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Chapter  4
Solving Larger Problems

Delay in Combinational Logic Circuits
Adders and Subtractors
Decoders and Encoders
Multiplexers
Tri-state gates
Comparators
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Delay in Combinational Logic 
Circuits
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Half Adder
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Half Subtractor

0
1
1
0
D

0
0
1
0
C

11
01
10
00
BA

Difference   = A ⊕ B

Borrower     = A⋅B
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Full Adder
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Ai, Bi, Si, and Ci are the iith order bits of the numbers A, B, 
Sum and Carry respectively and Ci-1 is the carry generated 
from the addition of the (i(i--1)1)th order bits.
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Full Adder (cont.)

Si = Ai ⊕ Bi ⊕ Ci-1

Ci = Ai⋅Bi + Ci-1⋅(Ai ⊕ Bi)
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Full Subtractor
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Ai, Bi, Di, and Ci are the iith order bits of the numbers 
A(Minuend), B(Subtrahend), Difference and Borrow
respectively and Ci-1 is the borrow from the previous stage.
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Full Subtractor (cont.)

Di = Ai ⊕ Bi ⊕ Ci-1

Ci = Ai⋅Bi + (Ai ⊕ Bi)⋅Ci-1
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Ripple-carry Adders
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Delay through 1-bit Adder
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Carry-look-ahead Adders
It is possible to reduce the delay of the carry chain in 

the ripple-carry adder by using the carry-look-ahead 
technique.

If we define carry-generate function Gi = XiYi

and carry propagate function Pi = Xi ⊕ Yi.
The 4 carries Ci+1,..., Ci+4 can be expressed as:

Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1Ci+1

Ci+3 = Gi+2 + Pi+2Ci+2

Ci+4 = Gi+3 + Pi+3Ci+3
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Carry-look-ahead Adders (cont.)

After forward substitution:
Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1(Gi + PiCi)
Ci+3 = Gi+2 + Pi+2(Gi+1 + Pi+1(Gi + PiCi))
Ci+4 = Gi+3 + Pi+3(Gi+2 + Pi+2(Gi+1 + Pi+1(Gi + PiCi)))

These 4 equations show that those 4 carries can be 
computed directly from input bits and input carry Ci
without the ripple effect.
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Decoder
= A device, when activated, selects one of 
several output lines, based on a coded input 
signal. a b
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A two-input decoder
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An active low decoder

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 15

0000XX1

0
0
0
0

EN

0
0
0
1

0

0
1
0
0

2

0
0
1
0

1

111
001
010
000

3ba

0
1
2
3

a

b

EN

Decoder with enable
a b

0

1
2

3

EN



6

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 16

Encoder
= The inverse of a decoder.
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A priority encoder

NR = A′0 A′1 A′2 A′3 A′4 A′5 A′6 A′7
Z0 = A4 + A5 + A6 + A7

Z1 = A6 + A7 + (A2 + A3) A′4 A′5 

Z2 = A7 + A5 A′6 + A3 A′4A′6  + A1 A′2A′4A′6

000000000001
01000000001X
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1XXX00000000

NRZ2Z1Z0A7A6A5A4A3A2A1A0
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MUX (multiplexer)
A logic circuit that selects an output from many 
inputs
“Data selector”
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… output

DEMUX (demultiplexer)
A logic circuit that channels an input into one of 
many outputs
“Data distributor”
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…input
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2-to-1 selector
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4-to-1 selector
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b) Truth tablec) Boolean expression

d) Logic diagram
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Comparator

X = Y ⇒ equal to
X > Y ⇒ greater than
X < Y ⇒ less than

Complement operations
X ≠ Y ⇒ not equal to
X ≤ Y ⇒ less than or equal to
X ≥ Y ⇒ greater than or equal to
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8-to-1 selector
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a) Implementation with 2-to-1 selectors
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8-to-1 selector (cont.)
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Gate Arrays –
ROMs, PLAs and PALs

Structure of gate array



9

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 25

f = a’b’ + abc
g = a’b’c’ + ab + bc
h = a’b’ + c

a b c

f g h

a b c

b c

a b

c

a b

a b c
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a b c
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An alternative way to present a gate array
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Three common types of 
combinational logic arrays

PLAs (Programmable Logic Arrays)
Most general type

ROMs (Read-Only Memories)
AND array is fixed
Just a decoder consisting of 2n AND gates
User specifies the connections to the OR gate

PALs (Programmable Array Logic)
The connections to the OR gates are specified
User can determine the AND gate inputs
Each product term can be used only for one of the 
sums
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Designing with 
ROMs

W(A, B, C, D) 
= Σm(3,7,8,9,11,15)
X(A, B, C, D)  
= Σm(3,4,5,7,10,14,15)
Y(A, B, C, D)  
= Σm(1,5,7,11,15)
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Possible solutions:

W = AB′C′ + CD
= AB′C′ + A’CD + ACD

X = A′BC′ + A′CD + ACD′ + {BCD or ABC}

Y = A′C′D′ + ACD + {A′BD or BCD}
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Designing 
with PLAs

W = AB′C′+ A′CD + ACD

X = A′BC′ + ACD′ + A′CD + BCD

Y = A′C′D + ACD + BCD
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Designing 
with PALs
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