
1

178 220 Digital Logic Design @Department of Computer Engineering KKU.
1

Chapter 7
Simplification of
Sequential Circuits

Tabular Method for State Reduction
Partitions (OC and SP)
State Reduction Using Partition
Choosing a State Assignment

178 220 Digital Logic Design @Department of Computer Engineering KKU.
2

If two states are equivalent, we can remove
one of then and have a system with fewer
states.
Usually, systems with fewer states are less
expensive to implement.

Two states of a sequential system are
equivalent if, starting in either state, any
one input produces the same output and
equivalent next states.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
3

Occasionally, we can tell states are equivalent by
just inspecting the state table.

10BAE
10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*

10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*

Reduced state table

A state table

(Back to the example)

2

178 220 Digital Logic Design @Department of Computer Engineering KKU.
4

A technique using a chart with one square for
each possible pairing of states.
Enter in that square

an X if those states cannot be equivalent
because the outputs are different,

a √ if the states are equivalent (because they
have the same output and go to the same state or
to each other for each input), and

otherwise the conditions that must be met for
those two states to be equivalent.

Tabular Method for State Reduction

178 220 Digital Logic Design @Department of Computer Engineering KKU.
5

DCBA
√BDE

BDD
C

CE,BDB

For example (from the previous state table):
In the AB square, in order for states A and B to be equivalent, they

must have the same output for both x=0 and x=1 (which they do) and must
go to equivalent states. Thus C must be equivalent to E and B must be
equivalent to D.

Those squares contain X because states A and B have a 0 output
for x=1 and states C,D and E have a 1 output.

Finally, the DE square contains √ since both states have the
same output and the next state for each input.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
6

DCBA
√BDE

BDD
C

CE,BDB

DCBA
√BDE

BDD
C

CE,BDB

Reduced chart
with states
crossed out

10BAD
10DAC
00DEB
00BCA

x=1x=0x=1x=0
q zq*

3

178 220 Digital Logic Design @Department of Computer Engineering KKU.
7

Example

FEDCBA
AFG

AE,BDAC,BGAE,BG√F
DGDGEF,BDE

D
CEBG,CFC

EF,BGB 11CFG
00BAF
00DEE
11CAD
00GCC
00GEB
00BFA

x=1x=0x=1x=0
zq*q

178 220 Digital Logic Design @Department of Computer Engineering KKU.
8

Example (CONT.)

FEDCBA
√ AFG

AE,BDAC,BGAE,BG√F
√ DG√ DGEF,BDE

D
√ CEBG,CFC

EF,BGB

11CAD-G
00DBB-C-E
00BAA-F

x=1x=0x=1x=0
zq*q

178 220 Digital Logic Design @Department of Computer Engineering KKU.
9

Partitions

For a system with 4 states; A, B, C, and D,
the complete list of partition is:

A partition on the state of a system is a
grouping of the states of that system into
one or more blocks. Each state must be in
one and only one block.

P0 = (A)(B)(C)(D)

P1 = (AB)(C)(D)

P2 = (AC)(B)(D)

P3 = (AD)(B)(C)

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)

P4 = (A)(BC)(D)

P5 = (A)(BD)(C)

P6 = (A)(B)(CD)

P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)
PN = (ABCD)

4

178 220 Digital Logic Design @Department of Computer Engineering KKU.
10

State assignments for four states
Any partition with two blocks can be used to assign one

of the state variables. Those states in the first block
would be assigned 0 and those in the second block 1
(or vice versa).

P7 through P13 meet that requirement.
P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)
P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)

178 220 Digital Logic Design @Department of Computer Engineering KKU.
11

An adequate state assignment

01D
P9P7

q2q1q

11C
10B
00A

01D
P9P8

q2q1q

10C
11B
00A

11D
P8P7

q2q1q

01C
10B
00A

(a) (b) (c)

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)

178 220 Digital Logic Design @Department of Computer Engineering KKU.
12

An unsuccessful assignment
If we try any other pair of two-block partitions, we do
not have an adequate state assignment.

01D

P11P8

q2q1q

10C
01B
00A

Identical!

P7 = (AB)(CD)
P8 = (AC)(BD)
P9 = (AD)(BC)
P10 = (ABC)(D)

P11 = (ABD)(C)
P12 = (ACD)(B)
P13 = (A)(BCD)

5

178 220 Digital Logic Design @Department of Computer Engineering KKU.
13

Output consistent (OC)
Another useful class of partitions for which all of the
states in each block have the same output for each of
the inputs.
P0 (=(A)(B)(C)(D)) is always OC.

Knowing the block of an OC partition and the input is
enough info to determine the output (without having to
know which state within a block).

P2 = (AC) (B) (D)

P5 = (A) (BD) (C)

P8 = (AC) (BD) 0ABD
1BAC
0BDB
1ACA

z
x=1x=0

q q*

178 220 Digital Logic Design @Department of Computer Engineering KKU.
14

Substitution Property (SP) Partition
For SP partitions, knowing the block of the partition
and the input is enough info to determine the block of
the next state.

P7 = (AB) (CD)

P9 = (AD) (BC)

0ABD
1BAC
0BDB
1ACA

z
x=1x=0

q q*

•PN (=(ABCD)) is always SP since
all states are in the same block.

•P0 (=(A)(B)(C)(D)) is always SP
since knowing the block is the
same as knowing the state.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
15

If a partition other than P0 is both SP and OC,
then the system can be reduced to one
having just one state for each block of that
partition.

That should be obvious since knowing the
input and the block of the partition is all we
need to know to determine the output, since it
is OC, and to determine the next state, since
it is SP).

6

178 220 Digital Logic Design @Department of Computer Engineering KKU.
16

Properties of Partitions

Greater than or equal (≥)
Pa ≥ Pb iff all states in the same block of Pb are
also in the same block of Pa.

P10 = (ABC)(D) ≥ P2 = (AC)(B)(D)

178 220 Digital Logic Design @Department of Computer Engineering KKU.
17

Properties of Partitions (cont.)
Product
Two states are in the same block of the product
Pc iff they are in the same block of both Pa and
Pb.

P12P13 ={(ACD)(B)}{(A)(BCD)} = (A)(B)(CD) = P6

P0 = (A)(B)(C)(D) PN = (ABCD)

PaP0 = P0 and PaPN = Pa

178 220 Digital Logic Design @Department of Computer Engineering KKU.
18

Properties of Partitions (cont.)
Sum
Two states are in the same block of the sum Pd
if they are in the same block of either Pa or Pb
or both.

P2 + P5 = {(AC)(B)(D)} + {(A)(BD)(C)}
= P8 = (AC)(BD)

P0 = (A)(B)(C)(D) PN = (ABCD)

Pa +P0 = Pa and Pa + PN = PN

7

178 220 Digital Logic Design @Department of Computer Engineering KKU.
19

Finding SP Partitions
Step 1: สําหรับ state แตละคู หา SP Partition ที่
เล็กที่สุดที่ทําให states คูนั้นอยูในกลุมเดียวกัน

ACD
DBC
DCB
DCA

x=1x=0
q q*

(AB) → √ ⇒ P1 = (AB)(C)(D)
(AC) → (BC), (BC) → ok ⇒ P2 = (ABC)(D)
(AD) → √ ⇒ P3 = (AD)(B)(C)
(BC) → √ ⇒ P4 = (A)(BC)(D)
(BD) → (AD) → (ABD) ⇒ P5 = (ABD)(C)
(CD) → (BC), (AD) ⇒ PN

Step 1 produces 5 SP partitions.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
20

Finding SP Partitions (cont.)
Step 2: หาผลรวมของ SP Partitions ทั้งหมดจาก
step 1 และทําซ้ํากับ SP Partitions ใหมที่เกิดขึ้นดวย

P1 + P2 = (ABC)(D) ⇒ P2 not needed
P1 + P3 = (ABD)(C) ⇒ P5
P1 + P4 = (ABC)(D) ⇒ P2
P1 + P5 = (ABD)(C) ⇒ P5 not needed
P2 + P3 ⇒ PN not needed
P2 + P4 = (ABC)(D) ⇒ P2 not needed
P2 + P5 = ⇒ PN not needed
P3 + P4 = (ABC)(D) ⇒ P6 = (AD)(BC) only one new SP from step 2
P3 + P5 = (ABD)(C) ⇒ P5 not needed
P4 + P5 = ⇒ PN not needed

Blues are two-block and thus never produce anything new!

Step 2
here
really
only

requires
3 sums.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
21

Example SP-1

ABD
BAC
BDB
ACA

x=1x=0
q q*

(AB) → (CD) ⇒ (AB)(CD) = P1

(AC) → (AB) → (CD) ⇒ (ABCD) = PN

(AD) → (BC) ⇒ (AD)(BC) = P2

(BC) → (AD) ⇒ (AD)(BC) = P2

(BD) → (AB) ⇒ = PN

(CD) → (AB) ⇒ (AB)(CD) = P1

Only step 1! No need for step 2.

8

178 220 Digital Logic Design @Department of Computer Engineering KKU.
22

Example SP-2
(AB)→(CD)(AD)=(ACD)→(BCE) ⇒PN

(AC)→(CE) ⇒(ACE)(B)(D) = P1

(AD)→(BC)→(DE) ⇒(ADE)(BC) = P2

(AE) → √ ⇒(AE)(B)(C)(D) = P3

(BC)→(ADE) ⇒P2

(BD) → √ ⇒(A)(BD)(C)(E) = P4

(BE)→(ACD) →(BCE) ⇒PN

(CD)→(BE)(AD) →(BC) ⇒PN

(CE) → √ ⇒(A)(B)(CE)(D) = P5

(DE)→(BC)(AD) →(ADE) ⇒P2

Step 1 produces 5 SP partitions.

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

1
1
0
0
0

z

E
D
C
B
A

q

Step 1:Step 1:

178 220 Digital Logic Design @Department of Computer Engineering KKU.
23

Example SP-2 (cont.)
From step 1:

P1=(ACE)(B)(D)
P2=(ADE)(BC) → 2-block partition (not needed to produce new SP)
P3=(AE)(B)(C)(D)
P4=(A)(BD)(C)(E)
P5=(A)(B)(CE)(D)

Step 2:Step 2:

P1+ P4= (ACE)(BD) = P6 → 2-block partition (not needed)
P3+ P4= (AE)(BD)(C) = P7
P3+ P5= (ACE)(B)(D) = P1
P4+ P5= (A)(BD)(CE) = P8

Now add pairs of these new partitions:
P7+ P8= (ACE)(BD) = P6

If there were new partitions of more than 2 blocks → repeat!

From this example, there are 8 nontrivial SP partitions,
of which two are 2-blcok and none are OC.

178 220 Digital Logic Design @Department of Computer Engineering KKU.
24

State reduction using partitions
Any partition that is both OC and SP can be used to
reduce the system to one with one state for each
block of that partition.

Just as there is always a unique largest SP partition (PN),
there is always a unique largest OC SP partition. That is the
one with the fewest blocks and thus corresponds to the
reduced system with the fewest number of states.

(It is possible that PN is OC; but that is a combinational system, where the
output does not depend on the state.)

9

178 220 Digital Logic Design @Department of Computer Engineering KKU.
25

Example OC/SP-1

1A-DBC
0A-DCB
1A-DCA-D

z
x=1x=0

q q*

There are 6 SP partitions in this example:
P1 = (AB)(C)(D)
P2 = (ABC)(D)
P3 = (AD)(B)(C)
P4 = (A)(BC)(D)
P5 = (ABD)(C)
P6 = (ABD)(C)
The only SP partition that is OC is P3.0ACD

1DBC
0DCB
1DCA

z
x=1x=0

q q*

Thus, this state table can be reduced to one
with 3 states (one for each block of P3).

178 220 Digital Logic Design @Department of Computer Engineering KKU.
26

Example OC/SP-2

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
1
0
1
0

z

E
D
C
B
A

q

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
0
0
1
0

z

E
D
C
B
A

q

(a) (b)

The set of SP partitions for these two state tables:
P1 = (ACE)(B)(D) P2 = (ADE)(BC)
P3 = (AE)(B)(C)(D) P4 = (A)(BD)(C)(E)
P5 = (A)(B)(CE)(D) P6 = (ACE)(BD)
P7 = (AE)(BD)(C) P8 = (A)(BD)(CE)

178 220 Digital Logic Design @Department of Computer Engineering KKU.
27

Example OC/SP-2 (cont.)

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
0
0
1
0

z

E
D
C
B
A

q In (a), P1, P3 and P5 are the only OC
partitions. Since

P1 = (ACE)(B)(D)
P3 = (AE)(B)(C)(D)

P5 = (A)(B)(CE)(D) ≤

≤

B
D

A-C-E
x=0

q*

A-C-E
A-C-E

D
x=1

0
1
0

z

D
B

A-C-E

q

10

178 220 Digital Logic Design @Department of Computer Engineering KKU.
28

Example OC/SP-2 (cont.)

C
B
E
D
C

x=0
q*

D
A
D
A
D

x=1

0
1
0
1
0

z

E
D
C
B
A

q In (b), P1, P3,P4, P5, P6 and P8 are the
only OC partitions. Since

P6
(ACE)(BD)

P3
(AE)(B)(C)(D)

P5
(A)(B)(CE)(D)

≤
≤

B
A

x=0
q*

A
B

x=1

1
0

z

B
A

q

P4
(A)(BD)(C)(E)

P1
(ACE)(B)(D)

P8
(A)(BD)(CE)≤

≤
≤

≤

178 220 Digital Logic Design @Department of Computer Engineering KKU.
29

Choosing a state assignment

2 states ⇒ P0
3-4 states ⇒ 3 state assignments
5 states ⇒ 140 state assignments
6 states ⇒ 420 state assignments
7-8 states ⇒ 840 state assignments
...

178 220 Digital Logic Design @Department of Computer Engineering KKU.
30

Example

1CBD
0DAC
1DAB
0CBA

Z
x=1x=0

q q*

SP Partitions: P1 = (AB)(CD) ⇒ can be used
P2 = (AD)(B)(C)
P3 = (A)(BC)(D)
P2+P3= P4 = (AD)(BC) ⇒ can be used

OC: (AC)(BD)

11

178 220 Digital Logic Design @Department of Computer Engineering KKU.
31

Example (cont.)

01D

q2q1q

11C
10B
00A

11D

q2q1q

01C
10B
00A

01D

q2q1q

10C
11B
00A

q1 ⇐ P1 (AB)(CD)
q2 ⇐ P4 (AD)(BC)

z = q1’q2+q1q2’
D1 = x
D2 = q2’

q1 ⇐ P1 (AB)(CD)
q2 ⇐ OC (AC)(BD)

z = q2’
D1 = x
D2 = x’q1’q2’ + x’q1q2
+ xq1’q2 + xq1q2’

q1 ⇐ OC (AC)(BD)
q2 ⇐ P4 (AD)(BC)

z = q1
D1 = x’q2’ + xq2
D2 = q2’

178 220 Digital Logic Design @Department of Computer Engineering KKU.
32

Conclusions

The choice of state assignment is more an art
than a science.

Use two-block SP partitions when possible
When run out of those, OC partition
And the grouping suggested by other SP
partitions (if there are any).

