters. The attributes name and value are used to specify the parameter. The
value attribute is optional. If it is not specified the value is retrieved from the
tag’s body.

Internationalization Tags
In Internationalizing and Localizing Web Applications (page 108) we discussed
the how to adapt Web applications to the language and formatting conventions of
client locales. This section describes tags that support the internationalization of
JSP pages.

JSTL defines tags for:

• Setting the locale for a page

• Creating locale-sensitive messages

694 JAVASERVER PAGES STANDARD TAG LIBRARY
• Formatting and parsing data elements such as numbers, currencies, dates,
and times in a locale-sensitive or customized manner

Setting the Locale
The setLocale tag is used to override the client-specified locale for a page. The
requestEncoding tag is used to set the request’s character encoding, in order to
be able to correctly decode request parameter values whose encoding is different
from ISO-8859-1.

Messaging Tags
By default, browser-sensing capabilities for locales are enabled. This means that
the client determines (via its browser settings) which locale to use, and allows
page authors to cater to the language preferences of their clients.

bundle Tag
You use the bundle tag to specify a resource bundle for a page.

To define a resource bundle for a Web application you specify the context param-
eter javax.servlet.jsp.jstl.fmt.localizationContext in the Web appli-

Table 17–6 Internationalization Tags

Area Function Tags TLD Prefix

I18n

Setting Locale
setLocale
requestEncoding

/jstl-fmt fmt

Messaging

bundle
message

param
setBundle

Number and Date
Formatting

formatNumber
formatDate
parseDate
parseNumber
setTimeZone
timeZone

FORMATTING TAGS 695
cation deployment descriptor. Here is the declaration from the Duke’s Bookstore
descriptor:

<context-param>
<param-name>

javax.servlet.jsp.jstl.fmt.localizationContext
</param-name>
<param-value>messages.BookstoreMessages</param-value>

</context-param>

message Tag
The message tag is used to output localized strings. The following tag from cat-

alog.jsp

<h3><fmt:message key="Choose"/></h3>

is used to output a string inviting customers to choose a book from the catalog.

The param subtag provides a single argument (for parametric replacement) to the
compound message or pattern in its parent message tag. One param tag must be
specified for each variable in the compound message or pattern. Parametric
replacement takes place in the order of the param tags.

Formatting Tags
JSTL provides a set of tags for parsing and formatting locale-sensitive numbers
and dates.

The formatNumber tag is used to output localized numbers. The following tag
from showcart.jsp

<fmt:formatNumber value="${book.price}" type="currency"/>

is used to display a localized price for a book. Note that since the price is main-
tained in the database in dollars, the localization is somewhat simplistic, because
the formatNumber tag is unaware of exchange rates. The tag formats currencies
but does not convert them.

Analogous tags for formatting dates (formatDate), and parsing numbers and
dates (parseNumber, parseDate) are also available. The timeZone tag estab-

../examples/web/bookstore4/web/catalog.txt
../examples/web/bookstore4/web/catalog.txt
../examples/web/bookstore4/web/showcart.txt

696 JAVASERVER PAGES STANDARD TAG LIBRARY
lishes the time zone (specified via the value attribute) to be used by any nested
formatDate tags.

In receipt.jsp, a “pretend” ship date is created and then formatted with the
formatDate tag:

<jsp:useBean id="now" class="java.util.Date" />
<jsp:setProperty name="now" property="time"

value="<%= now.getTime() + 432000000 %>" />
<fmt:message key="ShipDate"/>
<fmt:formatDate value="${now}" type="date"

dateStyle="full"/>.

SQL Tags
The JSTL SQL tags are designed for quick prototyping and simple applications.
For production applications, database operations are normally encapsulated in
JavaBeans components.

The setDataSource tag is provided to allow you to set data source information
for the database. You can provide a JNDI name or DriverManager parameters to
set the data source information. All the Duke’s Bookstore pages that have more
than one SQL tag use the following statement to set the data source:

<sql:setDataSource dataSource="jdbc/BookDB" />

Table 17–7 SQL Tags

Area Function Tags TLD Prefix

Data-
base

setDataSource

/jstl-sql sql
SQL

query
dateParam
param

transaction
update

dateParam
param

../examples/web/bookstore4/web/receipt.txt

SQL TAGS 697
The query tag is used to perform an SQL query that returns a result set. For
parameterized SQL queries, you use a nested param tag inside the query tag.

In catalog.jsp, the value of the Add request parameter determines which book
information should be retrieved from the database. This parameter is saved as the
attribute name bid and passed to the param tag. Notice that the query tag obtains
its data source from the context attribute bookDS set in the context listener.

<c:set var="bid" value="${param.Add}"/>
<sql:query var="books" >

select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

</sql:query>

The update tag is used to update a database row. The transaction tag is used to
perform a series of SQL statements atomically.

The JSP page receipt.jsp page uses both tags to update the database inventory
for each purchase. Since a shopping cart can contain more than one book, the
transaction tag is used to wrap multiple queries and updates. First the page
establishes that there is sufficient inventory, then the updates are performed.

<c:set var="sufficientInventory" value="true" />
<sql:transaction>

<c:forEach var="item" items="${sessionScope.cart.items}">
<c:set var="book" value="${item.item}" />
<c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >
<sql:param value="${bookId}" />

</sql:query>
<jsp:useBean id="inventory"

class="database.BookInventory" />
<c:forEach var="bookRow" begin="0"

items="${books.rowsByIndex}">
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:setProperty name="inventory" property="quantity"

value="<%=(Integer)bookRow[7]%>" />

<c:if test="${item.quantity > inventory.quantity}">
<c:set var="sufficientInventory" value="false" />
<h3>
<fmt:message key="OrderError"/>
There is insufficient inventory for
<i><c:out value="${bookRow[3]}"/></i>.</h3>

</c:if>

../examples/web/bookstore4/web/catalog.txt

698 JAVASERVER PAGES STANDARD TAG LIBRARY
</c:forEach>
</c:forEach>

<c:if test="${sufficientInventory == 'true'}" />
<c:forEach var="item" items="${sessionScope.cart.items}">
 <c:set var="book" value="${item.item}" />
 <c:set var="bookId" value="${book.bookId}" />

<sql:query var="books"
sql="select * from PUBLIC.books where id = ?" >
<sql:param value="${bookId}" />

</sql:query>

<c:forEach var="bookRow" begin="0"
items="${books.rows}">
<sql:update var="books" sql="update PUBLIC.books set

inventory = inventory - ? where id = ?" >
<sql:param value="${item.quantity}" />
<sql:param value="${bookId}" />

</sql:update>
</c:forEach>

</c:forEach>
<h3><fmt:message key="ThankYou"/>

<c:out value="${param.cardname}" />.</h3>

</c:if>

</sql:transaction>

query Tag Result Interface
The Result interface is used to retrieve information from objects returned from
a query tag.

public interface Result
public String[] getColumnNames();
public int getRowCount()
public Map[] getRows();
public Object[][] getRowsByIndex();
public boolean isLimitedByMaxRows();

For complete information about this interface, see the API documentation for the
javax.servlet.jsp.jstl.sql package.

The var attribute set by a query tag is of type Result. The getRows method
returns an array of maps that can be supplied to the items attribute of a forEach

tag. The JSTL expression language converts the syntax ${result.rows} to a

../../api/javax/servlet/jsp/jstl/sql/package-summary.html

QUERY TAG RESULT INTERFACE 699
call to result.getRows. The expression ${books.rows} in the following exam-
ple returns an array of maps.

When you provide a array of maps to the forEach tag, the var attribute set by
the tag is of type Map. To retrieve information from a row, use the
get("colname") method to get a column value. The JSTL expression language
converts the syntax ${map.colname} to a call to map.get("colname"). For
example, the expression ${book.title} returns the value of the title entry of a
book map.

The Duke’s Bookstore page bookdetails.jsp retrieves the column values from
the book map as follows.

<c:forEach var="book" begin="0" items="${books.rows}">
<h2><c:out value="${book.title}"/></h2>
 <fmt:message key="By"/> <c:out
value="${book.firstname}"/> <c:out
value="${book.surname}"/>
(<c:out value="${book.year}"/>)

<h4><fmt:message key="Critics"/></h4>
<blockquote><c:out value="${book.description}"/>
</blockquote>
<h4><fmt:message key="ItemPrice"/>:
<fmt:formatNumber value="${book.price}" type="currency"/>
</h4>

</c:forEach>

The following excerpt from catalog.jsp uses the Row interface to retrieve val-
ues from the columns of a book row using scripting language expressions. First
the book row that matches a request parameter (bid) is retrieved from the data-
base. Since the bid and bookRow objects are later used by tags that use scripting
language expressions to set attribute values and a scriptlet that adds a book to the
shopping cart, both objects are declared as scripting variables using the
jsp:useBean tag. The page creates a bean that describes the book and scripting
language expressions are used to set the book properties from book row column
values. Finally the book is added to the shopping cart.

You might want to compare this version of catalog.jsp to the versions in Jav-
aServer Pages Technology (page 607) and Custom Tags in JSP Pages (page 637)
that use a book database JavaBeans component.

<sql:query var="books"
dataSource="${applicationScope.bookDS}">
select * from PUBLIC.books where id = ?
<sql:param value="${bid}" />

../examples/web/bookstore4/web/bookdetails.txt
../examples/web/bookstore4/web/catalog.txt

700 JAVASERVER PAGES STANDARD TAG LIBRARY
</sql:query>
<c:forEach var="bookRow" begin="0"

items="${books.rowsByIndex}">
<jsp:useBean id="bid" type="java.lang.String" />
<jsp:useBean id="bookRow" type="java.lang.Object[]" />
<jsp:useBean id="addedBook" class="database.BookDetails"

scope="page" />
<jsp:setProperty name="addedBook" property="bookId"

value="<%=bookRow[0]%>" />
<jsp:setProperty name="addedBook" property="surname"

value="<%=bookRow[1]%>" />
<jsp:setProperty name="addedBook" property="firstName"

value="<%=bookRow[2]%>" />
<jsp:setProperty name="addedBook" property="title"

value="<%=bookRow[3]%>" />
<jsp:setProperty name="addedBook" property="price"

value="<%=((Double)bookRow[4]).floatValue()%>" />
<jsp:setProperty name="addedBook" property="year"

value="<%=(Integer)bookRow[5]%>" />
<jsp:setProperty name="addedBook"

property="description" value="<%=bookRow[6]%>" />
<jsp:setProperty name="addedBook" property="inventory"

value="<%=(Integer)bookRow[7]%>" />
</jsp:useBean>
<% cart.add(bid, addedBook); %>
...

</c:forEach>

Further Information
For further information on JSTL see:

• Reference documentation in the Java WSDP at <JWSDP_HOME>/jstl-

1.0.3/docs/index.html.

• The JSTL examples in the Java WSDP. When Tomcat is running, you can
access the examples at http://localhost:8080/jstl-

examples/index.html.

• Resources listed on the Web site http://java.sun.com/prod-

ucts/jsp/jstl.

• The JSTL 1.0 Specification for a complete description of the syntax and
semantics of JSTL.

http://localhost:8080/jstl-examples/index.html
http://localhost:8080/jstl-examples/index.html
http://java.sun.com/products/jsp/jstl
http://java.sun.com/products/jsp/jstl
http://www.jcp.org/aboutJava/communityprocess/final/jsr052/index.html

18
701
Security
Debbie Bode Carson and Eric Jendrock

THE Web-tier security model used in the Java WSDP is based on the Java
Servlet specification. This model insulates developers from mechanism-specific
implementation details of application security. The Java WSDP provides this
insulation in a way that enhances the portability of applications, allowing them
to be deployed in diverse security environments.

Some of the material in this chapter assumes that you have an understanding of
basic security concepts. To learn more about these concepts, we highly recom-
mend that you explore the Security trail in The Java™ Tutorial (see
http://java.sun.com/docs/books/tutorial/security1.2/index.html)
before you begin this chapter.

Overview
The Java WSDP platform defines declarative contracts between those who
develop and assemble application components and those who configure applica-
tions in operational environments. In the context of application security, applica-
tion providers are required to declare the security requirements of their
applications in such a way that these requirements can be satisfied during appli-
cation configuration. The declarative security mechanisms used in an applica-
tion are expressed in a declarative syntax in a document called a deployment
descriptor. An application deployer then employs container-specific tools to map
the application requirements that are in a deployment descriptor to security
mechanisms that are implemented by Web components.

http://java.sun.com/docs/books/tutorial/security1.2/index.html

702 SECURITY
Programmatic security refers to security decisions that are made by security-
aware applications. Programmatic security is useful when declarative security
alone is not sufficient to express the security model of an application. For exam-
ple, an application might make authorization decisions based on the time of day,
the parameters of a call, or the internal state of a Web component. Another appli-
cation might restrict access based on user information stored in a database.

Java Web Services applications are made up of components that can be deployed
into different containers. These components are used to build a multi-tier appli-
cation. The goal of the Java WSDP security architecture is to achieve end-to-end
security by securing each tier.

The tiers can contain both protected and unprotected resources. Often, you need
to protect resources to ensure that only authorized users have access. Authoriza-
tion provides controlled access to protected resources. Authorization is based on
identification and authentication. Identification is a process that enables recogni-
tion of an entity by a system, and authentication is a process that verifies the
identity of a user, device, or other entity in a computer system, usually as a pre-
requisite to allowing access to resources in a system.

Authorization and authentication are not required to access unprotected
resources. Accessing a resource without authentication is referred to as unau-
thenticated or anonymous access.

Users, Groups, and Roles
A Web services user is similar to an operating system user. Typically, both types
of users represent people. However, these two types of users are not the same.
The Tomcat server authentication service has no knowledge of the user and pass-
word you provide when you log on to the operating system. The Tomcat server
authentication service is not connected to the security mechanism of the operat-
ing system. The two security services manage users that belong to different
realms.

The Tomcat server authentication service includes the following components:

• Role - an abstract name for the permission to access a particular set of
resources. A role can be compared to a key that can open a lock. Many peo-
ple might have a copy of the key, and the lock doesn’t care who you are,
just that you have the right key.

• User - an individual (or application program) identity that has been authen-
ticated (authentication was discussed in the previous section). A user can

SECURITY ROLES 703
have a set of roles associated with that identity, which entitles them to
access all resources protected by those roles.

• Group - a set of authenticated users classified by common traits such as job
title or customer profile. Groups are also associated with a set of roles, and
every user that is a member of a group inherits all of the roles assigned to
that group. In most cases, you will map users directly to roles and have no
need to define a group.

• Realm - a complete database of roles, users, and groups that identify valid
users of a Web application (or a set of Web applications).

Security Roles
When you design a Web component, you should always think about the kinds of
users who will access the component. For example, a Web application for a
Human Resources department might have a different request URL for someone
who has been assigned the role of admin than for someone who has been
assigned the role of director. The admin role may let you view some employee
data, but the director role enables you to view salary information. Each of
these security roles is an abstract logical grouping of users that is defined by the
person who assembles the application. When an application is deployed, the
deployer will map the roles to security identities in the operational environment.

To create a role for a Web services application, you can set up the users and roles
using admintool, or in a deployment descriptor, then declare it for the WAR file
that is contained in the application. For information on setting up users and roles
using admintool, see Managing Roles and Users (page 704).

The following example code shows how you would set up roles in the web.xml

deployment descriptor for the Web component. As is shown, you can define mul-
tiple security roles for an application.

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <description>Book customer</description>
 <role-name>customer</role-name>
 </security-role>

The <role-name> that you specify in the deployment descriptor must have a cor-
responding entry in your server-specific deployment descriptor. For the Tomcat
server, the file is <JWSDP_HOME>/conf/tomcat-users.xml. The entry needs to

704 SECURITY
declare a mapping between a security role and one or more principals in the
realm. An example for the Tomcat server might be as follows:

<?xml version=’1.0’?>
<tomcat-users>
<user username=’your_name’ password=’your_password’

roles=’admin,manager,provider’/>
<user username=’Joe’ password=’scooby’

roles=’admin,manager,provider’/>
<user username=’Mikhail’ password=’goblin’

roles=’admin’/>
</tomcat-users>

Another example for another Web Server might be as follows:

<rolemapping>
<role name="admin">
<principals>

<principal>
<name>Khalil Singh</name>

</principal>
</principals>
</role>

</rolemapping>

Managing Roles and Users
To manage the information in the users file, we recommend that you use admin-

tool. To use admintool, start Tomcat, then point your browser to
http://localhost:8080/admin and log on with a user name and password
combination that has been assigned the admin role, such as the user name and
password that you entered during installation.

For security purposes, admintool, the Tomcat Web Server Administration Tool,
verifies that you (as defined by the information you provide when you log into
the application) are a user who is authorized to install and reload applications
(defined as a user with the role of admin in tomcat-users.xml) before granting
you access to the server.

The <JWSDP_HOME>/conf/tomcat-users.xml file is created by the installer. It
contains, in plain text, the user name and password created during installation of
the Java WSDP. This user name is initially associated with the predefined roles
of admin, manager, and provider. You can edit the users file directly in order to

MANAGING ROLES AND USERS 705
add or remove users or modify roles, or you can use admintool to accomplish
these tasks, as described herein.

The tomcat-users.xml file looks like this:

<?xml version=’1.0’?>
<tomcat-users>
<user username=’your_name’ password=’your_password’

roles=’admin,manager,provider’/>
</tomcat-users>

The following sections describe how to add roles and users using admintool.
The file JWSDP_HOME/conf/tomcat-users.xml is updated as the changes are
made in admintool.

Using the Tomcat Web Server Administration
Tool
To use admintool, the Tomcat Web Server Administration Tool, you must start
Tomcat. Before starting Tomcat, make sure that your PATH environment variables
are set properly and that the build.properties file has been created properly.
These steps are described in Setting Up (page 69).

Starting Tomcat
To start Tomcat, type the following command in a terminal window.

<JWSDP_HOME>/bin/startup.sh (Unix platform)

<JWSDP_HOME>\bin\startup.bat (Microsoft Windows)

The startup script starts the task in the background and then returns the user to
the command line prompt immediately. The startup script does not completely
start Tomcat for several minutes.

Note: The startup script for Tomcat can take several minutes to complete. To verify
that Tomcat is running, point your browser to http://localhost:8080. When the
Tomcat splash screen displays, you may continue. If the splash screen does not load
immediately, wait up to several minutes and then retry. If, after several minutes, the
Tomcat splash screen does not display, refer to the troubleshooting tips in “Unable
to Locate the Server localhost:8080” Error (page 87).

706 SECURITY
Documentation for Tomcat can be found at
<JWSDP_HOME>/docs/tomcat/index.html.

Starting admintool
Once the Tomcat server is started, follow these steps to start admintool.

1. Start a Web browser.

2. In the Web browser, point to the following URL:

http://localhost:8080/admin

3. Log in to admintool using a user name and password combination that has
been assigned the role of admin.

The admintool utility displays in the Web browser window:

Figure 18–1 The Tomcat Web Server Administration Tool

MANAGING ROLES AND USERS 707
4. When you have finished, log out of admintool by selecting Log Out.

The following sections show how to use admintool to do the following:

• Display all roles in the default realm

• Add a role to the default realm

• Remove a role from the default realm

• Display all users in the default realm

• Add a user to the default realm

• Remove a user

The modifications discussed in the following sections are made to the running
Tomcat server—it is not necessary to stop and restart Tomcat.

Managing Roles
To view all existing roles in the realm, select Roles from the User Definition sec-
tion in the left pane.

The Roles List and Role Actions list display in the right pane. By default, the
roles defined during Java WSDP installation are displayed. These roles include
admin, manager, and provider.

Use the following procedure to add a new role to the default realm.

1. From the Role Actions List, select Create New Role.

2. Enter the name of the role to add.

3. Enter the description of the role.

4. Select Save when done. The newly defined role displays in the list.

 Use the following procedure to remove a role from the default realm.

1. From the Role Actions List, select Delete Existing Roles.

2. Select the role to remove by checking the box to its left.

3. Select Save.

If you entered a new role of customer, the tomcat-users.xml file would now
look like this:

<?xml version=’1.0’?>
<tomcat-users>

<role rolename="customer" description="Customer of Java Web
Service"/>

708 SECURITY
<role rolename="provider"/>
<role rolename="manager"/>
<role rolename="admin"/>
<user username="your_name" password="your_password"
roles="admin,manager,provider"/>

</tomcat-users>

Managing Users
To view all existing users in the realm, select Users from the User Definition sec-
tion in the left pane.

The Users List and Available Actions list for User Actions display in the right
pane. By default, the user name defined during Java WSDP installation is dis-
played.

Use the following procedure to edit a user’s profile.

1. Select the user profile to edit in the right pane.

2. Edit the existing user properties. You can modify a password and/or mod-
ify role assignments in this window.

Use the following procedure to add a new user to the default realm.

1. From the User Actions List, select Create New User.

2. Enter the name of the user to add.

3. Enter the password for that user.

4. Enter the full name of the user.

5. Select the role assignments for this user.

6. Select Save when done. The newly defined user displays in the list.

 Use the following procedure to remove a user from the default realm.

1. Select Delete Existing Users from the User Actions list.

2. Select the user to remove by checking the box to its left.

3. Select Save.

The addition of a new role and user as described in the previous section are
reflected in the updated tomcat-users.xml. If I added a new user named Anil

DECLARING AND LINKING ROLE REFERENCES 709
and assigned him the role of customer, the updated tomcat-users.xml would
look like this:

<?xml version=’1.0’?>
<tomcat-users>

<role rolename="customer" description="Customer of Java Web
Service"/>

<role rolename="provider"/>
<role rolename="manager"/>
<role rolename="admin"/>
<user username="your_name" password="your_password"

roles="admin,manager,provider"/>
<user username="Anil" password="12345" fullName=""

roles="customer"/>
</tomcat-users>

Declaring and Linking Role References
A security role reference allows a Web component to reference an existing secu-
rity role. A security role is an application-specific logical grouping of users, clas-
sified by common traits such as customer profile or job title. When an
application is deployed, roles are mapped to security identities, such as princi-
pals (identities assigned to users as a result of authentication) or groups, in the
operational environment. Based on this, a user with a certain security role has
associated access rights to a Web application. The link is the actual name of the
security role that is being referenced.

During application assembly, the assembler creates security roles for the applica-
tion and associates these roles with available security mechanisms. The assem-
bler then resolves the security role references in individual servlets and JSPs by
linking them to roles defined for the application.

The security role reference defines a mapping between the name of a role that is
called from a Web component using isUserInRole(String name) (see Using
Programmatic Security in the Web Tier, page 719) and the name of a security
role that has been defined for the application.

710 SECURITY
For example, the mapping of the security role reference cust to the security role
with role name bankCustomer, is shown in the <security-role-ref> element
of the deployment descriptor, as shown:

<security-role-ref>
<role-name>cust</role-name>
<role-link>bankCustomer</role-link>

</security-role-ref>

In this example, isUserInRole("bankCustomer") and isUserInRole("cust")

will both return true.

Because a coded name is linked to a role name, you can change the role name at
a later time without having to change the coded name. For example, if you were
to change the role name from bankCustomer to something else, you wouldn’t
need to change the cust name in the code. However, you would need to relink
the cust coded name to the new role name.

Mapping Application Roles to Realm
Roles
When you are developing a Web services application, you don’t need to know
what roles have been defined for the realm in which the application will be run.
In the Java WSDP, the Web services security architecture provides a mechanism
for automatically mapping the roles defined in the application to the roles
defined in the runtime realm. After your application has been deployed, the
administrator of the Tomcat server will map the roles of the application to the
roles of the default realm.

The following example shows the role mapping between the application-defined
role admin and the admin role that was defined when the Java WSDP was
installed. The following is an example of the security constraint that could be
added to the application’s deployment descriptor.

1. Select or open the Web application deployment descriptor, for example,
<JWSDP_HOME>/docs/tutorial/examples/gs/web/WEB-INF/web.xml.

2. Add a security constraint such as the one shown below. In this example, the
role of admin is authorized to access this application, and is assigned a
security role. For example, in the Tomcat server, this information is
reflected in the runtime XML, as shown:

MAPPING APPLICATION ROLES TO REALM ROLES 711
<!-- SECURITY CONSTRAINT -->
<security-constraint>

<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>

<url-pattern>/index.jsp</url-pattern>

<http-method>GET</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>admin</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<!-- SECURITY ROLES -->
<security-role>

<description>the administrator role</description<

<role-name>admin</role-name>

</security-role>

The <role-name> that you specify in the deployment descriptor must have a cor-
responding entry in your server-specific deployment descriptor. For the Tomcat
server, the file is <JWSDP_HOME>/conf/tomcat-users.xml. The entry needs to
declare a mapping between a security role and one or more principals in the
realm. An example for the Tomcat server might be as follows:

<?xml version=’1.0’?>
<tomcat-users>
<user username=’your_name’ password=’your_password’

roles=’admin,manager,provider’/>
</tomcat-users>

Another example for another Web Server might be as follows:

<rolemapping>
<role name="admin">
<principals>

<principal>
<name>Khalil Singh</name>

</principal>
</principals>
</role>

</rolemapping>

712 SECURITY
Web-Tier Security
The following sections address protecting resources and authenticating users in
the Web tier.

Your Web application is defined using a standard web.xml deployment descrip-
tor. The deployment descriptor must indicate which version of the web applica-
tion schema (2.2, 2.3, or 2.4) it is using, and the elements specified within the
deployment descriptor must comply with the rules for processing that version of
the deployment descriptor. For version 2.4 of the Java Servlet Specification, this
is “SRV.13.3, Rules for Processing the Deployment Descriptor”. These specifi-
cations may be downloaded from http://java.sun.com/products/serv-

let/download.html. For more information on deployment descriptors, see
Chapter 4.

The deployment descriptor is used to convey the elements and configuration
information of a Web application. Security in a Web application is configured
using the following elements of the deployment descriptor:

• <login-config>

The <login-config> element specifies how the user is prompted to login
in. If this element is present, the user must be authenticated before it can
access any resource that is constrained by a <security-constraint>.
The <login-config> element is discussed in Configuring Login
Authentication (page 716).

• <security-constraint>

The <security-constraint> element is used to define the access privi-
leges to a collection of resources using their URL mapping. Security con-
straints are discussed in Controlling Access to Web
Resources (page 713).

• <security-role>

The <security-role> element represents a defined group for the realm.
Security roles are discussed in Security Roles (page 703).

These elements of the deployment descriptor may be entered directly into the
web.xml file.

Some elements of Web application security need to be addressed in the deploy-
ment descriptor for the Web server, rather than the deployment descriptor for the
Web application. This information is discussed in Installing and Configuring
SSL Support (page 721), Using Programmatic Security in the Web
Tier (page 719), and Security Roles (page 703).

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html

PROTECTING WEB RESOURCES 713
Protecting Web Resources
You can protect Web resources by specifying a security constraint. A security
constraint determines who is authorized to access a Web resource collection, a
list of URL patterns and HTTP methods that describe a set of resources to be
protected. Security constraints can be defined using a deployment descriptor, as
discussed in Controlling Access to Web Resources (page 713).

If you try to access a protected Web resource as an unauthenticated user, the Web
container will try to authenticate you. The container will only accept the request
after you have proven your identity to the container and have been granted per-
mission to access the resource.

Security constraints only work on the original request URI, not on calls made via
a RequestDispatcher (which include <jsp:include> and <jsp:forward>).
Inside the application, it is assumed that the application itself has complete
access to all resources and would not forward a user request unless it had
decided that the requesting user had access also.

Controlling Access to Web Resources
You can set up a security constraint by coding the information directly into the
deployment descriptor between <security-constraint></security-con-

straint> tags. When you define security constraints, you need to make sure you
have addressed the following issues:

• Set up login authentication (discussed in Configuring Login
Authentication (page 716)).

• Add a security constraint.

• Add a web resource collection.

• Define and include an authorized security role (discussed in Security
Roles (page 703)).

• Identify URL patterns to constrain.

• Identify HTTP methods to constrain (POST, GET).

• Specify whether there are any guarantees on how the data will be trans-
ported between client and server (NONE, INTEGRAL, CONFIDENTIAL).

714 SECURITY
If, for example, we were to look at the security portion of the deployment
descriptor for a simple application, the web.xml file might look something like
this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN”

“http://java.sun.com./dtd/web-app_2_3.dtd”>

...

<display-name>SimpleApp</display-name>
<servlet>
<servlet-name>index</servlet-name>
<display-name>index</display-name>
<jsp-file>/index.jsp</jsp-file>
<!-- SECURITY-ROLE-REF -->
<security-role-ref>

<role-name>SimpleAppCustomer</role-name>
<role-link>customer</role-link>

</security-role-ref>
</servlet>
<session-config>
<session-timeout>30</session-timeout>

</session-config>

<!-- SECURITY CONSTRAINT -->
<security-constraint>
<web-resource-collection>

<web-resource-name>WRCollection</web-resource-name>
<url-pattern>/index.jsp</url-pattern>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>customer</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>

<!-- LOGIN AUTHENTICATION -->
<login-config>
<realm-name></realm-name>
<auth-method>BASIC</auth-method>

</login-config>

AUTHENTICATING USERS OF WEB RESOURCES 715
<!-- SECURITY ROLES -->
<security-role>

<role-name>admin</role-name>
</security-role>
<security-role>

<description>Simple App Customer</description>
<role-name>customer</role-name>

</security-role>
<security-role>

<role-name>manager</role-name>
</security-role>
<security-role>

<role-name>provider</role-name>
</security-role>

...

Authenticating Users of Web Resources
When you try to access a protected Web resource, the Web container activates
the authentication mechanism that has been configured for that resource. You
can configure the following authentication mechanisms for a Web resource:

• None

If you do not specify one of the following methods, the user will not be
authenticated.

• HTTP Basic authentication

If you specify HTTP basic authentication, (<auth-
method>BASIC</auth-method>), the Web server will authenticate a user
by using the user name and password obtained from the Web client.

• Form-based authentication

If you specify form-based authentication (<auth-method>FORM</auth-
method>), you can customize the login screen and error pages that are
presented to the end user by an HTTP browser.

Neither form-based authentication nor HTTP basic authentication is par-
ticularly secure. In form-based authentication, the content of the user dia-
log is sent as plain text, and the target server is not authenticated. Basic
authentication sends user names and passwords over the Internet as text
that is uu-encoded, but not encrypted. This form of authentication, which
uses Base64 encoding, can expose your user names and passwords unless

716 SECURITY
all connections are over SSL. If someone can intercept the transmission,
the user name and password information can easily be decoded.

• Client-certificate authentication

Client-certificate authentication (<auth-method>CLIENT-CERT</auth-
method>) is a more secure method of authentication than either basic or
form-based authentication. It uses HTTP over SSL, in which the server
and, optionally, the client authenticate each other with Public Key Certifi-
cates. Secure Sockets Layer (SSL) provides data encryption, server
authentication, message integrity, and optional client authentication for a
TCP/IP connection. You can think of a public key certificate as the digital
equivalent of a passport. It is issued by a trusted organization, which is
called a certificate authority (CA), and provides identification for the
bearer. If you specify client-certificate authentication, the Web server will
authenticate the client using the client’s X.509 certificate, a public key
certificate that conforms to a standard that is defined by X.509 Public Key
Infrastructure (PKI). Prior to running an application that uses SSL, you
must configure SSL support on the server (see Installing and Configuring
SSL Support, page 721) and set up the public key certificate (see Setting
Up Digital Certificates (page 723)).

• Digest authentication

Digested password authentication (<auth-method>DIGEST</auth-
method>) supports the concept of digesting user passwords. This causes
the stored version of the passwords to be encoded in a form that is not
easily reversible, but that the Web server can still utilize for authentica-
tion.

From a user perspective, digest authentication acts almost identically to
basic authentication in that it triggers a login dialog. The difference
between basic and digest authentication is that on the network connection
between the browser and the server, the password is encrypted, even on a
non-SSL connection. In the server, the password can be stored in clear
text or encrypted text, which is true for all login methods and is indepen-
dent of the choice that the application deployer makes.

Configuring Login Authentication
You can set up login authentication by coding the information directly into the
deployment descriptor between <login-config></login-config> tags. When

AUTHENTICATING USERS OF WEB RESOURCES 717
you configure the authentication mechanism that the Web resources in a WAR
will use, you have the following options:

• Specify one of the user authentication methods described in Authenticat-
ing Users of Web Resources (page 715).

• Specify a security realm. If omitted, the default realm is assumed.

• If the authentication method is specified as FORM, specify a form login
page and form error page.

The form login page defines the location of the form that will be used to
authenticate the user. The form error page is the resource that responds to
a failed authentication.

The following sample code shows a section of a deployment descriptor that uses
form-based login authentication. The <form-login-page> element provides the
URI of a Web resource relative to the document root that will be used to authen-
ticate the user. The login page can be an HTML page, a JSP page, or a servlet,
and must return an HTML page containing a form that conforms to specific nam-
ing conventions (see the relevant Servlet specification for more information on
these requirements). The <form-error-page> element requires a URI of a Web
resource relative to the document root that send a response when authentication
has failed.

A Universal Resource Identifier (URI), is a globally unique identifier for a
resource. A Universal Resource Locator (URL) is a kind of URI that specifies
the retrieval protocol (http or https for Web applications) and physical location
of a resource (host name and host-relative path).

In the Java Servlet specification, the request URI is the part of a URL after the
host name and port. For example, in the URL http://local-

host:8080/myApp/jsp/hello.jsp, the request URI would be
/jsp/hello.jsp. The request URI is further subdivided into the context path
(which decides which Web application should process the request) and the rest
of the path that is used to select the target servlet.

<!-- LOGIN AUTHENTICATION -->
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>default</realm-name>

<form-login-config>
<form-login-page>login.jsp</form-login-page>
<form-error-page>error.jsp</form-error-page>

</form-login-config>
</login-config>

718 SECURITY
Using SSL to Enhance the Confidentiality of
HTTP Basic and Form-Based Authentication
Passwords are not protected for confidentiality with HTTP basic or form-based
authentication, meaning that passwords sent between a client and a server on a
non-protected session can be viewed and intercepted by third parties. To over-
come this limitation, you can run these authentication protocols over an SSL-
protected session and ensure that all message content is protected for confidenti-
ality.

If the default configuration of your Web server does not support SSL, you must
configure it with an SSL connector to make this work. The default configuration
of the Tomcat server does not include an SSL Connector. To configure Tomcat
for SSL, follow the instructions in Installing and Configuring SSL
Support (page 721).

To configure HTTP basic or form-based authentication over SSL, specify CON-

FIDENTIAL or INTEGRAL as the user authentication method within the <trans-

port-guarantee> elements. Specify CONFIDENTIAL when the application
requires that data be transmitted so as to prevent other entities from observing
the contents of the transmission. Specify INTEGRAL when the application
requires that the data be sent between client and server in such a way that it can-
not be changed in transit. The following example code from a web.xml file
shows this setting in context:

<!-- SECURITY CONSTRAINT -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>WRCollection</web-resource-name>
 <url-pattern>/index.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>customer</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

If you specify CONFIDENTIAL or INTEGRAL as a security constraint, that type of
security constraint applies to all requests that match the URL patterns in the Web
resource collection, not just to the login dialog.

USING PROGRAMMATIC SECURITY IN THE WEB TIER 719
Note: Good Security Practice: If you are using sessions, once you switch to SSL
you should never accept any further requests for that session that are non-SSL. For
example, a shopping site might not use SSL until the checkout page, then it may
switch to using SSL in order to accept your card number. After switching to SSL,
you should stop listening to non-SSL requests for this session. The reason for this
practice is that the session ID itself was non-encrypted on the earlier communica-
tions, which is not so bad when you’re just doing your shopping, but once the credit
card information is stored in the session, you don’t want a bad guy trying to fake the
purchase transaction against your credit card. This practice could be easily imple-
mented using a filter.

Using Programmatic Security in the Web
Tier
Programmatic security is used by security-aware applications when declarative
security alone is not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the HttpServle-

tRequest interface:

• getRemoteUser - used to determine the user name with which the client
authenticated.

• isUserInRole - used to determine if a user is in a specific security role.

• getUserPrincipal - returns a java.security.Principal object.

These APIs allow servlets to make business logic decisions based on the logical
role of the remote user. They also allow the servlet to determine the principal
name of the current user.

When you use the isUserInRole(String role) method, the String role is
mapped to the role name defined in the <role-name> element nested within the
<security-role-ref> element of a <servlet> declaration of the web.xml

deployment descriptor. The <role-link> element must match a <role-name>

defined in the <security-role> element of the web.xml deployment descriptor.
If the isUserInRole(“admin”) method is called within a servlet, the section of
example code in bold below would need to be added to ensure security. In this
example, the <role-link> parameters are used in the application, the <role-

720 SECURITY
name> element provides some form of abstraction. The applicable sections of the
web.xml deployment descriptor would look like this:

<servlet>
...
<role-name>administrator</role-name>
<role-link>admin</role-link>
...

</servlet>

<security-role>
<role-name>admin</role-name>

</security-role>

As discussed in Security Roles (page 703), there also must be a corresponding
<role-name> entry in the Web server-specific deployment descriptor, which
would look something like this:

<role name="admin">
<principals>

<principal>
<name>Wanda</name>

</principal>
<principal>

<name>Raja</name>
</principal>

</principals>
</role>

Creating the Login Form
The content of the login form in an HTML page, JSP page, or servlet for a login
page should be as follows:

<form method="POST" action="j_security_check" >
 <input type="text" name= "j_username" >
 <input type="password" name= "j_password" >
</form>

See the Servlet specification at http://java.sun.com/products/servlet/ for
additional information.

http://java.sun.com/products/servlet/

UNPROTECTED WEB RESOURCES 721
Unprotected Web Resources
Many applications feature unprotected Web content, which any caller can access
without authentication. In the Web tier, unrestricted access is provided simply by
not configuring a security constraint for that particular request URI. It is com-
mon to have some unprotected resources and some protected resources. In this
case, you will have security constraints and a login method defined, but it will
not be used to control access to the unprotected resources. The user won’t be
asked to log on until the first time they enter a protected request URI.

In the Java Servlet specification, the request URI is the part of a URL after the
host name and port. For example, let’s say you have an e-commerce site with a
browsable catalog you would want anyone to be able to access and a shopping
cart area for customers only. You could set up the paths for your Web application
so that the pattern /cart/* is protected, but nothing else is protected. Assuming
the application is installed at context path /myapp,

• http://localhost:8080/myapp/index.jsp is not protected

• http://localhost:8080/myapp/cart/index.jsp is protected

A user will not be prompted to log in until the first time that user accesses a
resource in the cart subdirectory.

Installing and Configuring SSL Support
What is Secure Socket Layer
Technology?
Secure Socket Layer (SSL) is a technology that allows Web browsers and Web
servers to communicate over a secured connection. In this secure connection, the
data that is being sent is encrypted before being sent, then decrypted upon
receipt and prior to processing. Both the browser and the server encrypt all traffic
before sending any data. SSL addresses the following important security consid-
erations.

Authentication
During your initial attempt to communicate with a Web server over a secure
connection, that server will present your Web browser with a set of creden-
tials in the form of a server certificate. The purpose of the certificate is to
verify that the site is who and what it claims to be. In some cases, the server

722 SECURITY
may request a certificate that the client is who and what it claims to be
(which is known as client authentication).

Confidentiality
When data is being passed between the client and server on a network, third
parties can view and intercept this data. SSL responses are encrypted so that
the data cannot be deciphered by the third-party and the data remains confi-
dential.

Integrity
When data is being passed between the client and server on a network, third
parties can view and intercept this data. SSL helps guarantee that the data
will not be modified in transit by that third party.

To install and configure SSL support on your stand-alone Web server, you need
the following components. The following sections discuss enabling SSL support
for Tomcat specifically. If you are using a different Web server, consult the docu-
mentation for your product.

• Java Secure Socket Extension (JSSE) (see Using JSSE, page 722).

• A server certificate keystore (see Setting Up Digital
Certificates (page 723)).

• An HTTPS connector (see Configuring the SSL Connector, page 729).

To verify that SSL support is enabled, see Verifying SSL Support (page 732).

Using JSSE
If you are using J2SE SDK v1.3.1, you need to have Java Secure Socket Exten-
sion (JSSE) installed in order to use SSL. JSSE is a part of the J2SE 1.4 SDK.
JSSE is a set of Java packages that enable secure Internet communications.
These packages implement a Java version of SSL (Secure Sockets Layer) and
TLS (Transport Layer Security) protocols and include functionality for data
encryption, server authentication, message integrity, and optional client authenti-
cation. Using JSSE, developers can provide for the secure passage of data
between a client and a server running any application protocol (such as HTTP,
Telnet, NNTP, and FTP) over TCP/IP.

By default, the location of the jsse.jar file is
<JAVA_HOME>/jre/lib/jsse.jar. For more information on JSSE, see its Web
site at http://java.sun.com/products/jsse/.

http://java.sun.com/products/jsse/

SETTING UP DIGITAL CERTIFICATES 723
Setting Up Digital Certificates
In order to implement SSL, a Web server must have an associated certificate for
each external interface, or IP address, that accepts secure connections. The the-
ory behind this design is that a server should provide some kind of reasonable
assurance that its owner is who you think it is, particularly before receiving any
sensitive information. It may be useful to think of a certificate as a “digital
driver’s license” for an Internet address. It states with which company the site is
associated, along with some basic contact information about the site owner or
administrator.

The digital certificate is cryptographically signed by its owner and is difficult for
anyone else to forge. For sites involved in e-commerce, or any other business
transaction in which authentication of identity is important, a certificate can be
purchased from a well-known Certificate Authority (CA) such as Verisign or
Thawte.

If authentication is not really a concern, such as if an administrator simply wants
to ensure that data being transmitted and received by the server is private and
cannot be snooped by anyone eavesdropping on the connection, you can simply
save the time and expense involved in obtaining a CA certificate and simply use
a self-signed certificate.

SSL uses public key cryptography, which is based on key pairs. Key pairs con-
tain one public key and one private key. If data is encrypted with one key, it can
only be decrypted with the other key of the pair. This property of is fundamental
to establishing trust and privacy in transactions. For example, using SSL, the
server computes a value and encrypts the value using its private key. The
encrypted value is called a digital signature. The client decrypts the encrypted
value using the server’s public key and compares the value to its own computed
value. If the two values match, the client can trust that the signature is authentic
since only the private key could have been used to produce such a signature.

Digital certificates are used with the HTTPS protocol to authenticate Web cli-
ents. The HTTPS service of most Web servers will not run unless a digital certif-
icate has been installed. Use the procedure outlined below to set up a digital
certificate that can be used by your Web server to enable SSL.

One tool that can be used to set up a digital certificate is keytool, a key and cer-
tificate management utility that ships with the J2SE 1.4 SDK. It enables users to
administer their own public/private key pairs and associated certificates for use
in self-authentication (where the user authenticates himself/herself to other
users/services) or data integrity and authentication services, using digital signa-

724 SECURITY
tures. It also allows users to cache the public keys (in the form of certificates) of
their communicating peers. For a better understanding of public key cryptogra-
phy, read the keytool documentation at

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/keytool.html

A certificate is a digitally-signed statement from one entity (person, company,
etc.) saying that the public key (and some other information) of some other
entity has a particular value. When data is digitally signed, the signature can be
verified to check the data integrity and authenticity. Integrity means that the data
has not been modified or tampered with, and authenticity means the data indeed
comes from whoever claims to have created and signed it.

The keytool stores the keys and certificates in a file termed a keystore. The
default keystore implementation implements the keystore as a file. It protects pri-
vate keys with a password. For more information on keytool, read its documen-
tation at

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/keytool.html

This section describes creating a server keystore called server.keystore and a
client keystore called the client.keystore. The two files make a key pair.
These files are usually created in either your <HOME> directory or in the applica-
tion directory.

In addition to the server and client keystores, you must have a signed certificate,
which must be present on the server. This file must contain the public key certif-
icates of the Certificate Authority or the client’s public key certificate at the time
the server is authenticating the client. We will create the server.cer file in the
<HOME> directory.

Typically, a keystore file is protected by a password. The default value for this
password is changeit for server.keystore, client.keystore, and
server.cer files.

To create a keystore file, we use the keytool utility. The keytool utility can be
found in the <JAVA_HOME>/bin directory.

To set up a digital certificate,

1. Generate a key pair.

The keytool utility enables you to generate the key pair. The keytool

utility that ships with the J2SE SDK programmatically adds a Java Cryp-
tographic Extension provider that has implementations of RSA algo-
rithms. This provider enables you to import RSA-signed certificates.

http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/keytool.html
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/keytool.html

SETTING UP DIGITAL CERTIFICATES 725
To generate the keystore file, run the keytool utility as follows, replacing
<keystore_filename> with the name of your keystore file, for example,
server.keystore. If you are using the Tomcat server, the file must either
be named .keystore and located in the home directory of the machine on
which Tomcat is running, or you will need to tell Tomcat where the
kestore file is by adding a keystoreFile attribute to the <Factory> ele-
ment in the Tomcat configuration file or by specifying the location of the
file on the Connector (8443) node of admintool.

 keytool -genkey -keyalg RSA -alias tomcat-server
 -keystore <keystore_filename>

2. The keytool utility prompts you for the following information:

a. Keystore password—Enter the default password, which is changeit.
Refer to the keytool documentation for information on changing the
password.

b. First and last name—Enter the appropriate value, for example, JWSDP.

c. Organizational unit—Enter the appropriate value, for example, Java
Web Services.

d. Organization—Enter the appropriate value, for example, Sun Micro-

systems.

e. City or locality—Enter the appropriate value, for example, Santa

Clara.

f. State or province—Enter the unabbreviated name, for example, CA.

g. Two-letter country code—For the USA, the two-letter country code is
US.

h. Review the information you’ve entered so far, enter Yes if it is correct.

i. Key password for the Web server—Do not enter a password. Press
Return.

The next step is generate a signed certificate for this keystore. A self-signed cer-
tificate is acceptable for most SSL communication. If you are using a self-signed
certificate, continue with Creating a Self-Signed Certificate (page 726). If you’d
like to have your certificate digitally signed by a CA, continue with Obtaining a
Digitally-Signed Certificate (page 726).

726 SECURITY
Creating a Self-Signed Certificate
This example assumes that the keystore is named server.keystore, the certifi-
cate file is server.cer, and the CA file is cacerts.jks. Run these commands in
your <HOME> directory so that they are created there.

1. Export the server certificate to a certificate file:
keytool -keystore server.keystore -export -alias tomcat-
server -file server.cer

2. Enter the password (changeit).

Keytool returns the following message:

Certificate stored in file <server.cer>

3. Import the new server certificate into the Certificate Authority file cac-

erts.jks:

keytool -import -alias serverCA -keystore <HOME>/cacerts.jks

-file server.cer

4. Enter the password (changeit).

Keytool returns a message similar to the following:

Owner: CN=JWSDP, OU=Java Web Services, O=Sun, L=Santa Clara,
ST=CA, C=US
Issuer: CN=JWSDP, OU=Java Web Services, O=Sun, L=Santa
Clara,
ST=CA, C=US
Serial number: 3e39e3e0
Valid from: Thu Jan 30 18:48:00 PST 2003 until: Wed Apr 30
19:48:00 PDT 2003
Certificate fingerprints:
MD5: 44:89:AF:54:FE:79:66:DB:0D:BE:DC:15:A9:B6:09:84
SHA1:21:09:8A:F6:78:E5:C2:19:D5:FF:CB:DB:AB:78:9B:98:8D:06:
8C:71
Trust this certificate? [no]: yes
Certificate was added to keystore

Obtaining a Digitally-Signed Certificate
This example assumes that the keystore is named server.keystore, the certifi-
cate file is server.cer, and the CA file is cacerts.jks.

1. Get your certificate digitally signed by a CA. To do this,

a. Generate a Certificate Signing Request (CSR).

SETTING UP DIGITAL CERTIFICATES 727
keytool -certreq -alias tomcat-server -keyalg RSA

 -file <csr_filename> -keystore cacerts.jks

b. Send the contents of the csr_filename for signing.

c. If you are using Verisign CA, go to http://digitalid.veri-

sign.com/. Verisign will send the signed certificate in e-mail. Store this
certificate in a file.

d. Import the signed certificate that you received in email into the server:

keytool -import -alias tomcat-server -trustcacerts -file

 <signed_cert_file> -keystore <keystore_filename>

2. Import the certificate (if using a CA-signed certificate).

If your certificate will be signed by a Certification Authority (CA), you
must import the CA certificate. You may skip this step if you are using
only the self-signed certificate. If you are using a self-signed certificate or
a certificate signed by a CA that your browser does not recognize, a dia-
log will be triggered the first time a user tries to access the server. The
user can then choose to trust the certificate for this session only or perma-
nently.

To install the CA certificate in the Java 2 Platform, Standard Edition, run
the keytool utility as follows.

keytool -import -trustcacerts -alias root

-file <ca-cert-filename> -keystore <keystore-filename>

Creating a Client Certificate for Mutual
Authentication
Creating a client certificate is similar to the procedure for server certificates.

1. Use keytool to create a client certificate in a keystore file of your choice:
keytool -genkey -keyalg RSA -alias jwsdp-client -keystore
client.keystore

You will be prompted for a password. Enter changeit, the default pass-
word. When requested enter the name, organization, and other prompts
for the client. Do not enter anything at “Key password for <client>”, just
press Return.

2. Export the new client certificate from the keystore to a certificate file:

http://digitalid.verisign.com
http://digitalid.verisign.com

728 SECURITY
keytool -keystore client.keystore -export -alias jwsdp-cli-
ent -file client.cer

3. Enter the keystore password (changeit). Keytool returns this message:

Certificate stored in file <client.cer>

4. Import the new client certificate into the server’s Certificate Authority file
cacerts.jks. This allows the server to trust the client during SSL mutual
authentication.
keytool -import -alias root -keystore <HOME>/cacerts.jks
-file client.cer

5. Enter the keystore password (changeit). Keytool returns this message:
Owner: CN=JWSDP Client, OU=Java Web Services, O=Sun, L=Santa
Clara, ST=CA, C=US
Issuer: CN=JWSDP Client, OU=Java Web Services, O=Sun,
L=Santa Clara, ST=CA, C=US
Serial number: 3e39e66a
Valid from: Thu Jan 30 18:58:50 PST 2003 until: Wed Apr 30
19:58:50 PDT 2003
Certificate fingerprints:
MD5: 5A:B0:4C:88:4E:F8:EF:E9:E5:8B:53:BD:D0:AA:8E:5A
SHA1:90:00:36:5B:E0:A7:A2:BD:67:DB:EA:37:B9:61:3E:26:B3:89:
46:
32
Trust this certificate? [no]: yes
Certificate was added to keystore

Checking That Mutual Authentication is Running
To prove that the SSL handshaking is occurring, shutdown Tomcat, set the debug
flag in the file <JWSDP_HOME>/bin/catalina.bat, then restart Tomcat. The
server will display the handshake messages, or write them to the file
<JWSDP_HOME>/logs/launcher.server.log. The following example shows the
new code in bold.

rem Execute the Tomcat launcher
"%JAVA_HOME%\bin\java.exe" -Djavax.net.debug=ssl,handshake
-classpath %PRG%\..;%PRG%\..\..\jwsdp-shared\bin;"%PRG%

CONFIGURING THE SSL CONNECTOR 729
Using a PKCS12 Certificate in the Tomcat
Server
The Java WSDP supports PKCS12-format certificates. PKCS12 standard speci-
fies a portable format for storing or transporting a user’s private keys, certifi-
cates, miscellaneous secrets, etc. See the following Web site for additional
information:

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12

If you have a PKCS12-format certificate, you must convert it into JKS format.
The command for the conversion is:

keytool -pkcs12 -pkcsFile <fileName> -pkcsKeyStorePass
<password> -pkcsKeyPass <password> -jksFile <outputFileName>
-jksKeyStorePass <password>

The result is a JKS file that has the key – private key and the certificate chain – in
the file.

To export the certificate into a file, such as abc.cer, use keytool with the
-export option:

keytool -keystore <outputFileName> -export -alias <server>
-file abc.cer

Miscellaneous Commands for Certificates
• To check the contents of the server certificate:

keytool -list -keystore server.keystore -alias tomcat-server -v

• To check the contents of the cacerts file:

keytool -list -keystore cacerts.jks

Configuring the SSL Connector
Depending on your Web Server, an SSL HTTPS Connector may or may not be
enabled. If you are using the Tomcat server, an SSL connector is not configured.

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12

730 SECURITY
This section describes how to configure the SSL HTTPS Connector for Tomcat.
If you are using another Web Server, consult the documentation for that server.

A Connector element for an SSL connector must be included in the server
deployment descriptor. Before making changes to the server deployment
descriptor, you must shut down the server. The following code is an example of
code that will enable an SSL Connector for a Web server:

<Connector
className="org.apache.coyote.tomcat5.CoyoteConnector"
port="8443" minProcessors="5" maxProcessors="75"
enableLookups="true" acceptCount="10" debug="0"
scheme="https" secure="true" useURIValidationHack="false">

<Factory className="com.sun.web.security.SSLSocketFactory"
clientAuth="false" protocol="TLS" debug="0" />

</Connector>

The attributes in this Connector element are described in more detail in the doc-
umentation for the Tomcat Server Administration Tool in Appendix A. You can
add an SSL HTTPS Connector to Tomcat using either of these two methods:

• Add the Connector using admintool. See Adding an SSL Connector in
admintool (page 730).

• Add a Connector element for an SSL connector to the server’s deployment
descriptor. See Configuring the SSL Connector in server.xml (page 731).

Adding an SSL Connector in admintool
To configure an SSL Connector using admintool, you must first have created a
keystore as described in Setting Up Digital Certificates (page 723). Tomcat will
be looking for a keystore file named .keystore in the home directory of the
machine on which Tomcat is running. When you have verified that you have cre-
ated the keystore file, follow these steps.

1. Start Tomcat, if you haven’t already done so.

2. Start admintool by entering http://localhost:8080/admin in a Web
browser.

3. Enter a user name and password combination that is assigned the role of
admin.

4. Select Service (Java Web Services Developer Pack) in the left pane.

5. Select Create New Connector from the drop-down list in the right pane.

6. In the Type field, select HTTPS.

CONFIGURING THE SSL CONNECTOR 731
7. In the Port field, enter 8443 (or whatever port you require). This defines the
TCP/IP port number on which Tomcat will listen for secure connections.

8. Enter the Keystore Name and Keystore Password if you have created a
keystore named something other than .keystore, if .keystore is located
in a directory other than the home directory of the machine on which Tom-
cat is running, or if the password is something other than the default value
of changeit. If you have used the expected values, you can leave these
fields blank.

The home directory is generally /home/user_name on Unix and Linux
systems, and C:\Documents and Settings\user_name on Microsoft
Windows systems.

9. Select Save to save the new Connector for this session.

10.Select Commit Changes to write the new Connector information to the
server.xml file so that it is available the next time Tomcat is started.

To view and/or edit the newly-created Connector, expand the Service (Java Web
Services Developer Pack) node, and select Connector (8443).

Configuring the SSL Connector in server.xml
An example Connector element for an SSL connector is included in the default
server.xml. This Connector element is commented out by default. To enable
the SSL Connector for Tomcat, remove the comment tags around the SSL Con-
nector element. To do this, follow these steps.

1. Shutdown Tomcat, if it is running. Changes to the file
<JWSDP_HOME>/conf/server.xml are read by Tomcat when it is started.

2. Open the file <JWSDP_HOME>/conf/server.xml in a text editor.

3. Find the following section of code in the file (try searching for SSL Con-
nector). Remove comment tags around the Connector entry. The comment
tags that are to be removed are shown in bold below.

<!-- SSL Connector on Port 8443 -->

<!--
<Connector

className="org.apache.coyote.tomcat4.CoyoteConnector"
port="8443" minProcessors="5"
maxProcessors="75"
enableLookups="false"
acceptCount="10"

732 SECURITY
connectionTimeout="60000" debug="0"
scheme="https" secure="true">

<Factory
className="org.apache.coyote.tomcat4.

CoyoteServerSocketFactory"
clientAuth="false" protocol="TLS" />

</Connector>
-->

4. Save and close the file.

5. Start Tomcat.

The attributes in this Connector element are outlined in more detail in Tomcat
Administration Tool (page 785) documentation.

Verifying SSL Support
For testing purposes, and to verify that SSL support has been correctly installed,
load the default introduction page with a URL that connects to port defined in
the server deployment descriptor:

https://localhost:8443/

The https in this URL indicates that the browser should be using the SSL proto-
col. The port of 8443 is where the SSL Connector was created in the previous
step.

The first time a user loads this application, the New Site Certificate dialog dis-
plays. Select Next to move through the series of New Site Certificate dialogs,
select Finish when you reach the last dialog.

General Tips on Running SSL
The SSL protocol is designed to be as efficient as securely possible. However,
encryption/decryption is a computationally expensive process from a perfor-
mance standpoint. It is not strictly necessary to run an entire Web application
over SSL, and it is customary for a developer to decide which pages require a
secure connection and which do not. Pages that might require a secure connec-
tion include login pages, personal information pages, shopping cart checkouts,
or any pages where credit card information could possibly be transmitted. Any
page within an application can be requested over a secure socket by simply pre-
fixing the address with https: instead of http:. Any pages which absolutely

GENERAL TIPS ON RUNNING SSL 733
require a secure connection should check the protocol type associated with the
page request and take the appropriate action if https: is not specified.

Using name-based virtual hosts on a secured connection can be problematic.
This is a design limitation of the SSL protocol itself. The SSL handshake, where
the client browser accepts the server certificate, must occur before the HTTP
request is accessed. As a result, the request information containing the virtual
host name cannot be determined prior to authentication, and it is therefore not
possible to assign multiple certificates to a single IP address. If all virtual hosts
on a single IP address need to authenticate against the same certificate, the addi-
tion of multiple virtual hosts should not interfere with normal SSL operations on
the server. Be aware, however, that most client browsers will compare the
server’s domain name against the domain name listed in the certificate, if any
(applicable primarily to official, CA-signed certificates). If the domain names do
not match, these browsers will display a warning to the client. In general, only
address-based virtual hosts are commonly used with SSL in a production envi-
ronment.

Troubleshooting SSL Connections

When Tomcat starts up, I get an exception like
"java.io.FileNotFoundException: {some-
directory}/{some-file} not found".
A likely explanation is that Tomcat cannot find the keystore file where it is look-
ing. By default, Tomcat expects the keystore file to be named .keystore, and to
be located in the home directory on the system under which Tomcat is running
(which may or may not be the same as yours). If the keystore file is anywhere
else, you will need to add a keystoreFile attribute to the <Factory> element in
the Tomcat configuration file or specify the location of the file on the Connector

(8443) node of admintool.

When Tomcat starts up, I get an exception like
"java.io.FileNotFoundException: Keystore was
tampered with, or password was incorrect".
Assuming that someone has not actually tampered with your keystore file, the
most likely cause is that Tomcat is using a different password than the one you
used when you created the keystore file. To fix this, you can either go back and
recreate the keystore file, or you can add or update the keystorePass attribute

734 SECURITY
on the <Factory> element in the Tomcat configuration file or on the Connector
(8443) node of admintool. REMINDER - Passwords are case sensitive!

If you are still having problems,
If you are still having problems, a good source of information is the TOMCAT-
USER mailing list. You can find pointers to archives of previous messages on
this list, as well as subscription and unsubscription information, at
http://jakarta.apache.org/site/mail.html.

Further information on SSL
For more information, please read the Tomcat document SSL Configuration
HOW-TO, located at <JWSDP_HOME>/docs/tomcat/ssl-howto.html.

Security for JAX-RPC
In this section, you’ll learn how to configure JAX-RPC-based Web service appli-
cations for basic and mutual authentication over HTTP/SSL. If the topic of
authentication is new to you, please refer to the section titled Authenticating
Users of Web Resources (page 715).

For this tutorial, we are going to modify the example application in
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello to add HTTP/S basic
and mutual authentication. The resulting application can be found in the direc-
tory <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security. The follow-
ing steps are necessary to add basic authentication to the hello example:

• Create the appropriate certificates and keystores (see Step 1: Creating SSL
Certificates for Basic Authentication, page 735).

• Make sure that your server is configured for an SSL Connector. The Tom-
cat server is not configured with an SSL Connector, so you need to add the
SSL Connector (see Configuring the SSL Connector, page 729) and add

http://jakarta.apache.org/site/mail.html

STEP 1: CREATING SSL CERTIFICATES FOR BASIC AUTHENTICATION 735
information on the generated keystore files (see Step 2: Configuring the
SSL Connector, page 737).

• Add security elements to the web.xml deployment descriptor. See Step 3:
Adding Security Elements to web.xml (page 737) for information on how
to do this.

• Modify the endpoint address in the build.properties file for the appli-
cation, and add other properties needed to run this example. See Step 4:
Editing the Build Properties (page 739).

• Set security properties in the client code. See Step 5: Setting Security Prop-
erties in the Client Code (page 739) for information on how to do this.

• Build and run the Web service. See Step 6: Create a New Ant Target for
Running this Example (page 741) for information on how to do this for the
example application.

The steps for configuring a Web service for basic authentication over HTTP/S
are outlined here. For mutual authentication, follow these steps, then add client
authentication as discussed in Enabling Mutual Authentication Over
SSL (page 742).

Step 1: Creating SSL Certificates for Basic
Authentication

Note: This information is discussed in more detail in Setting Up Digital
Certificates (page 723). This section provides a summary of the steps needed to cre-
ate the SSL Certificates for this example.

We will use the tool keytool to generate SSL certificates and export them to the
appropriate server and client keystores. Keep in mind that the server and client
keystores are created in the directory from which you run keytool. Since we are
adding security to the hello Web service, we will run keytool from the direc-
tory where the modified example application resides, which is the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security directory. In so
doing, the keystores are created in the same directory as the code for the secu-

rity Web service.

1. Run keytool to generate the server and client keystores. For basic authen-
tication, it is only necessary to import the server certificate into the client

736 SECURITY
keystore. Generate the server keystore with a default password of
changeit.

To generate the server keystore, enter the following in a terminal window.
Be sure that you are in the directory <JWSDP_HOME>/docs/tuto-

rial/examples/jaxrpc/security before proceeding.

Note that when you press Enter, keytool prompts you to enter the server
name, organizational unit, organization, locality, state, and country code.
Note that you must enter the server name in response to keytool’s first
prompt in which it asks for first and last names. For testing purposes,
this may be localhost. This host must match the host identified in the
endpoint address specified in Step 4: Editing the Build
Properties (page 739).

<J2SE_HOME>\bin\keytool -genkey -alias tomcat-server -keyalg
RSA -keypass changeit -storepass changeit -keystore
server.keystore

2. Export the generated server certificate.
<J2SE_HOME>\bin\keytool -export -alias tomcat-server
-storepass changeit -file server.cer -keystore server.key-
store

3. Generate the client keystore.

To generate the client keystore, enter the following at a terminal window:

Note that when you press Enter, keytool prompts you to enter the client’s
server name, organizational unit, organization, locality, state, and country
code. Note that you must enter the server name in response to key-
tool’s first prompt in which it asks for first and last names. In most
cases, for testing purposes, this will be localhost. This host must match
the host identified in the endpoint address specified in Step 4: Editing the
Build Properties (page 739).

<J2SE_HOME>\bin\keytool -genkey -alias jwsdp-client -keyalg
RSA -keypass changeit -storepass changeit -keystore
client.keystore

4. Import the server certificate into the client’s keystore.

<J2SE_HOME>\bin\keytool -import -v -trustcacerts
-alias tomcat-server -file server.cer
-keystore client.keystore -keypass changeit
-storepass changeit

STEP 2: CONFIGURING THE SSL CONNECTOR 737
Step 2: Configuring the SSL Connector

Note: The steps for configuring an SSL Connector are provided in more detail in
the section Configuring the SSL Connector (page 729). The steps in this section are
provided for your convenience.

You need to configure an SSL Connector for Tomcat. If you are using a different
server, see Configuring the SSL Connector (page 729) for general information
on configuring an SSL Connector. In addition to configuring the server for an
SSL Connector, you must also add information on the keystore file and its pass-
word in the same place where you’ve added the SSL connector. For example, in
the Java WSDP, you first need to remove the comment tags (<!-- ... -->) from
around the SSL Connector and then add the information in bold to this section in
the file <JWSDP_HOME>/conf/server.xml.

<!-- SSL Connector on Port 8443 -->
<Connector
className="org.apache.coyote.tomcat4.CoyoteConnector"

port="8443" minProcessors="5" maxProcessors="75"
enableLookups="false"
acceptCount="10" debug="0" scheme="https" secure="true">

<Factory className=
"org.apache.coyote.tomcat4.CoyoteServerSocketFactory">
keystoreFile=

"<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security/
server.keystore"

keystorePass="changeit"
clientAuth="false" protocol="TLS" debug="0" />

</Connector>

Step 3: Adding Security Elements to
web.xml
The files for this example are in the <JWSDP_HOME>/docs/tuto-

rial/examples/jaxrpc/security directory. For authentication over SSL, the
web.xml file includes the <security-constraint>, <login-config>, and

738 SECURITY
<security-role> elements. Code in bold has been added from the basic
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/hello example.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application

2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
<display-name>Hello World Application (secure)</display-name>

 <description>HTTPS example using JAX-RPC </description>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
 <security-constraint>

 <web-resource-collection>
 <web-resource-name>SecureHello</web-resource-name>
 <url-pattern>/security</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

<security-role>
<role-name>manager</role-name>

</security-role>
</web-app>

Note that the <role-name> element specifies manager, a role that has already
been specified in a deployment descriptor for Tomcat
(<JWSDP_HOME>/conf/tomcat-users.xml). For more information on defining
and linking roles, see Security Roles (page 703).

STEP 4: EDITING THE BUILD PROPERTIES 739
Step 4: Editing the Build Properties
To run the application with basic authentication over HTTP/SSL, we have added
some properties related to the keystore file and its password to the build.prop-

erties file, which is located in the <JWSDP_HOME>/docs/tuto-

rial/examples/jaxrpc/security directory. The following example assumes
you are running on Java WSDP 1.1. The items marked in bold have been be
added to the file. The items that have been added will be passed as arguments to
the client application when it is run in a later section.

This file is referenced by the build.xml file.

example=security
context-path=security-jaxrpc

client-class=security.HelloClient
client-jar=${example}-client.jar

portable-war=${example}-portable.war
deployable-war=${context-path}.war
war-path=${tut-
root}/tutorial/examples/jaxrpc/${example}/dist/${deployable-
war}

trust-store=${tut-root}/tutorial/examples/jaxrpc/security/cli-
ent.keystore

trust-store-password=changeit

Step 5: Setting Security Properties in the
Client Code
The source code for the client is in the HelloClient.java file of the
<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security directory. For
basic authentication over SSL, the client code must set several security-related
properties.

• trust-store Property - The value of the trust-store property is the
fully qualified name of the client keystore file:

../examples/jaxrpc/security/HelloClient.java

740 SECURITY
<JWSDP_HOME>/docs/tuto-

rial/examples/jaxrpc/security/client.keystore

• trust-store-password Property - The trust-store-password property
is the password of the keystore. The default value of this password is
changeit.

• username and password Properties - The username and password proper-
ties correspond to the manager role. (See Security Roles, page 703.)

The client sets the aforementioned security properties as follows. The code in
bold is the code that had been added from the original version of the
jaxrpc/hello example application.

package security;

import javax.xml.rpc.Stub;

public class HelloClient {

 public static void main(String[] args) {

 if (args.length !=4) {
System.out.println("Usage: ant run-security");
System.exit(1);

 }

 String trustStore=args[0];
 String trustStorePassword=args[1];
 String username=args[2];
 String password=args[3];

 System.out.println("trustStore: " + trustStore);
System.out.println("trustStorePassword: " +
trustStorePassword);

 System.out.println("username: " + username);
 System.out.println("password: " + password);

try {
Stub stub = createProxy();
System.setProperty("javax.net.ssl.trustStore",

trustStore);
System.setProperty("javax.net.ssl.trustStorePassword",

trustStorePassword);
stub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY,

username);
stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY,

password);

STEP 6: CREATE A NEW ANT TARGET FOR RUNNING THIS EXAMPLE 741
HelloIF hello = (HelloIF)stub;
System.out.println(hello.sayHello("Duke! I feel

secure!"));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 private static Stub createProxy() {
// Note: MyHelloService_Impl is implementation-specific.

 return (Stub)(new MyHello_Impl().getHelloIFPort());
 }
}

Step 6: Create a New Ant Target for
Running this Example
The existing target for running the hello example application is not sufficient for
running the secure version of the application. You need to pass information on
the keystore and its password, as well as the user name and its password. The
following target has been added to the file
<JWSDP_HOME>/docs/examples/jaxrpc/security/build.xml to faciliate run-
ning the secure JAX-RPC example:

<target name="run-security"
 description="Runs a client with authentication

over ssl">
<echo message="Running the ${client-class} program...." />
<java

fork="on"
classpath="${dist}/${client-jar}:${jwsdp-jars}"
classname="${client-class}" >
<arg value="${trust-store}" />
<arg value="${trust-store-password}" />
<arg value="${username}" />
<arg value="${password}" />

</java>
</target>

742 SECURITY
Step 7: Building and Running this
Example
To build and run this JAX-RPC example over SSL, perform the following steps:

1. If you haven’t already done so, follow the instructions in Setting
Up (page 69), download the example code for this tutorial, and complete
Steps 1-2 before proceeding, as these steps are specific to your machine
and implementation.

2. Make sure that Tomcat is running.

3. Go to the <JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security

directory.

4. Type the following commands:

ant build
ant package
ant deploy
ant build-static
ant run-security

The client should display the following output:

% ant run-security
Buildfile: build.xml

run-security:
 [echo] Running the security.HelloClient program...

[java] trustStore: <JWSDP_HOME>/docs/tutorial/examples/
jaxrpc/security/client.keystore

 [java] trustStorePassword: changeit
 [java] username: your_name
 [java] password: your_password
[java] Hello - secure Duke! I feel secure!

BUILD SUCCESSFUL

Enabling Mutual Authentication Over SSL
The section Security for JAX-RPC (page 734) discusses setting up server-side
authentication. This section discusses setting up client-side authentication.
When both server and client-side authentication are enabled, this is called
mutual, or two-way, authentication. In client authentication, clients are required

ENABLING MUTUAL AUTHENTICATION OVER SSL 743
to submit certificates that are issued by a certificate authority that you choose to
accept. There are at least two ways to enable client authentication.

1. Configure the SSL Socket Factory to enable client authentication. For
example, to configure the SSL Socket Factory for Tomcat, you would set
clientAuth=”true”, as shown in bold in the code sample below. By
enabling client authentication in this way, client authentication is required
for all the requests going through the specified SSL port. As with all
changes to the Web server configuration file, you must stop and restart the
Web server for this change to become effective.
<!-- SSL Connector on Port 8443 -->
<Connector className="org.apache.coyote.tomcat4.CoyoteCon-
nector"

port="8443" minProcessors="5" maxProcessors="75"
enableLookups="false"
acceptCount="10" debug="0" scheme="https"

secure="true">
<Factory className=
"org.apache.coyote.tomcat4.CoyoteServerSocketFactory">
keystoreFile=

"<JWSDP_HOME>/docs/tutorial/examples/jaxrpc/security/
server.keystore"
keystorePass="changeit"
clientAuth="true" protocol="TLS" debug="0" />

</Connector>

2. Set the method of authentication in the web.xml file to CLIENT-CERT, as
shown in bold below. By enabling client authentication in this way, client
authentication is enabled for a specific application.

<login-config>
<auth-method>CLIENT-CERT</auth-method>

</login-config>

3. When client authentication is enabled in both ways mentioned above, cli-
ent authentication will be performed twice.

744 SECURITY
Configuring Mutual Authentication for the
JAX-RPC Security Example
To configure and create a JAX-RPC service with mutual authentication, follow
all of the steps in the section Security for JAX-RPC (page 734) up to and includ-
ing the command ant build-static. Then, follow these steps:

1. Generate a client certificate, export it, and then import the client certificate
into the server’s keystore, as discussed in Creating a Client Certificate for
Mutual Authentication (page 727).

2. Edit web.xml to change the method of authentication to CLIENT-CERT in
the login configuration section of the deployment descriptor.
<login-config>

<auth-method>CLIENT-CERT</auth-method>
</login-config>

3. Run the application:

ant run-security

The client should display the following line:

Hello Duke! I feel secure!

Acknowledgement: This section includes material from the “Web Services Secu-
rity Configuration” white paper, written by Rahul Sharma and Beth Stearns.

EIS-Tier Security
In the EIS tier, an application component requests a connection to an EIS
resource. As part of this connection, the EIS may require a sign-on to the
resource. The application component provider has two choices for the design of
the EIS sign-on:

• With the container-managed sign-on approach, the application component
lets the container take the responsibility of configuring and managing the
EIS sign-on. The container determines the user name and password for
establishing a connection to an EIS instance.

• With the component-managed sign-on approach, the application compo-
nent code manages EIS sign-on by including code that performs the sign-
on process to an EIS.

CONTAINER-MANAGED SIGN-ON 745
Container-Managed Sign-On
With container-managed sign-on, an application component does not have to
pass any security information for signing on to the resource to the getConnec-

tion() method. The security information is supplied by the container, as shown
in the following example.

// Business method in an application component
Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup(
 “java:comp/env/eis/MainframeCxFactory”);

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method
javax.resource.cci.Connection cx = cxf.getConnection();
...

Component-Managed Sign-On
With component-managed sign-on, an application component is responsible for
passing the security information that is needed for signing on to the resource to
the getConnection() method. Security information could be a user name and
password, for example, as shown here:

// Method in an application component
Context initctx = new InitialContext();

// Perform JNDI lookup to obtain a connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)initctx.lookup(
 “java:comp/env/eis/MainframeCxFactory”);

// Get a new ConnectionSpec
com.myeis.ConnectionSpecImpl properties = //..

// Invoke factory to obtain a connection
properties.setUserName(“...”);
properties.setPassword(“...”);
javax.resource.cci.Connection cx =
 cxf.getConnection(properties);
...

746 SECURITY

19
747
The Coffee Break
Application

Stephanie Bodoff, Maydene Fisher, Dale Green, Kim Haase

The introduction to this tutorial introduced a scenario in which a Web applica-
tion (The Coffee Break) is constructed using Web services. Now that we have
discussed all the technologies necessary to build Web applications and Web ser-
vices, this chapter describes an implementation of the scenario described in
Chapter 1.

Coffee Break Overview
The Coffee Break sells coffee on the Internet. Customers communicate with the
Coffee Break server to order coffee online. The server consists of Java Servlets,
JSP pages, and JavaBeans components. A customer enters the quantity of each
coffee to order and clicks the “Submit” button to send the order.

The Coffee Break does not maintain any inventory. It handles customer and
order management and billing. Each order is filled by forwarding suborders to
one or more coffee distributors. This process is depicted in Figure 19–1.

748 THE COFFEE BREAK APPLICATION
Figure 19–1 Coffee Break Application Flow

The Coffee Break server obtains the coffee varieties it sells and their prices by
querying distributors at startup and on demand.

1. The Coffee Break server uses JAXM messaging to communicate with one
of its distributors. It has been dealing with this distributor for some time
and has previously made the necessary arrangements for doing request-
response JAXM messaging. The two parties have agreed to exchange four
kinds of XML messages and have set up the DTDs those messages will fol-
low.

2. The Coffee Break server uses JAXR to send a query searching for coffee
distributors that support JAX-RPC to the Registry Server.

3. The Coffee Break server requests price lists from each of the coffee distrib-
utors. The server makes the appropriate remote procedure calls and waits
for the response, which is a JavaBeans component representing a price list.
The JAXM distributor returns price lists as XML documents.

4. Upon receiving the responses, the Coffee Break server processes the price
lists from the JavaBeans components returned by calls to the distributors.

5. The Coffee Break Server creates a local database of distributors.

6. When an order is placed, suborders are sent to one or more distributors
using the distributor’s preferred protocol.

JAX-RPC DISTRIBUTOR SERVICE 749
JAX-RPC Distributor Service
The Coffee Break server is also a client— it makes remote calls on the JAX-RPC
distributor service. The service code consists of the service interface, service
implementation class, and several JavaBeans components that are used for
method parameters and return types.

Service Interface
The service interface, SupplierIF, defines the methods that can be called by
remote clients. The parameters and return types of these methods are JavaBeans
components:

• AddressBean - shipping information for customer

• ConfirmationBean - order id and ship date

• CustomerBean - customer contact information

• LineItemBean - order item

• OrderBean - order id, customer, address, list of line items, total price

• PriceItemBean - price list entry (coffee name and wholesale price)

• PriceListBean - price list

Because these components are shared by other programs, their source code
resides in the <JWSDP_HOME>/docs/tutorial/examples/cb/common/src
directory. The source code for the SupplierIF interface, which follows, resides
in the <JWSDP_HOME>/docs/tutorial/examples/cb/jaxrpc/src directory.

package com.sun.cb;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SupplierIF extends Remote {

 public ConfirmationBean placeOrder(OrderBean order)
 throws RemoteException;

public PriceListBean getPriceList() throws RemoteException;
}

750 THE COFFEE BREAK APPLICATION
Service Implementation
The SupplierImpl class implements the placeOrder and getPriceList meth-
ods, which are defined by the SupplierIF interface. So that you can focus on the
code related to JAX-RPC, these methods are short and simplistic. In a real-world
application, these methods would access databases and interact with other ser-
vices, such as shipping, accounting, and inventory.

The placeOrder method accepts as input a coffee order and returns a confirma-
tion for the order. To keep things simple, the placeOrder method confirms every
order and sets the ship date in the confirmation to the next day. (This date is cal-
culated by DateHelper, a utility class that resides in the cb/common subdirec-
tory.) The source code for the placeOrder method follows:

public ConfirmationBean placeOrder(OrderBean order) {

 Date tomorrow =
 com.sun.cb.DateHelper.addDays(new Date(), 1);
 ConfirmationBean confirmation =
 new ConfirmationBean(order.getId(), tomorrow);
 return confirmation;
}

The getPriceList method returns a PriceListBean object, which lists the
name and price of each type of coffee that can be ordered from this service. The
getPriceList method creates the PriceListBean object by invoking a private
method named loadPrices. In a production application, the loadPrices

method would fetch the prices from a database. However, our loadPrices

method takes a shortcut by getting the prices from the SupplierPrices.prop-

erties file. Here are the getPriceList and loadPrices methods:

public PriceListBean getPriceList() {

 PriceListBean priceList = loadPrices();
 return priceList;
}

private PriceListBean loadPrices() {

 String propsName = “com.sun.cb.SupplierPrices”;
 Date today = new Date();
 Date endDate = DateHelper.addDays(today, 30);

 PriceItemBean[] priceItems =
 PriceLoader.loadItems(propsName);

PUBLISHING THE SERVICE IN THE REGISTRY 751
 PriceListBean priceList =
 new PriceListBean(today, endDate, priceItems);

 return priceList;
}

Publishing the Service in the Registry
Because we want customers to find our service, we will to publish it in a registry.
The programs that publish and remove our service are called OrgPublisher and
OrgRemover. These programs are not part of the service’s Web application. They
are stand-alone programs that are run by the ant set-up-service command.
(See Building and Installing the JAX-RPC Service, page 778.) Immediately after
the service is installed, it’s published in the registry. And in like manner, right
before the service is removed, it’s removed from the registry.

The OrgPublisher program begins by loading String values from the Cof-

feeRegistry.properties file. Next, the program instantiates a utility class
named JAXRPublisher. OrgPublisher connects to the registry by invoking the
makeConnection method of JAXRPublisher. To publish the service, OrgPub-
lisher invokes the executePublish method, which accepts as input username,
password, and endpoint. The username and password values are required by
the Registry Server. The endpoint value is the URL that remote clients will use
to contact our JAX-RPC service. The executePublish method of JAXRPub-

lisher returns a key that uniquely identifies the service in the registry. OrgPub-
lisher saves this key in a text file named orgkey.txt. The OrgRemover

program will read the key from orgkey.txt so that it can delete the service. (See
Deleting the Service From the Registry, page 755.) The source code for the Org-

Publisher program follows.

package com.sun.cb;

import javax.xml.registry.*;
import java.util.ResourceBundle;
import java.io.*;

public class OrgPublisher {

 public static void main(String[] args) {

 ResourceBundle registryBundle =
 ResourceBundle.getBundle
 (“com.sun.cb.CoffeeRegistry”);

752 THE COFFEE BREAK APPLICATION
 String queryURL =
 registryBundle.getString(“query.url”);
 String publishURL =
 registryBundle.getString(“publish.url”);
 String username =
 registryBundle.getString(“registry.username”);
 String password =
 registryBundle.getString(“registry.password”);

String endpoint = registryBundle.getString(“endpoint”);
 String keyFile = registryBundle.getString(“key.file”);

 JAXRPublisher publisher = new JAXRPublisher();
 publisher.makeConnection(queryURL, publishURL);
 String key = publisher.executePublish
 (username, password, endpoint);

 try {
 FileWriter out = new FileWriter(keyFile);
 out.write(key);
 out.flush();
 out.close();
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 }
 }

}

The JAXRPublisher class is almost identical to the sample program JAXRPub-

lish.java, which is described in Managing Registry Data (page 551).

First, the makeConnection method creates a connection to the Registry Server.
See Establishing a Connection (page 542) for more information. To do this, it
first specifies a set of connection properties using the query and publish URLs
passed in from the CoffeeRegistry.properties file. For the Registry Server,
the query and publish URLs are actually the same.

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",
 queryUrl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL",
 publishUrl);

../examples/jaxr/JAXRPublish.java
../examples/jaxr/JAXRPublish.java

PUBLISHING THE SERVICE IN THE REGISTRY 753
Next, the makeConnection method creates the connection, using the connection
properties:

ConnectionFactory factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

The executePublish method takes three arguments: a username, a password,
and an endpoint. It begins by obtaining a RegistryService object, then a Busi-

nessQueryManager object and a BusinessLifeCycleManager object, which
enable it to perform queries and manage data:

rs = connection.getRegistryService();
blcm = rs.getBusinessLifeCycleManager();
bqm = rs.getBusinessQueryManager();

Because it needs password authentication in order to publish data, it then uses
the username and password arguments to establish its security credentials:

PasswordAuthentication passwdAuth =
 new PasswordAuthentication(username,
 password.toCharArray());
Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

It then creates an Organization object with the name “JAXRPCCoffeeDistribu-
tor,” then a User object that will serve as the primary contact. It gets the data
from the resource bundle instead of hardcoding it as strings, but otherwise this
code is almost identical to that shown in the JAXR chapter.

ResourceBundle bundle =
 ResourceBundle.getBundle("com.sun.cb.CoffeeRegistry");

// Create organization name and description
Organization org =
 blcm.createOrganization(bundle.getString("org.name"));
InternationalString s =
 blcm.createInternationalString
 (bundle.getString("org.description"));
org.setDescription(s);

// Create primary contact, set name

754 THE COFFEE BREAK APPLICATION
User primaryContact = blcm.createUser();
PersonName pName =
 blcm.createPersonName(bundle.getString("person.name"));
primaryContact.setPersonName(pName);

It adds a telephone number and email address for the user, then makes the user
the primary contact:

org.setPrimaryContact(primaryContact);

It gives JAXRPCCoffeeDistributor a classification using the North American
Industry Classification System (NAICS). In this case it uses the classification
“Other Grocery and Related Products Wholesalers”.

Classification classification = (Classification)
 blcm.createClassification(cScheme,
 bundle.getString("classification.name"),
 bundle.getString("classification.value"));
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Next, it adds the JAX-RPC service, called “JAXRPCCoffee Service,” and its ser-
vice binding. The access URI for the service binding contains the endpoint URL
that remote clients will use to contact our service:

http://localhost:8080/jaxrpc-coffee-supplier/jaxrpc/SupplierIF

JAXR validates each URI, so an exception is thrown if the service was not
installed before you ran this program.

Collection services = new ArrayList();
Service service =
 blcm.createService(bundle.getString("service.name"));
InternationalString is =
 blcm.createInternationalString
 (bundle.getString("service.description"));
service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createInternationalString
 (bundle.getString("service.binding"));
binding.setDescription(is);
try {

DELETING THE SERVICE FROM THE REGISTRY 755
 binding.setAccessURI(endpoint);
} catch (JAXRException je) {
 throw new JAXRException("Error: Publishing this " +
 "service in the registry has failed because " +
 "the service has not been installed on Tomcat.");
}
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Then it saves the organization to the registry:

Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);

The BulkResponse object returned by saveOrganizations includes the Key

object containing the unique key value for the organization. The executePub-

lish method first checks to make sure the saveOrganizations call succeeded.

If the call succeeded, the method extracts the value from the Key object and dis-
plays it:

Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();
if (keyIter.hasNext()) {
 javax.xml.registry.infomodel.Key orgKey =
 (javax.xml.registry.infomodel.Key) keyIter.next();
 id = orgKey.getId();
 System.out.println("Organization key is " + id);
}

Finally, the method returns the string id so that the OrgPublisher program can
save it in a file for use by the OrgRemover program.

Deleting the Service From the Registry
The OrgRemover program deletes the service from the Registry Server immedi-
ately before the service is removed. Like the OrgPublisher program, the
OrgRemover program starts by fetching values from the CoffeeRegistry.prop-

756 THE COFFEE BREAK APPLICATION
erties file. One these values, keyFile, is the name of the file that contains the
key that uniquely identifies the service. OrgPublisher reads the key from the
file, connects to the Registry Server by invoking makeConnection, and then
deletes the service from the registry by calling executeRemove. Here is the
source code for the OrgRemover program:

package com.sun.cb;

import java.util.ResourceBundle;
import javax.xml.registry.*;
import javax.xml.registry.infomodel.Key;
import java.io.*;

public class OrgRemover {

 Connection connection = null;

 public static void main(String[] args) {

 String keyStr = null;

 ResourceBundle registryBundle =
 ResourceBundle.getBundle
 (“com.sun.cb.CoffeeRegistry”);

 String queryURL =
 registryBundle.getString(“query.url”);
 String publishURL =
 registryBundle.getString(“publish.url”);
 String username =
 registryBundle.getString(“registry.username”);
 String password =
 registryBundle.getString(“registry.password”);
 String keyFile = registryBundle.getString(“key.file”);

 try {
 FileReader in = new FileReader(keyFile);
 char[] buf = new char[512];
 while (in.read(buf, 0, 512) >= 0) { }
 in.close();
 keyStr = new String(buf).trim();
 } catch (IOException ex) {
 System.out.println(ex.getMessage());
 }

 JAXRRemover remover = new JAXRRemover();
 remover.makeConnection(queryURL, publishURL);

DELETING THE SERVICE FROM THE REGISTRY 757
 javax.xml.registry.infomodel.Key modelKey = null;
 modelKey = remover.createOrgKey(keyStr);
 remover.executeRemove(modelKey, username, password);
 }
}

Instantiated by the OrgRemover program, the JAXRRemover class contains the
makeConnection, createOrgKey, and executeRemove methods. It is almost
identical to the sample program JAXRDelete.java, which is described in
Removing Data from the Registry (page 556).

The makeConnection method is identical to the JAXRPublisher method of the
same name.

The createOrgKey method is a utility method that takes one argument, the string
value extracted from the key file. It obtains the RegistryService object and the
BusinessLifeCycleManager object, then creates a Key object from the string
value.

The executeRemove method takes three arguments: a username, a password, and
the Key object returned by the createOrgKey method. It uses the username and
password arguments to establish its security credentials with the Registry Server,
just as the executePublish method does.

The method then wraps the Key object in a Collection and uses the Business-

LifeCycleManager object’s deleteOrganizations method to delete the organi-
zation.

Collection keys = new ArrayList();
keys.add(key);
BulkResponse response = blcm.deleteOrganizations(keys);

The deleteOrganizations method returns the keys of the organizations it
deleted, so the executeRemove method then verifies that the correct operation
was performed and displays the key for the deleted organization.

Collection retKeys = response.getCollection();
Iterator keyIter = retKeys.iterator();
javax.xml.registry.infomodel.Key orgKey = null;
if (keyIter.hasNext()) {
 orgKey =
 (javax.xml.registry.infomodel.Key) keyIter.next();
 id = orgKey.getId();
 System.out.println("Organization key was " + id);
}

../examples/jaxr/JAXRDelete.java

758 THE COFFEE BREAK APPLICATION
JAXM Distributor Service
The JAXM distributor service is simply the arrangements that the distributor and
the Coffee Break have made regarding their exchange of XML documents.
These arrangements include what kinds of messages they will send, the form of
those messages, and what kind of JAXM messaging they will do. If they had
agreed to do one-way messaging, they would also have had to use messaging
providers that talk to each other and had to use the same profile. In this scenario,
the parties have agreed to use request-response messaging, so a messaging pro-
vider is not needed.

The Coffee Break server sends two kinds of messages:

• Requests for current wholesale coffee prices

• Customer orders for coffee

The JAXM coffee supplier responds with two kinds of messages:

• Current price lists

• Order confirmations

All of the messages they send conform to an agreed-upon XML structure, which
is specified in a DTD for each kind of message. This allows them to exchange
messages even though they use different document formats internally.

The four kinds of messages exchanged by the Coffee Break server and the
JAXM distributor are specified by the following DTDs:

• request-prices.dtd

• price-list.dtd

• coffee-order.dtd

• confirm.dtd

These DTDs may be found at

<JWSDP_HOME>/docs/tutorial/examples/cb/jaxm/dtds

The dtds directory also contains a sample of what the XML documents specified
in the DTDs might look like. The corresponding XML files for each of the DTDs
are as follows:

• request-prices.xml

• price-list.xml

• coffee-order.xml

• confirm.xml

JAXM CLIENT 759
Because of the DTDs, both parties know ahead of time what to expect in a par-
ticular kind of message and can therefore extract its content using the JAXM
API.

Code for the client and server applications is in the following directory:

<JWSDP_HOME>/docs/tutorial/examples/cb/jaxm/src/com/sun/cb

JAXM Client
The Coffee Break server, which is the JAXM client in this scenario, sends
requests to its JAXM distributor. Because the request-response form of JAXM
messaging is being used, the client applications use the SOAPConnection method
call to send messages.

SOAPMessage response = con.call(request, endpoint);

Accordingly, the client code has two major tasks. The first is to create and send
the request; the second is to extract the content from the response. These tasks
are handled by the classes PriceListRequest and OrderRequest.

Sending the Request
This section covers the code for creating and sending the request for an updated
price list. This is done in the getPriceList method of PriceListRequest,
which follows the DTD price-list.dtd.

The getPriceList method begins by creating the connection that will be used
to send the request. Then it gets the default MessageFactory object so that it can
create the SOAPMessage object msg.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();

MessageFactory mf = MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

760 THE COFFEE BREAK APPLICATION
The next step is to access the message’s SOAPEnvelope object, which will be
used to create a Name object for each new element that is created. It is also used
to access the SOAPBody object, to which the message’s content will be added.

SOAPPart part = msg.getSOAPPart();
SOAPEnvelope envelope = part.getEnvelope();
SOAPBody body = envelope.getBody();

The file price-list.dtd specifies that the top-most element inside the body is
request-prices and that it contains the element request. The text node added
to request is the text of the request being sent. Every new element that is added
to the message must have a Name object to identify it, which is created by the
Envelope method createName. The following lines of code create the top-level
element in the SOAPBody object body. The first element created in a SOAPBody

object is always a SOAPBodyElement object.

Name bodyName = envelope.createName("request-prices",
"RequestPrices", "http://sonata.coffeebreak.com");

SOAPBodyElement requestPrices =
body.addBodyElement(bodyName);

In the next few lines, the code adds the element request to the element
request-prices (represented by the SOAPBodyElement requestPrices.) Then
the code adds a text node containing the text of the request. Next, because there
are no other elements in the request, the code calls the method saveChanges on
the message to save what has been done.

Name requestName = envelope.createName("request");
SOAPElement request =

requestPrices.addChildElement(requestName);
request.addTextNode("Send updated price list.");

msg.saveChanges();

With the creation of the request message completed, the code sends the message
to the JAXM coffee supplier. The message being sent is the SOAPMessage object
msg, to which the elements created in the previous code snippets were added.
The endpoint is the URI for the JAXM coffee supplier. The SOAPConnection

JAXM CLIENT 761
object con is used to send the message, and because it is no longer needed, it is
closed.

URL endpoint = new URL(
"http://localhost:8080/jaxm-coffee-supplier/getPriceList");

SOAPMessage response = con.call(msg, endpoint);
con.close();

When the call method is executed, Tomcat executes the servlet PriceList-
Servlet. This servlet creates and returns a SOAPMessage object whose content is
the JAXM distributor’s price list. (PriceListServlet is discussed in Returning
the Price List, page 767.) Tomcat knows to execute PriceListServlet because
the web.xml file at <JWSDP>/docs/tutorial/examples/cb/jaxm/web/ maps
the given endpoint to that servlet.

Extracting the Price List
This section demonstrates (1) retrieving the price list that is contained in
response, the SOAPMessage object returned by the method call, and (2) return-
ing the price list as a PriceListBean.

The code creates an empty Vector object that will hold the coffee-name and
price elements that are extracted from response. Then the code uses response
to access its SOAPBody object, which holds the message’s content. Notice that the
SOAPEnvelope object is not accessed separately because it is not needed for cre-
ating Name objects, as it was in the previous section.

Vector list = new Vector();

SOAPBody responseBody = response.getSOAPPart().
getEnvelope().getBody();

The next step is to retrieve the SOAPBodyElement object. The method getCh-

ildElements returns an Iterator object that contains all of the child elements
of the element on which it is called, so in the following lines of code, it1 con-
tains the SOAPBodyElement object bodyEl, which represents the price-list

element.

Iterator it1 = responseBody.getChildElements();
while (it1.hasNext()) {

SOAPBodyElement bodyEl = (SOAPBodyElement)it1.next();

The Iterator object it2 holds the child elements of bodyEl, which represent
coffee elements. Calling the method next on it2 retrieves the first coffee ele-

762 THE COFFEE BREAK APPLICATION
ment in bodyEl. As long as it2 has another element, the method next will
return the next coffee element.

Iterator it2 = bodyEl.getChildElements();
while (it2.hasNext()) {

SOAPElement child2 = (SOAPElement)it2.next();

The next lines of code drill down another level to retrieve the coffee-name and
price elements contained in it3. Then the message getValue retrieves the text
(a coffee name or a price) that the JAXM coffee distributor added to the coffee-

name and price elements when it gave content to response. The final line in the
following code fragment adds the coffee name or price to the Vector object
list. Note that because of the nested while loops, for each coffee element that
the code retrieves, both of its child elements (the coffee-name and price ele-
ments) are retrieved.

Iterator it3 = child2.getChildElements();
while (it3.hasNext()) {
 SOAPElement child3 = (SOAPElement)it3.next();
 String value = child3.getValue();
 list.addElement(value);
}

}
}

The last code fragment adds the coffee names and their prices (as a PriceLis-

tItem) to the ArrayList priceItems, and prints each pair on a separate line.
Finally it constructs and returns a PriceListBean.

ArrayList priceItems = new ArrayList();

for (int i = 0; i < list.size(); i = i + 2) {
priceItems.add(

new PriceItemBean(list.elementAt(i).toString(),
new BigDecimal(list.elementAt(i + 1).toString())));

System.out.print(list.elementAt(i) + " ");
System.out.println(list.elementAt(i + 1));

}

Date today = new Date();
Date endDate = DateHelper.addDays(today, 30);
PriceListBean plb =

new PriceListBean(today, endDate, priceItems);

JAXM CLIENT 763
Ordering Coffee
The other kind of message that the Coffee Break server can send to the JAXM
distributor is an order for coffee. This is done in the placeOrder method of
OrderRequest, which follows the DTD coffee-order.dtd.

Creating the Order
As with the client code for requesting a price list, the placeOrder method starts
out by creating a SOAPConnection object, creating a SOAPMessage object, and
accessing the message’s SOAPEnvelope and SOAPBody objects.

SOAPConnectionFactory scf =
SOAPConnectionFactory.newInstance();

SOAPConnection con = scf.createConnection();
MessageFactory mf = MessageFactory.newInstance();
SOAPMessage msg = mf.createMessage();

SOAPPart part = msg.getSOAPPart();
SOAPEnvelope envelope = part.getEnvelope();
SOAPBody body = envelope.getBody();

Next the code creates and adds XML elements to form the order. As is required,
the first element is a SOAPBodyElement, which in this case is coffee-order.

Name bodyName = envelope.createName("coffee-order", "PO",
"http://sonata.coffeebreak.com");

SOAPBodyElement order = body.addBodyElement(bodyName);

The application then adds the next level of elements, the first of these being
orderID. The value given to orderID is extracted from the OrderBean object
passed to the OrderRequest.placeOrder method.

Name orderIDName = envelope.createName("orderID");
SOAPElement orderID = order.addChildElement(orderIDName);
orderID.addTextNode(orderBean.getId());

The next element, customer, has several child elements that give information
about the customer. This information is also extracted from the Customer com-
ponent of OrderBean.

Name childName = envelope.createName("customer");
SOAPElement customer = order.addChildElement(childName);

childName = envelope.createName("last-name");

764 THE COFFEE BREAK APPLICATION
SOAPElement lastName = customer.addChildElement(childName);
lastName.addTextNode(orderBean.getCustomer().

getLastName());

childName = envelope.createName("first-name");
SOAPElement firstName = customer.addChildElement(childName);
firstName.addTextNode(orderBean.getCustomer().

getFirstName());

childName = envelope.createName("phone-number");
SOAPElement phoneNumber = customer.addChildElement(childName);
phoneNumber.addTextNode(orderBean.getCustomer().

getPhoneNumber());

childName = envelope.createName("email-address");
SOAPElement emailAddress =

customer.addChildElement(childName);
emailAddress.addTextNode(orderBean.getCustomer().

getEmailAddress());

The address element, added next, has child elements for the street, city, state,
and zip code. This information is extracted from the Address component of
OrderBean.

childName = envelope.createName("address");
SOAPElement address = order.addChildElement(childName);

childName = envelope.createName("street");
SOAPElement street = address.addChildElement(childName);
street.addTextNode(orderBean.getAddress().getStreet());

childName = envelope.createName("city");
SOAPElement city = address.addChildElement(childName);
city.addTextNode(orderBean.getAddress().getCity());

childName = envelope.createName("state");
SOAPElement state = address.addChildElement(childName);
state.addTextNode(orderBean.getAddress().getState());

childName = envelope.createName("zip");
SOAPElement zip = address.addChildElement(childName);
zip.addTextNode(orderBean.getAddress().getZip());

JAXM CLIENT 765
The element line-item has three child elements: coffeeName, pounds, and
price. This information is extracted from the LineItems list contained in
OrderBean.

for (Iterator it = orderBean.getLineItems().iterator();
it.hasNext(); ;) {

LineItemBean lib = (LineItemBean)it.next();

childName = envelope.createName("line-item");
SOAPElement lineItem =

order.addChildElement(childName);

childName = envelope.createName("coffeeName");
SOAPElement coffeeName =

lineItem.addChildElement(childName);
coffeeName.addTextNode(lib.getCoffeeName());

childName = envelope.createName("pounds");
SOAPElement pounds =

lineItem.addChildElement(childName);
pounds.addTextNode(lib.getPounds().toString());

childName = envelope.createName("price");
SOAPElement price =

lineItem.addChildElement(childName);
price.addTextNode(lib.getPrice().toString());

}

//total
childName = envelope.createName("total");
SOAPElement total =

order.addChildElement(childName);
total.addTextNode(orderBean.getTotal().toString());

}

With the order complete, the application sends the message and closes the con-
nection.

URL endpoint = new URL(
"http://localhost:8080/jaxm-coffee-supplier/orderCoffee");

SOAPMessage reply = con.call(msg, endpoint);
con.close();

766 THE COFFEE BREAK APPLICATION
Because the web.xml file maps the given endpoint to ConfirmationServlet,
Tomcat executes that servlet (discussed in Returning the Order
Confirmation, page 772) to create and return the SOAPMessage object reply.

Retrieving the Order Confirmation
The rest of the placeOrder method retrieves the information returned in reply.
The client knows what elements are in it because they are specified in con-

firm.dtd. After accessing the SOAPBody object, the code retrieves the
confirmation element and gets the text of the orderID and ship-date ele-
ments. Finally, it constructs and returns a ConfirmationBean with this informa-
tion.

SOAPBody sBody = reply.getSOAPPart().getEnvelope().getBody();
Iterator bodyIt = sBody.getChildElements();
SOAPBodyElement sbEl = (SOAPBodyElement)bodyIt.next();
Iterator bodyIt2 = sbEl.getChildElements();

SOAPElement ID = (SOAPElement)bodyIt2.next();
String id = ID.getValue();

SOAPElement sDate = (SOAPElement)bodyIt2.next();
String shippingDate = sDate.getValue();

SimpleDateFormat df = new
SimpleDateFormat("EEE MMM dd HH:mm:ss z yyyy");

Date date = df.parse(shippingDate);
ConfirmationBean cb = new ConfirmationBean(id, date);

JAXM Service
The JAXM coffee distributor, the JAXM server in this scenario, provides the
response part of the request-response paradigm. When JAXM messaging is
being used, the server code is a servlet. The core part of each servlet is made up
of three javax.servlet.HttpServlet methods: init, doPost, and onMessage.
The init and doPost methods set up the response message, and the onMessage

method gives the message its content.

JAXM SERVICE 767
Returning the Price List
This section takes you through the servlet PriceListServlet. This servlet cre-
ates the message with the current price list that is returned to the method call,
invoked in PriceListRequest.

Any servlet extends a javax.servlet class. Being part of a Web application,
this servlet extends HttpServlet. It first creates a static MessageFactory object
that will be used later to create the SOAPMessage object that is returned. Then it
declares the MessageFactory object msgFactory, which will be used to create a
SOAPMessage object that has the headers and content of the original request mes-
sage.

public class PriceListServlet extends HttpServlet {
static MessageFactory fac = null;
static {

try {
fac = MessageFactory.newInstance();

} catch (Exception ex) {
ex.printStackTrace();

}
};

MessageFactory msgFactory;

Every servlet has an init method. This init method initializes the servlet with
the configuration information that Tomcat passed to it. Then it simply initializes
msgFactory with the default implementation of the MessageFactory class.

public void init(ServletConfig servletConfig)
throws ServletException {

super.init(servletConfig);
try {

// Initialize it to the default.
msgFactory = MessageFactory.newInstance();

} catch (SOAPException ex) {
throw new ServletException(

"Unable to create message factory" + ex.getMessage());
}

}

The next method defined in PriceListServlet is doPost, which does the real
work of the servlet by calling the onMessage method. (The onMessage method is
discussed later in this section.) Tomcat passes the doPost method two argu-
ments. The first argument, the HttpServletRequest object req, holds the con-

../examples/cb/jaxm/src/com/sun/cb/PriceListServlet.java

768 THE COFFEE BREAK APPLICATION
tent of the message sent in PriceListRequest. The doPost method gets the
content from req and puts it in the SOAPMessage object msg so that it can pass it
to the onMessage method. The second argument, the HttpServletResponse

object resp, will hold the message generated by executing the method
onMessage.

In the following code fragment, doPost calls the methods getHeaders and put-

Headers, defined immediately after doPost, to read and write the headers in req.
It then gets the content of req as a stream and passes the headers and the input
stream to the method MessageFactory.createMessage. The result is that the
SOAPMessage object msg contains the request for a price list. Note that in this
case, msg does not have any headers because the message sent in PriceListRe-

quest did not have any headers.

public void doPost(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException {

try {
// Get all the headers from the HTTP request.
MimeHeaders headers = getHeaders(req);

// Get the body of the HTTP request.
InputStream is = req.getInputStream();

// Now internalize the contents of the HTTP request and
// create a SOAPMessage
SOAPMessage msg = msgFactory.createMessage(headers, is);

Next, the code declares the SOAPMessage object reply and populates it by call-
ing the method onMessage.

SOAPMessage reply = null;
reply = onMessage(msg);

If reply has anything in it, its contents are saved, the status of resp is set to OK,
and the headers and content of reply are written to resp. If reply is empty, the
status of resp is set to indicate that there is no content.

if (reply != null) {
// Need to call saveChanges because we're going to use the
// MimeHeaders to set HTTP response information. These
// MimeHeaders are generated as part of the save.

JAXM SERVICE 769
if (reply.saveRequired()) {
reply.saveChanges();

}

resp.setStatus(HttpServletResponse.SC_OK);

putHeaders(reply.getMimeHeaders(), resp);
// Write out the message on the response stream.
OutputStream os = resp.getOutputStream();
reply.writeTo(os);
os.flush();

} else
resp.setStatus(HttpServletResponse.SC_NO_CONTENT);

} catch (Exception ex) {
throw new ServletException("JAXM POST failed " +

ex.getMessage());
}

}

The methods getHeaders and putHeaders are not standard methods in a servlet
the way init, doPost, and onMessage are. The method doPost calls getHead-

ers and passes it the HttpServletRequest object req that Tomcat passed to it.
It returns a MimeHeaders object populated with the headers from req.

static MimeHeaders getHeaders(HttpServletRequest req) {

Enumeration enum = req.getHeaderNames();
MimeHeaders headers = new MimeHeaders();

while (enum.hasMoreElements()) {
String headerName = (String)enum.nextElement();
String headerValue = req.getHeader(headerName);

StringTokenizer values = new StringTokenizer(
headerValue, ",");

while (values.hasMoreTokens()) {
headers.addHeader(headerName,

values.nextToken().trim());
}

}

return headers;
}

770 THE COFFEE BREAK APPLICATION
The doPost method calls putHeaders and passes it the MimeHeaders object
headers, which was returned by the method getHeaders. The method putHead-
ers writes the headers in headers to res, the second argument passed to it. The
result is that res, the response that Tomcat will return to the method call, now
contains the headers that were in the original request.

static void putHeaders(MimeHeaders headers,
HttpServletResponse res) {

Iterator it = headers.getAllHeaders();
while (it.hasNext()) {

String[] values = headers.getHeader(header.getName());
if (values.length == 1)

res.setHeader(header.getName(),
header.getValue());

else {
StringBuffer concat = new StringBuffer();
int i = 0;
while (i < values.length) {

if (i != 0) concat.append(',');
concat.append(values[i++]);

}
res.setHeader(header.getName(), concat.toString());

}
}

}

The method onMessage is the application code for responding to the message
sent by PriceListRequest and internalized into msg. It uses the static Message-

Factory object fac to create the SOAPMessage object message and then popu-
lates it with the distributor’s current coffee prices.

The method doPost invokes onMessage and passes it msg. In this case,
onMessage does not need to use msg because it simply creates a message con-
taining the distributor’s price list. The onMessage method in Confirmation-

Servlet (Returning the Order Confirmation, page 772), on the other hand, uses
the message passed to it to get the order ID.

public SOAPMessage onMessage(SOAPMessage msg) {
SOAPMessage message = null;
try {

message = fac.createMessage();

SOAPPart part = message.getSOAPPart();
SOAPEnvelope envelope = part.getEnvelope();
SOAPBody body = envelope.getBody();

JAXM SERVICE 771
Name bodyName = envelope.createName("price-list",
"PriceList", "http://sonata.coffeebreak.com");

SOAPBodyElement list = body.addBodyElement(bodyName);

coffee Name coffeeN = envelope.createName("coffee");
SOAPElement coffee = list.addChildElement(coffeeN);

Name coffeeNm1 = envelope.createName("coffee-name");
SOAPElement coffeeName =

coffee.addChildElement(coffeeNm1);
coffeeName.addTextNode("Arabica");

Name priceName1 = envelope.createName("price");
SOAPElement price1 = coffee.addChildElement(priceName1);
price1.addTextNode("4.50");

Name coffeeNm2 = envelope.createName("coffee-name");
SOAPElement coffeeName2 =

coffee.addChildElement(coffeeNm2);
coffeeName2.addTextNode("Espresso");

Name priceName2 = envelope.createName("price");
SOAPElement price2 = coffee.addChildElement(priceName2);
price2.addTextNode("5.00");

Name coffeeNm3 = envelope.createName("coffee-name");
SOAPElement coffeeName3 =

coffee.addChildElement(coffeeNm3);
coffeeName3.addTextNode("Dorada");

Name priceName3 = envelope.createName("price");
SOAPElement price3 = coffee.addChildElement(priceName3);
price3.addTextNode("6.00");

Name coffeeNm4 = envelope.createName("coffee-name");
SOAPElement coffeeName4 =

coffee.addChildElement(coffeeNm4);
coffeeName4.addTextNode("House Blend");

Name priceName4 = envelope.createName("price");
SOAPElement price4 = coffee.addChildElement(priceName4);
price4.addTextNode("5.00");

message.saveChanges();

} catch(Exception e) {
e.printStackTrace();

772 THE COFFEE BREAK APPLICATION
}
return message;
}

}

Returning the Order Confirmation
ConfirmationServlet creates the confirmation message that is returned to the
call method that is invoked in OrderRequest. It is very similar to the code in
PriceListServlet except that instead of building a price list, its onMessage

method builds a confirmation with the order number and shipping date.

The onMessage method for this servlet uses the SOAPMessage object passed to it
by the doPost method to get the order number sent in OrderRequest. Then it
builds a confirmation message with the order ID and shipping date. The shipping
date is calculated as today’s date plus two days.

public SOAPMessage onMessage(SOAPMessage message) {

SOAPMessage confirmation = null;

try {

//retrieve the orderID elementfrom the message received
SOAPBody sentSB = message.getSOAPPart().

getEnvelope().getBody();
Iterator sentIt = sentSB.getChildElements();
SOAPBodyElement sentSBE =

(SOAPBodyElement)sentIt.next();
Iterator sentIt2 = sentSBE.getChildElements();
SOAPElement sentSE = (SOAPElement)sentIt2.next();

//get the text for orderID to put in confirmation
String sentID = sentSE.getValue();

//create the confirmation message
confirmation = fac.createMessage();
SOAPPart sp = confirmation.getSOAPPart();
SOAPEnvelope env = sp.getEnvelope();
SOAPBody sb = env.getBody();
Name newBodyName = env.createName("confirmation",

"Confirm", "http://sonata.coffeebreak.com");
SOAPBodyElement confirm =

sb.addBodyElement(newBodyName);

//create the orderID element for confirmation

../examples/cb/jaxm/src/com/sun/cb/ConfirmationServlet.java

COFFEE BREAK SERVER 773
Name newOrderIDName = env.createName("orderId");
SOAPElement newOrderNo =

confirm.addChildElement(newOrderIDName);
newOrderNo.addTextNode(sentID);

//create ship-date element
Name shipDateName = env.createName("ship-date");
SOAPElement shipDate =

confirm.addChildElement(shipDateName);

//create the shipping date
Date today = new Date();
long msPerDay = 1000 * 60 * 60 * 24;
long msTarget = today.getTime();
long msSum = msTarget + (msPerDay * 2);
Date result = new Date();
result.setTime(msSum);
String sd = result.toString();
shipDate.addTextNode(sd);

confirmation.saveChanges();

} catch (Exception ex) {
ex.printStackTrace();

}
return confirmation;

}

Coffee Break Server
The Coffee Break Server uses servlets, JSP pages, and JavaBeans components to
dynamically construct HTML pages for consumption by a Web browser client.
The JSP pages use the template tag library discussed in A Template Tag
Library (page 665) to achieve a common look and feel among the HTML pages,
and many of the JSTL custom tags discussed in Chapter 17 to minimize the use
of scripting.

The Coffee Break Server implementation is organized along the Model-View-
Controller design pattern. The Dispatcher servlet is the controller. It examines
the request URL, creates and initializes model JavaBeans components, and dis-
patches requests to view JSP pages. The JavaBeans components contain the
business logic for the application—they call the Web services and perform com-
putations on the data returned from the services. The JSP pages format the data

774 THE COFFEE BREAK APPLICATION
stored in the JavaBeans components. The mapping between JavaBeans compo-
nents and pages is summarized in Table 19–1.

JSP Pages

orderForm
orderForm displays the current contents of the shopping cart. The first time the
page is requested, the quantities of all the coffees are 0. Each time the customer
changes the coffees amounts and clicks the Update button, the request is posted
back to orderForm. The Dispatcher servlet updates the values in the shopping
cart, which are then redisplayed by orderForm. When the order is complete, the
customer proceeds to the checkoutForm page by clicking the Checkout link.

checkoutForm
checkoutForm is used to collect delivery and billing information for the cus-
tomer. When the Submit button is clicked, the request is posted to the check-

outAck page. However, the request is first handled by the Dispatcher, which
invokes the validate method of checkoutFormBean If the validation does not
succeed, the requested page is reset to checkoutForm, with error notifications in
each invalid field. If the validation succeeds, checkoutFormBean submits subor-
ders to each distributor and stores the result in the request-scoped OrderConfir-
mations JavaBeans component and control is passed to checkoutAck.

Table 19–1 Model and View Components

Function JSP Page JavaBeans Component

Update order data orderForm ShoppingCart

Update delivery and billing data checkoutForm CheckoutFormBean

Display order confirmation checkoutAck OrderConfirmations

../examples/cb/server/web/orderForm.txt
../examples/cb/server/web/checkoutForm.txt

JAVABEANS COMPONENTS 775
checkoutAck
checkoutAck simply displays the contents of the OrderConfirmations

JavaBeans component, which is a list of the suborders comprising an order and
the ship dates of each suborder.

JavaBeans Components

RetailPriceList
RetailPriceList is a list of retail price items. A retail price item contains a cof-
fee name, a wholesale price per pound, a retail price per pound, and a distributor.
This data is used for two purposes: it contains the price list presented to the end
user and is used by CheckoutFormBean when it constructs the suborders dis-
patched to coffee distributors.

It first performs a JAXR lookup to determine the JAX-RPC service endpoints. It
then queries each JAX-RPC service for a coffee price list. Finally it queries the
JAXM service for a price list. The two price lists are combined and a retail price
per pound is determined by adding a markup of 35% to the wholesale prices.

Discovering the JAX-RPC Service
Instantiated by RetailPriceList, JAXRQueryByName connects to the registry
server and searches for coffee distributors registered with the name JAXRPCCof-

feeDistributor in the executeQuery method. The method returns a collection
of organizations which contain services. Each service is accessible via a service
binding or URI.RetailPriceList makes a JAX-RPC call to each URI.

ShoppingCartItem
ShoppingCart is a list of shopping cart items. A shopping cart item contains a
retail price item, the number of pounds of that item, and the total price for that
item.

../examples/cb/server/web/checkoutAck.txt
../examples/cb/server/src/com/sun/cb/JAXRQueryByName.java
../examples/cb/server/src/com/sun/cb/RetailPriceList.java

776 THE COFFEE BREAK APPLICATION
OrderConfirmation
OrderConfirmations is a list of order confirmation objects. An order confirma-
tion contains order and confirmation objects, already discussed in Service
Interface (page 749).

CheckoutFormBean
CheckoutFormBean checks the completeness of information entered into check-

outForm. If the information is incomplete, the bean populates error messages
and Dispatcher redisplays checkoutForm with the error messages. If the infor-
mation is complete, order requests are constructed from the shopping cart and
the information supplied to checkoutForm and are sent to each distributor. As
each confirmation is received, an order confirmation is created and added to
OrderConfirmations.

if (allOk) {
String orderId = CCNumber;

AddressBean address = new AddressBean(street, city,
state, zip);

CustomerBean customer = new CustomerBean(firstName, lastName,
"(" + areaCode+ ") " + phoneNumber, email);

for(Iterator d = rpl.getDistributors().iterator();
d.hasNext();) {
String distributor = (String)d.next();
System.out.println(distributor);
ArrayList lis = new ArrayList();
BigDecimal price = new BigDecimal("0.00");
BigDecimal total = new BigDecimal("0.00");
for(Iterator c = cart.getItems().iterator();

c.hasNext();) {
ShoppingCartItem sci = (ShoppingCartItem) c.next();
if ((sci.getItem().getDistributor()).

equals(distributor) &&
sci.getPounds().floatValue() > 0) {

price = sci.getItem().
getWholesalePricePerPound().
multiply(sci.getPounds());

total = total.add(price);
LineItemBean li = new LineItemBean(

sci.getItem().getCoffeeName(), sci.getPounds(),
sci.getItem().getWholesalePricePerPound());

lis.add(li);

../examples/cb/server/src/com/sun/cb/CheckoutFormBean.java

RETAILPRICELISTSERVLET 777
}
}

if (!lis.isEmpty()) {
OrderBean order = new OrderBean(orderId,

customer, lis, total, address);

String JAXMOrderURL =
"http://localhost:8080/

jaxm-coffee-supplier/orderCoffee";

if (distributor.equals(JAXMOrderURL)) {
OrderRequest or = new OrderRequest(JAXMOrderURL);
confirmation = or.placeOrder(order);

} else {
OrderCaller ocaller = new OrderCaller(distributor);
confirmation = ocaller.placeOrder(order);

}
OrderConfirmation oc = new OrderConfirmation(order,

confirmation);
ocs.add(oc);

}
}

}

RetailPriceListServlet
The RetailPriceListServlet responds to requests to reload the price list via
the URL /loadPriceList. It simply creates a new RetailPriceList and a new
ShoppingCart.

Since this servlet would be used by administrators of the Coffee Break Server, it
is a protected Web resource. In order to load the price list, a user must authenti-
cate (using basic authentication) and the authenticated user must be in the admin

role.

Building, Installing, and Running the
Application

The source code for the Coffee Break application is located in the directory
<JWSDP_HOME>/docs/tutorial/examples/cb. Within the cb directory are sub-
directories for each Web application—jaxm, jaxrpc, server—and a directory,

../examples/cb/server/src/com/sun/cb/RetailPriceListServlet.java

778 THE COFFEE BREAK APPLICATION
common, for classes shared by the Web applications. Each subdirectory contains a
build.xml and build.properties file. The Web application subdirectories in
turn contain a src subdirectory for Java classes and a web subdirectory for Web
resources and the Web application deployment descriptor.

Note: The Web applications are installed into Tomcat using ant install task.
Before you can use the install task you must create a file named build.proper-

ties in your home directory that contains the user name and password you provided
when you installed the Java WSDP. See Running Manager Commands Using Ant
Tasks (page 826).

Building the Common Classes
To build the common classes:

1. In a terminal window, go to <JWSDP_HOME>/docs/tutorial/exam-

ples/cb/common.

2. Run ant build.

Building and Installing the JAX-RPC
Service
To build the JAX-RPC service and client library and install the JAX-RPC ser-
vice:

1. In a terminal window, go to <JWSDP_HOME>/docs/tutorial/exam-

ples/cb/jaxrpc.

2. Run ant build. This task generates the JAX-RPC ties and stubs, creates
the JAXR and client libraries, compiles the server classes, and copies them
into the correct location for installation.

3. Start Tomcat and Xindice, if they are not already running. This starts the
Registry Server.

4. Run ant set-up-service. This task installs the JAX-RPC service into
Tomcat and registers the service with the Registry Server. The registration
process can take some time, so wait until you see the following output
before proceeding to the next step:

run-jaxr-publish:

[echo] Running OrgPublisher.

BUILDING AND INSTALLING THE JAXM SERVICE 779
[echo] Note: Remember to start the registry server

before

running this program.

[java] Created connection to registry

[java] Got registry service, query manager, and life

cycle

manager

[java] Established security credentials

[java] Organization saved

[java] Organization key is edeed14d-5eed-eed1-31c2-

aa789a472fe0

5. You can test that the JAX-RPC service has been installed correctly by run-
ning one or both of the test programs: execute ant run-test-price or ant
run-test-order. Here is what you should see when you run ant run-

test-price:

run-test-price:

run-test-client:

[java] 05/21/02 06/20/02

[java] Kona 6.50

[java] French Roast 5.00

[java] Wake Up Call 5.50

[java] Mocca 4.00

Later on, you may remove the JAX-RPC service by running ant take-

down-service. This command deletes the service from the Registry
Server and then uninstalls the service from Tomcat. Do not remove the
service at this time.

Building and Installing the JAXM Service
To build the JAXM service and client library and install the JAXM service:

1. In a terminal window, go to <JWSDP_HOME>/docs/tutorial/exam-

ples/cb/jaxm.

2. Run ant build. This task creates the client library and compiles the server
classes and copies them into the correct location for installation.

3. Make sure Tomcat is started.

4. Run ant install. This task installs the JAXM service into Tomcat.

780 THE COFFEE BREAK APPLICATION
5. You can test that the JAXM service has been installed correctly by running
one or both of the test programs: execute ant run-test-price or ant

run-test-order.

Building and Installing the Coffee Break
Server
To build and install the Coffee Break server:

1. In a terminal window, go to <JWSDP_HOME>/docs/tutorial/exam-

ples/cb/server.

2. Run ant build. This task compiles the server classes and copies the
classes, JSP pages, client libraries, and tag libraries into the correct loca-
tion for installation. Note that the Coffee Break server depends on the cli-
ent libraries generated by the JAX-RPC (jaxrpc-client.jar) and JAXM
(jaxm-client.jar) build process.

3. Make sure Tomcat is started.

4. Run ant install.

Running the Coffee Break Client
After you have installed all the Web applications, check that all the applications
are running by executing ant list in a terminal window or opening
http://localhost:8080/manager/list. In a browser, you should see some-
thing like:

OK - Listed applications for virtual host localhost
/manager:running:0:../server/webapps/manager
/jaxm-translator:running:0:D:\jwsdp-1_0\webapps\jaxm-
translator.war
/jaxm-coffee-supplier:running:0:D:/jwsdp-1_0/docs/tuto-
rial/examples/cb/jaxm/build
/jaxm-soaprp:running:0:D:\jwsdp-1_0\webapps\jaxm-soaprp.war
/saaj-simple:running:0:D:\jwsdp-1_0\webapps\saaj-simple.war
/jaxm-remote:running:0:D:\jwsdp-1_0\webapps\jaxm-remote.war
/jstl-examples:running:0:D:\jwsdp-1_0\webapps\jstl-
examples.war
/registry-server:running:0:D:\jwsdp-1_0\webapps
egistry-server.war
/jaxmtags:running:0:D:\jwsdp-1_0\webapps\jaxmtags.war
/jaxm-simple:running:0:D:\jwsdp-1_0\webapps\jaxm-simple.war

RUNNING THE COFFEE BREAK CLIENT 781
/jaxrpc-coffee-supplier:running:0:D:/jwsdp-1_0/docs/tuto-
rial/examples/cb/jaxrpc/build
/cbserver:running:1:D:/jwsdp-1_0/docs/tutorial/exam-
ples/cb/server/build
/:running:0:D:\jwsdp-1_0\webapps\ROOT
/admin:running:0:../server/webapps/admin

The highlighted applications are the Coffee Break server and the JAX-RPC and
JAXM services.

Then, to run the Coffee Break client, open the Coffee Break server URL in a
Web browser:

http://localhost:8080/cbserver/orderForm

You should see a page something like the one shown in Figure 19–2.

782 THE COFFEE BREAK APPLICATION
Figure 19–2 Order Form

After you have gone through the application screens, you will get an order con-
firmation that looks like the one shown in Figure 19–3.

DEPLOYING THE COFFEE BREAK APPLICATION 783
Figure 19–3 Order Confirmation

Deploying the Coffee Break Application
The instructions in the previous section described how to install and run the Cof-
fee Break application. However, an installed application is not available when
Tomcat is restarted. To permanently deploy the application:

1. Remove the JAXRPC and JAXM services and the Coffee Break server by
executing ant remove in each Web application directory.

2. Package the applications into WAR files by executing ant package in each
Web application directory.

3. Deploy the application by executing ant deploy in each Web application
directory.

784 THE COFFEE BREAK APPLICATION

A

785
Tomcat
Administration Tool

Debbie Carson

This appendix contains information about the Tomcat Web Server Administra-
tion Tool. The Tomcat Web Server Administration Tool is referred to as admin-
tool throughout this section for ease of reference.

The admintool utility is used to configure the behavior of the Tomcat Java Serv-
let/JSP container while it is running. Changes made to Tomcat using admintool

can be saved persistently so that the changes remain when Tomcat is restarted, or
the changes can be attributed to the current session only.

Running admintool
The admintool Web application can be used to manipulate Tomcat while it is
running. For example, you can add a context or set up users and roles for con-
tainer-managed security.

To start admintool, follow these steps.

1. Start Tomcat by calling its startup script from the command line, as fol-
lows:

<JWSDP_HOME>/bin/startup.sh (Unix platform)

<JWSDP_HOME>\bin\start startup.bat (Microsoft Windows)

786
2. Start a Web browser.

3. In the Web browser, point to the following URL:

http://localhost:8080/admin

This command invokes the Web application with the context of admin.

4. Log in to admintool using the user name and password combination
defined when you installed the Java WSDP.

This user name and password combination is assigned the roles of admin,
manager, and provider by default. To use admintool, you must log in
with a user name and password combination that has been assigned the
role of admin.

If you’ve forgotten the user name and password, you can find them in the
file <JWSDP_HOME>/conf/tomcat-users.xml, which is viewable with
any text editor. This file contains an element <user> for each individual
user, which might look something like this:

<user name="your_name" password="your_password"

roles="admin,manager,provider" />

The admintool Web application displays in the Web browser window:

RUNNING ADMINTOOL 787
Figure A–1 The Tomcat Server Administration Tool

5. Perform Tomcat Web Server Administration tasks.

After you have made changes to Tomcat, select the Save button on that
page to save the attributes for the current Tomcat process. Select the Com-
mit Changes button to write the changes to the
<JWSDP_HOME>/conf/server.xml file so that the changes to the Tomcat
server are persistent and will be retrieved when Tomcat is restarted.

The previous version of server.xml is backed up in the same directory,
with an extension indicating when the file was backed up, for example,
server.xml.2003-02-15.12-11-54. To restore a previous configuration,
shut down Tomcat, rename the file to server.xml, and restart Tomcat.

6. Log out of admintool by selecting Log Out when you are finished.

7. Shut down Tomcat by calling its shutdown script from the command line,
as follows:

<JWSDP_HOME>/bin/shutdown.sh (Unix platform)

<JWSDP_HOME>\bin\shutdown.bat (Microsoft Windows)

788
This document contains information about using admintool to configure the
behavior of Tomcat. For more information on these configuration elements, read
the Tomcat Configuration Reference, which can be found at
<JWSDP_HOME>/docs/tomcat/config/index.html.

This document does not attempt to describe which configurations should be used
to perform specific tasks. For information of this type, refer to the documents
listed in Further Information (page 824).

Configuring Tomcat
As you can see in Figure A–1, admintool presents a hierarchy of elements that
can be configured to customize the Tomcat JSP/Servlet container to your needs.
The Server element represents the characteristics of the entire JSP/Servlet con-
tainer.

Setting Server Properties
Select Tomcat Server in the left pane. The Server Properties display in the right
pane. The Server element represents the entire JSP/Servlet container. The server
properties are shown in Table A–1.

Table A–1 Server Properties

Property Description

Port Number

The TCP/IP port number on which this server waits for a
shutdown command. This connection must be initiated
from the same server computer that is running this instance
of Tomcat. The default value is 8005. Values less than 1024
will generate a warning, as special software capabilities are
required when using this port

Debug Level
The level of debugging detail logged by this server. Higher
numbers generate more detailed output. If not specified, the
default debugging detail level is zero (0).

Shutdown

The command string that must be received via a TCP/IP
connection to the specified port number in order to shut
down Tomcat. The value for this property must contain at
least 6 characters. The default value is SHUTDOWN.

CONFIGURING SERVICES 789
Configuring Services
Service elements are nested with the Server element. The Service element repre-
sents the combination of one or more Connector components that share a single
engine component for processing incoming requests. The default configuration
for Tomcat includes an Internal Service and a Java Web Services Developer Pack
Service.

• The Internal Service uses port 8081. This service is used internally by
Tomcat Web applications such as JAXM provider and JAXM pro-

videradmin contexts. These contexts are used by the JAXM Web applica-
tions contexts in the JWSDP Service.

• The Java Web Services Developer Pack Service uses port 8080, the stan-
dard port on which users can deploy their Web applications. For Java Serv-
let and JSP pages developers, this is the service to use.

It is possible to use admintool to add other services, which might use a different
port. To create a new service,

1. Select Tomcat Server in the left pane.

2. Select Create New Service from the drop-down list in the right pane.

3. Enter the values for Service Name, Engine Name, Debug Level, and
Default Hostname.

The Service Name is the display name of this Service, which will be
included in log messages if you choose a Logger (see Configuring Logger
Elements, page 802).

Note: The name of each Service associated with a particular Server must be unique.

For each Service element defined, you can create or delete the following ele-
ments:

• Connector elements represent the interface between the Service and exter-
nal clients that send requests to it and receive responses from it. See Con-
figuring Connector Elements (page 790) for more information.

• Host elements represent a virtual host, which is an association of a net-
work name for a server (such as www.mycompany.com) with the particular

790
server on which Tomcat is running. See Configuring Host
Elements (page 795) for more information.

• Logger elements represent a destination for logging, debugging, and error
messages (including stack tracebacks) for Tomcat (Engine, Host, or Con-
text). See Configuring Logger Elements (page 802) for more information.

• User Realm elements represent a database of user names, passwords, and
roles assigned to those users. See Configuring Realm Elements (page 805)
for more information.

• Valve elements represent a component that will be inserted into the request
processing pipeline for the associated container (Engine, Host, or Con-
text). See Configuring Valve Elements (page 812) for more information.

Configuring Connector Elements
Connector elements represent the interface between external clients sending
requests to (and receiving responses from) a particular Service.

To edit a connector,

1. Expand the Service element in the left pane.

2. Select the Connector to edit.

3. Edit the values in the right pane.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new connector for a service,

1. Select the Service element in the left pane. It is highly recommended that
you only modify the Java Web Services Developer Pack Service, or a ser-
vice that you have created.

2. Select Create New Connector from the Available Actions list.

3. Enter the preferred values for the Connector. See Connector
Attributes (page 792) for more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To learn more about Connectors, read the documents titled Coyote HTTP/1.1
Connectors at <JWSDP_HOME>/docs/tomcat/config/coyote.html or the docu-
ment titled JK 2 Connectors at <JWSDP_HOME>/docs/tomcat/con-

fig/jk2.html.

CONFIGURING CONNECTOR ELEMENTS 791
Types of Connectors
Using admintool, you can create the following types of Connectors:

• HTTP

Selecting HTTP enables you to create a Connector component that sup-
ports the HTTP/1.1 protocol. It enables Tomcat to function as a stand-
alone Web server in addition to its ability to execute Java Servlets and JSP
pages. A particular instance of this component listens for connections on
a specific TCP port number on the server. One or more such Connectors
can be configured as part of a single Service, each forwarding to the asso-
ciated Engine to perform request processing and create the response.

• HTTPS

Selecting HTTPS enables you to create an SSL HTTP/1.1 Connector.
Secure Socket Layer (SSL) technology enables Web browsers and Web
servers to communicate over a secure connection. In order to implement
SSL, a Web server must have an associated keystore certificate for each
external interface (IP address) that accepts secure connections. Installing
and Configuring SSL Support (page 721) contains detailed instructions
on setting up an HTTPS connector.

• AJP

Selecting AJP enables you to create a Connector component that commu-
nicates with a Web connector via the Apache JServ Protocol (“AJP”).
This is used for cases where you wish to invisibly integrate Tomcat into
an existing (or new) Apache installation, and you want Apache to handle
the static content contained in the Web application, and/or utilize
Apache’s SSL processing. In many application environments, this will
result in better overall performance than running your applications under
Tomcat stand-alone using the HTTP/1.1 Connector. However, the only
way to know for sure whether it will provide better performance for your
application is to try it both ways.

792
Connector Attributes
When you create or modify any type of Connector, the attributes shown in Table
A–2 may be set, as needed.

Table A–2 Common Connector Attributes

Attribute Description

Accept Count

The maximum queue length for incoming connection
requests when all possible request processing threads are
in use. Any requests received when the queue is full will
be refused. The default value is 10.

Connection Timeout

The number of milliseconds this Connector will wait,
after accepting a connection, for the request URI line to
be presented. The default value is 60000 (i.e. 60 sec-
onds).

Debug Level

The debugging detail level of log messages generated by
this component, with higher numbers creating more
detailed output. If not specified, this attribute is set to
zero (0).

Default Buffer Size
The size (in bytes) of the buffer to be provided for input
streams created by this connector. By default, buffers of
2048 bytes will be provided.

Enable DNS Lookups

Whether or not you want calls to request.getRem-
oteHost() to perform DNS lookups in order to return
the actual host name of the remote client. Set to True if
you want calls to request.getRemoteHost() to per-
form DNS lookups in order to return the actual host
name of the remote client. Set to False to skip the DNS
lookup and return the IP address in String form instead
(thereby improving performance).

IP Address

Specifies which address will be used for listening on the
specified port, for servers with more than one IP address.
By default, this port will be used on all IP addresses
associated with the server.

CONFIGURING CONNECTOR ELEMENTS 793
When the Connector is of type HTTP or HTTPS, additional attributes are also
available, as shown in Table A–3.

Port Number

The TCP port number on which this Connector will cre-
ate a server socket and await incoming connections.
Your operating system will allow only one server appli-
cation to listen to a particular port number on a particular
IP address.

Redirect Port Number

The port number where Tomcat will automatically redi-
rect the request if this Connector is supporting non-SSL
requests, and a request is received for which a matching
security constraint requires SSL transport.

Minimum

The number of request processing threads that will be
created when this Connector is first started. This
attribute should be set to a value smaller than that set for
Maximum. The default value is 5.

Maximum

The maximum number of request processing threads to
be created by this Connector, which therefore deter-
mines the maximum number of simultaneous requests
that can be handled. If not specified, this attribute is set
to 75.

Table A–3 Attributes of HTTP/HTTPS Connectors

Attribute Description

Proxy Name
The server name to be returned for calls to
request.getServerName() if this Connector is
being used in a proxy configuration.

Proxy Port Number
The server port to be returned for calls to
request.getServerPort() if this Connector is
being used in a proxy configuration.

Table A–2 Common Connector Attributes (Continued)

Attribute Description

794
When the type of Connector is HTTPS, additional attributes as outlined in Table
A–4 may also be set.

Note: In order to use an SSL connector, you must use keytool to generate a key-
store file. If you have generated a keystore file with the default name (.keystore)
in the default directory (the operating system home directory of the user that is run-
ning Tomcat) with default password (changeit), you can leave the Keystore File-
name and Keystore Password attributes empty when creating an SSL Connector.
When the two properties are left empty, admintool will look for the keystore file
with the default name (.keystore) and the default password (changeit) in the
default location (the operating system home directory of the user that is running
Tomcat). If you specify a keystore file name without specifying a path, admintool
looks for the file in the <JWSDP_HOME> directory. Installing and Configuring SSL
Support (page 721) contains detailed instructions on setting up an HTTPS connec-
tor.

Table A–4 HTTPS Attributes

Attribute Description

Client Authentication

Whether or not you want the SSL stack to require a valid
certificate chain from the client before accepting a con-
nection. Set to True if you want the SSL stack to require
a valid certificate chain from the client before accepting
a connection. A False value (which is the default) will
not require a certificate chain unless the client requests a
resource protected by a security constraint that uses cli-
ent-certificate authentication.

Keystore Filename

The path to and name of the keystore file where you have
stored the server certificate to be loaded. By default, the
file name is .keystore and the path name is the operat-
ing system home directory of the user that is running
Tomcat. If you are using default values for the file name
and path, you can leave this field blank.
If you specify a keystore file name without specifying a
path, admintool looks for the file in the
<JWSDP_HOME> directory.

Keystore Password
The password used to access the server certificate from
the specified keystore file. The default value is
changeit.

CONFIGURING HOST ELEMENTS 795
Configuring Host Elements
The Host element represents a virtual host, which is an association of a network
name for a server (such as www.mycompany.com) with the particular server on
which Tomcat is running. In order to be effective, this name must be registered in
the Domain Name Service (DNS) server that manages the Internet domain to
which you belong.

In many cases, system administrators wish to associate more than one network
name (such as www.mycompany.com and company.com) with the same virtual
host and applications. This can be accomplished using the Host Name Aliases
feature described in Host Name Aliases (page 797).

One or more Host elements are nested inside a Service. Exactly one of the Hosts
associated with each Service MUST have a name matching the defaultHost

attribute of that Service. Inside the Host element, you can nest any of the follow-
ing elements:

• Context elements, which are discussed in Configuring Context
Elements (page 797).

• Logger Elements, which are discussed in Configuring Logger
Elements (page 802).

• Valve Elements, which are discussed in Configuring Valve
Elements (page 812).

• Host Aliases, which are discussed in Host Name Aliases (page 797).

To edit a Host,

1. Expand the Service element in the left pane.

2. Expand the Host element in the left pane.

3. Select the Host, or any of its Contexts, Valves, Loggers, or Aliases, to edit.

4. Edit the values in the right pane.

5. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Host for a service,

1. Select the Service element in the left pane. It is highly recommended that
you only modify the Java Web Services Developer Pack Service, or a ser-
vice that you have created.

796
2. Select Create New Host from the Available Actions list.

3. Enter the preferred values for the Host. See Host Attributes (page 796) for
more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To learn more about Hosts, read the document titled “Host Container” at
<JWSDP_HOME>/docs/tomcat/config/host.html.

Host Attributes
The attributes shown in Table A–5 may be viewed, set, or modified for a Host.

Table A–5 Host Attributes

Attribute Description

Name

The network name of this virtual host, as registered in
your Domain Name Service server. One of the Hosts
nested within an Engine MUST have a name that
matches the defaultHost setting for that Engine.

Application Base

The Application Base directory for this virtual host. This
is the path name of a directory that may contain Web
applications to be deployed on this virtual host. You may
specify an absolute path name for this directory, or a
path name that is relative to the directory under which
Tomcat is installed.

Debug Level

The level of debugging detail logged by this Engine to
the associated Logger. Higher numbers generate more
detailed output. If not specified, the default debugging
detail level is zero (0).

Unpack WARs

Whether or not you want Web applications that are
deployed into this virtual host from a Web Application
Archive (WAR) file to be unpacked into a disk directory
structure. Set to True if you want Web applications that
are deployed into this virtual host from a Web Applica-
tion Archive (WAR) file to be unpacked into a disk
directory structure or False to run the application
directly from a WAR file. The default value is False.

CONFIGURING HOST ELEMENTS 797
Host Name Aliases
In many server environments, Network Administrators have configured more
than one network name (in the Domain Name Service (DNS) server) that resolve
to the IP address of the same server. Normally, each such network name would
be configured as a separate Host element with its own set of Web applications.

However, in some circumstances it is desirable for two or more network names
to resolve to the same virtual host, running the same set of applications. A com-
mon use case for this scenario is a corporate Web site where users should be able
to utilize either www.mycompany.com or company.com to access exactly the same
content and applications.

Tomcat supports virtual hosts, which are multiple “hosts + domain names”
mapped to a single IP. Usually, each host name is mapped to a host in Tomcat,
for example, www.foo.com is mapped to localhost, or www.foo1.com is
mapped to localhost1. In some cases, various host names can be mapped to the
same host, for example www.foo.com and www.foo1.com can both be mapped to
localhost. In this situation, you will see both of these aliases listed under
localhost in admintool.

To use Host Aliases, the DNS server must have the host names registered to the
IP of the server on which Tomcat will be running.

To create a new Host alias,

1. Select the Host element in the left pane.

2. Select Create New Aliases from the Available Actions list.

3. Enter the name for the Alias.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

Configuring Context Elements
The Context element represents a Web application that is run within a particular
virtual host. Each Web application is based on a Web Application Archive
(WAR) file or a directory containing the Web application in its unpacked form.
For more information about WAR files, see Web Application
Archives (page 96).

When an HTTP request is received, Tomcat selects the Web application that will
be used to process the request. To select the Web application, Tomcat matches
the longest prefix of the Request URI against the context path of each defined

798
Context. Once a Context is selected, it selects an appropriate Servlet to process
the incoming request, based on the Servlet mappings defined in the Web applica-
tion deployment descriptor, which must be located at <web_app_root>/WEB-

INF/web.xml.

You can define as many Context elements within a Host element as you wish, but
each must have a unique context path. At least one Context must include a con-
text path equal to a zero-length string. This Context becomes the default Web
application for this virtual host and is used to process all requests that do not
match any other Context’s context path.

To edit a Context,

1. Expand the Service element in the left pane.

2. Expand the Host element in the left pane.

3. Select the Context to edit.

4. Edit the values in the right pane.

5. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Context for a service,

1. Select the Service element in the left pane.

2. Select the Host element in the left pane to which you want to add the Con-
text.

3. Select Create New Context from the Available Actions list.

4. Enter the preferred values for the Context. See Context
Attributes (page 798) for more information on the options.

5. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To learn more about Contexts, read the document titled “The Context Container”
at <JWSDP_HOME>/docs/tomcat/config/context.html.

Context Attributes
The Context element page contains three types of properties:

• Context Properties, described in Table A–6.

• Loader Properties, described in Table A–7.

• Session Manager Properties, described in Table A–8.

CONFIGURING HOST ELEMENTS 799
The attributes shown in Table A–6 may be viewed, set, or modified for Context
properties.

Table A–6 Context Properties

Attribute Description

Cookies

Set to True if you want cookies to be used for session
identifier communication if supported by the client. Set
to False if you want to disable the use of cookies for ses-
sion identifier communication and rely only on URL
rewriting by the application. The default value is True.

Cross Context

Set to True if you want calls to ServletContext.get-
Context()within this application to successfully return
a request dispatcher for other Web applications running
on this virtual host. Set to False in security-conscious
environment to make getContext() always return
null. The default value is False.

Debug Level

The level of debugging detail logged by this Engine to
the associated Logger. Higher numbers generate more
detailed output. If not specified, the default debugging
detail level is zero (0).

Document Base

The Document Base (also known as the Context Root)
directory for this Web application is the path to the Web
Application Archive file (if this Web application is being
executed directly from the WAR file). You may specify
an absolute path name for this directory or WAR file, or
a path name that is relative to the application base direc-
tory of the owning Host.

Override

Set to True to have explicit settings in this Context ele-
ment override any corresponding settings in the
DefaultContext element associated with the owning
Host. By default, settings in the DefaultContext ele-
ment will be used.The default value is False.

800
The Loader Properties section enables you to configure the Web application
class loader that will be used to load Servlet and JavaBeans classes for this Web
application. Normally, the default configuration of the class loader will be suffi-

Path

The context path of this Web application, which is
matched against the beginning of each request URI to
select the appropriate Web application for processing.
All of the context paths within a particular Host must be
unique. If you specify a context path of an empty string
(""), you are defining the default Web application for this
Host, which will process all requests not assigned to
other Contexts.

Reloadable

Set to True if you want Tomcat to monitor classes in
/WEB-INF/classes/ and /WEB-INF/lib for changes
and automatically reload the Web application if a change
is detected. This feature is very useful during application
development, but it requires significant runtime over-
head and is not recommended for use on deployed pro-
duction applications. You can use the Manager Web
application to trigger reloads of deployed applications
on demand. The default value is False.

Use Naming

Set to True to have Tomcat enable a JNDI
InitialContext for this Web application that is com-
patible with Java2 Enterprise Edition (J2EE) platform
conventions.The default value is False.

Working Directory

Path to a scratch directory for temporary read-write use
by Servlets within the associated Web application. This
directory will be made visible to Servlets in the Web
application by a Servlet context attribute (of type
java.io.File) named javax.servlet.con-
text.tempdir as described in the Servlet Specifica-
tion. If not specified, a suitable directory underneath
<JWSDP_HOME>/work will be provided.

Table A–6 Context Properties

Attribute Description

CONFIGURING HOST ELEMENTS 801
cient. The attributes shown in Table A–7 may be viewed, set, or modified for
Loader properties.

The Session Manager Properties enable you to configure the session manager
that will be used to create, destroy, and persist HTTP sessions for this Web appli-
cation. Normally, the default configuration of the session manager will be suffi-
cient. The attributes shown in Table A–8 may be viewed, set, or modified for
Session Manager properties.

Table A–7 Loader Properties

Attribute Description

Check Interval
The number of seconds between checks for modified
classes and resources if Reloadable has been set to True.
The default value is 15 seconds.

Debug Level

The level of debugging detail logged by this Engine to
the associated Logger. Higher numbers generate more
detailed output. If not specified, the default debugging
detail level is zero (0).

Reloadable

Set to True if you want Tomcat to monitor classes in
/WEB-INF/classes/ and /WEB-INF/lib for changes
and automatically reload the Web application if a change
is detected. This feature is very useful during application
development, but it requires significant runtime over-
head and is not recommended for use on deployed pro-
duction applications. You can use the Manager Web
application when you need to trigger reloads of deployed
applications on demand.The default value is False.

Table A–8 Session Manager Properties

Attribute Description

Check Interval
The number of seconds between checks for expired ses-
sions for this manager. The default value is 60 seconds.

802
Configuring Logger Elements
A Logger element represents a destination for logging, debugging, and error
messages (including stack tracebacks) for Tomcat.

If you are interested in producing access logs as a Web server does (for example,
to run hit count analysis software), you will want to configure an Access Log
Valve component on your Engine, Host, or Context.

Using admintool, you can create 3 types of loggers:

• SystemOutLogger

Debug Level

The level of debugging detail logged by this Manager to
the associated Logger. Higher numbers generate more
detailed output. If not specified, the default debugging
detail level is zero (0).

Session ID Initializer

Tomcat provides two standard implementations of Ses-
sion Managers.

org.apache.catalina.session.StandardMan-
ager stores active sessions.

org.apache.catalina.session.PersistentMan-
ager persistently stores active sessions that have been
swapped out (in addition to saving sessions across a
restart of Tomcat) in a storage location that is selected
via the use of an appropriate Store nested element. In
addition to the usual operations of creating and deleting
sessions, a PersistentManager has the capability to
swap active (but idle) sessions out to a persistent storage
mechanism, as well as to save all sessions across a nor-
mal restart of Tomcat. The actual persistent storage
mechanism that is used is selected by your choice of a
Store element nested inside the Manager element - this is
required for use of PersistentManager.

Maximum Active Sessions.
The maximum number of active sessions that will be
created by this Manager, or -1 (the default) for no limit.

Table A–8 Session Manager Properties

Attribute Description

CONFIGURING LOGGER ELEMENTS 803
The Standard Output Logger records all logged messages to the stream to
which the standard output of Tomcat is pointed. The default Tomcat star-
tup script points this at the file logs/catalina.out relative to the direc-
tory where Tomcat is installed.

• SystemErrLogger

The Standard Error Logger records all logged messages to the stream to
which the standard error output of Tomcat is pointed. The default Tomcat
startup script points this at the file logs/catalina.out relative to the
directory where Tomcat is installed.

• FileLogger

The File Logger records all logged messages to disk file(s) in a specified
directory. The actual filenames of the log files are created from a config-
ured prefix, the current date in YYYY-MM-DD format, and a configured
suffix. On the first logged message after midnight each day, the current
log file will be closed and a new file opened for the new date, without
your having to shut down Tomcat in order to perform this switch.

To edit a Logger,

1. Expand the Service element in the left pane.

2. Select the Logger to edit.

3. Edit the values in the right pane.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Logger for a service,

1. Select the Service element in the left pane. It is highly recommended that
you only modify the Java Web Services Developer Pack Service, or a ser-
vice that you have created.

2. Select Create New Logger from the Available Actions list.

3. Enter the preferred values for the Logger. See Logger
Attributes (page 804) for more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To learn more about Loggers, read the document titled “Logger Component” at
<JWSDP_HOME>/docs/tomcat/config/logger.html.

804
Logger Attributes
Common attributes for all of the Logger types are outlined in Table A–9.

If you are using a Logger of type FileLogger, additional attributes that may be
set are shown in Table A–10.

Table A–9 Logger Attributes

Attribute Description

Type
The type of Logger to create: SystemOutLogger,
SystemErrLogger, or FileLogger.

Debug Level

The level of debugging detail logged by this Logger.
Higher numbers generate more detailed output. If not
specified, the default debugging detail level is zero
(0).

Verbosity Level

The verbosity level for this logger. Messages with a
higher verbosity level than the specified value will be
silently ignored. Available levels are 0 (fatal messages
only), 1 (errors), 2 (warnings), 3 (information), and 4
(debug). The default value is 0 (fatal messages only).

Table A–10 FileLogger Attributes

Attribute Description

Directory

The absolute or relative path name of a directory in
which log files created by this logger will be placed. If
a relative path is specified, it is interpreted as relative
to the directory in which Tomcat is installed. If no
directory attribute is specified, the default value is
logs (relative to the directory in which Tomcat is
installed).

Prefix
The prefix added to the start of each log file’s name. If
not specified, the default value is catalina. To spec-
ify no prefix, use a zero-length string.

CONFIGURING REALM ELEMENTS 805
Configuring Realm Elements
A Realm element represents a database of user names, passwords, and roles
(similar to Unix groups) assigned to those users. Different implementations of
Realm allow Tomcat to be integrated into environments where such authentica-
tion information is already being created and maintained, and then to utilize that
information to implement container managed security (as described in the Java
Servlet Specification, available online at http://java.sun.com/prod-

ucts/servlet/download.html).

The Realm created inside the Service in which Tomcat is running can not be
edited or deleted, and no other Realm can be added to this service. In the Java
WSDP, this is the Service (Java Web Services Developer Pack). You can create a
Realm inside a Service you have defined and added to Tomcat.

To edit a Realm,

1. Expand the Service element in the left pane.

2. Select the Realm to edit.

3. Edit the values in the right pane.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

A Realm can be created inside any container Engine, Host, or Context. There
can be only one instance of a Realm under each of these. Realms associated with
an Engine or a Host are automatically inherited by lower-level containers, unless
explicitly overridden. To add a new Realm,

1. Select the service, host, or context under which the new Realm is to be cre-
ated.

Suffix
The suffix added to the end of each log file’s name. If
not specified, the default value is .log. To specify no
suffix, use a zero-length string.

Timestamp

Whether or not all logged messages are to be date and
time stamped. Set to True to cause all logged mes-
sages to be date and time stamped. Set to False to skip
date/time stamping.

Table A–10 FileLogger Attributes (Continued)

Attribute Description

http://java.sun.com/products/servlet/download.html
http://java.sun.com/products/servlet/download.html

806
2. Select the Create New User Realm option from the Available Actions list.
Select the type of Realm. Depending on the type of Realm you choose, the
attributes vary.

There are several standard Realm implementations available, including:

• JDBCRealm

The JDBC Database Realm connects Tomcat to a relational database,
accessed through an appropriate JDBC driver, to perform lookups of user
names, passwords, and their associated roles. Because the lookup is done
each time it is required, changes to the database will be immediately
reflected in the information used to authenticate new logins. Attributes for
the JDBC Database Realm implementation are shown in JDBCRealm
Attributes (page 807).

• JNDIRealm

The JNDI Directory Realm connects Tomcat to an LDAP Directory,
accessed through an appropriate JNDI driver, to perform lookups of user
names, passwords, and their associated roles. Because the lookup is done
each time it is required, changes to the directory will be immediately
reflected in the information used to authenticate new logins. Attributes for
the JNDI Database Realm implementation are shown in JNDIRealm
Attributes (page 808).

• MemoryRealm

The Memory Based Realm is a simple Realm implementation that reads
an XML file to configure valid users, passwords, and roles. The file for-
mat and default file location are identical to those currently supported by
Tomcat 3.x. This implementation is intended solely to get up and running
with container managed security - it is NOT intended for production use.
As such, there are no mechanisms for updating the in-memory collection
of users when the content of the underlying data file is changed.
Attributes for the Memory Realm implementation are shown in Memory-
Realm Attributes (page 811).

• UserDatabaseRealm

UserDatabaseRealm is an implementation of Realm based on an imple-
mentation of UserDatabase made available through the global JNDI
resources configured for the instance of Tomcat. The Resource Name
parameter is set to the global JNDI resources name for the configured
instance of UserDatabase to be consulted. Attributes for the User Data-
base Realm implementation are shown in UserDatabaseRealm
Attributes (page 810).

CONFIGURING REALM ELEMENTS 807
To learn more about Realms, read the document titled Realm Component at
<JWSDP_HOME>/docs/tomcat/config/realm.html or Realm Configuration
How To at <JWSDP_HOME>/docs/tomcat/realm-howto.html.

JDBCRealm Attributes
The JDBC Database Realm connects Tomcat to a relational database, accessed
through an appropriate JDBC driver, to perform lookups of use names, pass-
words, and their associated roles. Because the lookup is done each time it is
required, changes to the database will be immediately reflected in the informa-
tion used to authenticate new logins. Attributes for the JDBC Database Realm
implementation are shown in Table A–11.

Table A–11 JDBCRealm Attributes

Attribute Description

Database Driver
Fully qualified Java class name of the JDBC driver to be used
to connect to the authentication database.

Database Password
The database password to use when establishing the JDBC
connection.

Database URL
The connection URL to be passed to the JDBC driver when
establishing a database connection.

Database User Name
The database user name to use when establishing the JDBC
connection.

Debug Level
The level of debugging detail logged by this Engine. Higher
numbers generate more detailed output. If not specified, the
default debugging detail level is zero (0).

Digest Algorithm
The name of the MessageDigest algorithm used to encode
user passwords stored in the database. If not specified, user
passwords are assumed to be stored in text.

Password Column

Name of the column in the users table that contains the user’s
credentials (i.e. password). If a value for Digest Algorithm is
specified, the component will assume that the passwords have
been encoded with the specified algorithm. Otherwise, they
will be assumed to be in clear text.

808
JNDIRealm Attributes
The JNDI Directory Realm connects Tomcat to an LDAP Directory, accessed
through an appropriate JNDI driver, to perform lookups of user names, pass-
words, and their associated roles. Because the lookup is done each time it is
required, changes to the directory will be immediately reflected in the informa-
tion used to authenticate new logins.

A rich set of attributes lets you configure the required connection to the underly-
ing directory, as well as the element and attribute names used to retrieve the
required information. Attributes for the JNDI Directory Realm implementation
are shown in Table A–12.

Role Name Column
Name of the column, in the user roles table, which contains a
role name assigned to the corresponding user.

User Name Column
Name of the column, in the users and user roles table, that
contains the user’s user name.

User Role Table
Name of the user roles table, which must contain columns
named by the User Name Column and Role Name Column
attributes.

User Table
Name of the users table, which must contain columns named
by the User Name Column and Password Column attributes.

Table A–12 JNDIRealm Attributes

Attribute Description

Connection Name
The directory user name to use when establishing the JNDI
connection. This attribute is required if you specify the User
Password attribute, and is not used otherwise.

Connection Password
The directory password to use when establishing the JNDI
connection. This attribute is required if you specify the User
Password property, and is not used otherwise.

Table A–11 JDBCRealm Attributes

Attribute Description

CONFIGURING REALM ELEMENTS 809
Connection URL
The connection URL to be passed to the JNDI driver when
establishing a connection to the directory.

Context Factory
Fully qualified Java class name of the factory class used to
acquire our JNDI InitialContext. By default, assumes
that the standard JNDI LDAP provider will be utilized.

Debug Level
The level of debugging detail logged by this Engine. Higher
numbers generate more detailed output. If not specified, the
default debugging detail level is zero (0).

Digest Algorithm
The name of the MessageDigest algorithm used to encode
user passwords stored in the database. If not specified, user
passwords are assumed to be stored in clear text.

Role Base Element The base directory element for performing role searches.

Role Name

The name of the directory attribute to retrieve when selecting
the assigned roles for a user. If not specified, use the User
Role Name attribute to specify the name of an attribute in the
user’s entry that contains zero or more role names assigned to
this user.

Role Search Pattern

The LDAP search expression to use when selecting roles for a
particular user, with {0} marking where the actual user name
should be inserted. For more information on patterns, see Val-
ues for the Pattern Attribute (page 813).

Search Role Subtree
Set to True to search subtrees of the elements selected by the
Role Search Pattern expression. Set to False to not search
subtrees. The default value is False.

User Role Name

The name of a directory attribute in the user’s entry contain-
ing zero or more values for the names of roles assigned to this
user. If not specified, use the Role Name attribute to specify
the name of a particular attribute that is retrieved from indi-
vidual role entries associated with this user.

User Base
The entry that is the base of the subtree containing users. If
not specified, the search base is the top-level context. This
option is not used when User Pattern is specified.

Table A–12 JNDIRealm Attributes

Attribute Description

810
UserDatabaseRealm Attributes
UserDatabaseRealm is an implementation of Realm based on an implementa-
tion of UserDatabase made available through the global JNDI resources config-
ured for the instance of Tomcat. The resourceName parameter is set to the global
JNDI resources name for the configured instance of UserDatabase to be con-

Search User Subtree

Set to True if you are using the User Search Pattern to search
for authenticated users and you want to search subtrees of the
element specified by the User Base Element. The default
value of False causes only the specified level to be searched.
Not used if you are using the User Pattern expression.

User Password

Name of the LDAP element containing the user’s password. If
you specify this value, JNDIRealm will bind to the directory
using the values specified by the Connection Name and Con-
nection Password attributes and retrieve the corresponding
attribute for comparison to the value specified by the user
being authenticated. If you do not specify this value, JNDI-
Realm will attempt to bind to the directory using the user
name and password specified by the user, with a successful
bind being interpreted as an authenticated user.

User Pattern

The LDAP search expression to use when retrieving the
attributes of a particular user, with {0} marking where the
actual user name should be inserted. Use this attribute instead
of User Search Pattern if you want to select a particular single
entry based on the user name.

User Search

The LDAP search expression to use when retrieving the
attributes of a particular user, with {0} marking where the
actual user name should be inserted. Use this attribute instead
of User Pattern to search the entire directory (instead of
retrieving a particular named entry) under the optional addi-
tional control of the User Base Element and Search User Sub-
tree attributes.

Table A–12 JNDIRealm Attributes

Attribute Description

CONFIGURING REALM ELEMENTS 811
sulted. Attributes for the User Database Realm implementation are shown in
Table A–13.

MemoryRealm Attributes
The Memory Based Realm is a simple Realm implementation that reads an
XML file to configure valid users, passwords, and roles. The file format and
default file location are identical to those currently supported by Tomcat 3.x.
This implementation is intended solely to get up and running with container
managed security - it is NOT intended for production use. As such, there are no
mechanisms for updating the in-memory collection of users when the content of
the underlying data file is changed. Attributes for the Memory Realm implemen-
tation are shown in Table A–14.

Table A–13 UserDataBaseRealm Attributes

Attribute Description

Debug Level
The level of debugging detail logged by this Engine. Higher
numbers generate more detailed output. If not specified, the
default debugging detail level is zero (0).

Resource Name
The global JNDI resources name for the configured instance
of UserDatabase to be consulted.

Table A–14 MemoryRealm Attributes

Attribute Description

Debug Level
The level of debugging detail logged by this Engine. Higher
numbers generate more detailed output. If not specified, the
default debugging detail level is zero (0).

Path Name

The path to the XML file containing user information. The
path is specified absolute or relative to <JWSDP_HOME>. If
no path name is specified, the default value is
<JWSDP_HOME>/conf/tomcat-users.xml.

812
Configuring Valve Elements
A Valve element represents a component that will be inserted into the request
processing pipeline for Tomcat. Individual Valves have distinct processing capa-
bilities, and are described individually below.

To edit a Valve,

1. Expand the Service element in the left pane.

2. Select the Valve to edit.

3. Edit the values in the right pane.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Valve for a service,

1. Select the Service element in the left pane. It is highly recommended that
you only modify the Java Web Services Developer Pack Service, or a ser-
vice that you have created.

2. Select Create New Valve from the Available Actions list.

3. Enter the preferred values for the Valve. See Valve Attributes (page 812)
for more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To learn more about Valves, read the document titled “Valve Component” at
<JWSDP_HOME>/docs/tomcat/config/valve.html.

Valve Attributes
There are 5 types of Valves available in this release, and each has its own set of
attributes, listed in the following sections.

AccessLogValve Attributes
The Access Log Valve creates log files in the same format as those created by
standard Web servers. These logs can later be analyzed by standard log analysis
tools to track page hit counts, user session activity, and so on. The Access Log
Valve shares many of the configuration and behavior characteristics of the File
Logger, including the automatic rollover of log files at midnight each night. An
Access Log Valve can be associated with any Tomcat container, and will record

CONFIGURING VALVE ELEMENTS 813
ALL requests processed by that container. Attributes for AccessLogValve are
shown in Table A–15.

Values for the Pattern Attribute
Values for the pattern attribute are made up of literal text strings, combined with
pattern identifiers prefixed by the "%" character to cause replacement by the cor-

Table A–15 AccessLogValve Attributes

Attribute Description

Debug Level

The level of debugging detail logged by this Logger.
Higher numbers generate more detailed output. If not
specified, the default debugging detail level is zero
(0).

Directory

The absolute or relative path name of a directory in
which log files created by this valve will be placed. If
a relative path is specified, it is interpreted as relative
to <JWSDP_HOME>. The default value is logs (relative
to <JWSDP_HOME>).

Pattern

A formatting layout identifying the various informa-
tion fields from the request and response to be logged,
or the word common or combined to select a standard
format. See Values for the Pattern
Attribute (page 813) for more information.

Prefix
The prefix added to the start of each log file’s name.
The default value is access_log. To specify no pre-
fix, use a zero-length string.

Resolve Hosts

Whether or not to convert the IP address of the remote
host into the corresponding host name via a DNS
lookup. Set to True to convert the IP address of the
remote host into the corresponding host name via a
DNS lookup. Set to False to skip this lookup, and
report the remote IP address instead. The default is
False.

Suffix
The suffix added to the end of each log file’s name. If
not specified, the default value is "". To specify no
suffix, use a zero-length string.

814
responding variable value from the current request and response. The following
pattern codes are supported:

• %a - Remote IP address

• %A - Local IP address

• %b - Bytes sent, excluding HTTP headers, or ’-’ if zero

• %B - Bytes sent, excluding HTTP headers

• %h - Remote host name (or IP address if resolveHosts is false)

• %H - Request protocol

• %l - Remote logical user name from identd (always returns ’-’)

• %m - Request method (GET, POST, etc.)

• %p - Local port on which this request was received

• %q - Query string (prepended with a ’?’ if it exists)

• %r - First line of the request (method and request URI)

• %s - HTTP status code of the response

• %S - User session ID

• %t - Date and time, in Common Log Format

• %u - Remote user that was authenticated (if any), else ’-’

• %U - Requested URL path

• %v - Local server name

The shorthand pattern name common (which is also the default) corresponds to %h

%l %u %t "%r" %s %b. The shorthand pattern name combined appends the val-
ues of the Referrer and User-Agent headers, each in double quotes, to the com-

mon pattern.

RemoteAddrValve Attributes
Remote Address Valve allows you to compare the IP address of the client that
submitted this request against one or more regular expressions, and either allow
the request to continue or refuse to process the request from this client. A
Remote Address Valve must accept any request presented to this container for
processing before it will be passed on.

CONFIGURING VALVE ELEMENTS 815
Attributes for this Valve are listed in Table A–16.

RemoteHostValve Attributes
The Remote Host Valve allows you to compare the host name of the client that
submitted this request against one or more regular expressions, and either allow
the request to continue or refuse to process the request from this client. A
Remote Host Valve must accept any request presented to this container for pro-
cessing before it will be passed on.

Attributes for the RemoteHostValve are outlined in Table A–17.

Table A–16 RemoteAddrValve Attributes

Attribute Description

Allow IP Addresses

A comma-separated list of regular expression patterns that
the remote client’s IP address is compared to. If this
attribute is specified, the remote address MUST match for
this request to be accepted. If this attribute is not specified,
all requests will be accepted UNLESS the remote address
matches a deny pattern.

Deny IP Addresses

A comma-separated list of regular expression patterns that
the remote client’s IP address is compared to. If this
attribute is specified, the remote address MUST NOT
match for this request to be accepted. If this attribute is not
specified, request acceptance is governed solely by the
Allow IP Addresses attribute.

Table A–17 RemoteHostValve Attributes

Attribute Description

Allow these Hosts

A comma-separated list of regular expression patterns that
the remote client’s host name is compared to. If this
attribute is specified, the remote hostname MUST match
for this request to be accepted. If this attribute is not speci-
fied, all requests will be accepted UNLESS the remote host
name matches a deny pattern.

816
RequestDumperValve Attributes
The Request Dumper Valve is a useful tool in debugging interactions with a cli-
ent application (or browser) that is sending HTTP requests to your Tomcat-based
server. When configured, it causes details about each request processed by its
associated Engine, Host, or Context to be logged to the Logger that corresponds
to that container. This Valve has no specific attributes.

SingleSignOn Attributes
The Single Sign On Valve is utilized when you wish to give users the ability to
sign on to any one of the Web applications associated with your virtual host, and
then have their identity recognized by all other Web applications on the same
virtual host. This Valve has a Debug Level attribute.

Configuring Resources
The Resources node represents the Global Naming Resources component. The
elements under this node represent the global JNDI resources which are defined
for the Server. The following resources can be used to configure the resource
manager (or object factory) used to return objects when a Web application per-
forms a JNDI lookup operation on the corresponding resource name:

• Data Sources

• Environment Entries

• User Databases

For more information on configuring Global Naming Resources, read the docu-
ment titled GlobalNamingResources Component, available from
<JWSDP_HOME>/docs/tomcat/config/globalresources.html.

Deny these Hosts

A comma-separated list of regular expression patterns that
the remote client’s host name is compared to. If this
attribute is specified, the remote host name MUST NOT
match for this request to be accepted. If this attribute is not
specified, request acceptance is governed solely by the
Allow These Hosts attribute.

Table A–17 RemoteHostValve Attributes (Continued)

Attribute Description

CONFIGURING DATA SOURCES 817
Configuring Data Sources
Many Web applications need to access a database via a JDBC driver to support
the functionality required by that application. The J2EE Platform Specification
requires J2EE Application Servers to make a Data Source implementation (that
is, a connection pool for JDBC connections) available for this purpose. Tomcat
offers the same support so that database-based applications developed on Tomcat
using this service will run unchanged on any J2EE server.

To edit a Data Source,

1. Expand the Resources element in the left pane.

2. Select the Data Source to edit.

3. Edit the values in the right pane.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Data Source for Tomcat,

1. Create a Context in server.xml and add a ResourceLink within the con-
text . The global field of the Resource Link should be the name of the Glo-
bal Resource you wish to add using admintool. The name field of the
ResourceLink should be the name you use as a Resource Reference in
web.xml. The following example from a server.xml for Tomcat shows a
simple Resource Reference and Context.

<Context

className="org.apache.catalina.core.StandardContext"

cachingAllowed="true"charsetMapperClass="org.apache.

catalina.util.CharsetMapper" cookies="true"

crossContext="false" debug="0" displayName="GSApp"

docBase="/home/your_name/work/Standard

Engine\localhost\manager\gs.war"

mapperClass="org.apache.catalina.core.

StandardContextMapper" path="/GSApp"

privileged="false"reloadable="false" useNaming="true"

wrapperClass="org.apache.catalina.core.StandardWrapper">

<ResourceLink global="jdbc/ActivityDB" name="ActivityDB"/>

</Context>

2. Add the resource reference to the deployment descriptor for the applica-
tion, web.xml. The following code, which shows an example of a resource
reference in bold, is an example from the Getting Started application.

818
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC

'-//Sun Microsystems, Inc.//DTD Web Application 2.3//

EN' 'http://java.sun.com/dtd/web-app_2_3.dtd'>

<web-app>

<display-name>GSApp</display-name>

<servlet>

<servlet-name>index</servlet-name>

<display-name>index</display-name>

<jsp-file>/index.jsp</jsp-file>

</servlet>

<resource-ref>

<res-ref-name>ActivityDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

</resource-ref>

</web-app>

The Resource created here is linked to the context via the Resource Link
element.

3. In admintool, select the Data Source element in the left pane.

4. Select Create New Data Source from the Available Actions list.

5. Set the Data Source attributes. See Data Source Attributes (page 820) for
more information on the options. The JNDI Name you specify in admin-

tool should match the Resource Reference name from the web.xml file
and the Resource Link name from server.xml. Add the Driver Name,
URL, User Name, and Password.

6. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

If you select Commit Changes, the <JWSDP_HOME>/conf/server.xml file will
be updated with an entry for ResourceParams within the GlobalNamingRe-

sources element, which might look like this:

<GlobalNamingResources>
<Environment description="Absolute Path name of the JWSDP"
Installation" name="jwsdp.home"
override="true" type="java.lang.String"
value="/home/your_name/jwsdp-1.1"/>

<Resource auth="Container" description="Users and Groups
Database" name="UserDatabase"

CONFIGURING DATA SOURCES 819
scope="Shareable"
type="org.apache.catalina.UserDatabase"/>

<Resource name="jdbc/ActivityDB" scope="Shareable"
type="javax.sql.DataSource"/>

<ResourceParams name="UserDatabase">
<parameter>
<name>factory</name>
<value>org.apache.catalina.users.

MemoryUserDatabaseFactory</value>
</parameter>
<parameter>
<name>pathname</name>
<value>conf/tomcat-users.xml</value>

</parameter>
</ResourceParams>
<ResourceParams name="jdbc/ActivityDB">

<parameter>
<name>validationQuery</name>
<value></value>

</parameter>
<parameter>
<name>user</name>
<value>your_user_name</value>

</parameter>
<parameter>
<name>maxWait</name>
<value>5000</value>

</parameter>
<parameter>
<name>maxActive</name>
<value>4</value>

</parameter>
<parameter>
<name>password</name>
<value>your_password</value>

</parameter>
<parameter>
<name>url</name>
<value>jdbc:pointbase:server://localhost/ActivityDB</val

ue>
</parameter>
<parameter>
<name>driverClassName</name>
<value>com.pointbase.jdbc.jdbcUniversalDriver</value>

</parameter>
<parameter>
<name>maxIdle</name>

820
<value>2</value>
</parameter>

</ResourceParams>
</GlobalNamingResources>

Data Source Attributes

Note: In order to use a Data Source, you must have a JDBC driver installed and con-
figured.

The attributes outlined in Table A–18 may be viewed, set, or modified for a Data
Source.

Table A–18 Data Source Attributes

Attribute Description

JNDI Name

The JNDI name under which you will look up pre-
configured data sources. By convention, all such
names should resolve to the jdbc subcontext (rela-
tive to the standard java:comp/env naming con-
text that is the root of all provided resource
factories.) For example, this entry might look like
jdbc/EmployeeDB.

Data Source URL
The connection URL to be passed to the JDBC
driver. One example is jdbc:Hypersonic-
SQL:database.

JDBC Driver Class
The fully-qualified Java class name of the JDBC
driver to be used. One example is org.hsql.jdb-
cDriver.

User Name
The database user name to be passed to the JDBC
driver.

Password
The database password to be passed to the JDBC
driver.

Max. Active Connections
The maximum number of active instances that can
be allocated from this pool at the same time. Default
value is 4.

CONFIGURING ENVIRONMENT ENTRIES 821
Configuring Environment Entries
Use this element to configure or delete named values that will be made visible to
Web applications as environment entry resources. An example of an environ-
ment entry that might be useful is the absolute path to the Java WSDP installa-
tion, which is already defined as an Environment Entry.

To edit an Environment Entry,

1. Expand the Resources element in the left pane.

2. Select Environment Entries in the left pane.

3. Select the Environment Entry to edit in the right pane. By default, an envi-
ronment entry for the absolute path to the Java WSDP installation displays.

4. Edit the values in the right pane.

5. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new Environment Entry for Tomcat,

1. Select the Environment Entries element in the left pane.

2. Select Create New Env Entry from the Available Actions list.

3. Set the Environment Entries attributes. See Environment Entries
Attributes (page 822) for more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

Max. Idle Connections
The maximum number of connections that can sit
idle in this pool at the same time. Default value is 2.

Max. Wait for Connections

The maximum number of milliseconds that the pool
will wait (when there are no available connections)
for a connection to be returned before throwing an
exception. Default value is 5000.

Validation Query

A SQL query that can be used by the pool to validate
connections before they are returned to the applica-
tion. If specified, this query MUST be an SQL
SELECT statement that returns at least one row.

Table A–18 Data Source Attributes (Continued)

Attribute Description

822
Environment Entries Attributes
The valid attributes for an Environment element are outlined in Table A–19.

Configuring User Databases
Use this Resource to configure and edit a database of users for this server. The
default database, <JWSDP_HOME>/conf/tomcat-users.xml, is already defined.

To edit a User Database,

1. Expand the Resources element in the left pane.

2. Select User Databases in the left pane.

Table A–19 Environment Entries Attributes

Attribute Description

Name
The name of the environment entry to be created, relative to the
java:comp/env context. For example, jwsdp.home.

Type

The fully qualified Java class name expected by the Web appli-
cation for this environment entry: java.lang.Boolean,
java.lang.Byte, java.lang.Character,
java.lang.Double, java.lang.Float, java.lang.Inte-
ger, java.lang.Long, java.lang.Short, or
java.lang.String.

Value

The parameter value that will be presented to the application
when requested from the JNDI context. This value must be con-
vertible to the Java type defined by the type attribute. For exam-
ple, <path_to_home_directory>/jwsdp-1_0.

Override Application
Level Entries

Whether or not you want an Environment Entry for the same
environment entry name, found in the Web application’s deploy-
ment descriptor, to override the value specified here. Unselect
this option if you do not want an Environment Entry for the
same environment entry name, found in the Web application’s
deployment descriptor, to override the value specified here. By
default, overrides are allowed.

Description
An optional, human-readable description of this environment
entry.

ADMINISTERING ROLES, GROUPS, AND USERS 823
3. Select the User Database to edit in the right pane. By default, a user data-
base for Tomcat displays.

4. Edit the values in the right pane.

5. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

To create a new User Database for Tomcat,

1. Select the User Databases element in the left pane.

2. Select Create New User Database from the Available Actions list.

3. Set the User Database attributes. See User Database Attributes (page 823)
for more information on the options.

4. Select Save to save the changes for this session. Select Commit Changes
to save the changes for when Tomcat is restarted.

User Database Attributes
Configure a User Database with the attributes outlined in Table A–20.

Administering Roles, Groups, and Users
Information about understanding, adding, removing, and editing roles, groups,
and users can be found in the Web Application Security topic Users, Groups, and
Roles (page 702).

Table A–20 User Database Attributes

Attribute Description

Name
The name of the user database to be created, for example,
UserDatabase.

Location
The location where the user database should be created, for
example, conf/tomcat-users.xml.

Factory
The type of factory to use for this database, org.apache.cat-
alina.users.MemoryUserDatabaseFactory.

Description
A human-readable description of what type of data the database
holds, for example, Users and Groups Database.

824
Further Information
• Tomcat Server Configuration Reference. For further information on the

elements that can be used to configure the behavior of Tomcat, read the
Tomcat Configuration Reference, which can be found at
<JWSDP_HOME>/docs/tomcat/config/index.html.

• JNDI Resources How-To. This document discusses configuring JNDI
Resources, Tomcat Standard Resource Factories, JDBC Data Sources, and
Custom Resource Factories. This document can be found at
<JWSDP_HOME>/docs/tomcat/jndi-resources-howto.html.

• Manager Application How-To. This document describes using the Man-
ager Application to deploy a new Web application, undeploy an existing
application, or reload an existing application without having to shut down
and restart Tomcat. This document can be found at
<JWSDP_HOME>/docs/tomcat/manager-howto.html.

• Proxy Support How-To. This document discusses running behind a proxy
server (or a web server that is configured to behave like a proxy server). In
particular, this document discusses how to manage the values returned by
the calls from Web applications that ask for the server name and port num-
ber to which the request was directed for processing. This document can
be found at <JWSDP_HOME>/docs/tomcat/proxy-howto.html.

• Realm Configuration How-To. This document discusses how to configure
Tomcat to support container-managed security by connecting to an exist-
ing database of user names, passwords, and user roles. This document can
be found at <JWSDP_HOME>/docs/tomcat/realm-howto.html.

• Security Manager How-To. This document discusses the use of a Securi-

tyManager while running Tomcat to protect your server from unauthorized
servlets, JSPs, JSP beans, and tag libraries. This document can be found at
<JWSDP_HOME>/docs/tomcat/security-manager-howto.html.

• SSL Configuration How-To. This document discusses how to install and
configure SSL support on Tomcat. Configuring SSL support on Tomcat
using Java WSDP is discussed in Installing and Configuring SSL
Support (page 721). The Tomcat documentation at
<JWSDP_HOME>/docs/tomcat/ssl-howto.html also discusses this topic,
however, the information in this tutorial is more up-to-date for the version
of Tomcat shipped with the Java WSDP.

B

825
Tomcat Web
Application Manager

Stephanie Bodoff

THE Tomcat Web Application Manager is used to list, install, reload, deploy,
and remove Web applications from Tomcat. The Tomcat Web Application Man-
ager is referred to as manager throughout this section for ease of reference.

Running the Web Application Manager
The manager is itself a Web application that is preinstalled into Tomcat, so Tom-
cat must be running in order to use it. You invoke a manager command via one of
the URLs listed in Table B–1.

Table B–1 Tomcat Web Application Manager Commands

Function Command

list http://<host>:8080/manager/list

Bios.html

826 TOMCAT WEB APPLICATION MANAGER
Since the manager pages are protected Web resources, the first time you invoke a
manager command, an authentication dialog will appear. You must log in to the
manager with the user name and password you provided when you installed the
Java WSDP.

The document Manager App HOW-TO, distributed with the Java WSDP at
<JWSDP_HOME>/docs/tomcat/manager-howto.html, contains reference infor-
mation about the manager application.

Running Manager Commands Using
Ant Tasks

The version of Ant distributed with the Java WSDP supports tasks that invoke
manager commands, thus allowing you to run the commands from a terminal
window. The tasks are summarized in Table B–2.

install

http://<host>:8080/manager/install?
path=/mywebapp&
war=file:/path/to/mywebapp

http://<host>:8080/manager/install?
path=/mywebapp&
war=jar:file:/path/to/mywebapp.war!/

reload http://<host>:8080/manager/reload?path=/mywebapp

remove http://<host>:8080/manager/remove?path=/mywebapp

Table B–2 Ant Web Application Manager Tasks

Function Ant Task Syntax

list
<list url="url" username="username"

password="password" />

Table B–1 Tomcat Web Application Manager Commands

Function Command

RUNNING MANAGER COMMANDS USING ANT TASKS 827
Note: An application that is installed is not available after Tomcat is restarted. To
make an application permanently available, use the deploy task.

Since a user of the manager is required to be authenticated, the Ant tasks take
username and password attributes in addition to the URL. Instead of embedding
these in the Ant build file, you can use the approach followed by the tutorial
examples. You set the username and password properties in a file named
build.properties in your home directory as follows:

username=ManagerName
password=ManagerPassword

Replace ManagerName and ManagerPassword with the values you specified for
the user name and password when you installed the Java WSDP.

Note: On Windows, your home directory is the directory where your Windows pro-
file is stored. For example, on Windows 2000 it would be C:\Documents and
Settings\yourProfile.

install

<install url="url" path="mywebapp" war=""
username="username" password="password" />

The value of the war attribute can be a WAR file
(jar:file:/path/to/mywebapp.war!/) or an unpacked directory
(file:/path/to/mywebapp).

reload
<reload url="url" path="mywebapp"

username="username" password="password" />

deploy
<deploy url="url" path="mywebapp"

war="file:/path/to/mywebapp.war"
username="username" password="password" />

undeploy
<undeploy url="url" path="mywebapp"

username="username" password="password" />

remove
<remove url="url" path="mywebapp"

username="username" password="password" />

Table B–2 Ant Web Application Manager Tasks

Function Ant Task Syntax

828 TOMCAT WEB APPLICATION MANAGER
The Ant build files import these properties with the following element:

<property file="${user.home}/build.properties"/>

C

829
The Java WSDP
Registry Server

Kim Haase

A registry offers a mechanism for humans or software applications to advertise
and discover Web services. The Java Web Services Developer Pack (Java
WSDP) Registry Server implements Version 2 of the Universal Description, Dis-
covery and Integration (UDDI) project to provide a UDDI registry for Web ser-
vices in a private environment. You can use it with the Java WSDP APIs as a test
registry for Web services application development.

You can use the Registry Server to test applications that you develop that use the
Java API for XML Registries (JAXR), described in Publishing and Discovering
Web Services with JAXR (page 537). You can also use the JAXR Registry
Browser sample application provided with the Java WSDP to perform queries
and updates on Registry Server data; see Registry Browser (page 839) for
details.

The release of the Registry Server that is part of the Java WSDP includes the fol-
lowing:

• A Web application, a servlet, that implements UDDI Version 2 functional-
ity

• A database based on the native XML database Xindice, which is part of the
Apache XML project. This database provides the persistent store for reg-
istry data.

830 THE JAVA WSDP REGISTRY SERVER
The Registry Server does not support messages defined in the UDDI Version 2.0
Replication Specification.

This chapter describes how to start the Registry Server and how to use JAXR to
access it. It also describes how to access the Registry Server using a command-
line client script that is provided as a sample application.

Starting the Registry Server
In order to use the Java WSDP Registry Server, you must start Tomcat. Starting
Tomcat automatically starts both the Registry Server and the Xindice database.

See Starting Tomcat (page 80) for information on how to start Tomcat.

See Shutting Down Tomcat (page 83) for information on how to stop Tomcat.

Using JAXR to Access the Registry
Server

You can access the Registry Server by using the sample programs in the
<JWSDP_HOME>/docs/tutorial/examples/jaxr directory. For details on how
these examples work and how to run them, see Running the Client
Examples (page 562).

Before you compile the examples, you need to edit the file JAXRExam-

ples.properties as follows.

1. If necessary, edit the following lines in the JAXRExamples.properties

file to specify the Registry Server. The default registry is the Registry
Server, so if you are using the examples for the first time you do not need
to perform this step. The lines should look something like this:
Uncomment one pair of query and publish URLs.
IBM:
#query.url=http://uddi.ibm.com/testregistry/inquiryapi
#publish.url=https://uddi.ibm.com/testregistry/protect/
publishapi
Microsoft:
#query.url=http://uddi.microsoft.com/inquire
#publish.url=https://uddi.microsoft.com/publish
Registry Server:
query.url=http://localhost:8080/RegistryServer
publish.url=http://localhost:8080/RegistryServer

USING THE COMMAND LINE CLIENT SCRIPT TO ACCESS THE REGISTRY SERVER 831
If the Registry Server is running on a system other than your own, specify
the fully qualified host name instead of localhost. Do not use https: for
the publishURL.

2. If necessary, edit the following lines in the JAXRExamples.properties

file to specify the user name and password you will be using. The default
is the Registry Server default password:
Specify username and password if needed
testuser/testuser are defaults for Registry Server
registry.username=testuser
registry.password=testuser

3. You can leave the following lines in the JAXRExamples.properties file as
they are. You do not use a proxy to access the Registry Server, so these val-
ues are not used. If you previously filled in the host values, you can leave
them filled in.
HTTP and HTTPS proxy host and port;
ignored by Registry Server
http.proxyHost=
http.proxyPort=8080
https.proxyHost=
https.proxyPort=8080

4. Feel free to change any of the organization data in the remainder of the file.
This data is used by the publishing and postal address examples.

Using the Command Line Client Script
to Access the Registry Server

You will find shell scripts in the <JWSDP_HOME>/registry-server-

1.0_04/samples/ directory called registry-server-test.sh (for UNIX sys-
tems) and registry-server-test.bat (for Microsoft Windows systems).

The script uses XML files in the xml subdirectory to send messages to the Regis-
try Server.

To use the script, go to the directory where the script resides. Make sure the
script is executable (make it so if it is not).

832 THE JAVA WSDP REGISTRY SERVER
You can use the script to perform the following tasks:

• Obtaining authentication

• Saving a business

• Finding a business

• Obtaining business details

• Deleting a business

• Validating messages

• Retrieving a particular user’s businesses

• Sending any kind of UDDI message

• Adding a new user to the registry

• Deleting a user from the registry

Obtaining Authentication
Before you can perform other tasks, you must obtain authentication as a user of
the Registry Server.

To obtain authentication, you use the file GetAuthToken.xml in the xml subdi-
rectory. By default, the registry accepts a default user named testuser with a
password of testuser. To create other users, follow the instructions in Adding a
New User to the Registry (page 836), then edit the GetAuthToken.xml file to
specify the user name and password you created.

To obtain authentication, enter the following command on one line:

Windows:

registry-server-test run-cli-request
-Drequest=xml\GetAuthToken.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/GetAuthToken.xml

When the script runs, it returns an <authToken> tag that contains an <authInfo>

tag. You will use the value in this tag in the next step.

The value in this tag is valid for one hour. You can rerun the script after it
expires.

SAVING A BUSINESS 833
Saving a Business
To save (that is, to add) a business, you use the file SaveBusiness.xml in the
xml subdirectory. Before you run the script, edit the <authInfo> tag in this file
and replace the existing contents with the contents of the <authInfo> tag
returned in the previous step. Feel free to modify other values specified in the
file.

To save the business, enter the following command on one line:

Windows:

registry-server-test run-cli-request
-Drequest=xml\SaveBusiness.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/SaveBusiness.xml

Output appears in the terminal window in which you run the command.

Finding a Business
To find a business by name, you use the file FindBusiness.xml in the xml subdi-
rectory.

Before you run the script this time, edit the file by changing the value in the
<name> tag to the name you specified in the SaveBusiness.xml file (or the first
few characters of the name).

To find the business, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\FindBusiness.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/FindBusiness.xml

834 THE JAVA WSDP REGISTRY SERVER
Output appears in the terminal window. Notice the businessKey value returned
in the <businessEntity> tag. You will use it in the next step.

Obtaining Business Details
To obtain details about a business, you use the file GetBusinessDetail.xml in
the xml subdirectory.

Before you run the script this time, edit this file by copying the businessKey

value from the output of the command in the previous step into the <business-

Key> tag.

To obtain details about the business you saved, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\GetBusinessDetail.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/GetBusinessDetail.xml

Output appears in the terminal window.

Deleting a Business
To delete a business you saved, you use the file DeleteBusiness.xml in the xml

subdirectory.

Before you run the script this time, edit the file as follows:

1. Change the value of the <authInfo> tag to the value you used for Save-
Business.xml.

2. Change the value of the <businessKey> tag to the business key value of
the business you want to delete.

To delete the business, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\DeleteBusiness.xml

VALIDATING UDDI MESSAGES 835
UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/DeleteBusiness.xml

Validating UDDI Messages
To validate a UDDI message against the UDDI V2.0 XML schema before you
send it, use the following command:

Windows:

registry-server-test run-validate -Dinstance=XML_file_name

UNIX:

registry-server-test.sh run-validate -Dinstance=XML_file_name

If a file contains errors, the error messages have the following format:

file:line:column:message

Retrieving a User’s Businesses
To obtain a summary of all items published by a user, you use the file GetRegis-
teredInfo.xml in the xml subdirectory.

Before you run the script this time, edit this file by copying the <authInfo>

string that you entered in the SaveBusiness.xml or DeleteBusiness.xml file
into the <authInfo> tag of GetRegisteredInfo.xml.

To obtain details about the business you saved, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\GetRegisteredInfo.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/GetRegisteredInfo.xml

836 THE JAVA WSDP REGISTRY SERVER
The command returns information not only about your business, but about all
other businesses and Tmodels owned by testuser.

Sending UDDI Request Messages
To send any UDDI request to the server, use the following command:

Windows:

registry-server-test run-cli-request -Drequest=name_of_file

UNIX:

registry-server-test.sh run-cli-request -Drequest=name_of_file

where name_of_file is an XML file containing a UDDI message. It is a good
idea to validate the message before you send it.

The xml subdirectory contains numerous messages you can edit and use in addi-
tion to those described here. You can also create your own messages.

Adding a New User to the Registry
To add a new user to the Registry Server database, you first generate a hash pass-
word for the user. Then you use the file UserInfo.xml in the xml subdirectory.
Perform the following steps:

1. To generate a hash password for the user, specify the actual password as
the value argument in the following command line:

Windows:

registry-server-test run-md5 -Dpassword=value

UNIX:

registry-server-test.sh run-md5 -Dpassword=value

For example, if you specify a password value of mypass, you get output
like the following:

registry-server-test run-md5 -Dpassword=mypass
Buildfile:
D:\jwsdp-1.1\registry-server-1.0_04\samples\test-build.xml

run-md5:

DELETING A USER FROM THE REGISTRY 837
[echo] -- Running md5 for auth --
[java]
[java] The Value of the MD5 Hash is: a029d0df84eb5549

2. Open the file xml/UserInfo.xml in an editor.

3. Change the values in the <fname>, <lname>, and <uid> tags to the first
name, last name, and unique user ID (UID) of the new user. The <uid> tag
is commonly the user’s login name. It must be unique.

4. Enter the hash value from the run-md5 command as the value of the
<passwd> tag in UserInfo.xml. Do not modify the <tokenExpiration>

or <authInfo> tag.

5. Save and close the UserInfo.xml file.

6. Enter the following command (all on one line):

Windows:

registry-server-test run-cli-request
-Drequest=xml\UserInfo.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/UserInfo.xml

Deleting a User from the Registry
To delete a user from the registry, you use the file UserDelete.xml in the xml

subdirectory.

Before you run the script this time, edit this file by modifying the values in the
<fname>, <lname>, <uid>, and <passwd> tags.

To delete the user, use the following command:

Windows:

registry-server-test run-cli-request
-Drequest=xml\UserDelete.xml

UNIX:

registry-server-test.sh run-cli-request
-Drequest=xml/UserDelete.xml

838 THE JAVA WSDP REGISTRY SERVER
Further Information
For more information about UDDI registries, JAXR, and Web services, see the
following:

• Universal Description, Discovery, and Integration (UDDI) project:
http://www.uddi.org/

• JAXR home page:
http://java.sun.com/xml/jaxr/index.html

• Java Web Services Developer Pack (Java WSDP):
http://java.sun.com/webservices/webservicespack.html

• Java Technology and XML:
http://java.sun.com/xml/

• Java Technology & Web Services:
http://java.sun.com/webservices/index.html

http://www.uddi.org
http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/webservices/webservicespack.html
http://java.sun.com/xml/
http://java.sun.com/webservices/index.html

D

839
Registry Browser
Kim Haase

THE Registry Browser is both a working example of a JAXR client and a sim-
ple GUI tool that enables you to search registries and submit data to them.

The Registry Browser source code is in the directory <JWSDP_HOME>/jaxr-

1.0_03/samples/jaxr-browser. Much of the source code implements the GUI.
The JAXR code is in the file JAXRClient.java.

The Registry Browser allows access to any registry, but includes as preset URLs
the IBM and Microsoft UDDI test registries. You may also use the Registry
Server (see The Java WSDP Registry Server, page 829).

Starting the Browser
To start the browser, go to the directory <JWSDP_HOME>/jaxr-1.0_03/bin or
place this directory in your path.

The following commands show how to start the browser on a UNIX system and
a Microsoft Windows system, respectively:

jaxr-browser.sh

jaxr-browser

In order to access the Registry Server through the browser, you must make sure
to start Tomcat before you perform any queries or submissions to the browser;
see Starting the Registry Server (page 830) for details.

Bios.html

840 REGISTRY BROWSER
In order to access external registries, the browser needs to know your Web proxy
settings. By default, the browser uses the settings you specified when you
installed the Java WSDP. These are defined in the file
<JWSDP_HOME>/conf/jwsdp.properties. If you want to override these settings,
you can edit this file or specify proxy information on the browser command line.

To use the same proxy server for both HTTP and HTTPS access, specify a non-
default proxy host and proxy port as follows. The port is usually 8080. The fol-
lowing command shows how to start the browser on a UNIX system:

jaxr-browser.sh httpHost httpPort

For example, if your proxy host is named websys and it is in the south subdo-
main, you would enter

jaxr-browser.sh websys.south 8080

To use different proxy servers for HTTP and HTTPS access, specify the hosts
and ports as follows. (If you do not know whether you need two different serv-
ers, specify just one. It is relatively uncommon to need two.) On a Microsoft
Windows system, the syntax is as follows:

jaxr-browser httpHost httpPort httpsHost httpsPort

After the browser starts, enter the URL of the registry you want to use in the
Registry Location combo box, or select a URL from the drop-down menu in the
combo box. The menu allows you to choose among the IBM and Microsoft reg-
istries. To access the Registry Server, you normally enter the following URL in
the Registry Location combo box:

http://localhost:8080/RegistryServer

Specify localhost if the Registry Server is on your own system. Otherwise,
specify the fully qualified hostname of the system where the Registry Server is
running. You specify the same URL for both queries and updates.

There may be a delay of a few seconds while a busy cursor is visible.

When the busy cursor disappears, you have a connection to the URL. However,
you do not establish a connection to the registry itself until you perform a query
or update, so JAXR will not report an invalid URL until then.

The browser contains two main panes, Browse and Submissions.

QUERYING A REGISTRY 841
Querying a Registry
You use the Browse pane to query a registry.

Note: In order to perform queries on the Microsoft registry, you must be connected
to the inquire URL. To perform queries on the IBM registry, you may be connected
to either the inquiryapi URL or the publishapi URL.

Querying by Name
To search for organizations by name, perform the following steps.

1. Click the Browse tab if it is not already selected.

2. In the Find By panel on the left side of the Registry Browser window, do
the following:

a. Select Name in the Find By combo box if it is not already selected.

b. Enter a string in the text field.

c. Press Enter or click the Search button in the toolbar.

After a few seconds, the organizations whose names match the text string appear
in the right side of the Registry Browser window. An informational dialog box
appears if no matching organizations are found.

Queries are not case-sensitive. If you enter a plain text string (string), organiza-
tion names match if they begin with the text string you entered. Enclose the
string in percent signs (%string%) for wildcard searches.

Double-click on an organization to show its details. An Organization dialog box
appears. In this dialog box, you can click Show Services to display the Services
dialog box for the organization. In the Services dialog box, you can click Show
ServiceBindings to display the ServiceBindings dialog box for that service.

Querying by Classification
To query a registry by classification, perform the following steps.

1. Select Classification in the Find By combo box.

2. In the Classifications pane that appears below the combo box, double-click
a classification scheme.

842 REGISTRY BROWSER
3. Continue to double-click until you reach the node you want to search on.

4. Click the Search button in the toolbar.

After a few seconds, one or more organizations in the chosen classification may
appear in the right side of the Registry Browser window. An informational dia-
log box appears if no matching organizations are found.

Managing Registry Data
You use the Submissions pane to add organizations to the registry.

To go to the Submissions pane, click the Submissions tab.

Adding an Organization
To add an organization, use the Organization panel on the left side of the Sub-
missions pane.

Use the Organization Information fields as follows:

• Name: Enter the name of the organization.

• Id: You cannot enter or modify data in this field; the ID value is returned
by the registry when you submit the data.

• Description: Enter a description of the organization.

Use the Primary Contact Information fields as follows:

• Name: Enter the name of the primary contact person for the organization.

• Phone: Enter the primary contact's phone number.

• Email: Enter the primary contact's email address.

Note: With the Registry Server, none of these fields is required; it is possible
(though not advisable) to add an organization that has no data. With the IBM and
Microsoft registries, an organization must have a name.

For information on adding or removing classifications, see Adding and Remov-
ing Classifications (page 844).

ADDING SERVICES TO AN ORGANIZATION 843
Adding Services to an Organization
To add information about an organization's services, Use the Services panel on
the right side of the Submissions pane.

To add a service, click the Add Services button in the toolbar. A subpanel for the
service appears in the Services panel. Click the Add Services button more than
once to add more services in the Services panel.

Each service subpanel has the following components:

• Name, Id, and Description fields

• Edit Bindings and Remove Service buttons

• A Classifications panel

Use these components as follows:

• Name field: Enter a name for the service.

• Id field: You cannot enter or modify data in this field for a level 0 JAXR
provider.

• Description field: Enter a description of the service.

• Click the Edit Bindings button to add service bindings for the service. An
Edit ServiceBindings dialog box appears. See the next section, Adding
Service Bindings to a Service, for details.

• Click the Remove Service button to remove this service from the organi-
zation. The service subpanel disappears from the Services panel.

• To add or remove classifications, use the Classifications panel. See Adding
and Removing Classifications (page 844) for details.

Adding Service Bindings to a Service
To add service bindings for a service, click the Edit Bindings button in a service
subpanel in the Submissions pane. The Edit ServiceBindings dialog box appears.

If there are no existing service bindings when the dialog box first appears, it con-
tains an empty Service Bindings panel and two buttons, Add Binding and Done.
If the service already has service bindings, the Service Bindings panel contains a
subpanel for each service binding.

Click Add Binding to add a service binding. Click Add Binding more than once
to add multiple service bindings.

844 REGISTRY BROWSER
After you click Add Binding, a new service binding subpanel appears. It con-
tains three text fields and a Remove Binding button.

Use the text fields as follows:

• Description: Enter a description of the service binding.

• Access URI: Enter the URI used to access the service. The URI must be
valid; if it is not, the submission will fail.

Use the Remove Binding button to remove the service binding from the service.

Click Done to close the dialog box when you have finished adding or removing
service bindings.

Adding and Removing Classifications
To add classifications to, or remove classifications from, an organization or ser-
vice, use a Classifications panel. A Classifications panel appears in an Organiza-
tion panel or service subpanel.

To add a classification:

1. Click Add.

2. In the Select Classifications dialog, double-click one of the classification
schemes.

• If you clicked ntis-gov:naics:1997 or unspsc-org:unspsc:3-1, you can
add the classification at any level of the taxonomy hierarchy. When you
reach the level you want, click Add.

• If you clicked uddi-org:iso-ch:3166:1999 (geography), locate the
appropriate leaf node (the country) and click Add.

The classification appears in a table in the Classifications panel below the but-
tons.

To add multiple classifications to the organization or service, you can repeat
these steps more than once. Alternatively, you can click on the classification
schemes while pressing the control or shift key, then click Add.

Click Close to dismiss the window when you have finished.

To remove a classification, select the appropriate table row in the Classifications
panel and click Remove. The classification disappears from the table.

SUBMITTING THE DATA 845
Submitting the Data
When you have finished entering the data you want to add, click the Submit but-
ton in the toolbar.

An authentication dialog box appears. To continue with the submission, enter
your user name and password and click OK. To close the window without sub-
mitting the data, click Cancel.

If you are using the Registry Server, the default username and password are both
testuser.

If the submission is successful, an information dialog box appears with the orga-
nization key in it. Click OK to continue. The organization key also appears in the
ID field of the Submissions pane.

Note: If you submit an organization, return to the Browse pane, then return to the
Submissions pane, you will find that the organization is still there. If you click the
Submit button again, a new organization is created, whether or not you modify the
organization data.

Deleting an Organization
To delete an organization:

1. Use the Browse pane to locate an organization you wish to delete.

2. Connect to a URL that allows you to publish data. If you were previously
using a URL that only allows queries, change the URL to the publish URL.

3. Right-click on the organization and choose Delete RegistryObject from the
pop-up menu.

4. In the authentication dialog box that appears, enter your user name and
password and click OK. To close the window without deleting the organi-
zation, click Cancel.

Stopping the Browser
To stop the Registry Browser, choose Exit from the File menu.

846 REGISTRY BROWSER

E

847
Provider
Administration Tool

Maydene Fisher

THE Provider Administration tool is a convenient means of configuring a mes-
saging provider. A messaging provider, a third party service, handles the behind-
the-scenes details of the routing and transmission of JAXM messages. The
JAXM tutorial gives more information about messaging providers in the section
Messaging Providers (page 492).

Note that Tomcat must be running in order to use the Provider Administration
tool. Follow these steps to use it:

1. With Tomcat running, set your browser window to

http://localhost:8080/index.html

2. Click on the link “JAXM Provider Administration Tool”

A window will come up with text boxes for your user name and password.
Enter the same user name and password you supplied to the installation
wizard when you installed this release of the Java WSDP.

3. Follow the instructions given on the page that comes up

The Provider Administration tool is normally used by System Administrators,
but others may use it as well. Exploring this tool gives you more of an idea of
what a messaging provider needs to know. For example, a messaging provider
maintains a list of the endpoints to which you can send messages. You can add a

Bios.html

848 PROVIDER ADMINISTRATION TOOL
new endpoint to this list using the Provider Administration tool. If a message is
not delivered successfully on the first try, a messaging provider will continue
attempting to deliver it. You can specify the number of times the messaging pro-
vider should attempt delivery by supplying a retry limit. Setting this limit is
another thing you can do with the Provider Administration tool.

The following lists the ways you can use the tool to set a messaging provider’s
properties.

• To add, modify, or delete an endpoint

• To change the number of retries (the number of times the provider will try
to send a message)

• To change the retry interval (the amount of time the provider will wait
before trying to send a message again)

• To change the directory where the provider logs messages

• To set the number of messages per log file

F

849
HTTP Overview
Stephanie Bodoff

MOST Web clients use the HTTP protocol to communicate with a J2EE
server. HTTP defines the requests that a client can send to a server and responses
that the server can send in reply. Each request contains a URL, which is a string
that identifies a Web component or a static object such as an HTML page or
image file.

The J2EE server converts an HTTP request to an HTTP request object and deliv-
ers it to the Web component identified by the request URL. The Web component
fills in an HTTP response object, which the server converts to an HTTP response
and sends to the client.

This appendix provides some introductory material on the HTTP protocol. For
further information on this protocol, see the Internet RFCs: HTTP/1.0 - RFC
1945, HTTP/1.1 - RFC 2616, which can be downloaded from

http://www.rfc-editor.org/rfc.html

ftp://ftp.isi.edu/in-notes/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc1945.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.rfc-editor.org/rfc.html

850 HTTP OVERVIEW
HTTP Requests
An HTTP request consists of a request method, a request URL, header fields,
and a body. HTTP 1.1 defines the following request methods:

• GET - retrieves the resource identified by the request URL.

• HEAD - returns the headers identified by the request URL.

• POST - sends data of unlimited length to the Web server.

• PUT - stores a resource under the request URL.

• DELETE - removes the resource identified by the request URL.

• OPTIONS - returns the HTTP methods the server supports.

• TRACE - returns the header fields sent with the TRACE request.

HTTP 1.0 includes only the GET, HEAD, and POST methods. Although J2EE
servers are only required to support HTTP 1.0, in practice many servers, includ-
ing the Java WSDP, support HTTP 1.1.

HTTP Responses
An HTTP response contains a result code, header fields, and a body.

The HTTP protocol expects the result code and all header fields to be returned
before any body content.

Some commonly used status codes include:

• 404 - indicates that the requested resource is not available.

• 401 - indicates that the request requires HTTP authentication.

• 500 - indicates an error inside the HTTP server which prevented it from
fulfilling the request.

• 503 - indicates that the HTTP server is temporarily overloaded, and unable
to handle the request.

G

851
Java Encoding
Schemes

This appendix describes the character-encoding schemes that are supported by
the Java platform.

US-ASCII
US-ASCII is a 7-bit encoding scheme that covers the English-language
alphabet. It is not large enough to cover the characters used in other lan-
guages, however, so it is not very useful for internationalization.

ISO-8859-1
This is the character set for Western European languages. It’s an 8-bit encod-
ing scheme in which every encoded character takes exactly 8-bits. (With the
remaining character sets, on the other hand, some codes are reserved to sig-
nal the start of a multi-byte character.)

UTF-8
UTF-8 is an 8-bit encoding scheme. Characters from the English-language
alphabet are all encoded using an 8-bit bytes. Characters for other languages
are encoded using 2, 3 or even 4 bytes. UTF-8 therefore produces compact
documents for the English language, but for other languages, documents
tend to be half again as large as they would be if they used UTF-16. If the
majority of a document’s text is in a Western European language, then UTF-
8 is generally a good choice because it allows for internationalization while
still minimizing the space required for encoding.

UTF-16
UTF-16 is a 16-bit encoding scheme. It is large enough to encode all the
characters from all the alphabets in the world. It uses 16-bits for most char-
acters, but includes 32-bit characters for ideogram-based languages like Chi-
nese. A Western European-language document that uses UTF-16 will be

852 JAVA ENCODING SCHEMES
twice as large as the same document encoded using UTF-8. But documents
written in far Eastern languages will be far smaller using UTF-16.

Note: UTF-16 depends on the system’s byte-ordering conventions. Although in
most systems, high-order bytes follow low-order bytes in a 16-bit or 32-bit “word”,
some systems use the reverse order. UTF-16 documents cannot be interchanged
between such systems without a conversion.

Further Information
For a complete list of the encodings that can be supported by the Java 2 platform,
see:

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

853
Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

access control
The methods by which interactions with resources are limited to collections
of users or programs for the purpose of enforcing integrity, confidentiality,
or availability constraints.

ACID
The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

admintool
A tool used to manipulate Tomcat while it is running.

anonymous access
Accessing a resource without authentication.

Ant
A Java-based, and thus cross-platform, build tool that can be extended using
Java classes. The configuration files are XML-based, calling out a target tree
where various tasks get executed.

Apache Software Foundation
Through the Jakarta Project, creates and maintains open source solutions on
the Java platform for distribution to the public at no charge. Tomcat and Ant
are two products developed by Apache and provided with the Java Web Ser-
vices Developer Pack.

applet
A component that typically executes in a Web browser, but can execute in a
variety of other applications or devices that support the applet programming
model.

854
Application Deployment Tool
A tool for creating WAR files for application deployment and handling secu-
rity issues.

archiving
Saving the state of an object and restoring it.

attribute
A qualifier on an XML tag that provides additional information.

authentication
The process that verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resources in
a system. Java WSDP requires three types of authentication: basic, form-
based, and mutual, and supports digest authentication.

authorization
The process by which access to a method or resource is determined. Autho-
rization depends upon the determination of whether the principal associated
with a request through authentication is in a given security role. A security
role is a logical grouping of users defined by the person who assembles the
application. A deployer maps security roles to security identities. Security
identities may be principals or groups in the operational environment.

authorization constraint
An authorization rule that determines who is permitted to access a Web
resource collection.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B2B
Business-to-business.

basic authentication
An authentication mechanism in which a Web server authenticates an entity
with a user name and password obtained using the Web application’s built-in
authentication mechanism.

binary entity
See unparsed entity.

binding
Construction of the code needed to process a well-defined bit of XML data.

binding compiler
A compiler that transforms, or binds, a source XML schema and optional
customizing binding declarations to a set of Java content classes.

855
binding declarations
By default, the JAXB binding compiler binds Java classes and packages to a
source XML schema based on rules defined in the JAXB Specification. In
most cases, the default binding rules are sufficient to generate a robust set of
schema-derived classes from a wide range of schemas. There may be times,
however, when the default binding rules are not sufficient for your needs.
JAXB supports customizations and overrides to the default binding rules by
means binding declarations made inline in a source schema.

binding framework
A runtime API that provides interfaces for unmarshalling, marshalling, and
validating XML content in a Java application.

build file
The XML file that contains one project that contains one or more targets. A
target is a set of tasks you want to be executed. When starting Ant, you can
select which target(s) you want to have executed. When no target is given,
the project’s default is used.

build properties file
A file named build.properties that contains properties in

business logic
The code that implements the functionality of an application.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

callback methods
Component methods called by the container to notify the component of
important events in its life cycle.

CDATA
A predefined XML tag for Character DATA that means don't interpret these
characters, as opposed to Parsed Character Data (PCDATA), in which the
normal rules of XML syntax apply (for example, angle brackets demarcate
XML tags, tags define XML elements, etc.). CDATA sections are typically
used to show examples of XML syntax.

certificate authority
A trusted organization that issues public key certificates and provides identi-
fication to the bearer.

client certificate authentication
An authentication mechanism that uses HTTP over SSL, in which the server
and, optionally, the client authenticate each other with a public key certifi-

856
cate that conforms to a standard that is defined by X.509 Public Key Infra-
structure (PKI).

comment
Text in an XML document that is ignored, unless the parser is specifically
told to recognize it.

commit
The point in a transaction when all updates to any resources involved in the
transaction are made permanent.

component
An application-level software unit supported by a container. Components
are configurable at deployment time. See also Web components.

component contract
The contract between a component and its container. The contract includes:
life cycle management of the component, a context interface that the
instance uses to obtain various information and services from its container,
and a list of services that every container must provide for its components.

component-managed sign-on
Security information needed for signing on to the resource to the getCon-

nection() method is provided by an application component.

connection
See resource manager connection.

connection factory
See resource manager connection factory.

connector
A standard extension mechanism for containers to provide connectivity to
enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for system-level con-
tracts defined in the connector architecture.

Connector element
A representation of the interface between external clients sending requests to
a particular service.

container
An entity that provides life cycle management, security, deployment, and
runtime services to components.

857
container-managed sign-on
Security information needed for signing on to the resource to the getCon-

nection() method is supplied by the container.

content
The part of an XML document that occurs after the prolog, including the
root element and everything it contains.

content tree
An XML document is marshalled into a tree of Java objects. The objects in a
content tree are manipulated by means of the schema-derived JAXB classes,
so that programmers are able to work with XML data as Java objects rather
than XML text.

context attribute
An object bound into the context associated with a servlet.

Context element
A representation of a Web application that is run within a particular virtual
host.

context root
A name that gets mapped to the document root of a Web application.

credentials
The information describing the security attributes of a principal.

CSS
Cascading Style Sheet. A stylesheet used with HTML and XML documents
to add a style to all elements marked with a particular tag, for the direction
of browsers or other presentation mechanisms.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

data
The contents of an element, generally used when the element does not con-
tain any subelements. When it does, the more general term content is gener-
ally used. When the only text in an XML structure is contained in simple
elements, and elements that have subelements have little or no data mixed in,
then that structure is often thought of as XML data, as opposed to an XML
document.

data binding
An XML data-binding facility contains a binding compiler that binds com-
ponents of a source schema to schema-derived Java content classes. Each
class provides access to the content of the corresponding schema component
via a set of JavaBeans-style access (i.e., get and set) methods. Binding dec-

858
larations provides a capability to customize the binding from schema com-
ponents to Java representation. Such a facility also provides a binding
framework, a runtime API that, in conjunction with the derived classes, sup-
ports unmarshal, marshal, and validate operations.

document
In general, an XML structure in which one or more elements contains text
intermixed with subelements. See also data.

DDP
Document-Driven Programming. The use of XML to define applications.

declaration
The very first thing in an XML document, which declares it as XML. The
minimal declaration is <?xml version="1.0"?>. The declaration is part of the
document prolog.

declarative security
Mechanisms used in an application that are expressed in a declarative syntax
in a deployment descriptor.

delegation
An act whereby one principal authorizes another principal to use its identity
or privileges with some restrictions.

deploy task
A Tomcat manager application task. Requires a WAR, but not necessarily on
the same server. Uploads the WAR to Tomcat, which then unpacks it into the
<JWSDP_HOME>/webapps directory and loads the application. Useful when
you want to deploy an application into a running production server. Restarts
of Tomcat will remember that the application exists because it exists in the
/webapps directory.

deployment
The process whereby software is installed into an operational environment.

deployment descriptor
An XML file provided with each module and application that describes how
they should be deployed. The deployment descriptor directs a deployment
tool to deploy a module or application with specific container options and
describes specific configuration requirements that a deployer must resolve.

digest authentication
An authentication mechanism in which a Web application authenticates to a
Web server by sending the server a message digest along its HTTP request
message. The digest is computed by employing a one-way hash algorithm to
a concatenation of the HTTP request message and the client’s password. The

859
digest is typically much smaller than the HTTP request, and doesn’t contain
the password.

distributed application
An application made up of distinct components running in separate runtime
environments, usually on different platforms connected via a network. Typi-
cal distributed applications are two-tier (client-server), three-tier (client-
middleware-server), and multitier (client-multiple middleware-multiple
servers).

document root
The top-level directory of a WAR. The document root is where JSP pages,
client-side classes and archives, and static Web resources are stored.

DOM
The Document Object Model. An API for accessing and manipulating XML
documents as tree structures. DOM provides platform-neutral, language-
neutral interfaces that enables programs and scripts to dynamically access
and modify content and structure in XML documents.

DTD
Document Type Definition. An optional part of the document prolog, as
specified by the XML standard. The DTD specifies constraints on the valid
tags and tag sequences that can be in the document. The DTD has a number
of shortcomings however, which has led to various schema proposals. For
example, the DTD entry <!ELEMENT username (#PCDATA)> says that the
XML element called username contains Parsed Character DATA— that is,
text alone, with no other structural elements under it. The DTD includes
both the local subset, defined in the current file, and the external subset,
which consists of the definitions contained in external .dtd files that are ref-
erenced in the local subset using a parameter entity.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ebXML
Electronic Business XML. A group of specifications designed to enable
enterprises to conduct business through the exchange of XML-based mes-
sages. It is sponsored by OASIS and the United Nations Centre for the Facil-
itation of Procedures and Practices in Administration, Commerce and
Transport (U.N./CEFACT).

element
A unit of XML data, delimited by tags. An XML element can enclose other
elements.

860
empty tag
A tag that does not enclose any content.

enterprise bean
A component that implements a business task or business entity and resides
in an EJB container; either an entity bean, session bean, or message-driven
bean.

enterprise information system
The applications that comprise an enterprise’s existing system for handling
company-wide information. These applications provide an information
infrastructure for an enterprise. An enterprise information system offers a
well defined set of services to its clients. These services are exposed to cli-
ents as local and/or remote interfaces. Examples of enterprise information
systems include: enterprise resource planning systems, mainframe transac-
tion processing systems, and legacy database systems.

enterprise information system resource
An entity that provides enterprise information system-specific functionality
to its clients. Examples are: a record or set of records in a database system, a
business object in an enterprise resource planning system, and a transaction
program in a transaction processing system.

entity
A distinct, individual item that can be included in an XML document by ref-
erencing it. Such an entity reference can name an entity as small as a charac-
ter (for example, "<", which references the less-than symbol, or left-angle
bracket (<). An entity reference can also reference an entire document, or
external entity, or a collection of DTD definitions (a parameter entity).

entity bean
An enterprise bean that represents persistent data maintained in a database.
An entity bean can manage its own persistence or can delegate this function
to its container. An entity bean is identified by a primary key. If the container
in which an entity bean is hosted crashes, the entity bean, its primary key,
and any remote references survive the crash.

entity reference
A reference to an entity that is substituted for the reference when the XML
document is parsed. It may reference a predefined entity like < or it may
reference one that is defined in the DTD. In the XML data, the reference
could be to an entity that is defined in the local subset of the DTD or to an
external XML file (an external entity). The DTD can also carve out a seg-
ment of DTD specifications and give it a name so that it can be reused
(included) at multiple points in the DTD by defining a parameter entity.

861
error
A SAX parsing error is generally a validation error—in other words, it
occurs when an XML document is not valid, although it can also occur if the
declaration specifies an XML version that the parser cannot handle. See also:
fatal error, warning.

Extensible Markup Language
A markup language that makes data portable.

external entity
An entity that exists as an external XML file, which is included in the XML
document using an entity reference.

external subset
That part of the DTD that is defined by references to external .dtd files.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

fatal error
A fatal error occurs in the SAX parser when a document is not well formed,
or otherwise cannot be processed. See also: error, warning.

filter
An object that can transform the header and/or content of a request or
response. Filters differ from Web components in that they usually do not
themselves create responses but rather they modify or adapt the requests for
a resource, and modify or adapt responses from a resource. A filter should
not have any dependencies on a Web resource for which it is acting as a filter
so that it can be composable with more than one type of Web resource.

filter chain
A concatenation of XSLT transformations in which the output of one tran-
formation becomes the input of the next.

form-based authentication
An authentication mechanism in which a Web container provides an applica-
tion-specific form for logging in. This form of authentication uses Base64
encoding and can expose user names and passwords unless all connections
are over SSL.

862
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

general entity
An entity that is referenced as part of an XML document's content, as dis-
tinct from a parameter entity, which is referenced in the DTD. A general
entity can be a parsed entity or an unparsed entity.

group
An authenticated set of users classified by common traits such as job title or
customer profile. Groups are also associated with a set of roles, and every
user that is a member of a group inherits all of the roles assigned to that
group.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Host element
A representation of a virtual host.

HTML
Hypertext Markup Language. A markup language for hypertext documents
on the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other objects with URLs and basic text
formatting.

HTTP
Hypertext Transfer Protocol. The Internet protocol used to fetch hypertext
objects from remote hosts. HTTP messages consist of requests from client to
server and responses from server to client.

HTTPS
HTTP layered over the SSL protocol.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

impersonation
An act whereby one entity assumes the identity and privileges of another
entity without restrictions and without any indication visible to the recipients
of the impersonator’s calls that delegation has taken place. Impersonation is
a case of simple delegation.

initialization parameter
A parameter that initializes the context associated with a servlet.

863
install task
Ant task useful for development and debugging where you need to restart an
application. Requires that the WAR file (or directory) be on the same server
on which Tomcat is running. Restarts of Tomcat cause the installation to be
forgotten.

instance document
An XML document written against a specific schema.

ISO 3166
The international standard for country codes maintained by the International
Organization for Standardization (ISO).

ISV
Independent Software Vendor.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

J2EE™
See Java 2 Platform, Enterprise Edition.

J2ME™
See Java 2 Platform, Micro Edition.

J2SE™
See Java 2 Platform, Standard Edition.

JAR
Java ARchive. A platform-independent file format that permits many files to
be aggregated into one file.

Java™ 2 Platform, Enterprise Edition (J2EE)
An environment for developing and deploying enterprise applications. The
J2EE platform consists of a set of services, application programming inter-
faces (APIs), and protocols that provide the functionality for developing
multitiered, Web-based applications.

Java 2 Platform, Micro Edition (J2ME)
A highly optimized Java runtime environment targeting a wide range of con-
sumer products, including pagers, cellular phones, screenphones, digital set-
top boxes and car navigation systems.

Java 2 Platform, Standard Edition (J2SE)
The core Java technology platform.

Java API for XML Binding (JAXB)
A Java technology that enables you to generate Java classes from XML
schemas. As part of this process, JAXB also provides methods for unmar-

864
shalling XML instance documents into Java content trees, and then marshal-
ling Java content trees back into XML instance documents. Put another way,
JAXB provides a fast and convenient way to bind XML schemas to Java rep-
resentations, making it easy for Java developers to incorporate XML data
and processing functions in Java applications.

Java API for XML Messaging (JAXM)
An API that provides a standard way to send XML documents over the Inter-
net from the Java platform. It is based on the SOAP 1.1 and SOAP with
Attachments specifications, which define a basic framework for exchanging
XML messages. JAXM can be extended to work with higher level messag-
ing protocols, such as the one defined in the ebXML (electronic business
XML) Message Service Specification, by adding the protocol’s functionality
on top of SOAP.

Java API for XML Processing (JAXP)
An API for processing XML documents. JAXP leverages the parser stan-
dards SAX and DOM so that you can choose to parse your data as a stream
of events or to build a tree-structured representation of it. The latest versions
of JAXP also support the XSLT (XML Stylesheet Language Transforma-
tions) standard, giving you control over the presentation of the data and
enabling you to convert the data to other XML documents or to other for-
mats, such as HTML. JAXP also provides namespace support, allowing you
to work with schemas that might otherwise have naming conflicts.

Java API for XML Registries (JAXR)
An API for accessing different kinds of XML registries.

Java API for XML-based RPC (JAX-RPC)
An API for building Web services and clients that use remote procedure calls
(RPC) and XML.

Java Naming and Directory Interface™ (JNDI)
An API that provides naming and directory functionality.

Java™ Secure Socket Extension (JSSE)
A set of packages that enable secure Internet communications.

Java™ Transaction API (JTA)
An API that allows applications to access transactions.

Java™ Web Services Developer Pack (Java WSDP)
An environment containing key technologies to simplify building of Web
services using the Java 2 Platform.

865
JavaBeans™ component
A Java class that can be manipulated in a visual builder tool and composed
into applications. A JavaBeans component must adhere to certain property
and event interface conventions.

JavaMail™
An API for sending and receiving email.

JavaServer Pages™ (JSP™)
An extensible Web technology that uses template data, custom elements,
scripting languages, and server-side Java objects to return dynamic content
to a client. Typically the template data is HTML or XML elements, and in
many cases the client is a Web browser.

JavaServer Pages Standard Tag Library (JSTL)
A tag library that encapsulates core functionality common to many JSP
applications. JSTL has support for common, structural tasks such as iteration
and conditionals, tags for manipulating XML documents, internationaliza-
tion and locale-specific formatting tags, and SQL tags. It also introduces a
new expression language to simplify page development, and provides an
API for developers to simplify the configuration of JSTL tags and the devel-
opment of custom tags that conform to JSTL conventions.

JAXR client
A client program that uses the JAXR API to access a business registry via a
JAXR provider.

JAXR provider
An implementation of the JAXR API that provides access to a specific regis-
try provider or to a class of registry providers that are based on a common
specification.

JDBC™
An API for database-independent connectivity to a wide range of data
sources.

JNDI
See Java Naming and Directory Interface.

JSP
See JavaServer Pages.

JSP action
A JSP element that can act on implicit objects and other server-side objects
or can define new scripting variables. Actions follow the XML syntax for
elements with a start tag, a body and an end tag; if the body is empty it can
also use the empty tag syntax. The tag must use a prefix.

866
JSP action, custom
An action described in a portable manner by a tag library descriptor and a
collection of Java classes and imported into a JSP page by a taglib direc-
tive. A custom action is invoked when a JSP page uses a custom tag.

JSP action, standard
An action that is defined in the JSP specification and is always available to a
JSP file without being imported.

JSP application
A stand-alone Web application, written using the JavaServer Pages technol-
ogy, that can contain JSP pages, servlets, HTML files, images, applets, and
JavaBeans components.

JSP container
A container that provides the same services as a servlet container and an
engine that interprets and processes JSP pages into a servlet.

JSP container, distributed
A JSP container that can run a Web application that is tagged as distributable
and is spread across multiple Java virtual machines that might be running on
different hosts.

JSP declaration
A JSP scripting element that declares methods, variables, or both in a JSP
file.

JSP directive
A JSP element that gives an instruction to the JSP container and is inter-
preted at translation time.

JSP element
A portion of a JSP page that is recognized by a JSP translator. An element
can be a directive, an action, or a scripting element.

JSP expression
A scripting element that contains a valid scripting language expression that
is evaluated, converted to a String, and placed into the implicit out object.

JSP file
A file that contains a JSP page. In the Servlet 2.2 specification, a JSP file
must have a .jsp extension.

JSP page
A text-based document using fixed template data and JSP elements that
describes how to process a request to create a response.

867
JSP scripting element
A JSP declaration, scriptlet, or expression, whose tag syntax is defined by
the JSP specification, and whose content is written according to the scripting
language used in the JSP page. The JSP specification describes the syntax
and semantics for the case where the language page attribute is "java".

JSP scriptlet
A JSP scripting element containing any code fragment that is valid in the
scripting language used in the JSP page. The JSP specification describes
what is a valid scriptlet for the case where the language page attribute is
"java".

JSP tag
A piece of text between a left angle bracket and a right angle bracket that is
used in a JSP file as part of a JSP element. The tag is distinguishable as
markup, as opposed to data, because it is surrounded by angle brackets.

JSP tag library
A collection of custom tags identifying custom actions described via a tag
library descriptor and Java classes.

JTA
See Java Transaction API.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

life cycle
The framework events of a component’s existence. Each type of component
has defining events which mark its transition into states where it has varying
availability for use. For example, a servlet is created and has its init method
called by its container prior to invocation of its service method by clients or
other servlets who require its functionality. After the call of its init method
it has the data and readiness for its intended use. The servlet’s destroy

method is called by its container prior to the ending of its existence so that
processing associated with winding up may be done, and resources may be
released. The init and destroy methods in this example are callback meth-
ods.

localhost
For the purposes of the Java WSDP, the machine on which Tomcat is run-
ning.

868
local subset
That part of the DTD that is defined within the current XML file.

Logger element
A representation of a destination for logging, debugging and error messages
for Tomcat.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

marshal
The process of traversing a content tree and writing an XML document that
reflects the tree's content. JAXB can marshal XML data to XML documents,
SAX content handlers, and DOM nodes. See also: unmarshal and validation.

message-driven bean
An enterprise bean that is an asynchronous message consumer. A message-
driven bean has no state for a specific client, but its instance variables may
contain state across the handling of client messages. A client accesses a mes-
sage-driven bean by sending messages to the destination for which the bean
is a message listener.

mixed-content model
A DTD specification that defines an element as containing a mixture of text
and one more other elements. The specification must start with #PCDATA, fol-
lowed by alternate elements, and must end with the "zero-or-more" asterisk
symbol (*).

mutual authentication
An authentication mechanism employed by two parties for the purpose of
proving each other’s identity to one another.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

namespace
A standard that lets you specify a unique label to the set of element names
defined by a DTD. A document using that DTD can be included in any other
document without having a conflict between element names. The elements
defined in your DTD are then uniquely identified so that, for example, the
parser can tell when an element called <name> should be interpreted accord-
ing to your DTD, rather than using the definition for an element called name

in a different DTD.

naming context
A set of associations between unique, atomic, people-friendly identifiers and
objects.

869
naming environment
A mechanism that allows a component to be customized without the need to
access or change the component’s source code. A container implements the
component’s naming environment, and provides it to the component as a
JNDI naming context. Each component names and accesses its environment
entries using the java:comp/env JNDI context. The environment entries are
declaratively specified in the component’s deployment descriptor.

normalization
The process of removing redundancy by modularizing, as with subroutines,
and of removing superfluous differences by reducing them to a common
denominator. For example, line endings from different systems are normal-
ized by reducing them to a single NL, and multiple whitespace characters
are normalized to one space.

North American Industry Classification System (NAICS)
A system for classifying business establishments based on the processes they
use to produce goods or services.

notation
A mechanism for defining a data format for a non-XML document refer-
enced as an unparsed entity. This is a holdover from SGML that creaks a bit.
The newer standard is to use MIME datatypes and namespaces to prevent
naming conflicts.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

OASIS
Organization for the Advancement of Structured Information Standards.
Their home site is http://www.oasis-open.org/. The DTD repository they
sponsor is at http://www.XML.org.

one-way messaging
A method of transmitting messages without having to block until a response
is received.

OS principal
A principal native to the operating system on which the Web services plat-
form is executing.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

parameter entity
An entity that consists of DTD specifications, as distinct from a general
entity. A parameter entity defined in the DTD can then be referenced at other

870
points, in order to prevent having to recode the definition at each location it
is used.

parsed entity
A general entity that contains XML, and which is therefore parsed when
inserted into the XML document, as opposed to an unparsed entity.

parser
A module that reads in XML data from an input source and breaks it up into
chunks so that your program knows when it is working with a tag, an
attribute, or element data. A nonvalidating parser ensures that the XML data
is well formed, but does not verify that it is valid. See also: validating
parser.

principal
The identity assigned to a user as a result of authentication.

privilege
A security attribute that does not have the property of uniqueness and that
may be shared by many principals.

processing instruction
Information contained in an XML structure that is intended to be interpreted
by a specific application.

programmatic security
Security decisions that are made by security-aware applications. Program-
matic security is useful when declarative security alone is not sufficient to
express the security model of a application.

prolog
The part of an XML document that precedes the XML data. The prolog
includes the declaration and an optional DTD.

public key certificate
Used in client-certificate authentication to enable the server, and optionally
the client, to authenticate each other. The public key certificate is a digital
equivalent of a passport. It is issued by a trusted organization, called a certif-
icate authority (CA), and provides identification for the bearer.

871
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

RDF
Resource Description Framework. A standard for defining the kind of data
that an XML file contains. Such information could help ensure semantic
integrity, for example by helping to make sure that a date is treated as a date,
rather than simply as text.

RDF schema
A standard for specifying consistency rules that apply to the specifications
contained in an RDF.

reference
See entity reference

realm
See security policy domain. Also, a string, passed as part of an HTTP
request during basic authentication, that defines a protection space. The pro-
tected resources on a server can be partitioned into a set of protection spaces,
each with its own authentication scheme and/or authorization database.

In the Tomcat server authentication service, a realm is a complete database
of roles, users, and groups that identify valid users of a Web application or a
set of Web applications.

Realm element
A representation of a database of user names, passwords and roles assigned
to those users.

registry
An infrastructure that enables the building, deployment and discovery of
Web services. It is a neutral third party that facilitates dynamic and loosely
coupled business-to-business (B2B) interactions.

registry provider
An implementation of a business registry that conforms to a specification for
XML registries.

reload task
Used with the Tomcat manager Web application to redeploy a changed Web
application onto a running Tomcat server.

request-response messaging
A method of messaging that includes blocking until a response is received.

872
resource manager
Provides access to a set of shared resources. A resource manager participates
in transactions that are externally controlled and coordinated by a transac-
tion manager. A resource manager is typically in different address space or
on a different machine from the clients that access it. Note: An enterprise
information system is referred to as resource manager when it is mentioned
in the context of resource and transaction management.

resource manager connection
An object that represents a session with a resource manager.

resource manager connection factory
An object used for creating a resource manager connection.

role (security)
An abstract logical grouping of users that is defined by the Application
Assembler. When an application is deployed, the roles are mapped to secu-
rity identities, such as principals or groups, in the operational environment.

In the Tomcat server authentication service, a role is an abstract name for
permission to access a particular set of resources. A role can be compared to
a key that can open a lock. Many people might have a copy of the key, and
the lock doesn’t care who you are, only that you have the right key.

role mapping
The process of associating the groups and/or principals recognized by the
container to security roles specified in the deployment descriptor. Security
roles have to be mapped before a component is installed in the server.

rollback
The point in a transaction when all updates to any resources involved in the
transaction are reversed.

root
The outermost element in an XML document. The element that contains all
other elements.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

SAX
Simple API for XML. An event-driven interface in which the parser invokes
one of several methods supplied by the caller when a parsing event occurs.
Events include recognizing an XML tag, finding an error, encountering a ref-
erence to an external entity, or processing a DTD specification.

873
schema
A database-inspired method for specifying constraints on XML documents
using an XML-based language. Schemas address deficiencies in DTDs, such
as the inability to put constraints on the kinds of data that can occur in a par-
ticular field. Since schemas are founded on XML, they are hierarchical, so it
is easier to create an unambiguous specification, and possible to determine
the scope over which a comment is meant to apply.

Secure Socket Layer (SSL)
A technology that allows Web browsers and Web servers to communicate
over a secured connection.

security attributes
A set of properties associated with a principal. Security attributes can be
associated with a principal by an authentication protocol or by a Java WSDP
Product Provider.

security constraint
Determines who is authorized to access a Web resource collection.

security context
An object that encapsulates the shared state information regarding security
between two entities.

security permission
A mechanism, defined by J2SE, to express the programming restrictions
imposed on component developers.

security policy domain
A scope over which security policies are defined and enforced by a security
administrator. A security policy domain has a collection of users (or princi-
pals), uses a well defined authentication protocol(s) for authenticating users
(or principals), and may have groups to simplify setting of security policies.

security role
See role (security).

security technology domain
A scope over which the same security mechanism is used to enforce a secu-
rity policy. Multiple security policy domains can exist within a single tech-
nology domain.

server certificate
Used with HTTPS protocol to authenticate Web applications.The certificate
can be self-signed or approved by a Certificate Authority (CA). The HTTPS
service of the Tomcat server will not run unless a server certificate has been
installed.

874
server principal
The OS principal that the server is executing as.

service element
A representation of the combination of one or more Connector components
that share a single engine component for processing incoming requests.

servlet
A Java program that extends the functionality of a Web server, generating
dynamic content and interacting with Web applications using a request-
response paradigm.

servlet container
A container that provides the network services over which requests and
responses are sent, decodes requests, and formats responses. All servlet con-
tainers must support HTTP as a protocol for requests and responses, but may
also support additional request-response protocols such as HTTPS.

servlet container, distributed
A servlet container that can run a Web application that is tagged as distribut-
able and that executes across multiple Java virtual machines running on the
same host or on different hosts.

servlet context
An object that contains a servlet’s view of the Web application within which
the servlet is running. Using the context, a servlet can log events, obtain
URL references to resources, and set and store attributes that other servlets
in the context can use.

servlet mapping
Defines an association between a URL pattern and a servlet. The mapping is
used to map requests to servlets.

session
An object used by a servlet to track a user’s interaction with a Web applica-
tion across multiple HTTP requests.

session bean
An enterprise bean that is created by a client and that usually exists only for
the duration of a single client-server session. A session bean performs opera-
tions, such as calculations or accessing a database, for the client. Although a
session bean may be transactional, it is not recoverable should a system
crash occur. Session bean objects can be either stateless or can maintain con-
versational state across methods and transactions. If a session bean main-
tains state, then the EJB container manages this state if the object must be
removed from memory. However, the session bean object itself must manage
its own persistent data.

875
SGML
Standard Generalized Markup Language. The parent of both HTML and
XML. However, while HTML shares SGML’s propensity for embedding
presentation information in the markup, XML is a standard that allows infor-
mation content to be totally separated from the mechanisms for rendering
that content.

SOAP
Simple Object Access Protocol

SOAP with Attachments API for Java (SAAJ)
The basic package for SOAP messaging which contains the API for creating
and populating a SOAP message.

SSL
Secure Socket Layer. A security protocol that provides privacy over the
Internet. The protocol allows client-server applications to communicate in a
way that cannot be eavesdropped or tampered with. Servers are always
authenticated and clients are optionally authenticated.

SQL
Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J
A set of standards that includes specifications for embedding SQL state-
ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detects errors in static SQL statements at pro-
gram development time, rather than at execution time as with a JDBC driver.

standalone client
A client that does not use a messaging provider and does not run in a con-
tainer.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

tag
A piece of text that describes a unit of data, or element, in XML. The tag is
distinguishable as markup, as opposed to data, because it is surrounded by
angle brackets (< and >). To treat such markup syntax as data, you use an
entity reference or a CDATA section.

template
A set of formatting instructions that apply to the nodes selected by an
XPATH expression.

876
Tomcat
The Java Servlet and JSP Web server and container developed by the Apache
Software Foundation and included with the Java WSDP. Many applications
in this tutorial are run on Tomcat.

transaction
An atomic unit of work that modifies data. A transaction encloses one or
more program statements, all of which either complete or roll back. Transac-
tions enable multiple users to access the same data concurrently.

transaction isolation level
The degree to which the intermediate state of the data being modified by a
transaction is visible to other concurrent transactions and data being modi-
fied by other transactions is visible to it.

transaction manager
Provides the services and management functions required to support transac-
tion demarcation, transactional resource management, synchronization, and
transaction context propagation.

translet
Pre-compiled version of a tranformation.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Unicode
A standard defined by the Unicode Consortium that uses a 16-bit code page
which maps digits to characters in languages around the world. Because 16
bits covers 32,768 codes, Unicode is large enough to include all the world's
languages, with the exception of ideographic languages that have a different
character for every concept, like Chinese. For more info, see http://www.uni-
code.org/.

Universal Description, Discovery, and Integration (UDDI) project
An industry initiative to create a platform-independent, open framework for
describing services, discovering businesses, and integrating business ser-
vices using the Internet, as well as a registry. It is being developed by a ven-
dor consortium.

Universal Standard Products and Services Classification (UNSPSC)
A schema that classifies and identifies commodities. It is used in sell side
and buy side catalogs and as a standardized account code in analyzing
expenditure.

unmarshal
The process of reading an XML document and constructing a tree of content
objects. Each content object corresponds directly to an instance in the input
document of the corresponding schema component, and the content tree rep-

877
resents the document's content and structure as a whole. See also: marshal
and validation.

unparsed entity
A general entity that contains something other than XML. By its nature, an
unparsed entity contains binary data.

URI
Uniform Resource Identifier. A globally unique identifier for an abstract or
physical resource. A URL is a kind of URI that specifies the retrieval proto-
col (http or https for Web applications) and physical location of a resource
(host name and host-relative path). A URN is another type of URI.

URL
Uniform Resource Locator. A standard for writing a textual reference to an
arbitrary piece of data in the World Wide Web. A URL looks like proto-

col://host/localinfo where protocol specifies a protocol for fetching
the object (such as HTTP or FTP), host specifies the Internet name of the
targeted host, and localinfo is a string (often a file name) passed to the pro-
tocol handler on the remote host.

URL path
The part of a URL passed by an HTTP request to invoke a servlet. A URL
path consists of the Context Path + Servlet Path + Path Info, where

• Context Path is the path prefix associated with a servlet context that this
servlet is a part of. If this context is the default context rooted at the base
of the Web server’s URL namespace, the path prefix will be an empty
string. Otherwise, the path prefix starts with a / character but does not end
with a / character.

• Servlet Path is the path section that directly corresponds to the mapping
which activated this request. This path starts with a / character.

• Path Info is the part of the request path that is not part of the Context Path
or the Servlet Path.

URN
Uniform Resource Name. A unique identifier that identifies an entity, but
doesn’t tell where it is located. A system can use a URN to look up an entity
locally before trying to find it on the Web. It also allows the Web location to
change, while still allowing the entity to be found.

user (security)
An individual (or application program) identity that has been authenticated.
A user can have a set of roles associated with that identity, which entitles
them to access all resources protected by those roles.

878
user data constraint
Indicates how data between a client and a Web container should be pro-
tected. The protection can be the prevention of tampering with the data or
prevention of eavesdropping on the data.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

valid
A valid XML document, in addition to being well formed, conforms to all
the constraints imposed by a DTD. It does not contain any tags that are not
permitted by the DTD, and the order of the tags conforms to the DTD's spec-
ifications.

validation
The process of verifying that the constraints expressed in a source schema
are satisfied in a given content tree. In JAXB, a content tree is valid only if
marshalling the tree would generate a document that is valid with respect to
the source schema. An XML document is said to be valid if it satisfies the
constraints defined in the DTD and or schema(s) against which the docu-
ment is written.

validating parser
A parser that ensures that an XML document is valid, as well as well-
formed. See also: parser.

Valve element
A representation of a component that will be inserted into the request pro-
cessing pipeline for Tomcat.

virtual host
Multiple “hosts + domain names” mapped to a single IP address.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

W3C
World Wide Web Consortium. The international body that governs Internet
standards.

WAR file
Web application archive. A JAR archive that contains a Web module.

warning
A SAX parser warning is generated when the document's DTD contains
duplicate definitions, and similar situations that are not necessarily an error,

879
but which the document author might like to know about, since they could
be. See also: fatal error, error.

Web application
An application written for the Internet, including those built with Java tech-
nologies such as JavaServer Pages and servlets, as well as those built with
non-Java technologies such as CGI and Perl.

Web Application Archive (WAR)
A hierarchy of directories and files in a standard Web application format,
contained in a packed file with an extension .war.

Web application, distributable
A Web application that uses Java WSDP technology written so that it can be
deployed in a Web container distributed across multiple Java virtual
machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

Web component
A component that provides services in response to requests; either a servlet
or a JSP page.

Web container
A container that implements the Web component contract of the J2EE archi-
tecture. This contract specifies a runtime environment for Web components
that includes security, concurrency, life cycle management, transaction,
deployment, and other services. A Web container provides the same services
as a JSP container and a federated view of the J2EE platform APIs. A Web
container is provided by a Web server.

Web container, distributed
A Web container that can run a Web application that is tagged as distribut-
able and that executes across multiple Java virtual machines running on the
same host or on different hosts.

Web module
A unit that consists of one or more Web components, other resources, and a
Web deployment descriptor.

Web resource
A static or dynamic object contained in a Web application archive that can
be referenced by a URL.

Web resource collection
A list of URL patterns and HTTP methods that describe a set of resources to
be protected.

880
Web server
Software that provides services to access the Internet, an intranet, or an
extranet. A Web server hosts Web sites, provides support for HTTP and
other protocols, and executes server-side programs (such as CGI scripts or
servlets) that perform certain functions. In the J2EE architecture, a Web
server provides services to a Web container. For example, a Web container
typically relies on a Web server to provide HTTP message handling. The
J2EE architecture assumes that a Web container is hosted by a Web server
from the same vendor, so does not specify the contract between these two
entities. A Web server may host one or more Web containers.

Web service
An application that exists in a distributed environment, such as the Internet.
A Web service accepts a request, performs its function based on the request,
and returns a response. The request and the response can be part of the same
operation, or they can occur separately, in which case the consumer does not
need to wait for a response. Both the request and the response usually take
the form of XML, a portable data-interchange format, and are delivered over
a wire protocol, such as HTTP.

well-formed
An XML document that is syntactically correct. It does not have any angle
brackets that are not part of tags, all tags have an ending tag or are them-
selves self-ending, and all tags are fully nested. Knowing that a document is
well formed makes it possible to process it. A well-formed document may
not be valid however. To determine that, you need a validating parser and a
DTD.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Xalan
An interpreting version of XSLT.

XHTML
An XML lookalike for HTML defined by one of several XHTML DTDs. To
use XHTML for everything would of course defeat the purpose of XML,
since the idea of XML is to identify information content, not just tell how to
display it. You can reference it in a DTD, which allows you to say, for exam-
ple, that the text in an element can contain and tags, rather than
being limited to plain text.

XLink
The part of the XLL specification that is concerned with specifying links
between documents.

881
XLL
The XML Link Language specification, consisting of XLink and XPointer.

XML
Extensible Markup Language. A markup language that allows you to define
the tags (markup) needed to identify the content, data, and text, in XML doc-
uments. It differs from HTML the markup language most often used to
present information on the internet. HTML has fixed tags that deal mainly
with style or presentation. An XML document must undergo a transforma-
tion into a language with style tags under the control of a stylesheet before it
can be presented by a browser or other presentation mechanism. Two types
of style sheets used with XML are CSS and XSL. Typically, XML is trans-
formed into HTML for presentation. Although tags may be defined as
needed in the generation of an XML document, a DTD may be used to
define the elements allowed in a particular type of document. A document
may be compared with the rules in the DTD to determine its validity and to
locate particular elements in the document. Web services application’s
deployment descriptors are expressed in XML with DTDs defining allowed
elements. Programs for processing XML documents use SAX or DOM APIs.

XML registry
See registry.

XML Schema
The W3C schema specification for XML documents.

XPath
See XSL.

XPointer
The part of the XLL specification that is concerned with identifying sections
of documents so that they can referenced in links or included in other docu-
ments.

XSL
Extensible Stylesheet Language. Extensible Stylesheet Language. An
important standard that achieves several goals. XSL lets you:

a.Specify an addressing mechanism, so you can identify the parts of an XML
file that a transformation applies to. (XPath)

b.Specify tag conversions, so you convert XML data into a different formats.
(XSLT)

c.Specify display characteristics, such page sizes, margins, and font heights
and widths, as well as the flow objects on each page. Information fills in one
area of a page and then automatically flows to the next object when that area

882
fills up. That allows you to wrap text around pictures, for example, or to con-
tinue a newsletter article on a different page. (XML-FO)

XSL-FO
A subcomponent of XSL used for describing font sizes, page layouts, and
how information “flows” from one page to another.

XSLT
XSL Transformation. An XML file that controls the transformation of an
XML document into another XML document or HTML. The target docu-
ment often will have presentation related tags dictating how it will be ren-
dered by a browser or other presentation mechanism. XSLT was formerly
part of XSL, which also included a tag language of style flow objects.

XSLTC
A compiling version of XSLT.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

About the Authors

Java API for XML Processing
Eric Armstrong has been programming and writing professionally since
before there were personal computers. His production experience includes
artificial intelligence (AI) programs, system libraries, real-time programs,
and business applications in a variety of languages. He works as a consultant
at Sun's Java Software division in the Bay Area, and he is a contributor to
JavaWorld. He wrote The JBuilder2 Bible, as well as Sun’s Java XML pro-
gramming tutorial. For a time, Eric was involved in efforts to design next-
generation collaborative discussion/decision systems. His learn-by-ear, see-
the-fingering music teaching program is currently on hold while he finishes a
weight training book. His Web site is http://www.treelight.com.

Web Applications and Technology
Stephanie Bodoff is a staff writer at Sun Microsystems. In previous posi-
tions she worked as a software engineer on distributed computing and tele-
communications systems and object-oriented software development
methods. Since her conversion to technical writing, Stephanie has docu-
mented object-oriented databases, application servers, and enterprise appli-
cation development methods. She is a co-author of The J2EE Tutorial,
Designing Enterprise Applications with the Java™ 2 Platform, Enterprise
Edition, and Object-Oriented Software Development: The Fusion Method.

Getting Started, Web Application Security
Debbie Carson is a staff writer with Sun Microsystems, where she docu-
ments both the J2EE and J2SE platforms. In previous positions she docu-
mented creating database applications using C++ and Java technologies and
creating distributed applications using Java technology. In addition to this
chapter, she currently writes about the CORBA technologies Java IDL and
Java Remote Method Invocation over Internet InterORB Protocol (RMI-
IIOP), Web services security, and Web services tools.
883

www.treelight.com

884
Java API for XML Messaging, Introduction to Web Services
Maydene Fisher has documented various Java APIs at Sun Microsystems
for the last five years. She authored two books on the JDBC API, JDBC™
Database Access with Java: A Tutorial and Annotated Reference and
JDBC™ API Tutorial and Reference, Second Edition: Universal Data
Access for the Java™ 2 Platform. Before joining Sun, she helped document
the object-oriented programming language ScriptX at Kaleida Labs and
worked on Wall Street, where she wrote developer and user manuals for
complex financial computer models written in C++. In previous lives, she
has been an English teacher, a shopkeeper in Mendocino, and a financial
planner.

Java API for XML Binding
Scott Fordin is a senior staff writer, illustrator, and online help specialist in
the Java and XML Technology groups at Sun Microsystems. He has written
numerous articles on Java, XML, and Web service technologies, and is the
maintainer of Sun’s XML Web site. In addition to his Web work, Scott has
written many developer guides, administrator guides, user guides, specifica-
tions, whitepapers, and tutorials for a wide range of products. Some of his
recent work includes writing and illustrating the JAXB User’s Guide, editing
the JAXB specification, co-editing and illustrating the Web Services Chore-
ography Interface W3C Technical Note, writing and illustrating the Solaris
Management Console Programming Guide, and co-developing the embed-
ded online help model for the Solaris Management Console.

Java API for RPC-based XML
Dale Green is a staff writer with Sun Microsystems, where he documents
the J2EE platform and the Java API for RPC-based XML. In previous posi-
tions he programmed business applications, designed databases, taught tech-
nical classes, and documented RDBMS products. He wrote the
Internationalization and Reflection trails for the Java Tutorial Continued,
and co-authored The J2EE Tutorial.

Java API for XML Registries, Java WSDP Registry Server
Kim Haase is a staff writer with Sun Microsystems. In previous positions
she has documented compilers, debuggers, and floating-point programming.
She currently writes about the Java Message Service, the Java API for XML
Registries, the SOAP with Attachments API for Java, and the Java API for
XML Messaging. She is a co-author of Java™ Message Service API Tuto-
rial and Reference and The J2EE Tutorial.

Introduction to Web Services, Web Application Security
Eric Jendrock is a staff writer with Sun Microsystems, where he documents
the J2EE platform and the Java WSDP. Previously, he documented middle-

885
ware products and standards. Currently, he writes about the J2EE Compati-
bility Test Suite and security in the Web-tier and in the J2EE platform.

886

887

Index
A
abstract document model 295
actors 493
AdapterNode class 232
adapters 231
addChildElement method 502
addClassifications method 554
addExternalLink method 558
address book, exporting 314
addServiceBindings method 555
addServices method 555
addTextNode method 502
admintool 83, 785

adding roles 83
application security 704
configuring Tomcat 788
connector attributes 792
connectors 790
Contexts 797
data source 817
environment entries 821
groups 823
host elements 795
logger elements 802
realm element 805
resources 816
roles 85, 823
running 706, 785
server properties 788

services 789
user databases 822
users 85, 823

managing 708
using 83, 705
valve element 812

alias
host 797, 799, 801

Ant file 525
Ant tool 77, 80

build file example 78
building the Getting Started

application 77
deploy file example 78
deploying applications 80
examples 80
installing applications 81
using with JAXR sample pro-

grams 565
ANY 171
Apache Software Foundation 69,
77
applications

deploying 80
extending 257, 267
modifying 85
sample 69
standalone 497

apply-templates instruction 333

888 INDEX
archiving 50
<article> document type 327
attachment part

populating 33
AttachmentPart class 488
AttachmentPart object 513

creating 513
headers 514

attachments 487
adding 513

attribute node 295
Attribute nodes 243
attribute value template 346
attributes 43, 129, 261, 493, 504

creating 276
defining in DTD 177
encoding 45
mustUnderstand 493
standalone 45
types 178
version 45

attribute-specification parameters
179
authentication 702, 715, 721

client 742
for XML registries 552
mutual 742
Web resources 715

configuring 717
digested password 716
form-based 715
HTTP basic 715
SSL protection 718

with Java WSDP Registry
Server 832

authentication mechanisms 715
client-certificate 715
configuring 716

Digest 715
form-based 715
HTTP 715

authorization 702

B
Base64 encoding 715
basic logic 219
binding 50
binding templates

adding to an organization with
JAXR 554

finding with JAXR 551
body

adding content 502
boolean 300

functions 304
boolean function 304
BufferedReader 583
build

files 70, 77
build files 70, 77
build properties 71
build.properties file 71
build.xml 70, 77, 525

creating 78
businesses

contacts 552
creating with JAXR 552
deleting

with Registry Server com-
mand line client
script 834

finding
by name with JAXR 548,

566
using WSDL documents

INDEX 889
with JAXR 567
with Registry Server com-

mand line client
script 833

finding by classification with
JAXR 549, 567

keys 552, 556
obtaining details

with Registry Server com-
mand line client
script 834

registering 35
removing

with JAXR 556, 567
retrieving with Registry Server

command line client
script 835

saving
with JAXR 555, 566
with Registry Server com-

mand line client
script 833

BusinessLifeCycleManager inter-
face 540, 547, 551

See also LifeCycleManager in-
terface

BusinessQueryManager interface
540, 547

C
CA certificate

instalilng 727
caching

compiled stylesheets 293
document-model 292

call method 496, 505
capability levels 539

CBL 63
CDATA 250, 261

versus PCDATA 170
CDATA node 250
ceiling function 304
certificate

self-signed 724
Certificate Signing Request

security
certificates

digitally-signed 726
certificates

importing 727
installing 727

chained filters 358
character events 140
characters method 134
child access

controlling 255
class file

modifying 86
classes

AdapterNode 232
AttachmentPart 488
ConnectionFactory 542
Document 220
javax.xml.soap.SOAPConnec-

tion 489
JEditorPane 226, 262
JEditPane 229
JPanel 227
JScrollPane 229
JSplitPane 226, 230
JTree 225, 262
JTreeModel 225
SAXParser 136
SOAPEnvelope 486
SOAPFactory 502

890 INDEX
SOAPMessage 486
SOAPPart 486
TreeModelSupport 241

classification schemes
finding with JAXR 553
ISO 3166 548
NAICS 547, 567
postal address 558, 567
publishing 558, 567
removing 569
UNSPSC 547
user-defined 557

classifications
creating with JAXR 553

ClassLoader 294
client

application
for a Web service 26

authentication 716
JAXR 539

implementing 541
querying a registry 547

standalone 28, 29, 495, 505
client authentication 742
client-certificate authentication
715
Collection interface 468
com.sun.xml.registry.ht-

tp.proxyHost connection property
545
com.sun.xml.registry.ht-

tp.proxyPort connection property
545
com.sun.xml.registry.ht-

tps.proxyHost connection proper-
ty 545
com.sun.xml.registry.ht-

tps.proxyPassword connection

property 545
com.sun.xml.registry.ht-

tps.proxyPort connection proper-
ty 545
com.sun.xml.registry.ht-

tps.proxyUserName connection
property 545
com.sun.xml.registry.userTax-

onomyFilenames system property
560, 568
com.sun.xml.registry.useSOAP

connection property 545, 546
command 81
command line

argument processing 134
transformations 351

comment 128, 250, 261
echoing 204
node 295

Comment nodes 243
compilation errors 88
compiling 143
compression 269
concat function 303
concepts

in user-defined classification
schemes 557

using to create classifications
with JAXR 554

conditional sections 196
config.xml 458, 464, 467, 476
connection 489

close 505
creating 543
getting 29
point-to-point 29, 489, 500
secure 721
setting properties 543

INDEX 891
to the messaging provider 29
connection factory

JAXR
creating 542

Connection interface 540, 543
connection properties

com.sun.xml.registry.ht-

tp.proxyHost 545
com.sun.xml.registry.ht-

tp.proxyPort 545
com.sun.xml.registry.ht-

tps.proxyHost 545
com.sun.xml.registry.ht-

tps.proxyPassword

545
com.sun.xml.registry.ht-

tps.proxyPort 545
com.sun.xml.registry.ht-

tps.proxyUserName

545
com.sun.xml.registry.use-

SOAP 545, 546
examples 543
javax.xml.registry.lifeCy-

cleManagerURL 544
javax.xml.registry.postal-

AddressScheme 544,
560

javax.xml.registry.query-

ManagerURL 544
javax.xml.registry.securi-

ty.authentication-

Method 544
javax.xml.registry.seman-

ticEquivalences 544,
560

javax.xml.registry.ud-

di.maxRows 544

ConnectionFactory class 542
Connector element

in server.xml 730
connector elements 789

configuring 790
connectors

AJP 791
attributes 792
HTTP 791
HTTPS 791

container 21
contains function 303
content events 138
ContentHandler interface 134
context 296
Context element 797
context roots 102
conversion functions 304
count function 302
country codes

ISO 3166 548
createAttachmentPart method
515
createClassification method
554, 558
createClassificationScheme

method 558
createExternalLink method 558
createOrganization method 553
createPostalAddress method 562
createService method 555
createServiceBinding method
555
CSR 726
custom tags 635

attributes 643
validation 652

bodies 643

892 INDEX
cooperating 645
defining 645
examples 661, 666
scripting variables

defining 644
providing information

about 657, 658,
659

Struts tag library 639
tag handlers 645

defining scripting vari-
ables 655

methods 646
simple tag 649
with attributes 650
with bodies 653

tag library descriptors
See tag library descriptors

tutorial-template tag library
639

cxml 63

D
data 212

element 176
encryption 716
normalizing 66
processing 49
source 817
structure

arbitrary 312
types

CDATA 261
element 260
entity reference 260
text 260

data source 817

DDP
declaration 44, 127
DefaultHandler method

overriding 162
defining text 169
deleteOrganizations method 556
deployment 25, 462

descriptor 25
errors 89
of applications 80

deployment descriptors
web application 94

destroy 602
Detail object 519
DetailEntry object 519
digest authentication 715
DII 471
directory structure 71
doAfterBody 654
DocType node 245, 261
document

element 176
events 138
fragment 261
node 261
type 327

Document class 220
Document Object Model

See DOM
Document Type Definition

See DTD
DocumentBuilderFactory 251, 282

configuring 281
Document-Driven Programming

See DDP
documents 212
doEndTag 649
doFilter 588, 589, 594

INDEX 893
doGet 582
doInitBody 654
DOM 7, 10, 39, 53, 126

constructing 218
displaying a hierarchy 225
displaying ub a JTree 231
nodes 213
normalizing 272
structure 216
transforming to an XML Doc-

ument 13
tree structure 211
versus SAX 125
writing out a subtree 310
writing out as an XML file 305

dom4j 53, 127, 214
doPost 582
doStartTag 649
downloading

J2EE SDK xiv
J2SE xiv
tutorial xiii

DrawML 62
DTD 4, 45, 54, 56

defining attributes 177
defining entities 179
defining namespaces 278
factoring out 68
industry-standard 64
limitations 170
normalizing 68
parsing the parameterized 197
warnings 199

DTDHandler API 207
dynamic invocation interface

See DII
dynamic proxies 470

E
ease of use 22
ebXML 27, 34, 62

Message Service Specification
27

profile 492, 509
registries 538, 539

electronic business XML
See ebXML

element 129, 260, 270
content 259
empty 131, 177
events 139
nested 129
node 295
qualifiers 169
root 128

eliminating redundancies 66
EMPTY 171
encoding 45
endDocument method 134
endElement method 134
endpoint 505
entities 45, 261

defining in DTD 179
external 67
included "in line" 47
parameter 194
parsed 184
predefined 164
reference 67, 215, 260
reference node 249
references 250
referencing binary 184
referencing external 182
unparsed 184
useful 182

EntityResolver 286

894 INDEX
API 209
environment

entries 821
variables 821

environment entries 821
environment variables 821
errors

compilation 88
compiler 88
deployment 89
generating 334
handling 189, 220

in the validating parser 193
HTTP 401 88, 89
HTTP 404 90
HTTP 500 91
nonfatal 161
starting 87
system hang 89
validation 191, 224

events
character 140
content 138
document 138
element 139
lexical 200

examples 69
downloading xiii
location xiii, 69
troubleshooting 87, 574

exceptions
mapping to web resources 101
ParserConfigurationExcep-

tion 160
SAXException 157
SAXParseException 156
web components 101

Extensible Markup Language

See XML

F
factory

configuring 223
false function 304
fault

code 517
retrieving information 519
string 518

files
build.properties 71
build.xml 77

creating 78
config.xml 458
jaxrpc-ri.xml 458
tomcat-users.xml 72, 85
web.xml 458

Filter 588
filter chains 354, 588, 594
filters 587

defining 588
mapping to Web components

592
mapping to Web resources

592, 593, 594
overriding request methods

590
overriding response methods

590
response wrapper 590

findClassificationSchemeByName

method 553, 558
findConcepts method 550
findOrganization method 548
floor function 304
for-each loops 350

INDEX 895
forward 597
fully qualified 502
functions

boolean 304
boolean 304
ceiling 304
concat 303
contains 303
conversion 304
count 302
false 304
floor 304
lang 304
last 302
local-name 305
name 305
namespace 305
namespace-uri 305
node-set 302
normalize-space 303
not 304
number 304
numeric 304
position 302
positional 302
round 304
starts-with 303
string 303
string 304
string-length 303
substring 303
substring-after 303
substring-before 303
sum 304
translate 303
true 304
XPath 301

G
GenericServlet 572
getChildElements method 529
getParameter 583
getParser method 136
getRemoteUser method 719
getRequestDispatcher 595
getServletContext 598
getSession 599
Getting Started application 69

building using Ant 77
installing 81
running 82

GettingStarted application 69
running 82

getUserPrincipal method 719
Global Naming Resources 816
groups 84, 703, 823

managing 704

H
headers 493

adding content 509
Content-Id 514
Content-Location 514
Content-Type 514

hierarchy
collapsed 264

host
alias 797, 799, 801
element 789
virtual 797, 799, 801

host alias 797, 799, 801
host element

configuring 795
host elements 789
HTML 3, 41

896 INDEX
HTTP 455, 734
authentication 715
over SSL 716
setting proxies 545

HTTP 401 88, 89
HTTP 404 error 90
HTTP 500 91
HTTP protocol 849
HTTP requests 583, 850

methods 850
query strings 584
See also requests
URLs 583

HTTP responses 585, 850
See also responses
status codes 101, 850

mapping to web resources
101

HTTPS 723, 732
HttpServlet 572
HttpServletRequest 583
HttpServletRequest interface 719
HttpServletResponse 585
HttpSession 599
HyperText Markup Language

See HTML

I
ICE 62
identification 702
ignored 161
include 595, 622
information model

JAXR 538, 539
init 581
inline tags 344
inlining 292

instructions
processing 46, 153

interfaces
BusinessLifeCycleManager

540, 547, 551
BusinessQueryManager 540,

547
Collection 468
Connection 540, 543
ContentHandler 134
httpServletRequest 719
javax.xml.messaging.Pro-

viderConnection 489
LexicalHandler 201
Organization 552
RegistryObject 539
RegistryService 540, 547
SOAPEnvelope 504
XmlReader 322

interoperability 6, 21
invalidate 601
ISO 3166 country codes 548
isThreadSafe 618
isUserInRole method 719
isValid 652
iterative development 85

J
J2EE 2
J2EE SDK

downloading xiv
J2SE

downloading xiv
required version xiv

J2SE SDK 467
Java 2 Platform, Enterprise Edi-
tion

INDEX 897
 See J2EE
Java API for XML Messaging

See JAXM
Java API for XML Processing

See JAXP
Java API for XML Registries

See JAXR
Java API for XML-based RPC

See JAX-RPC
Java Cryptographic Extension 724
Java Naming and Directory Inter-
face API

See JNDI
Java Secure Socket Extension

See JSSE
JAVA WSDP Registry Server 829

accessing with JAXR API 830
adding new users 836
authentication with command

line client script 832
businesses

deleting 834
finding 833
obtaining details 834
retrieving 835
saving 833

command line client script 831
deleting users 837
sending UDDI request mes-

sages 836
setting up 830
validating UDDI messages

835
Xindice database 829

JavaBeans components 69, 469
benefits of using 629
compiling 80
creating in JSP pages 630

design conventions 627
examples 74
in WAR files 96
methods 628
properties 627

retrieving in JSP pages 633
setting in JSP pages 630

using in JSP pages 629
JavaServer Pages

See JSP
JavaServer Pages (JSP) technolo-
gy

See also JSP pages
javax.activation.DataHandler

object 515
javax.servlet 572
javax.servlet.http 572
javax.xml.messaging package 484
javax.xml.messaging.Provider-

Connection interface 489
javax.xml.registry package 539
javax.xml.registry.infomodel

package 539
javax.xml.registry.lifeCycleM-

anagerURL connection property
544
javax.xml.registry.postalAd-

dressScheme connection property
544, 560
javax.xml.registry.queryMan-

agerURL connection property 544
javax.xml.registry.securi-

ty.authenticationMethod connec-
tion property 544
javax.xml.registry.seman-

ticEquivalences connection prop-
erty 544, 560
javax.xml.registry.ud-

898 INDEX
di.maxRows connection property
544
javax.xml.soap package 484
javax.xml.soap.SOAPConnection

class 489
javax.xml.soap.SOAPConnec-

tion.call method 490
javax.xml.transform package 12
javax.xml.transform.Source ob-
ject 512
JAXM 6, 22, 27, 483

1.0 specification 484
API 484

Javadoc documentation
493

sample applications 495
JAXM 1.1

specification 484
JAXP 6, 512
JAXP 1.1 143
JAXP 1.2 143, 212
JAXR 6, 23, 34, 537

adding
classifications 553
service bindings 554
services 554

architecture 539
capability levels 539
clients 539

implementing 541
submitting data to a regis-

try 551
creating

connections 543
defining taxonomies 557
definition 538
establishing security creden-

tials 552

finding classification schemes
553

information model 538
organizations

creating 552
removing 556
saving 555

provider 539
querying a registry 547
specification 538
specifying postal addresses

560
submitting data to a registry

551
using with JAVA WSDP Reg-

istry Server 830
JAX-RPC 6, 20

compiling 460, 465
defined 455
deploying 462, 466
dynamic clients 470, 471
handlers 481
HelloWorld example 456
implementation-specific fea-

tures 466
JavaBeans components 469
namespace mappings 480
overview 21
packaging 460, 465
security 474, 734
specification 466, 481
static stub clients 464
supported types 467

jaxrpc-ri.xml 458, 460, 461, 467,
478
JDBC connections

data source 817
JDOM 53, 127, 214

INDEX 899
JEditorPane class 226, 262
JEditPane class 229
jJSP pages

example 75
JNDI 30, 507

global resources 816
JPanel class 227
JScrollPane class 229
JSP 39
JSP declarations 619
JSP expressions 621
JSP pages 607

compilation 612
errors 613

constructs 75
creating and using objects 618
creating dynamic content 616
creating static content 615
custom tags

See custom tags
declarations

See JSP declarations
eliminating scripting 635
error page 614
examples 75, 95, 609, 610,

638, 673, 674
execution 613
expressions

See JSP expressions
finalization 615
forwarding to an error page

614
forwarding to other Web com-

ponents 624
implicit objects 616
importing classes and packag-

es 619
importing tag libraries 641

including applets or JavaBeans
components 624

including other Web resources
622

initialization 615
JavaBeans components

creating 630
retrieving properties 633
setting properties 630

from constants 631
from request parame-

ters 631
from runtime expres-

sions 632
using 629

life cycle 612
scripting elements

See JSP scripting elements
scriptlets

See JSP scriptlets
setting buffer size 614
shared objects 618
specifying scripting language

619
translation 612

enforcing constraints for
custom tag at-
tributes 652

errors 613
URLs for running 82

JSP scripting elements 619
JSP scriptlets 620

drawbacks 635
JSP tag libraries 636
jsp:fallback 625
jsp:forward 624
jsp:getProperty 633
jsp:include 623

900 INDEX
jsp:param 624, 625
jsp:plugin 624
jsp:setProperty 630
jspDestroy 615
jspInit 615
JSplitPane class 226, 230
JSSE 722
JTree

displaying content 262
JTree class 225, 262
JTreeModel class 225
JWSDP applications

iterative development 85

K
keystore 724
keytool 723, 724

L
lang function 304
last function 302
lexical

controls 250
events 200

LexicalHandler interface 201
linking

XML 58
listener classes 575

defining 575
examples 576

listener interfaces 575
local

name 511
provider 496

localhost 82
local-name function 305

locator 151
Locator object 158
logger element 790

configuring 802
logger elements 790

M
manager Web application 85
mapping 710
MathML 61
message

accessing elements 501
creating 30, 500, 508
getting the content 505
integrity 716
populating the attachment part

33
populating the SOAP part 32
sending 34, 513

message URL http
//www.oasis-open.org/com-

mittees/ebxml-msg/ 27
MessageFactory object 30, 508

getting 508
messaging

one-way 28, 491
provider 27, 491–495, 507

getting a connection 29
when to use 494

request-response 28, 490
methods

addChildElement 502
addClassifications 554
addExternalLink 558
addServiceBindings 555
addServices 555
addTextNode 502

INDEX 901
call 496, 505
characters 134
createAttachmentPart 515
createClassification 554,

558
createClassificationScheme

558
createExternalLink 558
createOrganization 553
createPostalAddress 562
createService 555
createServiceBinding 555
deleteOrganizations 556
endDocument 134
endElement 134
findClassificationScheme-

ByName 553, 558
findConcepts 550
findOrganization 548
getChildElements 529
getParser 136
getRemoteUser 719
getUserPrincipal 719
isUserInRole 719
javax.xml.soap.SOAPConnec-

tion.call 490
Node.getValue 506
notationDecl 208
parse 319
ProviderConnection.send

491, 492, 513
saveOrganizations 555
setCoalescing 251
setContent 513
setExpandEntityReferences

251
setIgnoringComments 251
setIgnoringElementContent-

Whitespace 251
setNamespaceAware 12
setPostalAddresses 562
SOAPConnection.call 496
SOAPMessage.getAttachments

515
SOAPPart.setContent 512
startCDATA 205
startDocument 134, 138
startDTD 205
startElement 134, 139, 142
startEntity 205
text 214
unparsedEntityDecl 208

MIME
data 184
header 488

mixed-content model 170, 212
mode-based templates 350
modes

content 213
Text 243

mustUnderstand attribute 493
mutual authentication 742

N
NAICS 567

using to find organizations 549
name

local 511
name function 305
Name object 502, 529
namespaces 12, 55, 502

declaration 12
defining a prefix 279
defining in DTD 278
fully-qualified 504, 510

902 INDEX
functions 305
node 295
prefix 13, 504
referencing 279
support 7
target 286
using 277
validating with multiple 283

namespace-uri function 305
nested elements 169
node() 299
Node.getValue method 506
nodes 213, 485

Attribute 243
attribute 261, 295
CDATA 250
changing 277
Comment 243
comment 261, 295
constants 258
content 275
controlling visibility 254
DocType 245, 261
document 261
document fragment 261
element 270, 295
entity 261
entity reference 249
inserting 277
namespace 295
navigating to 216
notation 261
processing instruction 246,

261, 295
removing 277
root 270, 295
searching 274
text 270, 273, 295

traversing 274
types 233, 295
value 213

node-set functions 302
nonvalidating parser 155
non-XSL tags 332
normalize-space function 303
normalizing

data 66
DTDs 68

North American Industry Classifi-
cation System

See NAICS
not clause 348
not function 304
notation nodes 261
notationDecl method 208
number function 304
numbers

formatting 350
generating 350

numeric functions 304

O
OASIS 6, 64
objects

AttachmentPart 513
Detail 519
DetailEntry 519
javax.activation.DataHan-

dler 515
javax.xml.transform.Source

512
Locator 158
MessageFactory 30, 508
Name 502, 529
Parser 136

INDEX 903
ProviderConnection 29, 490,
507

SOAPBody 29, 486, 502, 504,
510

SOAPBodyElement 502, 504,
510, 530

SOAPConnection 29, 489, 499,
505

SOAPElement 503, 530
SOAPFault 516, 532
SOAPHeader 486, 502, 510
SOAPHeaderElement 509
SOAPMessage 29, 501, 508
SOAPPart 489, 503, 512
Templates 293, 294

one-way messaging 28, 484, 491
operators

XPath 300
Orgainzation for the Advancement
of Structured Information Stan-
dards

See OASIS
Organization interface 552
organizations

creating with JAXR 552
finding

by classification 549, 567
by name 548, 566
using WSDL documents

567
keys 552, 556
primary contacts 552
publishing 566
removing 567

with JAXR 556
saving

with JAXR 555

P
packages

javax.xml.messaging 484
javax.xml.registry 539
javax.xml.registry.infomod-

el 539
javax.xml.soap 484
javax.xml.transform 12

packaging 25
parameter entity 194
parse method 319
parsed

character data 170
entity 184

parser
implementation 186
modifying to generate SAX

events 317
nonvalidating 155
SAX properties 188
using as a SAXSource 324
validating 187

error handling 193
Parser object 136
ParserConfigurationException

160
parsing parameterized DTDs 197
password 740
passwords

encoded 716
pattern 295
pattern attribute

values 813
pattern attribute values 813
PCDATA 170

versus CDATA 170
performance 291
pluggability layer 7

904 INDEX
point-to-point connection 500
portability 5
position function 302
positional functions 302
postal addresses

retrieving 562, 568
specifying 560, 568

prerequisites xiii
printing the tutorial xiv
PrintWriter 585
processing

command line argument 134
data 49
instruction nodes 246, 261,

295
instructions 46, 153, 215

processingInstruction 154
profiles 31, 492

ebXML 492, 509
implementations 509
Javadoc documentation 492
SOAP-RP 492

provider
JAXR 539

ProviderConnection object 29,
490, 507
ProviderConnection.send meth-
od 491, 492, 513
proxies 455, 464, 470

HTTP, setting 545
public key certificates 716

R
RDF 60

schema 60
realm 84, 703

default 707

element 790, 805
managing users and groups

707
realm element 805
realm elements 790
realms 84
redeploy 85, 86
registering businesses 35
registries

definition 538
ebXML 538, 539
getting access to public UDDI

registries 542
Java WSDP Registry Server

829
private 829
querying 547
searching 36
submitting data 551
UDDI 538, 539
using public and private 564
See also Java WSDP Registry

Server, JAXR
registry objects 539

retrieving 569
Registry Server

See Java WSDP Registry Serv-
er

RegistryObject interface 539
registry-server-test script 831
RegistryService interface 540,
547
RELAX NG 57
release 654
remote method invocation 27
remote procedure call

See RPC
remote procedure calls 455

INDEX 905
RequestDispatcher 595
request-response messaging 28,
484, 490, 759, 766
requests 583

appending parameters 624
customizing 590
getting information from 583
retrieving a locale 109
See also HTTP requests

required software xiv
resouces

data sources 817
resource bundles 108
resources

configuring 816
data sources 817

responses 585
buffering output 585
customizing 590
See also HTTP responses
setting headers 582

roles 84, 702, 823
adding 83, 85
managing 704
security

See security roles
root

element 128
node 270, 295

round function 304
RPC 22, 455
RSA-signed certificates 724

S
SAAJ 485
SAAJ 1.1

API 484, 502

specification 484, 490
sample applications

GettingStarted 69
sample programs

Getting Started 69
JAXR 562

compiling 565
editing properties file 563

saveOrganizations method 555
SAX 7, 39, 53, 125

events 317
parser properties 188
versus DOM 125

SAXException 157, 159
SAXParseException 156, 159

generating 158
SAXParser class 136
schema 4, 56, 190

associating a document with
282

declaring
in the application 285
in XML data set 284

default 285
definitions 285

specifying 282
RDF 60
XML 57

Schematron 58
searching registries 36
secure connections 721
security

adding roles 83
authentication

See authentication
certificates

generating 724
importing 727

906 INDEX
constraints 713
container-managed 83
credentials for XML registries

552
declarative 701
EIS tier 744

component-managed sign-
on 745

container-managed sign-
on 745

sign-on 744
groups 84, 703
JAX-RPC 474, 734
programmatic 702, 719
realms 84, 703
roles 84, 85, 702, 703, 710

admin 704
creating 703
for Tomcat 704
managing 704, 707
mapping application to

realm 710
users 84, 85, 702

managing 708
Web Services model 701
Web tier 712

programmatic 719
security architecture 702
security constraint 713
security role references 709

mapping to security roles 710
selection criteria 298
server

administration tool 83
authentication 716
certificates 723

creating 724
server administration tool 83

server.xml file 787
service bindings

adding to an organization with
JAXR 554

finding with JAXR 551
service definition interface 459
service endpoint 26, 462
services

adding to an organization with
JAXR 554

configuring 789
finding with JAXR 551

Servlet 572
ServletContext 598
ServletInputStream 583
ServletOutputStream 585
ServletRequest 583
ServletResponse 585
servlets 458, 463, 571

binary data
reading 583
writing 585

character data
reading 583
writing 585

examples 95
finalization 602
initialization 581

failure 581
life cycle 574
life cycle events

handling 575
service methods 582

notifying 603
programming long running

604
tracking service requests 603

sessions 599

INDEX 907
associating attributes 599
associating with user 601
invalidating 601
notifying objects associated

with 600
setCoalescing method 251
setContent method 513
setExpandEntityReferences

method 251
setIgnoringComments method 251
setIgoringElementContent-

Whitespace method 251
setNamespaceAware method 12
setPostalAddresess method 562
Simple API for XML Parsing

See SAX
Simple Object Access Protocol

See SOAP
simple parser

creating 315
SingleThreadModel 579
smart transformer 294
SMIL 61
SOAP 21, 455, 456, 482, 484

body 504
adding content 510

envelope 504
faults 516
handlers in JAX-RPC 481
part 29

populating 32
specification 21

SOAP with Attachments API for
Java

See SAAJ
SOAPBody object 29, 486, 502, 504,
510

Content-Type header 513

SOAPBodyElement object 502, 504,
510, 530
SOAPConnection object 29, 489,
505

getting 499
SOAPConnection.call method 496
SOAPElement object 503, 530
SOAPEnvelope class 486
SOAPEnvelope interface 504
SOAPFactory class 502
SOAPFault object 516, 532

creating and populating 518
elements

Detail object 518
fault code 517
fault string 518

SOAPFaultt object
fault actor 518

SOAPFaultTest 532
running 533

SOAPHeader object 486, 502, 510
SOAPHeaderElement object 509
SOAPMessage class 486
SOAPMessage object 29, 501, 508
SOAPMessage.getAttachments

method 515
SOAPPart class 486
SOAPPart object 489, 503, 512

adding content 512
SOAPPart.setContent method 512
SOAP-RP profile 492
sorting output 350
SOX 58
specifications 45
SQL xiii, 293
SSL 715, 716, 721, 722, 734

connector 729, 730, 737
troubleshooting connections

908 INDEX
733
verifying support 732

SSL HTTPS Connector
configuring 729

standalone 45
applications 497
client 495, 505

See also client
standalone client

See client, standalone
startCDATA method 205
startDocument method 134, 138
startDTD method 205
startElement method 134, 139,
142
startEntity method 205
starting errors 87
starts-with function 303
static stubs 464
string function 304
string functions 303
string-length function 303
string-value 298, 300
stubs 457, 463, 464, 467
stylesheet 47
substring function 303
substring-after function 303
substring-before function 303
subtree

concatenation 258
writing 310

sum function 304
SVG 62
system properties

com.sun.xml.registry.user-

TaxonomyFilenames

560, 568

T
tag handlers

life cycle 670
tag library descriptors 647

attribute 651
body-content 650, 655
filenames 641
listener 648
mapping name to location 642
tag 648
taglib 647
variable 657

TagExtraInfo 652
taglib 641
tags 3, 41, 43

closing 43
content 344
empty 43
nesting 43
structure 344

target namespace 286
taxonomies

finding with JAXR 553
ISO 3166 548
NAICS 547, 567
UNSPSC 547
user-defined 557
using to find organizations 549

templates 296, 332
mode-based 350
named 347
ordering in a stylesheet 342

Templates object 293, 294
terminate clause 335
test document

creating 329
text 260, 270, 273

node 295

INDEX 909
text method 214
Text nodes 243
This 77
ties 457, 461, 467
TLS 722
Tomcat 69, 71

compilation errors 88
configuring 788

connectors 790
SSL support 721

configuring connectors 790
connector attributes 792
Contexts 797
data source 817
database of users 822
deployment errors 89
environment entries 821
host elements 795
JNDI resources 91, 824
logger 802
Manager application 71
realm

configuration 824
elements 805

realm configuration 91, 824
realm element 805
resources 816
roles 823
server

authentication 84, 702
group 84
realm 84
role 84
user 84

configuration 824
properties 788

Server Administration tool 83,
704

using 705
server configuration 91, 824
Server Manager tool 85
server properties 788
services 789
shutting down 83
starting 80
starting errors 87
stopping 83
user’s file 71
users 823
users file 704, 708
using admintool

 705
valve element 812
verifying 81

Tomcat Web Server Administra-
tion Tool 785

See admintool
tomcat-users.xml 71
tomcat-users.xml file 72, 85, 786
tools

Ant 77
transactions

Web components 581
TransformationFactory system
property 294
transformations

concatenating 354
from the command line 351

transformer
creating 307

translate function 303
translet

compiling 352
running 353

tree
displaying 242

910 INDEX
TreeModelSupport class 241
TREX 58
troubleshooting 87

sample applications 87
troubleshooting sample applica-
tions 87
true function 304

U
UBL 63
UDDI 34, 38, 523

adding new users with Regis-
try Server command
line client script 836

deleting users with Registry
Server command line
client script 837

getting access to public regis-
tries 542

Java WSDP Registry Server
829

registries 23, 538, 539
sending request messages with

Registry Server com-
mand line client script
836

validating messages with Reg-
istry Server command
line client script 835

UnavailableException 581
Universal Description, Discovery
and Integration registry

See UDDI registry
Universal Resource Identifier

See URI
Universal Standard Products and
Services Classification

See UNSPSC
unparsed entity 184
unparsedEntityDecl method 208
UNSPSC 547
URI 717
user authentication

methods 716
user database 822
username 740
users 84, 702, 823

adding 85
managing 704

V
validating

with multiple namespaces 283
with XML Schema 280

validation errors 191
value types 469
valve element 812
valve elements 790, 812
variables 350

scope 351
value 351

version 45
virtual host 797, 799, 801

W
W3C 6, 57, 455, 482
WAR 70
WAR files 25, 70, 460, 462

deploying for JAX-RPC 477
JavaBeans components in 96

warnings 162
in DTD 199

Web Application Archive (WAR)

INDEX 911
files 70
Web Application Archive files

See WAR files
Web applications

building with Ant 78
compiling 77
deploying 80
deploying with Ant 78
installing 81, 704
introduction 69
JSP page client 69
managing 71
modifying 85
redeploying 85
reloading 704
running 82
troubleshooting 87

Web client
JSP page 75

Web clients 93
configuring 94
examples 75
internationalizing 108, 109
JSP page 75
maintaining state across re-

quests 599
modifying 86
packaging 96
running 82, 105
updating 105

Web components 93
accessing databases from 109,

580
concurrent access to shared re-

sources 579
forwarding to other Web com-

ponents 597
including other Web resources

595
invoking other Web resources

594
JSP pages

See JSP pages 94
mapping filters to 592
scope objects 578
servlets

See servlets
sharing information 577
transactions 581
Web context 598

Web containers
loading and initializing serv-

lets 574
Web resource collections 713
Web resources 96

authenticating 713
authenticating users 715
authentication mechanisms

715
mapping filters to 592, 593,

594
protecting 713
unprotected 721

Web services 1, 21
creating 23
discovering 38
RPC-based 21
writing a client application 26

Web Services Description Lan-
guage

See WSDL
web.xml 458, 460, 735, 737
web.xml file 478, 761
well-formed 131
whitespace

ignorable 174

912 INDEX
wildcards 299
World Wide Web Consortium

See W3C
wscompile tool 457, 458, 464,
467, 474, 480
wsdeploy tool 457, 458, 461, 467,
477, 480
WSDL 21, 38, 456, 461, 462, 464,
467, 470, 474, 477, 479, 482

documents 23
using to find organizations

549, 567

X
X.509 certificate 716
Xalan 289, 291, 293, 357
XHTML 59, 130
Xindice database 829, 830

adding new users 836
deleting users 837

XLink 59
XML 2, 3, 41, 455, 467

comments 44
content 45
designing a data structure 63
documents 150, 176, 485
elements 485
generating 312
linking 58
prolog 44
reading 305
registries

establishing security cre-
dentials 552

transforming a DOM tree to 13
XML Base 59
XML data 150, 176

transforming with XSLT 327
XML Schema 4, 57, 143, 188, 212

definition 188
Instance 190
validating 280

XML Stylesheet Language Trans-
formations

See XSLT
XmlReader interface 322
XPATH 55
XPath 289, 290, 294

basic addressing 296
basic expressions 298
data model 295
data types 300
expression 295
functions 301
operators 300

XPointer 59, 294
XSL 12, 55
XSL-FO 290
XSLT 7, 12, 55, 289, 290, 327

context 296
data model 295
templates 296
transform

writing 330
XSLTC 143, 289, 291
XTM 61

	Contents
	About This Tutorial
	Who Should Use This Tutorial
	How to Read This Tutorial
	About the Examples
	Required Software
	Building the Examples
	Managing the Examples

	How to Print This Tutorial
	Typographical Conventions

	Introduction to Web Services
	The Role of XML and the Java™ Platform
	What Is XML?
	What Makes XML Portable?

	Overview of the Java APIs for XML
	JAXP
	The SAX API
	The DOM API
	XML Namespaces

	The XSLT API
	Transforming a DOM Tree to an XML Document
	Transforming an XML Document to an HTML Document

	JAXB
	JAXB Binding Process
	Validation
	Representing XML Content
	Customizing JAXB Bindings
	Example
	Schema-derived Class for USAddress.java
	Unmarshalling XML Content
	Modifying the Content Tree
	Validating the Content Tree
	Marshalling XML Content

	JAX-RPC
	Overview of JAX-RPC
	Interoperability
	Ease of Use
	Advanced Features

	Using JAX-RPC
	Creating a Web Service
	Coding a Client
	Invoking a Remote Method

	JAXM
	Getting a Connection
	Getting a Point-to-Point Connection
	Getting a Connection to the Messaging Provider

	Creating a Message
	Populating a Message
	Populating the SOAP Part of a Message
	Populating the Attachment Part of a Message

	Sending a Message

	JAXR
	Using JAXR
	Registering a Business
	Searching a Registry

	Sample Scenario
	Scenario
	Discovering New Distributors
	Requesting Price Lists
	Comparing Prices and Ordering Coffees
	Selling Coffees on the Internet

	Conclusion

	Understanding XML
	Introduction to XML
	What Is XML?
	Tags and Attributes
	Empty Tags
	Comments in XML Files
	The XML Prolog
	Processing Instructions

	Why Is XML Important?
	Plain Text
	Data Identification
	Stylability
	Inline Reusability
	Linkability
	Easily Processed
	Hierarchical

	How Can You Use XML?
	Traditional Data Processing
	Document-Driven Programming (DDP)
	Binding
	Archiving
	Summary

	XML and Related Specs: Digesting the Alphabet Soup
	Basic Standards
	SAX
	DOM
	JDOM and dom4j
	DTD
	Namespaces
	XSL
	XSLT (+XPATH)

	Schema Standards
	XML Schema
	RELAX NG
	TREX
	SOX
	Schematron

	Linking and Presentation Standards
	XML Linking
	XHTML

	Knowledge Standards
	RDF
	RDF Schema
	XTM

	Standards That Build on XML
	Extended Document Standards
	eCommerce Standards

	Summary

	Designing an XML Data Structure
	Saving Yourself Some Work
	Attributes and Elements
	Forced Choices
	Stylistic Choices

	Normalizing Data
	Normalizing DTDs

	Getting Started With Tomcat
	Setting Up
	Getting the Example Code
	Layout of the Example Code

	Setting the PATH Variable
	Creating the Build Properties File

	Quick Overview
	Creating the Getting Started Application
	The ConverterBean Component
	Coding the ConverterBean Component

	The Web Client
	Coding the Web Client

	Building the Getting Started Application Using Ant
	Creating the Build and Deploy File for Ant
	Compiling the Source Files

	Deploying the Application
	Starting Tomcat
	Installing the Application using Ant

	Running the Getting Started Application
	Running the Web Client
	Shutting Down Tomcat

	Using admintool
	Understanding Roles, Groups, and Users
	Adding Roles Using admintool
	Adding Users Using admintool

	Modifying the Application
	Modifying a Class File
	Modifying the Web Client

	Common Problems and Their Solutions
	Errors Starting Tomcat
	Compilation Errors
	Deployment Errors

	Further Information

	Web Applications
	Web Application Life Cycle
	Web Application Archives
	WAR Directory Structure
	Tutorial Example Directory Structure
	Creating a WAR

	Configuring Web Applications
	Prolog
	Alias Paths
	Context and Initialization Parameters
	Event Listeners
	Filter Mappings
	Error Mappings
	References to Environment Entries, Resource Environment Entries, or Resources

	Installing Web Applications
	Deploying Web Applications
	Listing Installed and Deployed Web Applications
	Running Web Applications
	Updating Web Applications
	Reloading Web Applications
	Redeploying Web Applications

	Removing Web Applications
	Undeploying Web Applications
	Internationalizing and Localizing Web Applications
	Accessing Databases from Web Applications
	The Examples
	Installing and Starting the Database Server
	Populating the Database
	Configuring the Web Application to Reference a Data Source
	Defining a Data Source in Tomcat
	Configuring Tomcat to Map the JNDI Name to a Data Source

	Further Information

	Java API for XML Processing
	The JAXP APIs
	An Overview of the Packages
	The Simple API for XML (SAX) APIs
	The SAX Packages

	The Document Object Model (DOM) APIs
	The DOM Packages

	The XML Stylesheet Language for Transformation (XSLT) APIs
	The XSLT Packages

	Compiling and Running the Programs
	Where Do You Go from Here?

	Simple API for XML
	When to Use SAX
	Writing a Simple XML File
	Creating the File
	Writing the Declaration
	Adding a Comment
	Defining the Root Element
	Adding Attributes to an Element
	Adding Nested Elements
	Adding HTML-Style Text
	Adding an Empty Element
	The Finished Product

	Echoing an XML File with the SAX Parser
	Creating the Skeleton
	Importing Classes
	Setting up for I/O
	Implementing the ContentHandler Interface
	Setting up the Parser
	Writing the Output
	Spacing the Output
	Handling Content Events
	Document Events
	Element Events
	Character Events

	Compiling and Running the Program
	Checking the Output
	Identifying the Events
	Compressing the Output
	Inspecting the Output
	Documents and Data

	Adding Additional Event Handlers
	Identifying the Document’s Location
	Handling Processing Instructions
	Summary

	Handling Errors with the Nonvalidating Parser
	Introducing an Error
	Handling a SAXParseException
	Handling a SAXException
	Improving the SAXParseException Handler
	Handling a ParserConfigurationException
	Handling an IOException
	Handling NonFatal Errors
	Handling Warnings

	Substituting and Inserting Text
	Handling Special Characters
	Predefined Entities
	Character References

	Using an Entity Reference in an XML Document
	Handling Text with XML-Style Syntax
	Handling CDATA and Other Characters

	Creating a Document Type Definition (DTD)
	Basic DTD Definitions
	Defining Text and Nested Elements
	Limitations of DTDs
	Special Element Values in the DTD
	Referencing the DTD

	DTD’s Effect on the Nonvalidating Parser
	Tracking Ignorable Whitespace
	Cleanup
	Documents and Data
	Empty Elements, Revisited

	Defining Attributes and Entities in the DTD
	Defining Attributes in the DTD
	Defining Entities in the DTD
	Echoing the Entity References
	Additional Useful Entities
	Referencing External Entities
	Echoing the External Entity
	Summarizing Entities

	Referencing Binary Entities
	Using a MIME Data Type
	The Alternative: Using Entity References

	Choosing your Parser Implementation
	Using the Validating Parser
	Configuring the Factory
	Validating with XML Schema
	Setting the SAX Parser Properties
	Setting up the Appropriate Error Handling
	Associating a Document with A Schema

	Experimenting with Validation Errors
	Error Handling in the Validating Parser

	Defining Parameter Entities and Conditional Sections
	Creating and Referencing a Parameter Entity
	Conditional Sections

	Parsing the Parameterized DTD
	DTD Warnings

	Handling Lexical Events
	How the LexicalHandler Works
	Working with a LexicalHandler
	Echoing Comments
	Echoing Other Lexical Information

	Using the DTDHandler and EntityResolver
	The DTDHandler API
	The EntityResolver API

	Further Information

	Document Object Model
	When to Use DOM
	Documents vs. Data
	Mixed Content Model
	Kinds of Nodes

	A Simpler Model
	Increasing the Complexity
	Choosing Your Model

	Reading XML Data into a DOM
	Creating the Program
	Create the Skeleton
	Import the Required Classes
	Declare the DOM
	Handle Errors
	Instantiate the Factory
	Get a Parser and Parse the File
	Run the Program

	Additional Information
	Configuring the Factory
	Handling Validation Errors

	Looking Ahead

	Displaying a DOM Hierarchy
	Echoing Tree Nodes
	Convert DomEcho to a GUI App
	Add Import Statements
	Create the GUI Framework
	Add the Display Components

	Create Adapters to Display the DOM in a JTree
	Define the AdapterNode Class
	Define the TreeModel Adapter

	Finishing Up

	Examining the Structure of a DOM
	Displaying A Simple Tree
	Displaying a More Complex Tree
	Summary of Lexical Controls

	Finishing Up

	Constructing a User-Friendly JTree from a DOM
	Compressing the Tree View
	Make the Operation Selectable
	Identify Tree Nodes
	Control Node Visibility
	Control Child Access
	Check the Results
	Extra Credit

	Acting on Tree Selections
	Identify Node Types
	Concatenate Subnodes to Define Element Content
	Display the Content in the JTree
	Wire the JTree to the JEditorPane
	Run the App
	Extra Credit

	Handling Modifications
	Finishing Up

	Creating and Manipulating a DOM
	Obtaining a DOM from the Factory
	Modify the Code
	Create Element and Text Nodes
	Run the App

	Normalizing the DOM
	Other Operations
	Traversing Nodes
	Searching for Nodes
	Obtaining Node Content
	Creating Attributes
	Removing and Changing Nodes
	Inserting Nodes

	Finishing Up

	Using Namespaces
	Defining a Namespace in a DTD
	Referencing a Namespace
	Defining a Namespace Prefix

	Validating with XML Schema
	Overview of the Validation Process
	Configuring the DocumentBuilder Factory
	Associating a Document with a Schema

	Validating with Multiple Namespaces
	Declaring the Schemas in the XML Data Set
	Declaring the Schemas in the Application

	Further Information

	XML Stylesheet Language for Transformations
	Introducing XSLT and XPath
	The JAXP Transformation Packages

	Choosing the Transformation Engine
	Performance Considerations
	Functionality Considerations
	Making Your Choice

	How XPath Works
	XPATH Expressions
	The XSLT/XPath Data Model
	Templates and Contexts
	Basic XPath Addressing
	Basic XPath Expressions
	Combining Index Addresses
	Wildcards
	Extended-Path Addressing
	XPath Data Types and Operators
	String-Value of an Element
	XPath Functions
	Node-set functions
	Positional functions
	String functions
	Boolean functions
	Numeric functions
	Conversion functions
	Namespace functions

	Summary

	Writing Out a DOM as an XML File
	Reading the XML
	Creating a Transformer
	Writing the XML
	Writing Out a Subtree of the DOM
	Clean Up

	Summary

	Generating XML from an Arbitrary Data Structure
	Creating a Simple File
	Creating a Simple Parser
	Modifying the Parser to Generate SAX Events
	Using the Parser as a SAXSource
	Doing the Conversion

	Transforming XML Data with XSLT
	Defining a Simple <article> Document Type
	Creating a Test Document
	Writing an XSLT Transform
	Processing the Basic Structure Elements
	Process the <TITLE> Element
	Process Headings
	Generate a Runtime Message

	Writing the Basic Program
	Trimming the Whitespace
	Processing the Remaining Structure Elements
	Modify <PARA> handling
	Process <LIST> and <ITEM> elements
	Ordering Templates in a Stylesheet
	Process <NOTE> Elements
	Run the Program

	Process Inline (Content) Elements
	Run the Program

	Printing the HTML
	What Else Can XSLT Do?
	The Trouble with Variables

	Transforming from the Command Line
	Compiling the Translet
	Running the Translet

	Concatenating Transformations with a Filter Chain
	Writing the Program
	Understanding How the Filter Chain Works
	Testing the Program
	Conclusion

	Further Information

	Binding XML Schema to Java Classes with JAXB
	JAXB Architecture
	Architectural Overview
	The JAXB Binding Process
	JAXB Binding Framework
	More About javax.xml.bind
	More About Unmarshalling
	More About Marshalling
	More About Validation

	XML Schemas
	Representing XML Content
	Binding XML Names to Java Identifiers
	Java Representation of XML Schema

	Binding XML Schemas
	Simple Type Definitions
	Default Data Type Bindings
	Default Binding Rules Summary

	Customizing JAXB Bindings
	Scope
	Scope Inheritance

	What is Not Supported
	JAXB APIs and Tools

	Using JAXB
	General Usage Instructions
	Description
	System Requirements
	Using the Sample Applications
	Configuring and Running the Samples Manually
	Solaris/Linux
	Windows NT/2000/XP

	Configuring and Running the Samples With Ant
	Solaris/Linux
	Windows NT/2000/XP

	JAXB Compiler Options
	About the Schema-to-Java Bindings
	Schema-Derived JAXB Classes
	Comment.java
	Items.java
	ObjectFactory.java
	PurchaseOrder.java
	PurchaseOrderType.java
	USAddress.java

	Basic Sample Applications
	Sample Application 1
	Sample Output

	Sample Application 2
	Sample Output

	Sample Application 3
	Sample Output

	Sample Application 4
	Sample Output

	Sample Application 5
	Sample Output

	Customizing JAXB Bindings
	Why Customize?
	Customization Overview
	Inline and External Customizations
	Scope, Inheritance, and Precedence
	Customization Syntax
	Customization Namespace Prefix

	Sample Application 6
	Customized Schema
	Global Binding Declarations
	Schema Binding Declarations
	Class Binding Declarations
	Property Binding Declarations
	MyDatatypeConverter Class

	Sample Application 7
	Sample Application 8
	JAXB Version, Namespace, and Schema Attributes
	Global and Schema Binding Declarations
	Class Declarations

	Sample Application 9
	The example.xsd Schema
	Looking at the Conflicts
	Output From ant fail
	The binding.xjb Declarations File
	Resolving the Conflicts in example.xsd
	Customizing a choice Model Group
	Adding Elements to a List Property

	Building Web Services With JAX-RPC
	A Simple Example: HelloWorld
	HelloWorld at Runtime
	HelloWorld Files
	Setting Up
	Building and Deploying the Service
	Coding the Service Definition Interface and Implementation Class
	Compiling the Service Definition Code
	Packaging the WAR File
	Generating the Ties and the WSDL File
	Deploying the Service
	Verifying the Deployment
	Undeploying the Service

	Building and Running the Client
	Generating the Stubs
	Coding the Client
	Compiling the Client Code
	Packaging the Client
	Running the Client

	Iterative Development
	Implementation-Specific Features

	Types Supported By JAX-RPC
	J2SE SDK Classes
	Primitives
	Arrays
	Application Classes
	JavaBeans Components

	A Dynamic Proxy Client Example
	Dynamic Proxy HelloClient Listing
	Building and Running the Dynamic Proxy Example

	A Dynamic Invocation Interface (DII) Client Example
	DII HelloClient Listing
	Building and Running the DII Example

	The wscompile Tool
	Syntax
	Configuration File
	The <service> Element
	The <wsdl> Element
	The <modelfile> Element

	The wsdeploy Tool
	Syntax
	The Input WAR File
	The jaxrpc-ri.xml File

	Advanced Topics for wscompile and wsdeploy
	Namespace Mappings
	Handlers

	Further Information

	Web Services Messaging with JAXM
	The Structure of the JAXM API
	Overview of JAXM
	Messages
	The Structure of an XML Document
	What Is in a Message?

	Connections
	SOAPConnection
	ProviderConnection

	Messaging Providers
	Transparency
	Profiles
	Continuously Active
	Intermediate Destinations
	When to Use a Messaging Provider
	Messaging with and without a Provider

	Running the Samples
	The Sample Programs
	Source Code for the Samples

	Tutorial
	Client without a Messaging Provider
	Getting a SOAPConnection Object
	Creating a Message
	Sending a Message
	Getting the Content of a Message

	Client with a Messaging Provider
	Getting a ProviderConnection Object
	Creating a Message
	Sending the Message

	Adding Attachments
	Creating an AttachmentPart Object and Adding Content
	Accessing an AttachmentPart Object
	Summary

	SOAP Faults
	Overview
	Creating and Populating a SOAPFault Object
	Retrieving Fault Information

	Code Examples
	Request.java
	UddiPing.java and MyUddiPing.java
	Creating MyUddiPing.java
	Adding New Code

	SOAPFaultTest.java
	Running SOAPFaultTest

	Conclusion

	Further Information

	Publishing and Discovering Web Services with JAXR
	Overview of JAXR
	What Is a Registry?
	What Is JAXR?
	JAXR Architecture

	Implementing a JAXR Client
	Establishing a Connection
	Preliminaries: Getting Access to a Registry
	Creating or Looking Up a Connection Factory
	Creating a Connection
	Setting Connection Properties
	Obtaining and Using a RegistryService Object

	Querying a Registry
	Finding Organizations by Name
	Finding Organizations by Classification
	Finding Services and ServiceBindings

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Adding Services and Service Bindings to an Organization
	Saving an Organization
	Removing Data from the Registry

	Using Taxonomies in JAXR Clients
	Defining a Taxonomy
	Specifying Postal Addresses

	Running the Client Examples
	Before You Compile the Examples
	Compiling the Examples
	Running the Examples
	Running the JAXRPublish Example
	Running the JAXRQuery Example
	Running the JAXRQueryByNAICSClassification Example
	Running the JAXRDelete Example
	Running the JAXRQueryByWSDLClassification Example
	Publishing a Classification Scheme
	Running the Postal Address Examples
	Deleting a Classification Scheme
	Getting a List of Your Registry Objects
	Other Targets

	Further Information

	Java Servlet Technology
	What is a Servlet?
	The Example Servlets
	Troubleshooting

	Servlet Life Cycle
	Handling Servlet Life Cycle Events
	Defining The Listener Class
	Specifying Event Listener Classes

	Handling Errors

	Sharing Information
	Using Scope Objects
	Controlling Concurrent Access to Shared Resources
	Accessing Databases

	Initializing a Servlet
	Writing Service Methods
	Getting Information from Requests
	Constructing Responses

	Filtering Requests and Responses
	Programming Filters
	Programming Customized Requests and Responses
	Specifying Filter Mappings

	Invoking Other Web Resources
	Including Other Resources in the Response
	Transferring Control to Another Web Component

	Accessing the Web Context
	Maintaining Client State
	Accessing a Session
	Associating Attributes with a Session
	Notifying Objects That Are Associated with a Session

	Session Management
	Session Tracking

	Finalizing a Servlet
	Tracking Service Requests
	Notifying Methods to Shut Down
	Creating Polite Long-Running Methods

	Further Information

	JavaServer Pages Technology
	What Is a JSP Page?
	The Example JSP Pages
	The Life Cycle of a JSP Page
	Translation and Compilation
	Execution
	Buffering
	Handling Errors

	Initializing and Finalizing a JSP Page
	Creating Static Content
	Creating Dynamic Content
	Using Objects within JSP Pages
	Implicit Objects
	Application-Specific Objects
	Shared Objects

	JSP Scripting Elements
	Declarations
	Scriptlets
	Expressions

	Including Content in a JSP Page
	Transferring Control to Another Web Component
	jsp:param Element

	Including an Applet
	JavaBeans Components in JSP Pages
	JavaBeans Component Design Conventions
	Why Use a JavaBeans Component?
	Creating and Using a JavaBeans Component
	Setting JavaBeans Component Properties
	Retrieving JavaBeans Component Properties

	Extending the JSP Language
	Further Information

	Custom Tags in JSP Pages
	What Is a Custom Tag?
	The Example JSP Pages
	Using Tags
	Declaring Tag Libraries
	Making the Tag Library Implementation Available
	Types of Tags
	Simple Tags
	Tags with Attributes
	Tags with Bodies
	Choosing between Passing Information as Attributes or Body
	Tags That Define Scripting Variables
	Cooperating Tags

	Defining Tags
	Tag Handlers
	Tag Library Descriptors
	listener Element
	tag Element

	Simple Tags
	Tag Handlers
	body-content Element

	Tags with Attributes
	Defining Attributes in a Tag Handler
	Attribute Element
	Attribute Validation

	Tags with Bodies
	Tag Handlers
	body-content Element

	Tags That Define Scripting Variables
	Tag Handlers
	Providing Information about the Scripting Variable

	Cooperating Tags

	Examples
	An Iteration Tag
	JSP Page
	Tag Handler
	Tag Extra Info Class

	A Template Tag Library
	JSP Page
	Tag Handlers

	How Is a Tag Handler Invoked?

	JavaServer Pages Standard Tag Library
	The Example JSP Pages
	Using JSTL
	Expression Language Support
	Twin Libraries
	JSTL Expression Language
	Attributes
	Implicit Objects
	Literals
	Operators

	Tag Collaboration

	Core Tags
	Expression Tags
	Flow Control Tags
	Conditional Tags
	Iterator Tags

	URL Tags

	XML Tags
	Core Tags
	Flow Control Tags
	Transformation Tags

	Internationalization Tags
	Setting the Locale
	Messaging Tags
	bundle Tag
	message Tag

	Formatting Tags

	SQL Tags
	query Tag Result Interface

	Further Information

	Security
	Overview
	Users, Groups, and Roles
	Security Roles
	Managing Roles and Users
	Using the Tomcat Web Server Administration Tool
	Managing Roles
	Managing Users

	Declaring and Linking Role References
	Mapping Application Roles to Realm Roles

	Web-Tier Security
	Protecting Web Resources
	Controlling Access to Web Resources

	Authenticating Users of Web Resources
	Configuring Login Authentication
	Using SSL to Enhance the Confidentiality of HTTP Basic and Form-Based Authentication

	Using Programmatic Security in the Web Tier
	Creating the Login Form

	Unprotected Web Resources

	Installing and Configuring SSL Support
	What is Secure Socket Layer Technology?
	Using JSSE
	Setting Up Digital Certificates
	Creating a Self-Signed Certificate
	Obtaining a Digitally-Signed Certificate
	Creating a Client Certificate for Mutual Authentication
	Using a PKCS12 Certificate in the Tomcat Server
	Miscellaneous Commands for Certificates

	Configuring the SSL Connector
	Adding an SSL Connector in admintool
	Configuring the SSL Connector in server.xml

	Verifying SSL Support
	General Tips on Running SSL
	Troubleshooting SSL Connections
	Further information on SSL

	Security for JAX-RPC
	Step 1: Creating SSL Certificates for Basic Authentication
	Step 2: Configuring the SSL Connector
	Step 3: Adding Security Elements to web.xml
	Step 4: Editing the Build Properties
	Step 5: Setting Security Properties in the Client Code
	Step 6: Create a New Ant Target for Running this Example
	Step 7: Building and Running this Example
	Enabling Mutual Authentication Over SSL
	Configuring Mutual Authentication for the JAX-RPC Security Example

	EIS-Tier Security
	Container-Managed Sign-On
	Component-Managed Sign-On

	The Coffee Break Application
	Coffee Break Overview
	JAX-RPC Distributor Service
	Service Interface
	Service Implementation
	Publishing the Service in the Registry
	Deleting the Service From the Registry

	JAXM Distributor Service
	JAXM Client
	Ordering Coffee

	JAXM Service
	Returning the Price List
	Returning the Order Confirmation

	Coffee Break Server
	JSP Pages
	orderForm
	checkoutForm
	checkoutAck

	JavaBeans Components
	RetailPriceList
	ShoppingCartItem
	OrderConfirmation
	CheckoutFormBean

	RetailPriceListServlet

	Building, Installing, and Running the Application
	Building the Common Classes
	Building and Installing the JAX-RPC Service
	Building and Installing the JAXM Service
	Building and Installing the Coffee Break Server
	Running the Coffee Break Client
	Deploying the Coffee Break Application

	Tomcat Administration Tool
	Running admintool
	Configuring Tomcat
	Setting Server Properties

	Configuring Services
	Configuring Connector Elements
	Types of Connectors
	Connector Attributes

	Configuring Host Elements
	Host Attributes
	Host Name Aliases
	Configuring Context Elements

	Configuring Logger Elements
	Logger Attributes

	Configuring Realm Elements
	JDBCRealm Attributes
	JNDIRealm Attributes
	UserDatabaseRealm Attributes
	MemoryRealm Attributes

	Configuring Valve Elements
	Valve Attributes

	Configuring Resources
	Configuring Data Sources
	Data Source Attributes

	Configuring Environment Entries
	Environment Entries Attributes

	Configuring User Databases
	User Database Attributes

	Administering Roles, Groups, and Users
	Further Information

	Tomcat Web Application Manager
	Running the Web Application Manager
	Running Manager Commands Using Ant Tasks

	The Java WSDP Registry Server
	Starting the Registry Server
	Using JAXR to Access the Registry Server
	Using the Command Line Client Script to Access the Registry Server
	Obtaining Authentication
	Saving a Business
	Finding a Business
	Obtaining Business Details
	Deleting a Business
	Validating UDDI Messages
	Retrieving a User’s Businesses
	Sending UDDI Request Messages
	Adding a New User to the Registry
	Deleting a User from the Registry

	Further Information

	Registry Browser
	Starting the Browser
	Querying a Registry
	Querying by Name
	Querying by Classification

	Managing Registry Data
	Adding an Organization
	Adding Services to an Organization
	Adding Service Bindings to a Service
	Adding and Removing Classifications
	Submitting the Data

	Deleting an Organization
	Stopping the Browser

	Provider Administration Tool
	HTTP Overview
	HTTP Requests
	HTTP Responses

	Java Encoding Schemes
	Further Information

	Glossary
	About the Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index

