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Chapter 7
Simplification of 
Sequential Circuits

Tabular Method for State Reduction
Partitions (OC and SP)
State Reduction Using Partition
Choosing a State Assignment
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If two states are equivalent, we can remove 
one of then and have a system with fewer 
states.
Usually, systems with fewer states are less 
expensive to implement.

Two states of a sequential system are 
equivalent if, starting in either state, any 
one input produces the same output and 
equivalent next states.
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Occasionally, we can tell states are equivalent by 
just inspecting the state table.

10BAE
10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*

10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*

Reduced state table

A state table

(Back to the example)
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A technique using a chart with one square for 
each possible pairing of states.
Enter in that square 

an X if those states cannot be equivalent 
because the outputs are different,

a √ if the states are equivalent (because they 
have the same output and go to the same state or 
to each other for each input), and 

otherwise the conditions that must be met for 
those two states to be equivalent.

Tabular Method for State Reduction
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DCBA
√BDE

BDD
C

CE,BDB

For example (from the previous state table):
In the AB square, in order for states A and B to be equivalent, they 

must have the same output for both x=0 and x=1 (which they do) and must 
go to equivalent states. Thus C must be equivalent to E and B must be 
equivalent to D.

Those squares contain X because states A and B have a 0 output 
for x=1 and states C,D and E have a 1 output.

Finally, the DE square contains √ since both states have the 
same output and the next state for each input.
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DCBA
√BDE

BDD
C

CE,BDB

DCBA
√BDE

BDD
C

CE,BDB

Reduced chart 
with states 
crossed out

10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*
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Example

FEDCBA
AFG

AE,BDAC,BGAE,BG√F
DGDGEF,BDE

D
CEBG,CFC

EF,BGB 11CFG
00BAF
00DEE
11CAD
00GCC
00GEB
00BFA

x=1x=0x=1x=0
zq*q
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Example (CONT.)

FEDCBA
√ AFG

AE,BDAC,BGAE,BG√F
√ DG√ DGEF,BDE

D
√ CEBG,CFC

EF,BGB

11CAD-G
00DBB-C-E
00BAA-F

x=1x=0x=1x=0
zq*q
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Partitions

For a system with 4 states; A, B, C, and D, 
the complete list of partition is:

A partition on the state of a system is a 
grouping of the states of that system into 
one or more blocks. Each state must be in 
one and only one block.

P0 = (A)(B)(C)(D)

P1 = (AB)(C)(D)

P2 = (AC)(B)(D)

P3 = (AD)(B)(C)

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)

P4 = (A)(BC)(D)

P5 = (A)(BD)(C)

P6 = (A)(B)(CD)

P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)
PN = (ABCD)
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State assignments for four states
Any partition with two blocks can be used to assign one 

of the state variables. Those states in the first block 
would be assigned 0 and those in the second block 1 
(or vice versa). 

P7 through P13 meet that requirement.
P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)
P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)
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An adequate state assignment

01D
P9P7

q2q1q

11C
10B
00A

01D
P9P8

q2q1q

10C
11B
00A

11D
P8P7

q2q1q

01C
10B
00A

(a) (b) (c)

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
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An unsuccessful assignment
If we try any other pair of two-block partitions, we do 
not have an adequate state assignment.

01D

P11P8

q2q1q

10C
01B
00A

Identical!

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)

P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)
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Output consistent (OC)
Another useful class of partitions for which all of the 
states in each block have the same output for each of 
the inputs.
P0 (=(A)(B)(C)(D)) is always OC.

Knowing the block of an OC partition and the input is 
enough info to determine the output (without having to 
know which state within a block).

P2 = (AC) (B) (D)

P5 = (A) (BD) (C)

P8 = (AC) (BD) 0ABD
1BAC
0BDB
1ACA

z
x=1x=0

q q*
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Substitution Property (SP) Partition
For SP partitions, knowing the block of the partition 
and the input is enough info to determine the block of 
the next state.

P7 = (AB) (CD)

P9 = (AD) (BC)

0ABD
1BAC
0BDB
1ACA

z
x=1x=0

q q*

•PN (=(ABCD)) is always SP since 
all states are in the same block.

•P0 (=(A)(B)(C)(D)) is always SP 
since knowing the block is the 
same as knowing the state.
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If a partition other than P0 is both SP and OC, 
then the system can be reduced to one 
having just one state for each block of that 
partition.

That should be obvious since knowing the 
input and the block of the partition is all we 
need to know to determine the output, since it 
is OC, and to determine the next state, since 
it is SP).
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Properties of Partitions

Greater than or equal (≥)
Pa ≥ Pb iff all states in the same block of Pb are 
also in the same block of Pa.

P10 = (ABC)(D) ≥ P2 = (AC)(B)(D)
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Properties of Partitions (cont.)
Product
Two states are in the same block of the product
Pc iff they are in the same block of both Pa and 
Pb.

P12P13 ={(ACD)(B)}{(A)(BCD)} = (A)(B)(CD) = P6

P0 = (A)(B)(C)(D) PN = (ABCD)

PaP0 = P0 and PaPN = Pa
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Properties of Partitions (cont.)
Sum
Two states are in the same block of the sum Pd
if they are in the same block of either Pa or Pb
or both.

P2 + P5 = {(AC)(B)(D)} + {(A)(BD)(C)}
= P8 = (AC)(BD)

P0 = (A)(B)(C)(D) PN = (ABCD)

Pa +P0 = Pa and Pa + PN = PN
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Finding SP Partitions
Step 1: สําหรับ state แตละคู หา SP Partition ที่
เล็กที่สุดที่ทําให states คูนั้นอยูในกลุมเดียวกัน

ACD
DBC
DCB
DCA

x=1x=0
q q*

(AB) → √ ⇒ P1 = (AB)(C)(D)
(AC) → (BC), (BC) → ok  ⇒ P2 = (ABC)(D)
(AD) → √ ⇒ P3 = (AD)(B)(C)
(BC) → √ ⇒ P4 = (A)(BC)(D)
(BD) → (AD) → (ABD)      ⇒ P5 = (ABD)(C)
(CD) → (BC), (AD) ⇒ PN

Step 1 produces 5 SP partitions.
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Finding SP Partitions (cont.)
Step 2: หาผลรวมของ SP Partitions ทั้งหมดจาก 
step 1 และทําซ้ํากับ SP Partitions ใหมที่เกิดขึ้นดวย

P1 + P2 = (ABC)(D) ⇒ P2 not needed
P1 + P3 = (ABD)(C) ⇒ P5
P1 + P4 = (ABC)(D) ⇒ P2
P1 + P5 = (ABD)(C) ⇒ P5 not needed
P2 + P3 ⇒ PN not needed
P2 + P4 = (ABC)(D) ⇒ P2 not needed
P2 + P5 = ⇒ PN not needed
P3 + P4 = (ABC)(D) ⇒ P6 = (AD)(BC) only one new SP from step 2
P3 + P5 = (ABD)(C) ⇒ P5 not needed
P4 + P5 = ⇒ PN not needed

Blues are two-block and thus never produce anything new!

Step 2 
here 
really 
only 

requires 
3 sums.
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Example SP-1

ABD
BAC
BDB
ACA

x=1x=0
q q*

(AB) → (CD) ⇒ (AB)(CD) = P1

(AC) → (AB) → (CD)    ⇒ (ABCD) = PN

(AD) → (BC) ⇒ (AD)(BC) = P2

(BC) → (AD) ⇒ (AD)(BC) = P2

(BD) → (AB) ⇒ = PN

(CD) → (AB) ⇒ (AB)(CD) = P1

Only step 1! No need for step 2.
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Example SP-2
(AB)→(CD)(AD)=(ACD)→(BCE) ⇒PN

(AC)→(CE)    ⇒(ACE)(B)(D) = P1

(AD)→(BC)→(DE) ⇒(ADE)(BC) = P2

(AE) → √ ⇒(AE)(B)(C)(D) = P3

(BC)→(ADE)    ⇒P2

(BD) → √ ⇒(A)(BD)(C)(E) = P4

(BE)→(ACD) →(BCE) ⇒PN

(CD)→(BE)(AD) →(BC) ⇒PN

(CE) → √ ⇒(A)(B)(CE)(D) = P5

(DE)→(BC)(AD) →(ADE) ⇒P2

Step 1 produces 5 SP partitions.

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

1
1
0
0
0

z

E
D
C
B
A

q

Step 1:Step 1:
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Example SP-2 (cont.)
From step 1:

P1=(ACE)(B)(D)
P2=(ADE)(BC) → 2-block partition (not needed to produce new SP)
P3=(AE)(B)(C)(D)
P4=(A)(BD)(C)(E)
P5=(A)(B)(CE)(D)

Step 2:Step 2:

P1+ P4= (ACE)(BD) = P6 → 2-block partition (not needed)
P3+ P4= (AE)(BD)(C) = P7
P3+ P5= (ACE)(B)(D) = P1
P4+ P5= (A)(BD)(CE) = P8

Now add pairs of these new partitions:
P7+ P8= (ACE)(BD) = P6

If there were new partitions of more than 2 blocks → repeat!

From this example, there are 8 nontrivial SP partitions, 
of which two are 2-blcok and none are OC.
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State reduction using partitions
Any partition that is both OC and SP can be used to 
reduce the system to one with one state for each 
block of that partition.

Just as there is always a unique largest SP partition (PN), 
there is always a unique largest OC SP partition. That is the 
one with the fewest blocks and thus corresponds to the 
reduced system with the fewest number of states.

(It is possible that PN is OC; but that is a combinational system, where the 
output does not depend on the state.)
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Example OC/SP-1

1A-DBC
0A-DCB
1A-DCA-D

z
x=1x=0

q q*

There are 6 SP partitions in this example:
P1 = (AB)(C)(D)
P2 = (ABC)(D)
P3 = (AD)(B)(C)
P4 = (A)(BC)(D)
P5 = (ABD)(C)
P6 = (ABD)(C)
The only SP partition that is OC is P3.0ACD

1DBC
0DCB
1DCA

z
x=1x=0

q q*

Thus, this state table can be reduced to one 
with 3 states (one for each block of P3).
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Example OC/SP-2

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
1
0
1
0

z

E
D
C
B
A

q

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
0
0
1
0

z

E
D
C
B
A

q

(a) (b)

The set of SP partitions for these two state tables:
P1 = (ACE)(B)(D) P2 = (ADE)(BC)
P3 = (AE)(B)(C)(D) P4 = (A)(BD)(C)(E)
P5 = (A)(B)(CE)(D)  P6 = (ACE)(BD)
P7 = (AE)(BD)(C) P8 = (A)(BD)(CE)
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Example OC/SP-2 (cont.)

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
0
0
1
0

z

E
D
C
B
A

q In (a), P1, P3 and P5 are the only OC 
partitions. Since

P1 = (ACE)(B)(D)
P3 = (AE)(B)(C)(D) 

P5 = (A)(B)(CE)(D) ≤

≤

B
D

A-C-E
x=0

q*

A-C-E
A-C-E

D
x=1

0
1
0

z

D
B

A-C-E

q
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Example OC/SP-2 (cont.)

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
1
0
1
0

z

E
D
C
B
A

q In (b), P1, P3,P4, P5, P6 and P8 are the 
only OC partitions. Since

P6
(ACE)(BD)

P3
(AE)(B)(C)(D) 

P5
(A)(B)(CE)(D)

≤
≤

B
A

x=0
q*

A
B

x=1

1
0

z

B
A

q

P4
(A)(BD)(C)(E)

P1
(ACE)(B)(D)

P8
(A)(BD)(CE)≤

≤
≤

≤
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Choosing a state assignment

2    states ⇒ P0
3-4 states ⇒ 3     state assignments
5    states ⇒ 140 state assignments
6    states ⇒ 420 state assignments
7-8 states ⇒ 840 state assignments
...

178 220 Digital Logic Design @Department of Computer Engineering KKU.
30

Example

1CBD
0DAC
1DAB
0CBA

Z
x=1x=0

q q*

SP Partitions:  P1 = (AB)(CD) ⇒ can be used
P2 = (AD)(B)(C)
P3 = (A)(BC)(D)
P2+P3= P4 = (AD)(BC) ⇒ can be used

OC: (AC)(BD)
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Example (cont.)

01D

q2q1q

11C
10B
00A

11D

q2q1q

01C
10B
00A

01D

q2q1q

10C
11B
00A

q1 ⇐ P1 (AB)(CD)
q2 ⇐ P4 (AD)(BC)

z    = q1’q2+q1q2’
D1 = x
D2 = q2’

q1 ⇐ P1 (AB)(CD)
q2 ⇐ OC (AC)(BD)

z    = q2’
D1 = x
D2 = x’q1’q2’ + x’q1q2
+ xq1’q2 + xq1q2’

q1 ⇐ OC (AC)(BD)
q2 ⇐ P4 (AD)(BC)

z    = q1
D1 = x’q2’ + xq2
D2 = q2’
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Conclusions

The choice of state assignment is more an art 
than a science.

Use two-block SP partitions when possible
When run out of those, OC partition
And the grouping suggested by other SP 
partitions (if there are any).


