
1

1

Chapter 6
Solving Larger
Sequential Systems

Shift Registers
Counters
Programmable Logic Devices (PLD)
Hardware Design Languages

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 2

Shift Register
data is often stored in registers, rather than
individual flip-flops.
A register is just a collection of flip-flops,
often with a common name (using subscripts
to indicate the individual flip-flops) and
usually with a common clock.
A shift register is a set of flip-flops, such that
the data moves one place to the right on
each clock or shift input.

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 3

A simple shift register
and its timing trace

0
0
0
0
1

0
0
0
1
0

0
0
1
0
1

0
1
0
1
1

1
0
1
1
1

0
1
1
1
0

1
1
1
0
1

1
1
0
1
1

1
0
1
1
1

0
1
1
1
1

1
1
1
1
0

1
1
1
0
0

1
1
0
0
0

1
0
0
0

0
0
0

0
0

Q1

Q2

Q3

0Q4

x

S

R

q1

q2

S

R

q1

q2

S

R

q1

q2

S

R

q1

q2

x

Clock

2

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 4

Shift Register (cont.)

Serial-in / Parallel-in Shift Registers

Serial-out / Parallel-out Shift Registers

Right / Left Shift Registers

Leading-edge / Trailing-edge Shift Registers

Enable, Clear, Load pins

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 5

74164
Serial-in parallel-out shift register

Q

QSET

CLR

D

q1

Q

QSET

CLR

D

Q

QSET

CLR

D

q3

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

q6

Q

QSET

CLR

D

Q

QSET

CLR

D

q2 q4 q7q5 q8

Clock

Clear’

A

B

Parallel-out

Serial-in

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 6

Parallel-in Shift Register

loading is done
statically

loading is done
synchronously

Q

QSET

CLR

S

R

Clock

Enable’

Load’

IN2

q1

q1'

q2

q2'

(a) 74165

Q

QSET

CLR

S

R

Clock
Enable’

Load’

IN2

q1

q2

q2'

(b) 74166

Clear’

3

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 7

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 8

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 9

8-bit counter from two 74161 counters
can count to 255 (28 - 1)

12-bit counter from three 74161 counters
can count to 4095 (212 - 1)

4

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 10

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 11

Programmable Logic Devices
(PLD)

Since sequential system is a combination of
memory and combinational logic, it can be
implemented using any of the programmable
logic devices of Chapter 4 (for the combinational
logic) and some flip-flops (for the memory).
There are a variety of devices commercially
available that combine primarily a PAL and
some D flip-flops. There are also some very
complex programmable devices available.

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 12

5

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 13

Design using ASM diagrams

ASM (algorithmic state machine) is the same
as sequential system.

A tool is cross between a state diagram and a
flow chart is the ASM diagram.

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 14

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 15

6

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 16

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 17

Hardware Design Languages (HDLs)

module full_adder (c_out, s, a, b, c);
input a, b, c;
wire a, b, c;
output c_out, s;
wire c_out, s;
wire w1, w2, w3;
xor x1 (w1, a, b);
xor x2 (s, w1, c);
nand n1 (w2, a, b);
nand n2 (w3, w1, c);
nand n3 (c_out, w3, w2);

endmodule

Verilog structural
description of a full adder

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 18

module full_adder (c_out, s, a, b c);
input a, b, c;
wire a, b, c;
output c_out, s;
reg c_out, s;
always

begin
s = a^b^c;
c_out = (a&b) | (a&c_in) | (b&c_in);

end
endmodule

Behavioural Verilog
for the full adder

module full_adder (c_out, s, a, b c);
input a, b, c;
wire a, b, c;
output c_out, s;
reg c_out, s;
always

begin
s = a^b^c;
{c_out, s} = a + b + c;

end
endmodule

(a) With logic equations

(b) With algebraic equations

