Chapter 4 Solving Larger Problems

- Delay in Combinational Logic Circuits
- Adders and Subtractors
- Decoders and Encoders
- Multiplexers
- Tri-state gates
- Comparators

178 220 Digital Logic Design @ Department of Computer Engineering KKU.

Carry-look-ahead Adders It is possible to reduce the delay of the carry chain in the ripple-carry adder by using the carry-look-ahead technique. If we define carry-generate function $G_i = X_i Y_i$ and carry propagate function $P_i = X_i \oplus Y_i$. The 4 carries $C_{i+1}, ..., C_{i+4}$ can be expressed as: $C_{i+1} = G_i + P_i C_i$ $C_{i+2} = G_{i+1} + P_{i+1} C_{i+1}$ $C_{i+3} = G_{i+2} + P_{i+2} C_{i+2}$ $C_{i+4} = G_{i+3} + P_{i+3} C_{i+3}$ 178 220 Dgital Logic Design @ Department of Computer Engineering KKU.

-	End	coo	der	,		Δ.	Δ.	Δ.	Α.	7.	7.			
+ P =	= The	inv	erse	of a	decode	<u>, 1</u>	0	0	0	0	0			
15						0	1	0	0	0	1			
-						0	0	1	0	1	0			
						0	0	0	1	1	1			
1 11														
	$\mathbf{Z}_0 = \mathbf{A}_2 + \mathbf{A}_3$								$\mathbf{Z}_1 = \mathbf{A}_1 + \mathbf{A}_3$					
	A	<u>,</u>	A	N 0			A	,)	A	0				
A ₂ '	х	0	х	0	A ₃ '	A_',	х	1	х	0	A ₃ '			
	1	х	х	х	A ₃		1	х	х	х	A ₃			
A ₂	X	х	Х	х		A_2	х	х	х	х				
	1	х	х	х	A ₃ '	[0	х	х	х	A ₃ '			
y M	A ₁ '	م 178 220	bigital L	A , ogic Des	lign @ Departm	ent of C	A,' ompluter	A Enginee	ng KKL	A ₁ '	16			

Three common types of combinational logic arrays

- PLAs (Programmable Logic Arrays)
- Most general type
- ROMs (Read-Only Memories)
- AND array is fixed
- Just a decoder consisting of 2ⁿ AND gates
- User specifies the connections to the OR gate
- PALs (Programmable Array Logic)
 - The connections to the OR gates are specified
 - User can determine the AND gate inputs
 - Each product term can be used only for one of the sums

178 220 Digital Logic Design @ Department of Computer Engineering KKU.

27

A A A A			Designing with ROMs
fixed		+	
	/ ╋┃*		
1	╎╂╂	┝┝╾	programmable
	┼╪┿		
	+		W(A, B, C, D)
	╈┼┼╸	+++	$= \Sigma m(3,7,8,9,11,15)$
0			X(A, B, C, D)
17	∖╁╎╁╴		$= \Sigma m(3,4,5,7,10,14,15)$
NY.	╈┼┿	++/	Y(A, B, C, D)
1000	11		$= \Delta I I I (1, 0, 1, 11, 10)$

