
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Boolean Functions

* In arithmetic there are certain, familiar
\qquad functions, such as:

$$
2 \times 3=6
$$

* In logic another set of functions is defined. Unlike arithmetic functions these have binary inputs and binary outputs.

Boolean Algebra Axioms

* Set of two values: \qquad
$\{0,1\}$ or $\{f a l s e$, true $\}$ or $\{l o w, h i g h\}$ \qquad
* There are 2 binary and one unary \qquad operations defined for elements in Boolean algebra \qquad
\qquad

178220 Digital Logic Design @ Department of Computer Engineering KKU. \qquad

"AND"

\qquad

* Operation: TRUE if both inputs are TRUE
* Symbol: x AND $y=x \cdot y=x y=x^{\wedge} y$
\qquad
* often referred to as a product term
* Logic gate:

\qquad
\qquad
* Truth table:

c	y	$x y$
x	y	0
0	0	0
0	1	0
1	0	0
1	1	1

\qquad
\qquad
\qquad

"OR"

* Operation: TRUE if either or both inputs is TRUE \qquad
* Symbol: x OR $y=x+y=x v y$ \qquad
* often referred to as a sum term
* Logic gate:

* Truth table:

\qquad
\qquad
\qquad

178220 Digital Logic Design @ Department of Computer Engineering KKU.
\qquad
\qquad

"NOT"

\qquad

* Operation: TRUE iff the input is FALSE
* Symbol: NOT $x=\sim x=x$, $=\bar{x}$
* often referred to as an inverter or \qquad a complement
* Logic gate: \qquad
*Truth table:

178220 Digital Logic Design @ Department of Computer Engineering KKU.

Basic Properties of Switching Algebra

* Operations can be combined using parentheses
* With parentheses, order of operations is from the innermost to the outermost parentheses
* Order: \qquad

1) negation,
2) multiplication,
3) addition

- 1-variable theorems \qquad
- 2- and 3 -variable theorems

178220 Digital Logic Design @ Department of Computer Engineering KKU. \qquad

1-variable theorems

\qquad

* T1: $x+0=x \quad x \cdot 1=x$
identities \qquad
* T2: $x+1=1 \quad x \cdot 0=0 \quad$ null elements
* T3: $\mathrm{x}+\mathrm{x}=\mathrm{x} \quad \mathrm{x} \cdot \mathrm{x}=\mathrm{x} \quad$ idempotency
* T4: $\left(x^{\prime}\right)^{\prime}=x \quad$ involution
*T5: $x+x^{\prime}=1 \quad x \cdot x^{\prime}=0 \quad$ complements
Proofs are done by perfect induction
Consider all possible combinations on the Ihs and rhs, and check whether they are equal

178220 Digital Logic Design @ Department of Computer Engineering KKU.

Perfect Induction

(T3) $\overbrace{x+x}^{\text {LHS }}=\overbrace{x}^{\text {RHS }}$
(T3) $\overbrace{x \cdot x}^{\text {LHS }}=\overbrace{x}^{\text {RHS }}$

x	y	-
0	0	0
0		0
1	0	0
1		1
$0 \cdot 0 \stackrel{?}{=} 0$		
$1 \cdot 1 \stackrel{?}{=} 1$		

178220 Digital Logic Design @ Department of Computer Engineering KKU.

2- and 3-variable theorems

* T6: $x+y=y+x$
$x \cdot y=y \cdot x$
commutativity
$x \quad x \cdot y=y \cdot x$
* $\mathrm{T} 7:(\mathrm{x}+\mathrm{y})+\mathrm{z}=\mathrm{x}+(\mathrm{y}+\mathrm{z})$ $(x \cdot y) \cdot z=x \cdot(y \cdot z)$ associativity distributivity
* T8: $x \cdot y+x \cdot z=x \cdot(y+z) \quad(x+y) \cdot(x+z)=x+(y \cdot z)$
* T9: $x+x \cdot y=x \quad x \cdot(x+y)=x$
- T10: $x \cdot y+x \cdot y^{\prime}=x(x+y) \cdot\left(x+y^{\prime}\right)=x$
* T11: $x+\left(x^{\prime} \cdot y\right)=x+y \quad x \cdot\left(x^{\prime}+y\right)=x \cdot y$
- T12: $x \cdot y+x^{\prime} \cdot z+y \cdot z=x \cdot y+x^{\prime} \cdot z$
$(x+y) \cdot\left(x^{\prime}+z\right) \cdot(y+z)=(x+y) \cdot\left(x^{\prime}+z\right)$
Swap 0 \& 1, AND \& OR, theorems stay true 178220 Digital Logic Design @ Department of Computer Engineering KKU

Proofs

(T8) $(\mathrm{x}+\mathrm{y}) \cdot(\mathrm{x}+\mathrm{z})=\mathrm{x}+(\mathrm{y} \cdot \mathrm{z})$, distributivity Proof: use perfect induction

x	y	z	LHS $(x+y) \cdot(x+z)$	RHS $x+y \cdot z$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

\qquad

178220 Digitital Logic Design @ Department of Computer Engineering KKU.

"NAND"

* Operation: TRUE if either or both inputs is FALSE
* Symbol: x NAND $y=(x \cdot y)^{\prime}=\overline{x y}=\overline{x^{\wedge} y}$ \qquad
* Logic gate:

"NOR"

* Operation: TRUE if both inputs are FALSE
* Symbol: x OR $y==(x+y)^{\prime}=\overline{x+y}=\overline{x v y}$
* Logic gate:

* Truth table:

x	y	$(x+y)^{\prime}$
0	0	1
0	1	0
1	0	0
1	1	0

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Algebraic expressions, Equations and Circuits

\qquad
$z=x^{\prime}+y^{\prime}$
Given inputs x and y,
the output is $z=x^{\prime}+y^{\prime}$

\qquad
\qquad
\qquad
\qquad
\qquad

Algebraic expressions, Equations and Circuits (cont.)

Consensus theorem T12
LHS: $x \cdot y+x^{\prime} \cdot z+y \cdot z=x \cdot y+x^{\prime} \cdot z:$ RHS

178220 Digital Logic Design @ Department of Computer Engineering KKU.

DeMorgan Laws

* $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$

$=\mathrm{D}-\quad=1$
* $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$

'pushing the bubble'
178220 Digital Logic Design @ Department of Computer Engineering KKU.

From AND and ORs to NORs

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

"XOR" (Exclusive-OR)

\qquad

* Operation: TRUE iff either inputs is TRUE
* Symbol: x XOR y $=x \oplus y$
* Often referred to as an unequivalent gate
\qquad
* Logic gate:

\qquad
\qquad
* Truth table:

x	y	$(x \oplus y)$
0	0	0

\qquad
\qquad
17820 Digital Logic Design $\frac{1}{0}$ Departmentof Conputuer Engineeing $k K u$.

Simplifying Logic Functions

Logic Minimisation: reduce complexity of \qquad the gate level implementation
*reduce number of literals (gate inputs)
*reduce number of gates
\qquad
*reduce number of levels of gates

Simplifying Logic Functions (cont.)

*reduce number of gates

* fewer inputs implies faster gates in some technologies
*fan-ins (number of gate inputs) are limited in some technologies
* fewer levels of gates implies reduced signal propagation delays
*minimum delay configuration typically requires more gates
* number of gates (or gate packages) influences

22

Alternative Logic Implementations

A	B	C	Z
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$Z_{1}=A B C^{\prime}+A^{\prime} C+B^{\prime} C$
$Z_{2}=\left(A B \cdot C^{\prime}\right)+\left((A B)^{\prime} \cdot C\right)$
$Z_{3}=A B \oplus C$

178220 Digital Logic Design @ Department of Computer Engineering KKU.

Derivation of Expression

* Given:- desired truth table
* Problem:- to derive the boolean expression
* Simplest way is to form the product terms

Any logic expression can always be expressed in one of the two standard forms:

1. Sum-of-Product (SOP) form

Each term in the standard SOP form is known as minterm.

2. Product-of-Sum (POS) form

Each term in the standard POS form is known as maxterm.
178220 Digital Logic Design @ Department of Computer Engineering KKU

Derivation of Expression (cont.)

Sum-of-Product form (SOP)

Procedure :-

1. Form 'product terms' column
2. Complement the variables in each product if the corresponding input is ' 0 '
3. Form SOP expression from rows where output is ' 1 ' \qquad

Derivation of Expression (cont.)

X	Y	Z	Product terms	
0	0	1	$X^{\prime} Y^{\prime}$	
0	1	0	$X^{\prime} Y$	$Z=X^{\prime} Y^{\prime}+X Y^{\prime}+X Y$
1	0	1	$X Y^{\prime}$	
1	1	1	$X Y$	

However, consider this circuit!

178220 Digital Logic Design @ Department of Computer Engineering KKU.

Derivation of Expression (cont.)

Product-of-Sum form (POS)

Procedure :-
\qquad

1. Form 'sum terms' column
2. Complement the variables in each sum if the corresponding input is ' 1 '
3. Form POS expression from rows where output is ' 0 '

178220 Digital Logic Design @ Department of Computer Engineering KKU.

Derivation of Expression (cont.)

X	Y	Z	Sum terms
0	0	1	$X+Y$
0	1	0	$X+Y^{\prime}$
1	0	0	$X^{\prime}+Y$
1	1	1	$X^{\prime}+Y^{\prime}$

$$
\begin{aligned}
Z & =\left(X+Y^{\prime}\right)\left(X^{\prime}+Y\right) \\
& =X X^{\prime}+X Y+X^{\prime} Y^{\prime}+Y Y^{\prime} \\
& =X Y+X^{\prime} Y^{\prime}
\end{aligned}
$$

