
1

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 1

Chapter 4
Solving Larger Problems

Delay in Combinational Logic Circuits
Adders and Subtractors
Decoders and Encoders
Multiplexers
Tri-state gates
Comparators

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 2

Delay in Combinational Logic
Circuits

1 2 3 4 5

A
B

X

C
F

A
B X

C
F

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 3

Half Adder

0
1
1
0
S

1
0
0
0
C

11
01
10
00
BA

Sum = A ⊕ B

Carry = A⋅B

1 1 →→ Carry (C)Carry (C)
3 +
7
0 → Sum (S)

A
B

2

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 4

Half Subtractor

0
1
1
0
D

0
0
1
0
C

11
01
10
00
BA

Difference = A ⊕ B

Borrower = A⋅B

A
B

2 13 13 →→ Borrower (C)Borrower (C)
3 3 −

7
2 6 → Difference (D)

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 5

Full Adder

10110
01010
01100
00000

1
1
0
0

Bi

1
0
0
1

Si

1
1
1
0

Ci

11
01
11
01

Ci-1Ai

CCii--11 ←← 1 1
5 5 3 +
2 7

Si ← 8 0

Ai, Bi, Si, and Ci are the iith order bits of the numbers A, B,
Sum and Carry respectively and Ci-1 is the carry generated
from the addition of the (i(i--1)1)th order bits.

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 6

Full Adder (cont.)

Si = Ai ⊕ Bi ⊕ Ci-1

Ci = Ai⋅Bi + Ci-1⋅(Ai ⊕ Bi)

Half

Adder

Half

Adder

Ai

Bi

Ci-1

A

A

B

B

S

S

C

C

Ci

Si

3

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 7

Full Subtractor

10110
11010
11100
00000

1
1
0
0

Bi

1
0
0
1

Di

1
0
0
0

Ci

11
01
11
01

Ci-1Ai

Ai, Bi, Di, and Ci are the iith order bits of the numbers
A(Minuend), B(Subtrahend), Difference and Borrow
respectively and Ci-1 is the borrow from the previous stage.

2 1313
3 3 −
1 7

Di ← 1 6

CCii--11

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 8

Full Subtractor (cont.)

Di = Ai ⊕ Bi ⊕ Ci-1

Ci = Ai⋅Bi + (Ai ⊕ Bi)⋅Ci-1

Half

Subtractor

Half

Subtractor

Ai

Bi

Ci-1

A

A

B

B

D

D

C

C

Ci

Di

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 9

Ripple-carry Adders

Full

Adder

Full

Adder

Full

Adder

Full

Adder

A1B1

Cin

A2B2

A3B3

A4B4

S1

S2

S3

S4

C1

C2

C3

Cout

Cout C3 C2 C1 Cin

A4 A3 A2 A1
+

B4 B3 B2 B1

S4 S3 S2 S1

4

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 10

Delay through 1-bit Adder

A

B S

Cin

Cout

∇ ∇
∇

∇ ∇ ∇

∇

1 2
3

4 5 6

5

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 11

Carry-look-ahead Adders
It is possible to reduce the delay of the carry chain in

the ripple-carry adder by using the carry-look-ahead
technique.

If we define carry-generate function Gi = XiYi

and carry propagate function Pi = Xi ⊕ Yi.
The 4 carries Ci+1,..., Ci+4 can be expressed as:

Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1Ci+1

Ci+3 = Gi+2 + Pi+2Ci+2

Ci+4 = Gi+3 + Pi+3Ci+3

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 12

Carry-look-ahead Adders (cont.)

After forward substitution:
Ci+1 = Gi + PiCi

Ci+2 = Gi+1 + Pi+1(Gi + PiCi)
Ci+3 = Gi+2 + Pi+2(Gi+1 + Pi+1(Gi + PiCi))
Ci+4 = Gi+3 + Pi+3(Gi+2 + Pi+2(Gi+1 + Pi+1(Gi + PiCi)))

These 4 equations show that those 4 carries can be
computed directly from input bits and input carry Ci
without the ripple effect.

5

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 13

0
0
0
1
0

0
1
0
0
2

0
0
1
0
1

111
001
010
000
3ba

Decoder
= A device, when activated, selects one of
several output lines, based on a coded input
signal. a b

0

1
2

3

A two-input decoder

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 14

1
1
1
0
0

1
0
1
1
2

1
1
0
1
1

011
101
110
100
3ba

a b

0

1
2

3

An active low decoder

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 15

0000XX1

0
0
0
0

EN

0
0
0
1

0

0
1
0
0

2

0
0
1
0

1

111
001
010
000

3ba

0
1
2
3

a

b

EN

Decoder with enable
a b

0

1
2

3

EN

6

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 16

Encoder
= The inverse of a decoder.

0
1
0
0
A2

1
1
0
0
Z0

1
0
0
0
A3

100
000
110
001
Z1A1A0

x
x
x
x

A0

A1

A3xx1
xxx

A3’xx1
A2

A1’

0 0

A1’

A3’xA2’
A0’

x
x
x
x

A0

A1

A3xx1
xxx

A3’xx0
A2

A1’

1 0

A1’

A3’xA2’
A0’

ZZ11 = A= A11 + A+ A33ZZ00 = A= A22 + A+ A33

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 17

A priority encoder

NR = A′0 A′1 A′2 A′3 A′4 A′5 A′6 A′7
Z0 = A4 + A5 + A6 + A7

Z1 = A6 + A7 + (A2 + A3) A′4 A′5

Z2 = A7 + A5 A′6 + A3 A′4A′6 + A1 A′2A′4A′6

000000000001
01000000001X
0010000001XX
011000001XXX
00010001XXXX
0101001XXXXX
001101XXXXXX
01111XXXXXXX
1XXX00000000

NRZ2Z1Z0A7A6A5A4A3A2A1A0

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 18

MUX (multiplexer)
A logic circuit that selects an output from many
inputs
“Data selector”

A0
A1
A2

An

… output

DEMUX (demultiplexer)
A logic circuit that channels an input into one of
many outputs
“Data distributor”

D0
D1
D2

Dn

…input

7

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 19

2-to-1 selector

selector

Y

D0 D1

S

a) Graphical symbol b) Truth table

c) Boolean expression d) Logic diagram

D11
D00
YS

Y=S’D0 + SD1
S

Y

D0

D1

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 20

4-to-1 selector

selector

Y

D0 D2

S0 a) Graphical symbol

b) Truth tablec) Boolean expression

d) Logic diagram

D110
D201

1

0
S0

D31

D00
YS1

Y = S0’S1’D0 + S0’S1D1 + S0S1’D2 + S0S1D3

Y

D0

D1 D3

S1

S0S1
D1

D2

D3

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 21

Comparator

X = Y ⇒ equal to
X > Y ⇒ greater than
X < Y ⇒ less than

Complement operations
X ≠ Y ⇒ not equal to
X ≤ Y ⇒ less than or equal to
X ≥ Y ⇒ greater than or equal to

0
1
0
0
G

110
001

1

0
X

01

00
LY

8

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 22

8-to-1 selector

D3110
D2010
D1100
D0000

1
0
1
0

S
0

D501
D611

1

1

S
2

D71

D40

YS
1 1 0 1 0 1 0 1 0

1 0 1 0

1 0

S0

S1

S2

D0D1D2D3D4D5D6D7

Y
a) Implementation with 2-to-1 selectors

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 23

8-to-1 selector (cont.)

D3110
D2010
D1100
D0000

1
0
1
0

S
0

D501
D611

1

1

S
2

D71

D40

YS
1 S0

S1
S2

D0D1D2D3D4D5D6D7

Y
a) Implementation with a decoder

de
co

de
r

76
54

32
10

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 24

Gate Arrays –
ROMs, PLAs and PALs

Structure of gate array

9

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 25

f = a’b’ + abc
g = a’b’c’ + ab + bc
h = a’b’ + c

a b c

f g h

a b c

b c

a b

c

a b

a b c

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 26

a b c

f g h

a b c

b c

a b

c

a b

a b c

An alternative way to present a gate array

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 27

Three common types of
combinational logic arrays

PLAs (Programmable Logic Arrays)
Most general type

ROMs (Read-Only Memories)
AND array is fixed
Just a decoder consisting of 2n AND gates
User specifies the connections to the OR gate

PALs (Programmable Array Logic)
The connections to the OR gates are specified
User can determine the AND gate inputs
Each product term can be used only for one of the
sums

10

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 28

Designing with
ROMs

W(A, B, C, D)
= Σm(3,7,8,9,11,15)
X(A, B, C, D)
= Σm(3,4,5,7,10,14,15)
Y(A, B, C, D)
= Σm(1,5,7,11,15)

A B C D

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

W X Y

programmable

fixed

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 29

Possible solutions:

W = AB′C′ + CD
= AB′C′ + A’CD + ACD

X = A′BC′ + A′CD + ACD′ + {BCD or ABC}

Y = A′C′D′ + ACD + {A′BD or BCD}

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 30

Designing
with PLAs

W = AB′C′+ A′CD + ACD

X = A′BC′ + ACD′ + A′CD + BCD

Y = A′C′D + ACD + BCD

A B C D

W X Y

AB’C’

A’BC’

A’CD

ACD’

BCD

A’C’D

ACD

programmable

11

178 220 Digital Logic Design @ Department of Computer Engineering KKU. 31

Designing
with PALs

A B C D

W X Y
AB’C’

programmable

A’BC’

A’BD

CD

A’CD

W = AB′C′ + CD

X = A′BC′ + A′CD + ACD′ + BCD

Y = A′C′D′ + ACD + A′BD

ACD’
BCD

A’C’D’
ACD

fixed

