

Boolean Functions

 In arithmetic there are certain, familiar functions, such as:

 $2 \times 3 = 6$

 In logic another set of functions is defined. Unlike arithmetic functions these have binary inputs and binary outputs.

178 220 Digital Logic Design @ Department of Computer Engineering KKU.

2 P	Perfect Induction								
	(T3) x+x	RHS = X	(T3) x	is •X =	RHS = X				
R. R.	x y 0 0	+ 0	x 0	у 0	•				
(-1)	0 1	1	0	1	0				
	1 0	1	1	0	0				
	1 1	1	1	1	1				
K	$0+0 \stackrel{?}{=} 0$? 0					
	? 1+1 = 1		1•1 [?] 1						
a your	178 220 Digita	I Logic Design @ D	epartment of Com	puter	Engineering KKU.	10			

2.4	Proofs										
	(T8) $(x+y) \cdot (x+z) = x + (y \cdot z)$, distributivity										
12	Proof: use perfect induction										
	ху	z	LHS	RHS							
			(x+y)•(x+z)	x+y•z							
1	0 0	0	0	0							
(0 0	1	0	0							
	0 1	0	0	0							
10 m	0 1	1	1	1							
	1 0	0	1	1							
(all	1 0	1	1	1							
	1 1	0	1	1							
vin 1	1 1 178 220 D igital Lo g	1 _{gic E}	1 Design @ Department of	1 Computer Engineerin g	KKU.	12					

178 220 Digital Logic Design @ Department of Computer Engineering KKU.

Derivation of Expression

- * Given:- desired truth table
- * Problem:- to derive the boolean expression
- Simplest way is to form the *product terms*
- Any logic expression can always be expressed in one of the two standard forms:

1. Sum-of-Product (SOP) form

Each term in the standard SOP form is known as *minterm*.

- 2. Product-of-Sum (POS) form
- Each term in the standard POS form is known as *maxterm*. 178 220 Digital Logic Design ® Department of Computer Engineering KKU. 2

